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Protein Folding with Homologous Sequences
by

Thomas R. DeFay

Abstract

The protein folding problem has been one of the most intractable

problems facing science for almost 40 years. The problem is to predict the

three-dimensional structure of a protein from its amino acid sequence. Early

on, it was hoped that a simple pattern relating the amino acids would help

solve this problem, much as the structure of DNA was solved. When this

proved unsuccessful, efforts turned toward developing energy functions

accurate enough to identify the native structure. In forty years this problem

still has not yielded.

Fortunately, a homologous family of sequences all fold to a similar

three-dimensional structure. This fact can be exploited to increase the

accuracy of structure predictions. The most straightforward way to use a

homologous sequence is if that sequence already has an experimentally

determined structure. In this case, the structure can be used as a template

upon which to build a new structure, as we have done.

We have also proposed a new method for predicting structure based

upon an old technique, threading. When threading, the goal is to match a

sequence with one of a set of known folds in a protein database. We have

devised a new method which "threads" using the information from a set of

homologous sequences.
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Chapter 1

Introduction



Background

How does the sequence of a polypeptide lead to its three dimensional

structure? In the case of DNA, knowledge of its three-dimensional structure

readily led to an understanding of the binding and interaction of base-pairs to

form the structure of DNA, namely the double helix. In the case of proteins,

the connection between sequence and structure is less clear. John Kendrew

and co-workers remarking on the structure of myoglobin said "Perhaps the

most remarkable features of the molecule are its complexity and lack of

symmetry (Kendrew et al., 1958)." This was unfortunate due to the

importance of the structure of proteins. Their structure is responsible for

their function, and they perform most of the functions in the human body.

Hope emerged for finding the connection between sequence and

structure for proteins, when in the early 1970's, Anfinsen established that the

information required to fold ribonuclease was contained solely in its

polypeptide chain (Anfinsen et al., 1961). This implies that the native

structure of ribonuclease (and it turns out, most globular proteins) is at a

thermodynamic energy minimum.

Given that the native structure of a protein is at its free energy

minimum, the protein folding problem can be solved by generating an

accurate free energy function, and searching the conformations of the protein

chain for the one that is of lowest energy. At present, both of these steps have

proven to be intractable.

Efforts have continued to find local patterns in the amino acid

sequence that have structurally predictive value. Some headway has been

made in the area of secondary structure prediction, but accuracy for this

simplified problem is still near 63% (Garnier & Levin, 1991).



Another technique has also emerged, called "threading" which

involves matching a sequence onto each of a set of structures in a database,

and choosing the best match. The effectiveness of this technique is based on

the fact that unrelated protein sequences often fold to similar overall

structures. At first, this technique looked quite promising, but recent results

from a conference at Asilomar suggest that our ability to thread accurately is

still quite low (Lemer et al., 1995).

Luckily, we are not limited to the information in just one amino acid

sequence. Sequences from the same family of sequences fold to very similar

three-dimensional structures. This information has not been exploited to

generate new and accurate energy functions, but has benefited approaches

based upon statistical patterns. Thus, secondary structure prediction accuracy

improves to 72% when homologous sequence information is exploited (Rost

& Sander, 1994). This increased accuracy has led in some cases to accurate

structure predictions based on assembling the secondary structure units

(Benner et al., 1994; Crawford et al., 1987).

In addition, in some cases the three dimensional structure of a

sequence that is homologous to the sequence of a new protein has been

solved. In this case, a technique called homology modeling can be used to

predict the structure of the new sequence.

s
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Thesis

The second chapter in this thesis focuses on the overall problem of

protein modeling, touching on approaches such as secondary structure

prediction, energy functions and homology modeling. It serves as a basis for

understanding the following chapters.

The third chapter is devoted to a proven method for exploiting

homologous sequences--homology modeling. In this case, a homology model

of protein factor VIII was generated. Defects in this protein may lead to

hemophilia. Our homology model allowed us to explain much of the

experimental evidence known about this protein, and its link to hemophilia
A.

The fourth chapter in this thesis is an evaluation of a blind prediction

contest held in Asilomar California. In this contest, investigators attempted

to predict using de novo methods (basically, not homology modeling or

threading methods) the structure of several proteins. We found that the

most important ingredient for success was the inclusion of information from

a set of homologous sequences, especially for secondary structure prediction.

One area of protein folding which has not yet benefited from the use of

homologous sequences is threading. Some studies have matched predicted

secondary structure elements generated using multiple sequence alignments

with secondary structure elements from known folds. In the final chapter of

this thesis, we present the first study where homologous sequences have been

used to carry out explicit threadings to find the crystal structure that best

matches the sequence in question.
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Protein Modeling
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Introduction

Protein Modeling is a collection of computational methods for the

description, analysis and prediction of protein structures and the interaction

of proteins with other molecules. Protein structures can provide insight into

enzyme mechanisms and are increasingly useful for the design and

optimization of novel pharmaceuticals. A major goal of protein modeling is

the "Protein Folding Problem," the ability to accurately predict the structure of

a protein from its sequence. The protein folding problem is still considered

intractable for most proteins when attempted without additional information

(de novo). Headway is being made however, with restricted systems such as

all helical proteins. Another approach, modeling by homology, takes

advantage of an experimentally determined structure. This structure is used

as a template for the structure of a protein with a similar (homologous)

sequence.

Most representations of protein structures are static but, in solution,

proteins are quite flexible and are constantly changing form. The static

structure is an average of the most frequently observed positions of the atoms

that constitute a protein. Increasingly dynamic models have been developed

to follow the conformational plasticity of a protein over time.
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Importance of Protein Structure to Protein Function/Inhibitor Design

Origin of Structures: X-ray and NMR

Most protein structures have been determined by the technique of X

ray crystallography. For this method to succeed, suitable conditions must be

found to induce the protein into a highly ordered crystalline array capable of

coherently scattering X-rays. The intensities of the diffracted X-rays are

measured but the phase information is lost. When visual light is diffracted

off of an object, the eye refocuses the light, combining intensities and phase

information into an image. Lenses are not available that can refocus X-rays,

and detectors cannot measure the phase of light. The phase information can

be deduced by a variety of methods, including the introduction of heavy

atoms into the crystal (multiple isomorphous replacement and multiple

anomalous dispersion) or by relation to previously solved proteins of similar

structure (molecular replacement). The coordinates of many structures are

stored in the Brookhaven Protein Data Bank (PDB).

More recently, multi-dimensional Nuclear Magnetic Resonance

(NMR) methods have been used to determine the structures of many

proteins with an accuracy comparable to X-ray crystallography. NMR

structures are determined in solution so the problem of obtaining crystals is
eliminated. Technical limitations make it difficult to determine the structure

of proteins larger than 20kD by NMR methods.

Biological Lessons Learned

The structures produced by X-ray Crystallography and NMR have been

used to enhance our understanding of biological processes. For instance, the

structure of myosin is helping to resolve the mechanics of muscle

contraction. Myosin is thought to move along an actin filament in a series of
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steps. The structure of myosin is being used to discover the length of each

step and the method of attachment of myosin to actin. Crystal structures

have helped resolve the specific mechanism of enzyme catalysis in several

cases. An enzyme catalyzes a chemical reaction in a cleft on its surface (the

active site). Several different mutants of the enzyme can be made to
determine which amino acid residues form the active site. When this

information is combined with the protein structure, the mechanism of

enzyme action may be deduced. Knowledge of the enzyme mechanism has

been sufficiently detailed to change the substrate the enzyme performs its
function on.

Recent applications to drug design

Drugs have been designed to bind to or alter the active site of an

enzyme to block the reaction that occurs on its surface. If this is done to a

protein important to the replication of a virus, the virus may die out.

Unfortunately, the success of designed drugs has been limited by the

complexities of the binding interactions. More headway has been made by

identifying the basic shape of an active site and searching a large database of

molecules to find a subset that geometrically match. These candidates for
binding are then biologically assayed. Analysis of the structure of a

biologically active compound complexed with a protein can lead to

improvements in the compound. Several rounds of compound alteration

and structural analysis may produce a usable drug.



Relationship of Sequence → Structure

The Thermodynamic Hypothesis

Most of protein modeling is based on the hypothesis that the final

structure of a protein is uniquely determined by its amino acid sequence.

This means that the final folded state of the protein is the thermodynamic

minimum state for the protein under standard physiological conditions. A

series of experiments by Anfinsen and coworkers demonstrated that a

denatured protein (ribonuclease) will spontaneously refold in solution to

adopt its active structure (figure II.1). Ribonuclease will refold even if the

native disulfide pairings have been scrambled. This has been taken as

evidence that proteins fold to reach their thermodynamically optimum state.

Relevance of Chaperonins

Molecular chaperones assist the folding of some proteins. It is thought

that they catalyze the transition of a protein from its unfolded to folded state

by enveloping a folding protein. This process may lower the activation

barrier to the conformation search for the minimum energy state (figure II.2),

and may prevent folding intermediates from aggregating into non

productive forms.

Kinetic Problems

Catalysts for the protein folding process may take other forms. O-lytic

protease requires an N-terminal Pro-segment to fold correctly. Without it,

the protein folds to a non-native like structure. Under normal folding

conditions the pro region is autocatalytically removed after the protein folds.

The pro region reduces the activation energy necessary to fold the protein

(figure II.2). Without the pro-region the protease sequence cannot overcome

10
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the -126 kJ (30 kcal) activation barrier to folding on a biologically relevant

time scale (< Hours).

Alternate Low Energy States

Proteins may have a state lower in energy than the folded state that is

not kinetically accessible. However, this low energy state would have no

evolutionary pressure to remain lowest in energy. Random mutations in

thesequence would be much more likely to destabilize an unused state than

the biologically important folded state. Over time, the low energy state would

be destabilized causing the folded state to be lowest in energy. The fact that a

protein sequence folds to one low energy structure does not imply that other

protein sequences do not fold to the same low energy structure. Many

different sequences may fold to the same structure. The relative stability of

the structure may be quite different for different sequences, but the folded

structure is the lowest energy state available for each sequence.

13



Overview of Modeling Proteins

De novo vs. By Homology

Two general approaches to protein modeling are used: the de novo and

Homology based methods. Homology modeling requires knowledge of the

structure of a sequence that is recognizably similar to the desired protein.

The known structure is used as a template upon which one engrafts the new

sequence. For sequences that share identical residues at more than 30% of

their aligned positions, model built structures can be quite accurate and have

been used to design novel pharmaceuticals. Pharmaceuticals are designed to

interact with the active site. The active site of a protein varies less than other

regions, allowing this method to be possible. De novo modeling does not

require the initial protein structure, instead a model is constructed from an

analysis of the sequence in an attempt to produce a structure that is optimally

suited to that sequence. Although de novo methods are unlikely to approach

the accuracy of homology based strategies they are applicable in principle to a

broader range of problems.

