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General Bayesian Inference over the Stiefel Manifold via the Givens
Transform

Arya A Pourzanjani Richard M Jiang Paul J Atzberger Linda R Petzold
University of California Santa Barbara

Abstract

We introduce the Givens Transform, a novel
transform between the space of orthonor-
mal matrices and RD. The Givens Trans-
form allows for the application of any gen-
eral Bayesian inference algorithm to proba-
bilistic models containing constrained unit-
vectors or orthonormal matrix parameters.
This includes a variety of matrix factoriza-
tions and dimensionality reduction models
such as Probabilistic PCA (PPCA), Expo-
nential Family PPCA (BXPCA), and Canon-
ical Correlation Analysis (CCA). While pre-
vious Bayesian approaches to these mod-
els relied on separate sampling update rules
for constrained and unconstrained parame-
ters, the Givens Transform enables the treat-
ment of unit-vectors and orthonormal matri-
ces agnostically as unconstrained parameters.
Thus any Bayesian inference algorithm can
be used on these models without modifica-
tion. This opens the door to not just sam-
pling algorithms, but Variational Inference
(VI) as well. We illustrate with several ex-
amples and supplied code, how the Givens
Transform allows end-users to easily build
complex models in their favorite Bayesian
modeling framework such as Stan, Edward,
or PyMC3, a task that was previously in-
tractable due to technical constraints.

1 Introduction

The Bayesian modeling paradigm involves setting up
a probabilistic model describing how data was gen-
erated, assigning prior distributions over unknown

Preliminary work. Under review by AISTATS 2018. Do
not distribute.

model parameters, and then calculating a posterior
distribution over these parameters [4; 17]. In practice,
this posterior distribution is intractable to compute
exactly for all but the simplest models, and one must
resort to approximate posterior inference algorithms.
Fortunately, much work has been done on this prob-
lem, resulting in state-of-the-art algorithms such as
Hamiltonian Monte Carlo (HMC) [18], the No-U-Turn
Sampler (NUTS) [9], Automatic Differentiation VI
(ADVI) [11] and Black Box VI[20]. These algorithms
are applicable to a wide class of models, and are readily
available in popular Probabilistic Programming lan-
guages such as Stan, Edward, and PyMC3[3; 25; 22].

One class of models these algorithms do not generally
apply to are models with parameters constrained to be
unit-vectors or orthonormal matrices. This most no-
tably precludes models arising in several domains such
as materials science [19], biology [7], and robotics [13],
and also models arising in probabilistic dimensionality
reduction [2; 10] such as PPCA, BXPCA [15], mixture
of PPCA [5], CCA [17, Chapt. 12.5], and the exam-
ples we showcase in our empirical studies section. For
simple constrained parameters, researchers and prac-
titioners have typically bypassed this hurdle by trans-
forming constrained model parameters to an uncon-
strained space and conducting inference in the resul-
tant space. For example, if a model contains some
parameter σ > 0 that is constrained to be positive,
one can simply take the log of this parameter and con-
duct inference over log σ, which is unconstrained. This
procedure is done routinely in Stan [3] and is the basis
for ADVI [11].

Unfortunately, for more complex constraints, such
transformations have not been mathematically de-
rived. In response, various sampling algorithms have
been devised for obtaining distributions over con-
strained parameters such as unit-vectors and orthonor-
mal matrices [8; 1; 2; 10]. These algorithms use differ-
ent update rules on constrained and unconstrained pa-
rameters, making them difficult to implement in stan-
dard software packages, and precluding practical use
on larger, more complex models. In particular, no VI

ar
X

iv
:1

71
0.

09
44

3v
1 

 [
st

at
.M

L
] 

 2
5 

O
ct

 2
01

7



Manuscript under review by AISTATS 2018

methods have been proposed for models with unit-
vector and orthonormal matrix parameters, making
inference on larger models with these parameters par-
ticularly problematic. Being able to use a transform
would be ideal as it would more cleanly modularize
models from inference algorithms.