Static vs. Dynamic Structures

Rigid models of protein structures capture only one facet of the

conformational properties of these macromolecules. A catalytically

important residue, when viewed in a static model, may appear to be

inaccessible to the ligand molecule. However, this residue may be accessible

during a significant part of the molecular trajectory calculated in a dynamic

simulation. X-ray crystallography determines an average set of atomic

positions best represented by a static structure with a thermal motion or B
factor associated with mobile atoms. Intramolecular distance constraints

derived by NMR spectroscopy are used to determine a family of structures
14



consistent with the experimental data. The molecular envelope defined by

the family of structures provides a more dynamic view of macromolecular

conformation (figure II.3).

15
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De Novo Methods

Secondary Structure Prediction

Most de novo modeling strategies attempt to identify the secondary

structural elements of the protein from the protein sequence, and then

assemble these structural elements into one or more plausible tertiary

structures. These tertiary structures are evaluated for their compatibility with

various experimental properties of the protein and/or theoretical properties

of proteins in general.

Secondary structure prediction has evolved from early work by Schiffer

and Edmunson who observed that helical sequences tended to segregate

hydrophilic residues from their hydrophobic counterparts. A sequence is

displayed as a wheel with consecutive spokes every 100 degrees (figure II.4). If

the sequence forms a helix, the hydrophobic amino acids group together, as

do the hydrophilic amino acids. The amino acids of sequences that form

other secondary structures do not group in this manner.

Chou and Fasman compiled the frequency with which each amino acid

appears in a specific secondary structural element. The structure of a

sequence was then predicted using the probabilities generated from these

frequencies. Garnier et al. improved on this by calculating the secondary

structure preferences of each amino acid subject to modifications exerted by

sequentially proximal residues. Recent recalibration of the Garnier technique

has resulted in a secondary structure prediction algorithm that is ~65%

accurate (Evaluation of secondary structure prediction accuracy is presented in

appendix 1).

Neural networks, a computational tool from the machine learning

community, have been designed to automatically identify patterns that

17
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Appendix 1: Evaluation of Secondary Structure Prediction

Secondary structure prediction methods are rated by the percentage of

amino acid residues correctly assigned by the method. The standard

categories for secondary structure are O-helix, B-sheet, or other. A database of

protein structures (the Brookhaven Protein Data Base is commonly used), is

split into two parts: a training set and a test set. The training set is used to

determine the parameters of the secondary structure determining algorithm.

The test set is used to evaluated how well the algorithm works on a set on
unrelated structures.

When secondary structure is assigned randomly to a set of sequences,

and compared with the correct structures, 38% of the residues are predicted

correctly. 33.3% accuracy would be expected for equal numbers of residues in

each structure category, but the three states are not equally occupied.

The theoretical upper limit of secondary structure predictive accuracy is

not 100%. Different crystallographers when asked to assign secondary

structure agree approximately 85% of the time. Different algorithms used to

analyze actual structures and assign their secondary structures agree about

85% of the time. The source of the discrepancy is differences in the precise

definition of secondary structure.
A common variation on the three state model is the two state model

(O-helix and other). The accuracy observed for a two state model will be

higher than that of a three state model. Random choice of secondary

structure would result in >50% predictive accuracy.

In many cases, the presence and location of general secondary structure

units is more important than the exact point at which a helix ends or a long

19



turn begins. Evaluation methods based on this idea have not been widely

adopted, but are gaining in acceptance.

The final test for a method is to predict the secondary structure of a

protein before the structure is published. Eventually, a database including the

sequences of soon to be solved structures will be available to facilitate these

predictions.

20



predict secondary structure. These networks generate relationships amongst

the different amino acids from an analysis of protein sequences and their
structures. Neural Networks have achieved a 64% success rate. When

trained on a set of exclusively helical proteins, networks correctly predict 80%

of the conformational preferences of individual residues.

The limit in accuracy of secondary structure prediction is thought to be

65% for one sequence in the absence of long range (greater than 10 residues

away) information. A set of homologous sequences that fold to

approximately the same structure have been used to increase the accuracy of

Neural networks to ~70%. Similar amounts of improvement have been
shown with Garnier and Robson's and Chou and Fasman's methods.

Other biological information besides the sequence of the protein is also

available. For specific proteins with several aligned sequences, Benner claims

to be able to predict secondary structure with ~80% accuracy.

The structural class of the protein may also be used to increase

secondary structure predictive accuracy. The secondary structure of proteins

in the all helical class has been determined with an average of 80% accuracy.

Increases in predictive ability have also been seen for the mixed O-helical and

B-sheet class and for the all B-strand class. Part of the predictive

improvement in the all O-helix class and the all B-sheet class is due to a

reduction in the number of secondary structure types from three to two. For

instance, the secondary structure predictive accuracy would improve for all

proteins if the structure choices were just 0-helix and other. The structural

class of the protein may be determined by analysis of the amino acid

composition of the protein. Zhang and Chou have determined whether or
not a protein is all helical with ~100% accuracy for their test set. Experimental

methods such as Circular Dichroism spectroscopy may help in the
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determination of structure class by allowing estimations of secondary

structure in the protein.

More precise secondary structure elements are also predicted. Highly

accurate (>90%) turn prediction algorithms can approximately assign the

location of a turn. These algorithms may be used to improve the secondary

structure prediction by finding the secondary structural element that is

consistent with the distance between turns. Other programs have been

designed to find the precise Nterminal and Cterminal ends of helices.

Tertiary Structure Prediction

The tertiary structure of a protein can be approximated by packing

secondary structural elements together. These elements may be

packedtogether in a myriad of different ways (figure II.5). Fortunately, the

number of plausible tertiary structures is limited by constraints on secondary

structure packing.

Two approaches are used to find the correct structure. The first is to

manipulate the secondary structural elements on a graphics terminal. The

biologist's knowledge of the protein, augmented by computational tools, is

used to pack the protein into its probable structure. This structure is then

evaluated by a number of tests of correct structure prediction. If errors in the

structure are demonstrated, the structure is altered until it satisfies all the

known constraints on its structure.

The second is to construct all the possible secondary structure packing

arrangements (figure II.6). This group of structures is screened to remove
structures that violate the known constraints on the structure. After the

automated screens have been used, the remaining structures are evaluated by
hand.

22
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StructureS.
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Many methods have been found to evaluate protein structures. Each

incorporates some methods into the design process while other methods are
used to evaluate a generated structure. A list of constraints and methods may

be found in appendix 2.

A structure that passes these tests can, in principle, be refined by

detailed energy calculations. If a structure is determined by NMR or X-ray

crystallography, the model structure may be evaluated. Methods for

evaluation are given in appendix 3. *I.-
Worked Examples and Results: IL-4 C.Y.

The structure of interleukin-4 was calculated by the de novo approach E:- -
and then compared to the subsequently determined NMR structure. Circular C.Y.
Dichroism spectroscopy was used to prove that IL-4 was dominated by O- E-C
helical structure. Secondary structure prediction methods were used to assign –
the location of o-helices and loops. A combinatorial algorithm generated all |--
possible juxtapositions of the four helices subject to the constraints that a EZE
hydrophobic core was formed and that the interhelical loops could join s—-
neighboring helices. 90403 structures were generated that did not violate -->
steric constraints or disrupt the connectivity of the chain. Of these, 311 were

consistent with distance constraints imposed by the three disulfide bridges.
Solvent accessible surface area calculations were used to select the

energetically most sensible structures. When the three dimensional structure

was solved by NMR spectroscopy, it was clear that the secondary structure was

predicted accurately (~90%). Unfortunately, the best structure was the

topological mirror image (figure II.7) of the NMR structure. The eighth

structure on the list resembled the correct structure. (Root Mean Square
Deviation = 4.8 Å)
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Left Handed Bundle Right Handed Bundle

Figure II.7. The predicted structure of IL-4 and its correct
topological enantiomer.
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Appendix 2: Tertiary Structure Constraints and Screening Methods

Each secondary structural unit is constrained relative to at least one

other unit by a connecting loop of amino acids.

The overall shape of the protein is limited by the known tendency of

proteins to form a globular shape

Proteins form well-packed hydrophobic cores.

The overall amount of buried hydrophobic area in proteins is

maximized in nature. _º-
Amino acids are found with known frequency in specific C.Y.

environments in proteins. =:-r

The beta carbons of proteins exhibit an amino acid dependent tendency :=
to be found a certain distance from one another. EC

The frequency and type of mutations in a group of related sequences is -—
- - - |dependent on the environment of each amino acid. --"

Simultaneous mutations in a group of related sequences may be Clº L
* *

indicative of amino acids close in physical distance. **-*

A disulfide bond severely restricts the distance between two cysteine ===s*

residues.

The properties of mutant proteins may suggest amino acids key to

protein stability or resolve a specific structural conflict.

Tryptophan fluorescence may be used to determine the accessibility to

solvent, and freedom of movement, of tryptophan residues.

Alternate fluorescent probes may be included in the protein sequence

to examine the environment of a specific residue.

Charged amino acids have relative spatial distributions dependent on

their charge and environment.
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Appendix 3: Tertiary Structure Evaluation

The accuracy of a tertiary model is measured against the actual protein

structure. Often the distances between corresponding atoms in the structures

are compared. The lowest possible root mean square distance between the
structures is called the RMS difference. Usually just the a-carbons are used,

but sometimes all the atoms of the protein are used.
The RMS score is also used to describe the differences between the

intra-atomic distances of one structure with the intra-atomic distances of

another. These scores are usually lower than the standard RMS and can lose
Some details of the model.

Both RMS measures are sequence length dependent. Random

sequences compared to a 60 a.a. structure have an average RMS (standard

method) of 6.9 Angstroms. The RMS for a 250 a.a. structure is 12.43

Angstroms.

A structure sometimes has a relatively low RMS score while having

fairly incorrect overall topology, while another has the correct topology but a

somewhat high RMS score. In addition, the non-standard RMS model

cannot be used to differentiate between structures that are mirror images of
one another.

Protein models are often visually compared to the correct structure due

to a lack of a satisfactory method for evaluating structures.
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Modeling By Homology

Sequence Alignment

Modeling by homology follows a four step recipe: sequence alignment,

framework construction, loop construction and side chain placement. These

steps are detailed in figure II.8. In the first step the sequence of the protein is

aligned with the sequence(s) of a protein(s) of known structure. A sequence

alignment with greater than 50% residue identity is desirable but 20-30% can

be used if several aligned sequences and structures are available. The

sequence alignment is crucial to the development of an accurate model.

Programs have been developed to align a sequence to a structure that are

superior to alignments of sequences to other sequences. The alignments still

need to be modified in the framework stage to reflect precise structural

information the alignments have not captured. When multiple structures

are available, inconsistencies in the alignment can be resolved by comparing
to both structures. This allows the lower resolution structures to be used.

Framework Construction

After the alignment is made, a portion of the new protein structure is

constructed from the core secondary structure of the known structure. If the

structures of several homologous sequences are available, a representative

framework or an aggregate framework structure can be used. The core is built

first since it is the least likely to deviate from the template structure.

Loop Modeling

Helices and sheets are comparatively easy to model for two reasons:

they conserve their local conformation and their location relative to other

secondary structures across evolutionarily related proteins, and they contain

repeating geometries. This is not true for the aperiodic loop regions that join
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secondary structure conserved
assignments COre

single structure multiple structuresALIGNMENT HºH

realignment
effort

FRAMEWORK
--> CONSTRUCTION

LOOP CONSTRUCTION

—D- by analogy
dictionary approach

SIDECHAIN PLACEMENT

Dº most Common rotamer
use existing conformational

information

rebuilding

effort MODEL REFINEMENT

packing
surface accessibilities

energy calculations

Figure II.8. Flow chart for modeling by homology. If an error in the
structure is detected, the structure is rebuilt from an earlier phase to correct
the error. Most errors are found in the framework construction or model
refinement phase.
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secondary structure units. Thus, several methods have been devised to

model loop structure. The simplest and most effective method for

anticipating the conformation of a loop extends the notion of framework

homology to loops with sequences that are very similar to a corresponding

loop of known structure from the family of homologous structures. If the

loop is a member of a well-characterized set such as the B-turns, a four residue

transition between two anti-parallel 3-strands, it is possible to choose the 3

turn consistent with the sequence and distance constraints. Otherwise, one

exploits a dictionary of loops derived from all proteins of known structure

assembled in the PDB. The loop fragment from the PDB provides a plausible

conformation for the region of structure under study. This is most effective

with short loops (length 2-10 amino acids) since longer loops are under

represented in current versions of the protein database.

The ab initio method is used to select the lowest energy loop

conformation from all the possible loop conformations. This approach is

computationally difficult and intractable for loops that contain more than

seven amino acids owing to the vastness of conformational space.

Chothia and coworkers have characterized immunoglobulin loops and

found that they are confined to a limited set of canonical structures. In this

case, the correct loop conformation may be chosen from this set. This was

possible do to the large number of immunoglobulin structures available.

Side Chain Placement

Most protein side chains are placed in a conformation that is

reminiscent of the side chain geometry adopted by the homologous residue.
Summers et al. found that 80% of identical residues and 75% of mutated

residues retained their side chain conformations when the proteins shared

greater than 40% similarity.
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When the side chain geometry is not known, the residue is placed in

its statistically most likely conformation. This is the case when the mutated

residue was a glycine or proline, resulted from n amino acid insertion, or is in

a mutated loop. The specific rotamers of the side chains and their statistical

likelihood have been compiled from the PDB. These rotamers are found to

occupy specific discrete angles. Recently, the rotamer probabilities have taken

into account neighboring amino acids. This information may be used to

assign rotamers to side chains of unknown conformation. It is also possible,

though computationally difficult, to search through many side chain

rotamers simultaneously and evaluate them according to a packing and/or

energetic consideration.

Model refinement and Structure Validation

Energy calculations, including energy minimization and molecular

dynamics, are used to locate a structure with sensible steric and electrostatic

interactions. Unfortunately, energy calculations are not sufficiently accurate

to confirm that the model built structure is correct. As a result, models are

analyzed by a series of empirical measures. These measures are similar of the

same as those used to evaluate de novo models (appendix 2). Efficient

packing, the integration of the hydrophobic core and appropriate residue
solvent accessibility profiles are some of the methods used. If part of a model
appears to be inconsistent with these empirical measures, a rebuilding effort
is required (figure II.4).

Worked example and results: Malarial protease
Homology model built structures have been shown to be accurate

enough to aid in a drug discovery program. These structures are accurate
enough to identify the basic shape of the active site and to search a database of
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small molecules to find the closest fit. This approach was used to identify a

possible drug for the treatment of malaria. Malaria feeds by breaking down

hemoglobin with an enzyme called a protease. Two protein structures were

available that had a high degree of homology to the malarial protease. A

model for the malarial protease was constructed using this homology

modeling method. The active site was known from previous studies, so a

database was searched to find a structure that fit this active site using a

program called Dock developed by Tack Kuntz. The database was also

searched to find structures that were electrostatically compatible with the

active site. These two lists were combined and visually edited to produce a

subset of testable compounds. A few of these inhibited the protease in a test

tube, and one was effective against the malarial parasite. An ongoing effort is

being made to refine the drug to be effective in a living system.

The model structure may have succeeded for two reasons. First, the

malarial protease was successfully modeled. Second, the template structure

was sufficient to find the inhibitor and the modeling effort was unnecessary.

The inhibitor of the malarial protease was not effective against the template

protein. When Dock was used on the template protein, the best inhibitors of

the malarial protease did not appear on the list of possible structures. These

two results proved the first hypothesis, for this case. However, in another

case, a homology built model was found to be farther from the subsequently

determined crystal structure than from the template protein.

New approaches

The initial step in homology modeling is to find a sequence that has

homology to the sequence of a structure, or find a structure that has sequence

homology to a sequence. This is normally done by direct sequence

comparison. However, sequences are known that are quite dissimilar from
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one another, yet fold to the same overall structure. Methods have been

developed to find homologous structures when the sequence homology

between them is quite low.

An early approach involved finding a consensus sequence that

represented a group of protein structures. This consensus sequence was more

successful than a single sequence for identifying structurally related proteins.

A subsequent approach simplified the protein structure to a one dimensional

string of environments. The environments of amino acids in a subset of the

PDB were tabulated, and converted to preferences of amino acids for

environments. This allowed the compatibility of a sequence with a string of

environments to be measured. Recent methods string sequences on known

protein structures. The distance between the b-carbons is tabulated, and the

model is evaluated based on the known distance separation of amino acids in

the PDB. These techniques have allowed structurally related proteins to be

found that have minimal sequence similarity.

As more and more protein structures are solved by X-ray

Crystallography and NMR, the importance of the structure homology

methods increase. Chothia has estimated that there are only 1000 distinct

protein families. -150 of these families has a representative in the PDB.

Eventually, each new sequence determined will have a high chance of

resembling a previously solved structure, lessening the need for future de

novo and crystal structures.

35



Molecular Dynamics

Energy Functions and Molecular Mechanics

The attraction or repulsion each atom feels for every other atom can be

described as a sum of interaction energies. The functional form of this

expression is derived from structural studies of proteins and small molecules

as well as from theoretical and thermodynamic studies. A typical molecular

mechanics potential takes the form:

E(x, ...&m ) = *bond + *ang + êior + êvdw + &el

E=5 K, (r-r) + šk, (6–0,) +
i–1i–1

X. *a■ +cos(n)-x)]+XX (Bºrg" — Agrg") +
dihedrals i j>i

xx.""
i j>i er,

E is the total energy of the system.

ebond, eang, etor, evdw, eel are components of the total energy representing

bond, angular, torsional, van der Waals and electrostatic energy respectively.

Kb, Ka, Kd are force constants associated with bond, angular and torsional

energies, respectively.

r, rb are the bond distance and the equilibrium bond distance, respectively.

q, qa are the bond angle and the equilibrium bond angle, respectively

n is the periodicity of rotation.

() is the dihedral angle.
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X is the phase angle of the dihedral angle.

i,j represent different atoms in the protein.

rij is the radius between atoms i, j.

Aij, Bij are the nonbonded (Lennard-Jones) repulsion and attraction

coefficients for the interacting atoms i, j.

qi, qi are point charges of the atoms i, j.
e is the dielectric associated with the molecular environment.

This function is useful for revealing incorrect contacts or charge

arrangement in proteins. This potential does not accurately describe the

energies of components of the system that have a high degree of mobility.

This includes the side chains, and the sovlent surrounding the protein.

These components can be modeled in a dynamic system.

Equations of Motion

Molecular dynamics is the study of how the molecular potential

changes with time given an initial set of atomic positions and velocities

(temperature). The motion of the atom in a protein can be described by

Newton's equation of motion:

F=-VE(x1,...,x, )

omoix(t)
F = −.

Ot

F is the force on an atom.

E is the energy of the system.
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Xm...Xm are vectors representing the psational coordinates of all the atoms in

the system.

m is the apporpriate atomic mass.

t represents time.
xi(t) represents the position of one atom in the system at a given time.

With an integration time step of 1-2 femtoseconds, these equation are well
behaved.

What Can You Learn?

Computational constraints limit dynamic simulations to the

nanosecond time frame. This is too short for many biologically important

conformational changes such as protein folding which generally occurs in

microseconds. Still, many useful applications have been devised.

Molecular dynamics has been used to follow the movement of

molecular oxygen toward the heme iron of myoglobin. X-ray crystal

structures are refined with molecular dynamics . Crystallographers resolve a

protein structure form the diffraction pattern exhibited by X-rays that have

passed through a protein crystal. At one stage of this process, a hypothetical

diffraction pattern is generated from a derived model of the protein. This

diffraction pattern is compared with the true diffraction pattern. The atoms

in the model are then caused to move with molecular dynamics in an effort

to find a structure that more closely satisfies the observed diffraction pattern.

This approach can greatly improve the accuracy of crystallographically
determined structures.

Molecular dynamics can also be used to calculate absolute free energy

values for simple systems. Most modeling techniques only allow the
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calculation of a pseudo energy value with no physical counterpart. Absolute

free energies do represent a physical property and can be used to calculate

rates of reactions and equilibrium constants.

The crystal structure of a lead compound complexed with an enzyme

can be examined in this way. Free energy calculations are used to analyze the

effect various small chemical alterations would have on the drug's

effectiveness, simplifying the drug optimization process. Drug design is being

attempted by finding the optimal location and composition of small chemical

groups on a protein surface. These groups can be assembled to form a lead

compound for synthesis. Alternatively, a databases may be searched for

compounds with a similar arrangement of groups.

Simplified Systems

Simplified energy function are used to study properties of proteins that

are apparent on longer time scales. These simplified models are designed to

remove some of the complexities of the system while still mimicking specific

properties of the protein, such as secondary structure content. Dill et al. have

examined the behavior of simplified proteins confined to two or three

dimensional lattices. The atoms of the protein are allowed to be discrete

distances apart and in discrete orientations. For small peptides, all the

possible orientations of the protein chain can be enumerated. These

simulations have given insight into the important stabilizing effects in

proteins, and into the properties that lead to secondary structure formation.