To this end, we introduce the Givens Transform, a
novel transform between the space of orthonormal ma-
trices and the unconstrained space, which, to the best
of our knowledge, is the first transform that allows for
the application of any general inference algorithm to
models containing unit-vectors and orthonormal ma-
trix parameters. The transform is easy to implement
and does not require any specialized inference algo-
rithms or modifications to existing algorithms or soft-
ware. This allows users to rapidly build and prototype
complex probabilistic models with orthonormal ma-
trix parameters in any common software framework
such as Stan, Edward, or PyMC3 without having to
worrying about messy implementation details. Users
can then subsequently conduct fully Bayesian inference
using any state-of-the-art inference algorithm avail-
able in these packages, including variational inference,
which was previously not possible. We stress that al-
lowing users to use models with orthonormal matrix
parameters in common modeling packages opens up
use of a wide class of new models, and frees them up
to focus on modeling rather than implementation and
debugging of custom modeling code and inference al-
gorithms. Furthermore, by treating parameters agnos-
tically as unconstrained, the Givens Transform allows
inference algorithm designers to focus on more general
algorithms rather than separate model specific ones.

In addition, the Givens Transform, which represents
orthonormal matrices in terms of a sequence of funda-
mental rotations through given angles, yields geomet-
ric insights into novel and useful ways to work with and
interpret models with orthonormal matrix parameters.
This helps in addressing a number of previously unre-
solved issues. Specifically, the elegant geometric repre-
sentation lets us see how, by limiting the range of the
parameters in the Givens Transform, we can naturally
avoid issues of unidentifiability that arise when work-
ing with orthonormal matrices. The Givens Transform
also enables new and creative ways to generate and use
prior distributions on orthonormal matrices, and thus
subspaces, a task that had previously been rather com-
plicated due to the difficulty of evaluating densities of
orthonormal matrix distributions for even small prob-
lem sizes [8]. As we shall discuss in more detail, our
method allows for a natural way to specify prior distri-
butions over orthonormal matrices comparable to the
Matrix Langevin prior [16].

In Section 2 we discuss previous methods for conduct-

ing inference over unit-vector and orthonormal matrix
parameters. We briefly explain how transformations
are typically used in Bayesian inference in Section 3.
In Section 4 we discuss the geometry of the Stiefel
Manifold, the space of orthonormal matrices, setting
the stage for the Givens Transform which we discuss
in Section 5. In Section 6 we present several exam-
ples from our own applied work where we utilize the
Givens Transform in Stan to implement several com-
plex models containing unit-vector and orthonormal
matrix parameters. We finish with a brief discussion
in Section 7.

2 Related Work

A few sampling-based methods have been developed to
obtain posteriors over orthonormal matrix parameters.
Brubaker et al. [1] proposes the use of the SHAKE in-
tegrator [12] to simulate Hamiltonian dynamics and
generate proposals. For constrained parameters, the
integrator works by repeatedly taking a step forward
that may be off the manifold using ordinary leap frog,
then projecting back down to the nearest point on the
manifold using Newton Iterations. Byrne and Giro-
lami [2] as well as Holbrook et al. [10] exploit the fact
that closed form solutions are known for the geodesic
equations in the space of orthonormal matrices in the
embedded coordinates, W . They utilize these equa-
tions to update constrained parameters in a different
manner than for unconstrained parameters in their de-
rived Embedded Manifold HMC (EMHMC) algorithm.

As these methods all use modified integrators for con-
strained parameters, they require additional book-
keeping of the support and the integrator of each
model parameter, unlike the Givens Transform which
treats these parameters as unconstrained parameters.
This makes them incompatible with the current widely
available Probabilistic Programming languages such as
Stan and Edward, which typically do not expose the
underlying inference algorithm to the user. Further-
more, these algorithms are unable to take advantage
of improved samplers such as NUTS and optimization
based approximate methods such as ADVI, limiting
their scalability to large models.