Analysis of this work suggests that the compactness of proteins is sufficient to

form the secondary structure observed in real structures. This is contrary to

the popular view that hydrogen bonding is almost solely responsible for the

observed secondary structure. An off-lattice simple model of proteins

constructed and analyzed by Cohen et al. indicates that compactness does
39



indeed lead to secondary structure, but not in the amounts found by Dill.

Other models have been used to examine the denaturing effects on proteins

of high temperature, low temperature and various solvents. It is hoped that

future models will offer still more insight into the properties of protein

folding.
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Chapter 3

Structure of the A domains of factor VIII

determined by homology modeling

This chapter has been published with co-authors Yang Pan, Fred Cohen and Jane

Gitschier in Nature Structural Biology, Volume 2, pages 740-44, 1995
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We have predicted a structure for the three A domains of the blood

coagulation factor VIII, which comprise the bulk of activated factor VIII, by virtue of

their homology to blue-copper binding proteins of known structure. Each A

domain is composed of two 3-barrels, and the three A domains are arranged in a

triangular configuration. The model agrees with our prediction of a type-II copper
binding site linking the A1 and A3 domains. The debilitating effects of 84% of

reported missense mutations associated with severe hemophilia A can be explained
by the model.

The X-linked bleeding disorder hemophilia A, affecting 1 in approximately

5000 males worldwide, is caused by mutations in the gene encoding coagulation

factor VIII. As a cofactor in the intrinsic coagulation pathway, factor VIII increases

the Vmax of activated factor IX in the conversion of factor X to Xa. Study of the

mechanism by which factor VIII serves its essential cofactor function has been

limited by a lack of structural information. Its large size (2351 amino acids) and low
abundance (< 1nM in the plasma) have hindered the study of its structure by

crystallography or NMR spectroscopy.

The primary structure of activated human factor VIII consists largely of three

A domains (~330 amino acids each) on separate polypeptides, generated by cleavage

from a much larger single chain precursor (Vehar et al., 1984). Two small C domains

(~150 amino acids each) are joined to the carboxy terminus of the A3 domain and

three short acid amino acid-rich regions (~40 residues) are located at the carboxy
termini of the A1 and A2 domains and the amino terminus of the A3 domain.

Dissociation or cleavage of the A2 domain results in inactivation of factor VIII

(Eaton et al., 1986; Fay & Smudzin, 1992; Pittman et al., 1992). A domains are also found

in a related blood coagulation cofactor, factor V (Kane & Davie, 1988), and are

approximately 40% identical to the triplicated A domains constituting the

circulating copper-binding protein ceruloplasmin (Takahashi et al., 1984).
44



A 3-barrel motif has been observed in a large number of phylogenetically

distant blue copper-binding proteins such as plastocyanin (Collyer et al., 1990; Guss &

Freeman, 1983), pseudoazurin (Petratos et al., 1987), azurin (Baker, 1988), ascorbate

oxidase (Messerschmidt et al., 1992)(AOZ) and nitrite reductase (Godden et al.,

1991)(NIR). NIR and AOZ monomers consist of two or three 3-barrel containing

domains, respectively, while others have only a single 3-barrel. Previously detailed

comparison of ceruloplasmin with AOZ and plastocyanin indicated that each of its
A domains can further be divided into two subdomains and that each subdomain

probably forms a single 3-barrel unit similar to those found in blue copper binding
proteins (Dwulet & Putnam, 1981; Messerschmidt & Huber, 1990; Ryden, 1982). By

analogy, the factor VIII A domains should also divisible into two subdomains,

suggesting there are six 3-barrel containing domains (designated as D1 to D6) in the
activated factor VIII.

For modeling purposes, the protein with known structure which most closely

approximates the proposed six 3-barrel structure of the A domains of activated factor

VIII is NIR, a homotrimer with two 3-barrels in each monomer (Godden et al., 1991).

We have used the trimeric structure of NIR as a framework for modeling the

pseudo-trimeric A domains of factor VIII, extending a previous proposal for the

gross structural arrangement for ceruloplasmin A domains (Fenderson et al., 1991), as

described in figure III.1.

Figure III.1 also shows the amino acid alignment of the putative 3-barrel

domains (D1 to D6) of factor VIII and ceruloplasmin with those from the two most

closely related blue multicopper-binding proteins, AOZ and NIR. For factor VIII and

ceruloplasmin, the amino terminal 3-barrels of each A domain (D1, D3, D5) group

together because they are more related to each other than they are to the carboxyl

terminal G-barrels (D2, D4, D6) and vice versa. Structural information from AOZ,

NIR, plastocyanin, pseudoazurin and azurin was used to derive a sequence
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(23)

efghi

(b)––ENYRFHAINGYIMDTLPG----LVMA--QDQRIRWYLLSMGS---- ––ESNRMYSVNGYTFGSLPG----LSM--AEDRVKWYLFGMGN----

GRQKDVDKEFYLFPTVFDENESLLLEDNIRMFTTAPDQVDKEDEDFQ--------ESNKMHSMNGFMYGNQPG----LTM––KGDSVVWYLFSAGN---- FNPRRKLEFALLF
LVF

DENESWYLDDNIKTYSDHPEKVNKDDEEFI----------------------ESNKMHAINGRMFGNLQG----LTMH--VGDEVNWYLMGMGN----



alignment for factor VIII. Knowledge of type I copper binding ligands and the

precise location of 3-strands in NIR, AOZ and other related proteins was used to

focus alignment efforts on the structurally conserved regions (Greer, 1990). When

two or more plausible alignments emerged, tertiary structure preferences were

considered leading to refined alignments in an iterative fashion.

One important structural feature in these blue copper proteins involves the

amino acid ligands for copper-binding associated with distinguishable spectroscopic

properties. In type I, the "blue" copper is liganded to four residues: sequentially His,

Cys, His and Met. The ligands for types II and III coppers are formed by two or three

histidines. Azurin, pseudoazurin and plastocyanin contain only one type I copper

in their one 3-barrel structure. NIR, AOZ and ceruloplasmin contain multiple

copper-binding sites. Each NIR monomer has one copper liganded in a type I site,

and an additional type II copper is bound by three histidines at the interface of each

of two monomers within the homotrimer. Specifically, the type II copper-binding

sites are formed by His100 and His135 of the D1 domain of one monomer together

with His306 of the D2 domain of the next monomer (these three histidines are

labeled blue in Figure III.1). The sequence comparison with AOZ suggests the

existence of three type I, one type II, and two type III copper binding sites

(Messerschmidt & Huber, 1990) in ceruloplasmin (Figure III.1), similar to those found

in AOZ. This prediction agrees with the experimental data on copper type and

content in ceruloplasmin (Frieden, 1980). Our alignment indicates that factor VIII

also has two potential type I copper-binding sites, although there is no experimental

evidence to suggest that these sites are occupied by copper.

Inspection of the amino acid sequence alignment reveals a possible type II

copper-binding site in factor VIII. Two of the three histidines involved, His99 and
His161, are from the A1 domain (D1) and the third, His1957, is from the A3 domain

(D6). (These three histidines are labeled blue in figure III.1.) At the equivalent
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positions within the other domains of factor VIII, the triad of histidines is lacking.

We hypothesize that the putative type II copper-binding site is used in factor VIII to

tether the A1 and A3 domain together, and that lack of such a site at the A1/A2

interface and A2/A3 interface could explain why the A2 domain is more readily

dissociated from the rest of the complex.

The D1, D3 and D5 domains of factor VIII were modeled after the D2 domain

of the NIR, because the type I copper-binding site is common to all of them and

these domains exhibit the greatest degree of overall similarity. Conversely, most of

D2, D4 and D6 domains were modeled after the D1 domain of the NIR due to greater

sequence similarity. As a result, the first and last residue of each A domain are in

adjacent positions. The coordinates for the C-terminal portion of these domains

were adopted from the corresponding portion of AOZ, due to greater similarity.

Between any D domain sequence of factor VIII and related sequences with known

structures, the percentage of amino acid identity ranges from 11% to 28% and

similarity ranges from 38% to 51%.

The factor VIII and ceruloplasmin sequences were taken from GenBank and

Coordinates for ascorbate oxidase from zucchini, nitrite reductase from

Achromobacter cycloclastes, azurin from Alcaligenes denitrificans, plastocyanin

from Enteromorpha prolifera and pseudoazurin from Alcaligenes faecalis were

obtained from Brookhaven Protein Data Base (Bernstein et al., 1977). Insight II, a

package of protein homology modeling program from Biosym was used for the

modeling and evaluation (Insight II User Guide, version 2.3. San Diego: Biosym

Technologies, 1994). Following the sequence alignment, the sidechains of the NIR D

domains were replaced with those of factor VIII in the structurally conserved

regions using the approach of Summers and Karplus (Summers et al., 1987). Steric

clashes generated by sidechain replacement were relieved by rotating the sidechains

of the close packed residues consistent with the desire to fit side chain dihedral angle
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preferences (Dunbrack & Karplus, 1993). All loops were computer generated because

no comparable loops from known structures could be found. The packing density

was examined with QPACK (Gregoret & Cohen, 1990) which identified severely over

packed and under-packed areas. Solutions to these structural problems were sought

by varying the relevant side chain rotameric states. The final model was energy

minimized with the cv■ f forcefield in Insight II. Careful attention was paid to the

structure to avoid over-minimization and subsequent structural distortions.

Ribbon drawing and space filling model were generated in program MIDASPLUS

(UCSF graphics facility).

The resulting structure of the factor VIII A domains is shown in Figure III.2a.

The model consists of six 3-barrels, roughly contained in a sphere with a radius of 80

Å. It includes 987 amino acids for the three A domains of factor VIII. Although the
acidic domains are not a part of this structure, they are projected to be on the same

side of factor VIII (the side facing the viewer).

Four lines of evidence suggest that this model is approximately correct. First,

six disulfide bonds are predicted in factor VIII by this model, even though

equivalent disulfide bonds do not exist in the structure of reference protein NIR.

Ten of twelve cysteines predicted to participate in disulfide bond formation (C153

C179; C248-C329; C528–C554; C630-C711 and C1832-C1858) are conserved in both factor

V and ceruloplasmin. Although these five disulfide bridges were not confirmed

directly in factor VIII, their counterparts in factor V have been determined (Xue et al.,

1994). Figure III.2b shows an enlargement of the structure of the region containing

two of the disulfide bonds in the A2 domain. The distances between two alpha

carbons of each pair are ~ 5 and 7 Å respectively. An additional disulfide bond was
also predicted between C.1899 and C1903 between 3-strands a and b in the D6 domain.

Second, the model reveals that the three histidines (His'99, His161 and

His1957), which we predicted could be involved in formation of type II copper

:
=

-
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Figure III.2. Structure of factor VIII A domains by homology modeling. a,
Ribbon structure of the three A domains, with arrows indicates 3-strand and
spirals indicate helices. The b-strands in D1, D3 and D5 domains are colored
green. The B-strands in D2, D4 and D6 are colored magenta. The rest of
molecule is colored white. Three histidines involved in copper-binding are
highlighted in blue. The last residue for each A domains is colored black.
(continued next page) 51



b, Structure of A2 domain with disulfide forming cysteines shown in yellow.
This structure is shown in an orientation different from that in a for better
viewing of the cysteines. The activated protein C (APC) site is located at the
junction of the two 3-barrels.
(continued next page)
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c, Enlargement of the type II copper binding site, viewed from the back of the
structure shown in a, with three histidines colored blue.
(continued next page)
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d, Spacefilling model of the three A domains, shown in the same
orientation as in a, indicating two regions (shown in gold) which are
implicated in inhibitor binding, residue 389 to 391 and 485 to 509.
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binding, are situated in close proximity at the interface of the A1 and A3 domains, as

shown in Figure III.2c. Together with a water molecule (as in NIR), these three

histidines could be the ligands for a type II copper binding site. This prediction of a

single type II copper-binding site, connecting the A1 and A3 domains, is supported

by recent experimental studies. One copper ion has been found to be present in one

molecule of plasma-derived factor VIII by atomic absorption spectroscopy (Bihoreau et

al., 1994), and the dissociation of this copper ion coincides with the dissociation of the

A1 and A3 domains in both plasma-derived and recombinant factor VIII (Bihoreau et

al., 1994). One non-type I and non-type III copper was also found to bind to one

molecule of purified bovine factor V by atomic absorption and emission

spectroscopy (Mann et al., 1984). Our sequence alignment (not shown) does not =
=

indicate a type I or III copper binding site in factor V, but does reveal one putative

site for a type II copper-binding at the A1/A3 interface, as in factor VIII.

Third, the activated protein C cleavage site (R562) is situated between 3-barrels
ºmissiºn

/* ***

of A2 domain, a site which is exposed to solvent in our model. This finding is

satisfying since proteolytic cleavage sites are often located between structural =domains.

Finally, one epitope site, E389–391, implicated by site-directed mutagenesis as

major components of inhibitor epitopes in the A2 domain (Ware et al., 1992), is

located on the surface of our factor VIII model. Another recently characterized

epitope region, 483-509 (Healy et al., 1994), is located in the loop region between 3

strands e and f. Part of this region is also exposed to the solvent, as indicated in

Figure III.2d.

We note that another similar structure could be constructed by making a

different choice of amino acid alignments and domain arrangements. Instead of

modeling the factor VIII D1, D3 and D5 domains on the NIR D2 domain (and D2, D4,

and D6 on NIR D1), the odd-numbered factor VIII domains could be modeled and
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spatially superimposed on D1 of NIR and the even-numbered domains on D2. The

alternative structure would result in a clockwise, rather than counter-clockwise (as

in Figures 1a and 2a), arrangement of domains and would lead to changes in the

loops connecting the domains of each A subunit. The type-II copper binding site at

the D1/D6 interface and the disulfide linkages are preserved, and the APC and

inhibitor sites would remain exposed. We have chosen the former approach

because of the stronger sequence similarity and the preservation of the type I copper

binding sites in structurally conserved domains, as shown in figure III.1a.

One immediate application of this model of the tertiary structure of factor VIII *—
is speculation on how the more than one hundred missense mutations in the -:

coding region of factor VIII can lead to its dysfunction. To date only ten out of 138 S
missense mutations identified (not including these that affect mRNA splicing) have Yº
obvious explanations such as destruction of the thrombin cleavage site and —
disruption of binding to von Willebrand factor (v.VF) (Tuddenham et al., 1994). *transsº

Based on our factor VIII model, 33 out of 39 missense mutations associated *-
with severe hemophilia A (Tuddenham et al., 1994) seem likely to destabilize the ,” 5
structure of factor VIII (Table III.1), and some mutations are predicted to have E.
multiple debilitating effects. As shown in the solvent accessibility column, nine

mutations replace buried hydrophobic residues with either charged or polar amino

acids and one substitutes a hydrophilic residue with a hydrophobic residue. 29

mutations change side-chain residue volume by more than 30 A3, as listed in the
third column. Most of these mutations occur in the protein core and are likely to

disrupt the tightly packed interior of the molecule. Typically, the energetic penalty

for creating a cavity the size of methyl group (33 A3) is significant, ~1.1 kcal/mole
(Eriksson et al., 1992). Mutations involving glycine and proline residues can also have

destabilizing effects because these residues have backbone dihedral preferences

distinct from the other 18 amino acids. Disruption of factor VIII structure can be
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Table III.1 Effects of amino acid sustitutions associated with severe hemophilia

Mutation Solvent A Volume Backbone Other Considerations
Accessibility" (in A) Dihedral (°)

L7R B, bad for +
-

OK
charge

G22C B
-

-86, -160
G70D B +58 OK

V80D B, bad for -
-

OK
charge

L98R B, bad for +
-

OK
charge

G1 | 1R B, bad for + +102 -111,143 LR
charge

El 13D B -34 51,-73 LR, salt bridge with H274
Dl 16G B -1 || 69,-105 LR, possible cation binding site with

D115
P146S B, bad for OH -61 OK
G247E B, bad for - +46 -142,-138

charge
G259R B, bad for + +100 OK

charge
R282H PB -169 53.79 LR. salt bridge with R282
R282L PB -100 53.79 LR, salt bridge with R282
L308P B

-
-122, 126

V326L OK B +44

C329Y PB +50 Destroy disulfide bond & creat free SH
C329R PB

-
Destroy disulfide bond & creat free SH

C329S PB -55 Destroy disulfide bond & creat free SH
I386S B. bad for OH -67 OK
E39()G PB - 137 OK o
K425R PB

-
-6, -63 o

D542G B -89 OK LR. salt bridge with H311 or R541
1566T E +60 144, 116 New glycosolation site
W585C PH -207 OK Create free SH

-

Y586s B -143 OK
V634M B

-
OK º

E17()4K PB
-

- 18, 76 o

G|76()D PB +91 -86, -82 LR

M 1772T B -109 150, 94 New glycosolation site
S 1784.Y B +119 92, 67
S 1784F B +116 92.67
D1846N B -36 OK LR. salt bridage with H314
D1846.Y B +41 OK LR, salt bridage with H314
P1854R B, bad for +

-
- 138, 165

charge
R1869|| E, bad for OK Salt bridge

hydrophobic-56 with E1780
E1885K PB -36 OK Salt bridge with either R1941 or K1943
N1922S PB -198 OK o
N1922D PB -176 OK o

R 1997W B –46 OK Salt bridge with Q1799

* B. buried; LR; loop region; PB partial buried; E: exposed

>-

****
*

****

Yº
--
–

*a*
*~~

–P
->

57



anticipated in four mutations that change glycines in d-specific conformations to

other amino acids or change other amino acids with phi not close to -70 to proline.
Ten disrupt existing salt bridges or a possible cation binding site. Five disrupt

disulfide bonds or create new free sulfhydryl groups. Free sulfhydryls are disfavored

in the extracellular milieu and can complicate the correct folding of proteins. Factor

VIII antigen levels were reported as low in three of five tested patients from Table

III.1. Interestingly our model can not explain the effects of missense mutations

(M1772T and V634M) in the two patients with approximately normal levels of factor

VIII antigen, indicating that the effects of these mutations is not mediated through

gross structural destablization.

The second application of the model could be the development of a second

generation factor VIII. The ready dissociation of the A2 domain, leading to

inactivation of the factor VIII, suggests the possibility of genetically engineering a

more stable factor VIII by creating type II copper-binding sites between the A1/A2 or

A2/A3 domains. Porcine factor VIII, for example, has 10-fold greater activity than
human factor VIII because of a lower dissociation rate of the A2 domain from the

activation complex (Lollar & Parker, 1991). A more stable factor VIII would improve

efficacy and reduce costs and morbidity associated with the treatment of hemophilia

A. This might be achieved by introducing histidines at the appropriate positions for
the interface between the A1 and A2 domains (F270, Y476 and F536) and/or at those

for the A2 and A3 interface (F652, Y1786 and D1840) based on the alignment of factor

VIII sequence with AOZ and NIR. The existence of another pathway to inactivate

factor VIII, cleavage of the A2 domain by activated protein C (Fay & Walker, 1989),
should minimize the thrombosis effect.

A structural model of the A domain of factor VIII will be helpful in analyzing

the interaction of factor VIII with other coagulation proteins. For example, VWF
stabilizes factor VIII in the conditioned medium by binding factor VIII at several
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locations. The main binding sites for v.WF are located at the third acidic domain

and the C2 domain (Lollar et al., 1988; Norfang & Ezban, 1988; Shima et al., 1993).

Particularly, the sulfation of tyr1680 in the third acidic domain appears to be critical

in v WF binding (Higuchi et al., 1990; Pittman et al., 1994). Extrapolating from our

model, the third acidic and C2 domain could be physically situated in proximity of

each other and constitute sites for v WF binding to factor VIII. It is tempting to

speculate that five other sulfated tyrosines in factor VIII (346 in the first, 718, 719, 723

in the second and 1664 in the third acidic domain) also participate in v.WF binding
to SOme extent.

-
-

;
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Chapter 4 º

Evaluation of Current Techniques for Ab-Initio
Protein Structure Prediction
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Introduction

In December, in Asilomar, California, a "Meeting on Critical

Assessment of Techniques for Protein Structure Prediction" was held to

determine the status of current methods for predicting the three-dimensional

structure of proteins. Thirty-five different laboratories attempted, in a

blinded fashion, to predict some aspect of the structure of thirty-three

different proteins. The structures of these proteins were contemporaneously

determined by NMR Spectroscopy or X-ray Crystallography, but were

unavailable to the predictors prior to the submission of their predictions.

Thus, these represent true or bona fide predictions in the spirit of the work of

Schulz and collaborators on adenlyate kinase (Schulz et al., 1974), or Curtis et.

al. on Interleukin-4 (Curtis et al., 1991), and not the “retrodictions" of

structure that have been called into question by Benner and co-workers

(Benner et al., 1992).