3 Bayesian Inference of Constrained
Parameters Using Transformations

Given a constrained random variable Z, and a (possi-
bly unnormalized) density pZ(z), one can use a smooth
one-to-one mapping, T : support(Z) → RD to ob-
tain a new density pU (u) = pZ(T−1(u))|JT−1(u)| in
terms of an unconstrained random variable, U . Here
|JT−1(u)| is the determinant of the Jacobian of T−1
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and is a standard term that accounts for how a unit
volume changes under the transformation [4; 17; 11].
Under the transformed density pU (u), one can obtain
posterior samples u1, · · · , uN or a variational distribu-
tion, qγ(u) over the unconstrained parameter that cor-
responds to the original constrained parameter of in-
terest. Samples can then be freely mapped back to the
original constrained space using the inverse transform
T−1 to obtain posteriors in the original constrained
space z1 = T−1(u1), · · · , zN = T−1(uN ). To this end,
we derive just such a transform for orthonormal ma-
trix parameters by first appealing to the geometry of
the space in which they reside.

4 Geometry of the Stiefel Manifold

To make better sense of the space of orthonormal ma-
trices, we can analyze its geometric properties. Just
as three-dimensional unit vectors form a sphere in R3,
which is a sub-manifold of R3, the set of n × p or-
thonormal matrices form a sub-manifold in the space
of general n×p matrices, known as the Stiefel Manifold
and denoted Vn,p[16]. Vn,p is formally defined as

Vn,p := {Y ∈ Rn×p : Y Y T = I}. (1)

The elements of Vn,p are referred to as p-frames,
a collection of p orthonormal vectors that lie in n-
dimensional space, and can collectively be represented
by an n× p orthonormal matrix, Y . Given a p-frame,
Y , we can get any other p-frame by simultaneously
and rigidly rotating the columns of Y about any com-
bination of axes an arbitrary number of times.

Even though n× p orthonormal matrices are typically
represented by np elements, the intrinsic dimension of
the Stiefel Manifold, Vn,p, is actually np− p(p+ 1)/2.
This arises from the constraints on the columns of the
matrix that impose orthonormality. This dimension-
ality can be seen by observing that the first column
of Y ∈ Vn,p must have norm one and hence has one
constraint placed on it. The second column must also
have norm one and also must be orthogonal to the
first column hence has two constraints placed on it.
Continuing to the third column through the nth. one
arrives at the conclusion that each point of the Stiefel
Manifold has only np−(1+2+· · ·+p) = np−p(p+1)/2
degrees of freedom. The reduced dimensionality moti-
vates the Givens Transform, which can be thought of
as an np − p(p + 1)/2-dimensional set of coordinates
Φ, that represent elements of the Stiefel manifold.

As a concrete example, the specific case where n = 3
and p = 1 corresponds to aforementioned unit vector
in R3 whose position can be represented in terms of
two angles of rotation: one representing rotation in the

Figure 1: To obtain different elements of the Stiefel
Manifold we rigidly rotate p-frames. This motivates
the connection to Givens Reductions which work by
rotating in some plane (inset).

xy-plane, θ12 (latitude), and one representing rotation
in the xz-plane θ13 (latitude). This is the standard
spherical coordinates system with the radius free pa-
rameter set to exactly 1. Extending this to n = 3 and
p = 2, we can imagine adding a second unit vector
with position defined to be orthonormal to the first
unit vector. However, now to define any other element
of V3,2 from any other, we must take care to keep the
two orthonormal. This means we are constrained to
rotate the second unit vector in reference to the first.
Thus, this whole system is represented by three angles:
two angles to represent the position of the first vector,
and a third angle, θ23 that controls how much the sec-
ond basis vector is rotated about the first (Figure 1).

5 The Givens Transform

More generally, one can represent any n× p orthonor-
mal matrix by a np − p(p + 1)/2-dimensional vec-
tor Θ := (θ12 · · · θ1n) · · · (θ23 · · · θ2n)(θp+1,n · · · θpn) by
successively applying clock-wise rotation matrices with
these angles to the matrix In,p, which we define to be
first p columns of the n×n identity matrix. That is we
can represent any orthonormal matrix Y , as a function
of these angles:

Y (Θ) = (R
θ12
12 · · ·Rθ1n1n ) · · · (R

θ23
23 · · ·Rθ2n2n )(R

θp+1,n
p+1,n · · ·Rθpnpn )In,p.