The structure predictions fell into three categories: comparative

modeling, threading, and ab-initio structure prediction. Comparative

modeling was defined as structure prediction when the structure of an

homologous protein was known (Greer, 1990; Ring & Cohen, 1993; Sali &

Blundell, 1993; Summers & Karplus, 1990). Threading predictions were

computational attempts to align the sequence of a protein of unknown
structure (that lacks clear similarity to another sequence of a protein of
known structure) with the side chain environmental preferences dictated by a

known protein structure (Bowie et al., 1991; Bryant & Lawrence, 1993; Godzik

& Skolnick, 1992; Jones et al., 1992). Ab-initio structure predictions attempt to

solve the folding problem; given a protein sequence that is unrelated to any

ºnf
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protein of known structure, what is its secondary and tertiary structure?

While a great deal of effort has been devoted to this problem, many issues at

the secondary structure level and most concerning tertiary structure remain

unresolved (Benner & Gerloff, 1991; Chou & Fasman, 1978; Cohen et al.,

1986a; Cohen et al., 1979; Crawford et al., 1987, Garnier et al., 1978; King &

Sternberg, 1990; Levitt & Warshel, 1975; Rost & Sander, 1994; Russell et al.,

1992; Smith & Smith, 1990). Three different laboratories were chosen to

evaluate the structure predictions; we evaluated the ab-initio predictions.

*lº

º
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Method

Categories of Predictions

The ab-initio predictions were divided into four categories: Class,

Secondary Structure, Fold, and Structure. Class prediction was the simplest

level of prediction. Predictors evaluated which of the following protein

classes the protein most resembled: all O-helix, all B-sheet, o/3 or o-3

(Cohen et al., 1993; Levitt & Chothia, 1976; Muskal & Kim, 1992; Nishikawa et

al., 1983; Sheridan et al., 1985). The Secondary Structure category included

predictions for each residue of the protein to be in one of three backbone

conformations compatible with secondary structure: O-helix, B-sheet, or loop.

Predictions of Fold described the overall fold or shape of the protein,

including many of the common folding motifs originally characterized by J.

Richardson (Richardson, 1981) and expanded upon recently by a number of

groups (Chothia & Murzin, 1993; Harris et al., 1994; Orengo et al., 1993).

Predictions in this category included secondary structure predictions. The

final category, Structure, was reserved for predictions of the three

dimensional coordinates of the protein. Predictions in this category naturally

included specifications for the other three categories. The investigators and

the categories in which they made predictions are shown in Table IV.1. A

short synopsis of their methods is given in Table IV.2. Additional

information about some of the prediction methodologies can be found in

other articles in this issue of the Journal.
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Table IV.1 Predictors and Categories

Predictor Structure Fold Secondary Class
Structure

Benner X X

Covell X

Garnier X

Hubbard X X

Lee X

Livingston X

Marshall X

Meckler X X

Moult X

Munson X

Osguthorpe |X

Rose X

Rost&Sander X

Sander X X
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Table IV.2 Synopsis of methods

Investigator Abbreviation | Method

The ETH Benner The prediction method applies
Prediction automated heuristics to assign surface,
Group: D. interior, active site (tertiary structural
Gerloff, G. information), and parsing residues by
Chelvanayagam analysis of patterns of conservation and
and S.A. variation among homologous protein
Benner sequences in light of evolutionary

models that interpret amino acid
substitutions as the consequence of
neutral variation subjected to functional
constraints together with adaptive
variation that alters the properties of
homologous proteins to make them
optimally suited to different
environments. Secondary structural
elements are assigned from patterns in
the tertiary structural information
(Benner et al., 1994).

B.K. Lee and N. Lee For a polypeptide chain, a biased Monte
Kurochkina Carlo search was applied for the dihedral

angles of the main chain phi and psi and
side chain dihedral angels chi.
Conformational space was reduced into
a small number of allowed regions in
Ramachandran phi and psi map (Kang
et al., 1993). Weighted sum of
hydrophobic energy based on pairwise
surface area sum (Kurochkina & Lee,
1995, in press) and hydrogen bond
energy calculated as electrostatic
Coulomb sum was used to estimate the
energy of the structure.
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S.G.
Galaktionov
and G.R.
Marshall

Marshall The secondary structure of the protein is
predicted using a consensus of three
methods implemented in SYBYL 5.5.
Next an algorithm was used to predict
coordination number vectors for the
amino acid residues (Rodionov &
Galaktionov, 1992). Then the residue
residue contact matrix was predicted
using an iterative procedure to improve
heuristic gain function. Finally, the
spatial structure was reconstructed
(Galaktionov & Marshall, 1994).

J.T. Pedersen
and J. Moult

Moult A torsion space representation of a
protein is used with an all atom force
field (Avbelj & Moult, 1995) together
with a genetic algorithm (Pedersen &
Moult, Document in preperation) and a
Monte-Carlo algorithm (Avbelj &
Moult, 1995, in press) to predict the
structure of small proteins.

D.J. Osguthorpe Osguthorpe A simplified model of protein structure
with potentials developed to reproduce
the physical behavior of atoms rather
than protein statistics derived from the
database. The potentials are being
continuously improved to reproduce
protein-like structures.

T. Hubbard and

J. Park

--

Hubbard Automatic alignment of sequences
using the PHD server (Rost & Sander,
1994) followed by addition of more
sequences and hand alignment. These
alignments were then submitted to the
PHD neural network in Heidelberg.
Fold prediction was aided by a strand
pairing algorithm (Hubbard, 1994).

L. Holm, B.
Rost, P. Bork
and C. Sander

—

Sander Secondary structure was predicted for all
proteins using the neural network
method that uses sequence profiles as
input (Rost & Sander, 1994).
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B. Rost and C.
Sander

Rost&Sander The secondary structure elements were
then assembled into three-dimensional
Structures.

G. Livingston
and H.B.
Nicholas

Livingston Case based learning approach. Various
22 amino acid segments are compared to
the protein to be predicted, if the
sequence matching score exceeds a
threshold, the structure of the 22 amino
acid segment is used as evidence to
predict the secondary structure (Leng,
1994; Leng et al., 1994).

J. Garnier and
J.M. Levin

Garnier
SIMPA

SIMPA (SIMilarity Peptide Analysis)
program is based on sequence similarity
between a stretch of amino acids (17
amino acid long) of the test sequence
and the sequences in a data base of
protein structures. Q3 of 86% when a
homologous protein structure is
present, otherwise 63-65% (Levin &
Garnier, 1988). When homologous
sequences are known, it can be
associated with the CONSENSUS
program (Levin et al., 1993) to yield an
accuracy of 68-69%.

J. Garnier and
V. DiFrancesco

Garnier
COMBINE

The COMBINE method is an expert
system amalgamation of three secondary
structure prediction algorithms: GOR
III, SIMPA and Bit Pattern (Biou et al.,
1988). It can be associated with multiple
sequence alignments (CONSENSUS) to
yield an accuracy of 69-70%(DiFrancesco
et al., 1995).
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P. J. Munson
and V.
DiFrancesco

Munson Two different multiple sequence
methods: QL(quadratic logistic), Profile
QL. The QL method is a calibrated
logistic model for a three state prediction
using the maximum likelihood
principle (Munson et al., 1994). The
profile method combines this method
with multiple sequence alignment
information (DiFrancesco et al., 1995).
The expected accuracy for Profile-QL is
67% to 69% measured in two separate
crossvalidated tests.

R.G. Idlis and
L.B. Mekler

Mekler Prediction of specific contacts between
amino acid residues of the protein
molecule being in the intermediate
conformation, the so called "molten
globule". These contacts are supposed to
be determined by the specific binding of
amino acid residues encoded by a codon
and its anticodon. The folding of an
amino acid sequence into the "molten
globule" is a step-by-step co-translational
process of the formation and
reorganization of these code bonds. An
additional sterochemical code is
supposed to determine the first order
phase transition that underlies protein
activity. It is supposed that the two
conformations of a protein molecule
have a similar topology of the backbones
by the entirely different systerms of
hydrogen bonds and Van der Waals
interatomic contacts (Mekler & Idlis,
1993).

D. Covell Covell Simulated annealing methods are
applied to a simple cubic lattice alpha
carbon model of a protein. Each amino
acid occupies only one lattice site.
Several simulations of greater than
100,000 steps are carried out to
determine the consensus configuration
of the protein (Covell, 1992; Covell,
1994).

**
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R. Srinivasan
and G. Rose

Rose Not specified at the time of submission.
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Evaluation of Predictions

The success or failure of class prediction was decided by visually

assigning a class to each protein and comparing to the predicted class (Levitt &

Chothia, 1976).

Secondary structure predictions were evaluated by comparing the

predicted with the experimentally determined secondary structure. The
percentage correct score in a three-state system (Q3: O-helix, B-sheet, or loop)

was used (Schulz & Schirmer, 1979). The secondary structure of the

experimentally determined structure was calculated with the program DSSP

(Kabsch & Sander, 1983) which assigns secondary structure by examining

hydrogen bonding patterns in the context of backbone dihedral angle

preferences. The secondary structure predictions were further evaluated by

subcategorizing the incorrect predictions into three categories: OVER,

UNDER, and WRONG. OVER was defined as predicting an o-helix or B-sheet

when the protein formed an aperiodic or loop structure in reality. UNDER

was defined as predicting a loop conformation when the residue adopted an

0-helical or B-sheet geometry. WRONG was defined as predicting an o-helix

when the amino acid was in a 3-sheet or vice-versa. While one can imagine

molecular dynamics simulations or other optimization methods correcting

UNDER and OVER prediction, WRONG predictions are likely to be extremely
difficult to recover from. For each protein, the secondary structure prediction
methods were compared to the GOR (Garnier et al., 1978) method as an
historical standard.
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The overall fold of the protein was evaluated qualitatively, from a

visual comparison of the experimentally determined structure with the

predicted description.

The precise structure of the protein was evaluated by the root mean

square deviation (r.m.s.) between equivalent alpha carbons in the predicted

and experimental structures. This calculated value was compared to the

r.m.s. value expected for random compact structures (Cohen & Sternberg,

1980a).

The structure of the protein was also evaluated using a recently

developed method that minimizes the area of a "soap film" that would join

the predicted and experimentally determined poly-peptide backbone.

Benchmarks for this type of comparison have been developed to help to

assess if any of the predicted models have captured features of the chain

topology and fold (Falicov & Cohen, 1996).
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Results and Discussion

All the predictors taking part in this contest should be congratulated.

Many of the structure predictions made were completed under less than ideal

conditions. Some prediction methods, which typically require six months to

apply in their entirety, were made in one. Some of the prediction strategies

applied remain in a developmental phase and so these predictions should be

regarded as work in progress. For this reason, we are stressing the promising

results from the meeting, while still noting all of the results.

The results of the Structure predictions are shown in Table IV.3. The

Fold predictions are shown in Table IV.4; the Secondary Structure predictions

are shown in Figure IV.1. The Class predictions are shown in Table IV.5.

Overview

The main issue in this section of the conference was whether or not it

is presently possible to predict ab-initio the tertiary structure of proteins. Two
different approaches were used to predict tertiary structures. The first was

Primary – Secondary – Tertiary which involved predicting the secondary

structure of the protein from the amino acid sequence(s) (Primary –

Secondary) and then assembling a tertiary structure from the secondary

structure elements (Secondary – Tertiary). The second method involved

going straight from the sequence(s) to the tertiary structure. These two

techniques met with varying success.
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Table IV.3 Evaluation of protein structure prediction

* The standard deviation associated with the average Random r.m.s. scores is

+/- 1.4 Å(Cohen & Sternberg, 1980a).

f The rim.s. could not be determined due to a reversal in chain tracing

t A soap bubble value of ~0.35 is somewhat accurate & 0.3 is adequate & 0.25 is

good - 0.2 is very good(Falicov & Cohen, 1996).

Protein Length Random | Predictor || R.M.S. Soap | Energy
(residues) || R.M.S. (Å) Bubble

*(A)

Membrane 22 10.3 Moult 4.4 0.15 –46.1
Binding domain
for the C2
domain of
human

coagulation
factor VIII

8.8 0.29 -45.1

9.1 ().35 -41.2

Lee 4.4 0.14 –236

77 0.23 –212

Subtilisin 71 12.6 Marshall | 11.4 0.35

Propiece

Subtilisin 16 10.0 Moult 10.2 0.43

Propiece
segment

Domain 3 of 68 12.4 Marshall | 13.7 0.36
Staufen

Osguthor | 19.6 0.33
pe
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21.3 || 0.31

12.9 || 0.35

Chymotrypsin / |63 12.2 Covell 7.3 0.32
Elastase
Inhibitor-1

6-phospho-beta- |454 30.4 Sander |f 0.26
D-galactosidase
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Table IV.4 Evaluation of protein fold prediction

Protein Actual Fold Predictor Prediction

6-phospho-beta-D- || 0.73 barrel Benner o/3 barrel
galactosidase

Sander o/3 barrel

Xylanase o/3 barrel Sander o/3 structure with
one or more 3
sheets rather than a
closed barrel

Biphenyl-2,3-Diol | Two symmetrical Hubbard Two symmetrical
1,2-Dioxygenase regions split into regions split into

two regions of E- two regions of E-H-
H-E-E-E E-E-E-E

Membrane Binding |o-helix with a Moult O-helix with a twist
domain for the C2 | twist on the end on the end
domain of human
coagulation factor
VIII

disordered ■
Structure

short helix packed
against a
strand/coil

Lee O-helix with a twist
on the end

O-helix with a 3
strand pair at the
end

Chorismate Mutase | All O-helical Hubbard All O-helical dimer
dimer with a

coiled coil along
the N-terminal
helix

with a coiled coil
along the N
terminal helix

sºns
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Domain 3 of
Staufen

Two O-helices
packed against
the same face of a
three stranded 3
sheet

Hubbard Two O-helices
packed against the
same face of a two
stranded 3-sheet

Mekler Two O-helices
packed against
opposite sides of a
two stranded beta
sheet

Osguthorpe Disordered 3
Structure

N-terminal O-helix
and disordered coil

Compact
disordered coil

Marshall Two O-helices
packed against
opposite sides of a
two stranded beta
sheet

Chymotrypsin /
Elastase Inhibitor-1

Coiled Structure
with five
disulfide bonds

Covell Coiled Structure
with five disulfide
bonds.

Replication
Terminator Protein

O-3 Leucine
Zipper Dimer

Hubbard All O-helical
protein making a
Leucine Zipper
dimer

Mekler O + 3 dimer
differing in
placement of the
secondary structure
regions, resulting
in different overall
fold.
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Synaptotagmin I C2 | B-Sandwich Benner Pleckstrin like
seven 3-strands
plus one O-helix

Hubbard Pleckstrin like
seven ■ -strands
plus one O-helix

Subtilisin Propiece | Three strand 3- |Marshall One stranded 3
sheet packed sheet with helices
against two one either side
helices

Subtilisin Propiece extended Moult 3-hairpin
segment
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Table IV.5 Evaluation of protein class prediction

Protein Class Predictor Prediction

Chorismate Mutase All O-helical Rose All O-helical

Synaptotagmin I C2 All 3-sheet Rose All 3-sheet
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Figure IV.1 Secondary structure predictions for proteins broken down into
three categories: OVER, UNDER, WRONG (see text for definitions). The
percentage score above the histogram is the total percentage incorrect
predictions. (a) 6-phospho-beta-D-galactosidase (b) Xylanase (c) Mystery (d)
Biphenyl-2,3-Diol 1,2-Dioxygenase (e) Chorismate Mutase (f) Domain 3 of
Staufen (g) Subtilisin Propiece (h) Replication Terminator Protein (i)
Synaptotagmin IC2 (j) prokaryotic ribosomal protein 114 (k) Pyruvate
phosphate (1) Klebsiella aerogenes Urease: Beta and Gamma subunits.
(g,h,i,j,k and l are on the following page)
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Primary — Secondary – Tertiary

Primary — Secondary

Q3 Can be a Misleading Measure of Prediction Accuracy

The first step in predicting the structure of a protein following the

Primary — Secondary – Tertiary approach is predicting the secondary

structure. Secondary structure predictions are traditionally evaluated using a

three state percentage correct score, Q3. This approach was used to evaluate

each prediction for the meeting. For 6-phospho-beta-D-galactosidase, Benner

and Sander correctly predicted this protein to be an 0.73 barrel. However,

their secondary structure prediction accuracy differed considerable, 67% for

Benner compared to 75.4% for Sander. Benner's level of accuracy was more

similar to that of the GOR algorithm (Garnier et al., 1978), which correctly

predicted 62% of the secondary structure of this protein (see Figure IV.2).

With these modest per-residue prediction scores, how was Benner able to

predict the correct fold? The answer lies in the analysis of the secondary

structure prediction shown in Figure IV.1a. This figure demonstrates that

Benner, Rost&Sander, Munson, and Garnier-COMBINE all had an

exceptionally small number of "WRONG" predictions. From the viewpoint

of fold prediction, the correct assignment of amino acids comprising the

structural core of the protein is more important than the conformational

assignments for amino acids that form the end of secondary structure

elements and loop regions. For example, the structure of 6-phospho-beta-D-

galactosidase has a large excursion from the standard O./3 barrel fold (see

Figure IV.3). This structure was missed by both Rost&Sander and Benner,

and counts in the UNDER category. In addition, the exact beginnings and

ends of secondary structure are less
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Figure IV.3. 6-phospho-beta-D-galactosidase. Picture generated by midas
Ribbonjr (Ferrin et al., 1988). b-strands are in red, a-helices are in green, and
the rest of the chain is in purple. Secondary structure calculated by DSSP
(Kabsch & Sander, 1983).
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important for fold prediction. Errors in these places result in UNDER or

OVER prediction. Figure IV.4 shows the parts of 6-phospho-beta-D-

galactosidase predicted correctly and as WRONG for both the Benner

prediction and standard GOR predictions. It can be seen how a correct fold

prediction was possible for Benner, but would have been unlikely if a fold

prediction was made from the GOR secondary structure prediction.

Benefits of Multiple Sequence Alignments

The main difference between the GOR algorithm and the secondary

structure prediction methods demonstrated in this meeting is the

exploitation of the structural information implicit in multiple sequence

alignments. Since each sequence in the alignment codes for approximately

the same structure, the secondary structure elements for each of these

proteins should co-localize. This redundancy of information allows the

central portion of most secondary structure regions to be assigned correctly

(very few WRONG assignments). The ends of secondary structure regions

vary between the sequences, and as expected OVER and UNDER prediction

remains common in methods based on aligned sequence information.

It is thus not surprising that for Xylanase, a more regular O./B barrel

than 6-phospho-beta-D-galactosidase, the secondary structure prediction

accuracy for the multiple sequence methods improved (Figure IV.1b), while

the GOR method maintained the traditional level of accuracy.

As another example, each of T. Hubbard's predictions was analyzed,

and compared to the GOR score for the same proteins. The average percent
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Figure IV.4. 6-phospho-beta-D-galactosidase. Correct o—helix predictions are
shown in purple, correct 3-strand predictions are shown in green, and
WRONG (0-helix predicted for B-sheet region or B-sheet region predicted for
o-helix region) predictions in red. The prediction in (a) was done by Benner.
The prediction in (b) was done with the 1977 version of the GOR algorithm.
(figure b is on the following page)
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correct secondary structure per protein was 68.6% for Hubbard and 58.3% for

GOR. However, the difference was much more pronounced with respect to
the WRONG predictions. Hubbard had only 2.3% WRONG predictions while

the GOR method produced WRONG predictions for 10.2% of the residues.

The total errors for the OVER and UNDER predictions was 29.0% for Hubbard
and 31.5%% for GOR - almost identical.

When the multiple sequence alignment is limited in sequence number

or covers a narrow phylogeny, the quality of the secondary structure

prediction suffered. For example, the Replication Terminator Protein had

only two homologous sequences in the sequence data banks. Table IV.6

shows the number of sequences present in a family of aligned homologous

sequences for each protein. Figure IV.1h demonstrates the poor results. This

effected the overall fold predictions as shown in Table IV.4; neither of the fold

predictions were correct.

Synaptotagmin I C2 presented a different alignment problem. Table

IV.6 shows that Synaptotagmin I C2 had 40 sequences in its multiple sequence

alignment. However, the C terminal end of the protein showed a large

amount of sequence divergence. Both Hubbard and Benner correctly

predicted the first six strands of Synaptotagmin I C2, but the C terminal strand

was mispredicted to be a helix by both labs.

Prokaryotic ribosomal protein L14 demonstrated that even with the

highly unusual structure shown in Figure IV.5, accurate secondary structure

assignments can be made with a sufficiently large family of aligned sequences,

25 sequences in this case. Figure IV.1j shows the secondary structure

prediction.

I
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Table IV.6

Number of aligned sequences for predicted proteins”

*Each of the sequences in the alignment was considered to be homologous to

the probe sequence when the sequence identity was 2.30%.