(2)

The elements of Θ will be constrained to lie in either
the interval [−π, π) or [−π/2, π/2), however we can use
a simple logistic transform [4] applied element-wise to
obtain the unconstrained vector Φ, which can repre-
sent any orthonormal matrix by Y (Θ(Φ)). This es-
tablishes the Givens Transform, a continuous one-to-
one map between the space of orthonormal matrices
and unconstrained space, Y : Rnp−p(p+1)/2 → Vn,p.
The transform enables use of orthonormal matrices in
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any probabilistic programming language by declaring
Φ as unconstrained parameters and transforming to Y ,
which can then be used in any likelihood. Algorithm 1
shows how this transformation is formally computed.

We first note that the formula in Equation 5 will al-
ways return an orthonormal matrix, that is continuous
in Θ. This is evident as In,p is orthonormal and appli-
cation of rotation matrices does not affect magnitude
or orthonormality.

We establish that the Givens Transform is a valid map-
ping in three steps using the remainder of this section.
Namely we establish surjectivity, by showing that any
n× p orthonormal matrix can be represented by some
combination of angles Θ, and hence Φ. We then show
injectivity by showing that no two different combi-
nations of Θ, and hence Φ lead to the same angles.
Lastly, we show we can identify and explicitly compute
a form akin to the Jacobian adjustment term described
in Section 3 for Bayesian inference.

5.1 Surjectivity

To establish surjectivity of the Givens Transform, we
rely on the Givens Reduction algorithm from numer-
ical analysis, an algorithm traditionally used for ob-
taining a QR factorization of an n × n matrix A[14].
The algorithm works by applying a series of counter-
clockwise rotation matrices to A such that elements
below the diagonal are “zeroed out” starting with the
second element of the first column, and moving down
the first column before zeroing out the appropriate el-
ements of the subsequent columns ultimately resulting
in the upper-triangular matrix

R = ((R
θpn
pn )

−1 · · · (R
θp+1,n
p+1,n )

−1
) (3)

· · · ((R
θ2n
2n )

−1 · · · (R
θ23
23 )

−1
)((R

θ1n
1n )

−1 · · · (R
θ12
12 )

−1
)A

where Rθij denotes the matrix representing a counter-
clock-wise rotation of angle θ in the i-j plane and its
inverse denotes the corresponding clock-wise rotation.
Note that each subsequent rotation has the property
of not “undoing” the the rotations before it. One can
similarly apply this algorithm to an orthonormal ma-
trix:

Theorem 5.1. Let Y be any arbitrary n × p matrix
with orthonormal columns. Applying the Givens Re-
duction algorithm applied to Y , i.e. replacing A with
Y in Equation 5.1 results in the matrix In,p.

Proof. By construction, the Givens Reduction will
make all lower diagonal elements of R zero. Thus the

first column of R will be non-zero only in the first ele-
ment. In fact this first element will be one since rota-
tions do not affect magnitude and the column started
with length one by virtue of Y being orthonormal.

Now assuming that the first J columns of R match
the first J columns of In,p after the Givens Reduc-
tion algorithm has “zeroed out” the first J columns,
we show that the algorithm will go on to make the
first J + 1 columns match as well. In fact the first
J columns will be left unchanged by this transforma-
tion since rotation will only take place on elements
after the Jth row, and these columns will have zeros
in those rows. Furthermore, by construction, the J+1
column will have zeros past the J+1 element, but since
simultaneous rotations of the columns of R retain the
orthogonality between the J + 1 column and the pre-
ceding columns, the J + 1 column will also have zeros
above the J + 1 entry as well, otherwise it would not
be orthogonal to the preceding columns. Lastly, be-
cause rotations do not change the length of a vector,
the J + 1 column must be of length one, and hence its
only non-zero entry, the J + 1 will be one.

Because rotations are invertible one can take all the
rotations in Equation 5.1 to the left hand side obtain-
ing the representation in Equation 5. Since Theorem
5.1 only stipulated Y to be any arbitrary n× p matrix
with orthonormal columns, surjectivity is established.

For thoroughness we note that topologically, Vn,p is
locally equivalent to Euclidean space, but not globally
equivalent, meaning it is impossible to find a one-to-
one map between the Stiefel manifold and Euclidean
space. Technically speaking, the Givens transform can
map angles to all of Vn,p except for a subset S ⊂ Vn,p
of measure zero 1. In the n = 3, p = 1 case (the
sphere), this corresponds to a sliver where θ12 = π and
θ13 ∈ (−π/2, π/2). As a consequence, with probability
one, the orthonormal matrix that describes the true
subspace our data lies in will not be in that set [21].

5.2 Injectivity

To establish injectivity it is enough to see that different
angles inserted in to Equation 5 cannot possible lead
to different orthonormal matrices, as differing angles
would produce unique invertible rotation matrices

5.3 Transformation of Measure Under the
Givens Transform

To fully specify our method so that Bayesian infer-
ence can be conducted, we need to define the Jacobian

1S is of measure zero under the Lebesgue measure or
any continuous density over the Stiefel Manifold
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Input: A set of np− p(p+ 1)/2 angles to rotate
about, θ

Result: An orthonormal n× p matrix Y representing
the coordinates from the angles.

Z = In; idx = 0
for i in 1:p do

for j in i+1:n do
//create Rotation matrix defined by theta
T = In;
T [i, i] = cos(θidx); T [i, j] = sin(θidx);
T [j, i] = − sin(θidx); T [j, j] = cos(θidx);
//apply rotation matrix
Z = ZT ;
idx = idx+ 1;

end

end
Y = Z[:, : p];
Algorithm 1: Psuedo-code for performing a Givens
Transform on a set of np− p(p+ 1)/2 angles.

adjustment term to account for the change in unit vol-
ume under the transformation, as described in Section
3. Failure to include such a term can result in measures
that are incorrectly concentrated at different locations
in parameter space (Figure 2).

Figure 2: Even if we sample uniformly in angle co-
ordinates (inset), without a proper measure adjust-
ment accounting for how volumes are warped under
the Givens Transform, samples will not be uniform
when transformed to the sphere. In this case, samples
are sparse near the equator and congregate near the
poles. Intuitively, areas that are near the poles are
shrunk far more than areas near the equator, so when
mapped back onto the sphere, points will congregate
closer to the poles of the sphere than the equator.

In the case of the Givens Transform, as the Jacobian
is not square, one can not simply use the determinant
of the Jacobian as the volume correction factor as that
factor is undefined. An n × p orthonormal matrix is
np-dimensional and the Givens transform, Φ(Y ), maps
this set to an np−p(p+1)/2-dimensional set of angles,

Φ. To obtain the correct morphing factor, we appeal
to the calculus of differential forms, which roughly-
speaking, measures how a transform warps an infinites-
imal volume from one space to another. For accessi-
bility, we provide psuedo-code in the supplementary
materials, as well as actual Stan code.

For n× p orthonormal matrices, there are np− p(p+
1)/2 free parameters and so the proper form to mea-
sure sets of orthonormal matrices is a np− p(p+ 1)/2-
form. For an orthonormal, n×p matrix, Y , we can find
an orthonormal n×n matrix G such that GTY = In,p.
In fact G just comes from the product of the appro-
priate rotation matrices that arises in the Givens Re-
duction, Q. Muirhead [16] shows that the correct form
for measuring volumes on the Stiefel manifold comes
from wedging the elements of the n× p matrix GT dY
that lie below the diagonal i.e.

p∧
i=1

n∧
j=i+1

GTj dYi, (4)

where Gj is the jth column of G and Yi is the ith col-
umn of Y . To obtain the form in angle coordinates, we
obtain dYi in terms of the angle coordinates by the fol-
lowing relationship, dYi = JYi(Θ) dΘ, where JYi is the
Jacobian of Yi with respect to the angle coordinates.
Once we obtain the form (4) in terms of the angle coor-
dinates, the result is a wedge product of np−p(p+1)/2
vectors that are np−p(p+1)/2 dimensional, which re-
duces to the determinant of these vectors aligned side
by side as a np − p(p + 1)/2 × np − p(p + 1)/2 ma-
trix. This determinant is analogous to and serves the
same purpose as Jacobian adjustment that comes from
transforming random variables. We can insert it into
the log-probability of a model to avoid the sort of un-
intended sampling behavior depicted in Figure 2. We
incorporate the form (4) in to the log-probability of all
of our Stan examples.

6 Empirical Studies

To demonstrate the use of the Givens Transform, we
construct several models with orthonormal matrices or
unit vectors as parameters and perform fully Bayesian
inference on them in Stan.

6.1 Avoiding Unidentifiability in Neural
Network Models Using Unit-Vectors

A single layer neural network with Rectified Linear
Unit(ReLU) nonlinearities and H hidden nodes maps
inputs x ∈ RD to outputs y ∈ R via the relationship
y = max{0,W1x + b1}W2 where W1 ∈ RH×D and
b1,W2 ∈ RH . It is well known that several equivalent
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values of W1, b1, and W2 result in the same exact
function. For example, the ith row of W1 and the ith
entry of b1 can be scaled by α as long as the ith entry
of W2 is scaled by 1/α [6, p.277].

In Bayesian analysis, this leads to thin, ridge-like pos-
teriors with high curvatures that are difficult to sam-
ple and approximate using VI, often times leading to
variational posteriors that underestimate model uncer-
tainty (Figure 3). By replacing the columns ofW1 with
unit-vectors using the Givens Transform, and sampling
over the space of unconstrained angles, we can obtain
much more well behaved posteriors.

Figure 3: (Left) Posterior HMC samples of W1[1, 1]
and W2[1] reveal how the scaling unidentifiability of
ReLu networks manifests as ridge-like posteriors that
are difficult to sample and approximate using VI, as
oppose to the more well-behaved posteriors in the
Givens coordinates (Right).

6.2 Probabilistic PCA

Factor Analysis (FA) and Probabilistic PCA (PPCA)
[24] posit a probabilistic generative model where high-
dimensional data is determined by a linear function of
some low-dimensional latent state [17, Chapt. 12]. Ge-
ometrically, for a three-dimensional set of points form-
ing a flat, pancake-like cloud, PCA can be thought of
as finding the best 2-frame that aligns with this cloud
(Figure 4). Formally, PPCA posits the following gen-
erative process for how a sequence of high-dimensional
data vectors xi ∈ Rn, i = 1, · · · , N arise from some low
dimensional latent representations zi ∈ Rp (p < n),
via a linear transformation, or matrix W ∈ Rn×p:

p(zi) ∼ Np(0, I)

p(xi|zi,W, σ2) ∼ Nn(Wzi, σ
2I). (5)

A closed-form maximum likelihood estimator for W is
known for this model in the limit as σ2 → 0, but as
we shall see, for more complicated models/likelihoods,
closed-form maximum-likelihood estimators are al-
most never known. This has often been dealt with by

using Expectation Maximization (EM) in these mod-
els to obtain a point estimate [17, Chapt. 12.2.5]. In
Bayesian inference we are typically interested in the
entire distribution over possible solutions, i.e. a poste-
rior distribution over unknown parameters to quantify
uncertainty.

Figure 4: PCA finds the orthonormal matrix in the
Stiefel Manifold that best describes the subspace that
the data lie in. In the Figure, the point estimate mis-
leads us from the true subspace, which in this case is
the flat plane.

One can show that the W parameter in PPCA is
unidentifiable [17, chapt. 12.1.3], as it can be rotated
to achieve an identical likelihood; thus the model must
be changed to make the posterior distribution inter-
pretable. Furthermore, this rotational unidentifiabil-
ity manifests in the log-likelihood function as regions in
parameter space where large curvature arise, causing
numerical problems in HMC, as pointed out by Hol-
brook et al. [10]. To this end, those in the Bayesian
dimensionality reduction community have used a mod-
ified form of the model (5), whereby the matrix W is
replaced by a new term WΛ where W is an n× p or-
thonormal matrix and Λ is a p × p diagonal matrix
with positive elements [2; 10].

6.2.1 Test on Synthetic Data

We used the Givens Transform to fit this modified
PPCA using Stan’s NUTS inference algorithm, which
otherwise would be unusable on this model with an
orthonormal matrix parameter. We generated a syn-
thetic, three-dimensional dataset that lies on a two-
dimensional plane with N = 15 observations according
to the modified version of (5) (data shown in Figure 4).
We choose diag(Λ) = diag(1, 1), σ2 = 1, and W to be
I3,2, which in the Givens representation corresponds
to θ12 = θ13 = θ23 = 0 i.e. the horizontal plane, which
contrasts with the slanted plane that we obtain from
a classical PCA maximum likelihood estimate (Figure
4). In this case the advantage of the full posterior
estimate the Bayesian framework affords is clear. Pos-
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terior samples of θ13, which if we recall from Figure
1 is the Givens Transform angle that controls the up-
wards tilt of the plane, reveal a wide posterior which
cautions us against the spurious maximum likelihood
estimate of θ̂13 = −0.15 (Figure 5).

Figure 5: Inference for three-dimensional synthetic
data. (Left) Posterior draws of the Λ parameter
are more informative in dimensionality selection than
plane point estimates. (Right) By limiting the an-
gles of rotation in the Givens Transform we can avoid
unidentifiability in our problem and eliminate multi-
modal posteriors that show up in other methods such
as EMHMC.

We also note that the representation of the Givens
Transform can in certain models allow us to avoid
issues of identifiability that are present in the sam-
pling algorithms of [1; 2]. While most identifiability
issues are alleviated by using the modified PPCA with
an orthonormal matrix, the PPCA likelihood is still
equivalent for an orthonormal matrix W and any per-
mutation of the columns of W being negative [17; 10,
Chapt. 12.1.3]. Taking a geometric view of the Stiefel
Manifold (Figure 1), this means that a mirroring of the
p-frame would yield an identical value in the likelihood
of even the modified PPCA. As such, even the methods
of Brubaker et al. [1] and Byrne and Girolami [2] will
lead to multi-modal posteriors that can be avoided in a
straightforward manner by simply limiting the angles
in the Givens Transform from a range of (−π, π) to a
range of (−π/2, π/2), a change that is much more evi-
dently afforded when working in the angle coordinates
(Figure 5 [right]).

As a practical matter, if the true basis lies near a pole,
i.e. θij is close to −π/2 or π/2, then posteriors might
still tend to be multi-modal as the region in parame-
ter space close to the boundaries will be nearly equally
valid, while the region near zero will not be valid and
thus contain little probability mass. In these cases,
one can simply change the coordinate bounds (chart)
so that θij ∈ (0, π) will have a unimodal posterior in
the new coordinate system, alleviating possible explo-
ration issues in HMC. In Stan this is straightforward,
as one simply has to change the lower and upper bound
of the angle parameter.

6.3 Hierarchical subspace models for
grouped multi-view medical data

We modeled grouped multi-view hospital data for in-
jured patients using a hierarchical CCA model [17,
Chapt. 15.2]. CCA can model two types (or views) of
data as being a function of two respective latent low di-
mensional states, but also a common latent state that
captures the common information contained in both
views (Figure 6 [left]). In our case we compared blood
protein measurements and clot strength measurements
for injured patients belonging to one of four groups,
depending on the type of injury. While the four types
of injuries were different enough so that we could not
use a single CCA model to capture the characteris-
tics of all models at once, the four groups were not
so different as to warrant separate CCA models for
each. To share information between the CCA models,
we placed a hierarchical prior over the angles of the
Givens Transform representing the distinct orthonor-
mal matrix parameter for each group.

Figure 6: Probabilistic graphical models for Hierarchi-
cal CCA Model (left) and Network HMM (right).

While distributions on the Stiefel Manifold such as the
Matrix Langevin distribution [16] exist, these distri-
butions are difficult to use in practice, as computing
their density requires evaluating an expensive matrix
sum [8]. By appealing to the Givens Transform and
placing a hierarchical prior over the angles of the dif-
ferent orthonormal matrices, we were able to build
a hierarchical model over subspaces, a previously in-
tractable task. The hierachical prior “shrinks” the
posterior median of the orthonormal matrices towards
a common mean in addition to reducing the variance
of these estimates (Figure 7). This is particularly help-
ful for groups with only a smaller number of observa-
tions such as the SW group, which contains only 16
patients, in comparison with the GSW group of 86
patients. Comparing the angle between the first prin-
cipal components for the SW and GSW groups illus-
trates how using a hierarchical prior shrinks estimates
of subspaces together towards a common hierarchical
subspace (Figure 8).
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Figure 7: (Left) When estimated separately, estimates
of the matrix parameter W have high uncertainty.
(Right) Placing a hierarchical prior over these matrices
with GT-PPCA shrinks these parameters to a common
hierarchical mean and results in smaller posterior in-
tervals.

Figure 8: Geometrically the respective first principal
components of two different groups are shrunk closer
together in a hierarchical model.

6.4 Social Networks

We built an HMM subspace model for count data to
model the hidden time-dependent structure of a so-
cial network of school children. RF sensors were used
to track the interactions between school children in
12 different classes (two classes for grades 1-6) for an
entire school day so as to better understand how dis-
ease spreads throughout a network [23]. We collated
the number of interactions between each pair of classes
into 11-minute contiguous time windows, giving us 177
symmetric matrices of counts representing the network
interactions between different classrooms throughout
the day (Figure 9 [lower row]). We modeled the ele-
ments of these count matrices as each coming from a
Poisson distribution with rate defined by a symmetric
matrix R = exp(WΛWT ), where the orthonormal ma-
trix W captures the low-dimensional structure of the
network. To model the time varying structure of the
network, we posited that the network was always in
one of three latent states, that evolve according to a
Markov Chain (Figure 6 [right]). The three states each
have their own associated orthonormal matrix Wi that
captures the low-dimensional latent network structure
for that state.

The posterior modes capture the latent structure of
the rate matrices of the three hidden states (Figure

Figure 9: Posterior modes of rate matrices for the
three states (top) capture the pattern found in exam-
ple count matrices belonging to each of these three
states (bottom).

Figure 10: (Left) Posterior intervals from GT-PPCA
with NUTS capture uncertainty in the orthonormal
matrix estimates for the first two columns of the rate
matrix for the first hidden state. (Right) Posterior
draws can tell us the posterior probability that the
network was in a certain state given the data.

9 top row). Interaction rates are visibly low when
students are in class, high during lunch, and nonex-
istent when out of school out of class. Posteriors of
the orthonormal components of the rate matrices are
shown in (Figure 10 [left]). We also generated sam-
ples from the posterior distribution over states from
posterior samples of the Markov Chain, enabling us
to provide a posterior over which of the hidden states
the network is in at a given time (Figure 10 [right]), a
common inference task in disease networks as well as
fMRI networks.

7 Discussion

We introduce the Givens Transform, a parameter
transformation that represents orthonormal matrices
in an alternative coordinate system, enabling the con-
struction and inference of complex probabilistic mod-
els with unit-vector and orthonormal matrix parame-
ters in a probabilistic framework like Stan. We show
using real-world examples how one can use Stan and
the Givens Transform to obtain uncertainties over such
parameter all while avoiding multi-modal posteriors
and analyzing the parameters using an easy to under-
stand angle representation.
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