Protein Sequences”

6-phospho-beta-D-galactosidase 16

Mystery 2

Xylanase 13

Biphenyl-2,3-Diol 1,2-Dioxygenase 16

Membrane Binding domain for the C2 domain of human 1
coagulation factor VIII

Pyruvate Phosphate Dikinase 6

Chorismate Mutase 7

Domain 3 of Staufen 8

Klebsiella Aerogenes Urease beta 9

Klebsiella Aerogenes Urease gamma 11

Chymotrypsin / Elastase Inhibitor-1 1

Replication Terminator Protein 3

Synaptotagmin I C2 40

Prokaryotic Ribosomal Protein 114 25

Subtilisin Propiece 12

;
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Figure IV.5. Prokaryotic ribosomal protein 114. Picture generated by midas
Ribbonjr (Ferrin et al., 1988). B-strands are in red, o-helices are in green, and
the rest of the chain is in purple. Secondary structure calculated by DSSP
(Kabsch & Sander, 1983).
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Is human intervention superior to totally automated approaches?

A point which has been argued in the literature is whether or not

human intervention is superior to totally automatic methods in secondary
structure prediction (Benner & Gerloff, 1993; Robson & Garnier, 1993). For a

group of proteins, Hubbard and Rost&Sander both used the same secondary
structure prediction algorithm: PHD (Rost & Sander, 1994). However,

Hubbard aligned the sequences automatically and optimized them by hand;

Rost&Sander's alignment method was totally automated. Figure IV.6

indicates that Hubbard's hand alignment improved the ability of PHD to

accurately predict secondary structure.

Another example of Man vs. Machine is shown by the predictions

made by Benner and coworkers. Although much of Benner's technique is

now automated, there is still a large human element in the structure

predictions that their lab performed. Figure IV.7a and IV.7b demonstrate that

their method has a similar level of effectiveness for secondary structure

prediction as many of the automated methods.

What Have We Learned About Secondary Structure Prediction?

The Mystery protein demonstrates the correspondence between the

information we use to predict secondary structure and that used to design

proteins. Mystery was a designed TIM barrel called RORO. It was designed by

the first EMBO protein design course, improved by Chris Sander and Gert

Vriend(Sander & Vriend, 1992), and produced by Steve Emery (Emery & Fritz,

1994). The extremely accurate secondary structure predictions shown in

Figure IV.1c indicate that the rules used to design this TIM barrel strongly

;
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resemble the rules used to predict its structure. These are not however, the

rules nature uses for folding proteins; RORO showed approximately the

correct helical content but almost no beta sheet by CD and NMR

spectroscopy(Schmid, 1994).

Difficult protein substructures

The following are some examples of specific errors that occurred in

secondary structure prediction.

• Completely exposed helices are consistently difficult to predict due to the

lack of the classical hydrophilic, hydrophobic repeating pattern of the more

common partially buried helices. For instance, most groups missed one of

the exposed helices in Ribosomal Protein L14.

• Completely buried strands and helices are also difficult to predict due to

their lack of a repeating hydrophobic/hydrophilic pattern.

• As previously mentioned, excursions of secondary structure not present in

the entire family of aligned sequences are difficult to predict.

• Finally, the ends of secondary structure units are still frequently

misassigned. Perhaps work on capping structures will serve to address

this problem (Harper & Rose, 1993; Levin et al., 1993; Richardson &

Richardson, 1988; Zhou et al., 1994).
-

Secondary – Tertiary

Approaches to Secondary Structure Assembly
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One approach to assembling the structure of a protein is to attempt to

combine the secondary structure units of the protein in every plausible way,

and evaluate which assembly is most likely to be correct (Cohen et al., 1979;

Cohen et al., 1980; Cohen et al., 1982; Ptitsyn & Rashin, 1975). Benner

attempted to assemble Synaptotagmin I C2 by this combinatorial approach.

Unfortunately, they mispredicted a strand for a helix. Even so, the correct

overall fold was present in their list of plausible folds. This fold was rejected

in the evaluation stage (Table IV.4).

The task of assembling secondary structure units is simplified when

the secondary structure exhibits a pattern seen before. The overall fold of 6

phospho-beta-D-galactosidase was determined largely because the repeated O

3 pattern was familiar to the investigators (Table IV.4). Sander was also able

to propose a structure with coordinates (Table IV.3). Even when the

secondary structure exhibits a familiar pattern, mistakes are possible. Sander

rejected an O.■ 3 barrel in favor of an alternative O./B structure with one or

more sheets rather than a closed barrel (Table IV.4).

Assembly of the secondary structure units into a fold is also aided by

local folding motifs such as the leucine zipper(Landschulz et al., 1988; O'Shea

et al., 1989). This motif is formed when two helices pack against one another

with leucines at the interface (See Figure IV.8). The fingerprint of this motif is

a leucine repeated every seventh amino acid. Hubbard was able to recognize

this motif and correctly predict a leucine zipper in Chorismate Mutase. Since

only one leucine zipper helix was shown, Hubbard correctly predicted that

Chorismate Mutase was "an all helical dimer with a coiled coil along the N

terminal helix." Another example of the leucine zipper motif was seen in the
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Replication Terminator Protein. In this case again the presence of a dimer
was identified.

When the protein to be predicted has an unusual fold, it is more

difficult to assemble the secondary structure units. Two of the proteins that

several labs made fold predictions for had an unusual fold: Domain 3 of

Staufen and Subtilisin Propiece. They both had a beta sheet sandwiched

against a pair of helices. This can be contrasted with the more common motif

of helices covering both sides of a B-sheet (Cohen et al., 1982).

Marshall and Mekler's groups both predicted Domain 3 of Staufen to

have the two helices on opposite sides of the sheet. Hubbard's group correctly

predicted that the helices would lie on the same side of the sheet. The

predicted folds with coordinates are shown in Figure IV.9. The rim.s. and

soap bubble values are shown in Table IV.3.

Another unusual motif was the Subtilisin Propiece, although its

structure is surprisingly similar to that of Domain 3 of Staufen. As shown in

Table IV.3, Marshall predicted the overall fold with an rims. error of 11.4 Å.
Moult predicted the conformation of residues 7-22 with an r.m.s. error of 10.2

A. The unusual folds seem to have effected the secondary structure
predictions as well. As seen in Figures IV.1f and IV.1g, the secondary

structure predictions are frequently in error. It is possible that common folds

have improved secondary structure prediction accuracy due to the presence of

similar structures in the databases used to derive prediction parameters.
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Figure IV.8. Chorismate Mutase. Leucines are yellow. One subunit is in
white and the other in red. Secondary Structure evaluated using DSSP.
Picture generated by Midas Ribbonjr (Ferrin et al., 1988).
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Figure IV.9. Domain 3 of Staufen. (a) experimentally determined X-ray
crystal structure (b) Osguthorpe prediction (c)Marshall prediction. Structures
generated by Midas Ribbonjr (Ferrin et al., 1988). The N-terminus is red, the
C-terminus is blue, and the middle of the sequence is green.
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The high symmetry of the TIM barrels clearly aided prediction of the

overall fold of proteins in this study as well as in previous efforts (Crawford

et al., 1987). This effect was also seen with Biphenyl-2,3-Diol 1,2-Dioxygenase

whose overall fold was predicted by Hubbard to be "two symmetrical regions,

each split into two E-H-E-E-E-E regions," where E is an extended 3-strand and

H is an O-helix. In reality each region is E-H-E-E-E. The secondary structure

prediction is shown in Figure IV.1d. Gene duplication and other

evolutionary mechanisms frequently lead to proteins with substantial

internal symmetry. Clearly, this can be put to advantage in prediction efforts.

When recognized, symmetry elements can serve to multiply the amount of

homologous sequence information and frequently extends the phylogenetic

separation between structurally related elements. This was observed with the

internal two fold identified by Hubbard in Biphenyl-2,3-Diol 1,2-Dioxygenase,

as well as the implicit four fold in four-helix bundles or eight fold symmetry

in o./3 barrels.

Are We Really Just Threading?

Threading matches a protein sequence with known protein structures.

The two correct o/3 barrel prediction were essentially matching the patterns

of secondary structure of the unknown protein to that of known proteins.

Benner's misprediction of Synaptotagmin C2 was partly due to mispredicted

secondary structure. The secondary structure pattern they predicted matched

the pattern of the Pleckstrin family of folds. Hubbard's fold predictions for

Biphenyl-2,3-Diol 1,2-Dioxygenase and Synaptotagmin C2 were accomplished

with a combination of secondary structure prediction and threading. For

these reasons, it can be argued that these approaches to fold prediction should
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be classified under the "Threading" category of structure prediction. Ab-initio

fold prediction would then be limited to the strict combinatorial approaches

to tertiary structure or methods that did not employ secondary structure units

as intermediates. This may prove to be an arbitrary distinction. As ab-initio

methods improve, threading algorithms will exploit these features to their

own advantage. If there are only a limited number of protein folds, and X-ray

crystallographers and NMR spectroscopists continue to solve a wide array of

new structures, threading algorithms are likely to limit the need for true ab

initio approaches.

Primary – Tertiary

This category of methods includes those that do not use the calculation

of secondary structure as an intermediate for structure determination. These

include the work of Mekler, Marshall, Lee, Moult and Covell. These methods

have the advantage over Primary — Secondary – Tertiary methods in that

they are not simply threading. They are clearly applicable to the prediction of
novel structures and folds. Moreover, the work of Chan and Dill(Chan &

Dill, 1990) would suggest that secondary and tertiary structure are inextricably

tied. This has led to the notion that tertiary structure determines secondary

structures. While this extreme point of view is unlikely to be true in all cases

(Gregoret & Cohen, 1991; Kim et al., 1982), it is clear that the structure of some

local sequences is largely influenced by their tertiary context (Cohen et al.,

1993; Kabsch & Sander, 1984).

Contact Matrices

Mekler and Marshall both used methods that involved generating the

tertiary structure from a predicted set of interresidue contacts. Unfortunately,
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as with the Primary — Secondary – Tertiary methods, Mekler and Marshall

were unable to correctly predict the structure of Domain 3 of Staufen.

Marshall incorrectly predicted the structure of Subtilisin propiece, and Mekler

incorrectly predicted the fold of the Replication Terminator Protein. These

results are not surprising in light of the predicted contact matrices of Mekler.

For Domain 3 of Staufen, Mekler correctly predicted none of the seven long

range (greater than five residue separation) contacts. For the Replication

Terminator Protein, Mekler predicted none of the twenty-three long range

contacts correctly.

Semi-Exhaustive Methods

The membrane-binding domain for the C2 domain of human

coagulation factor VIII indicates that structures of very small proteins may be

easier to predict. This peptide is only 22 amino acids in length. The NMR

structure, and two lowest energy predicted structures are shown in Figure

IV.10. The structures from both Moult's group and Lee's group are

qualitatively quite accurate: a helix followed by an n-terminal twist. As

shown in Table IV.3, each predicted structure deviated from the NMR

structure by 44 Arms, and had low soap bubble values. Moult's group
made two other predictions and Lee's group one other. These other

predictions were higher in energy and correspondingly less accurate.

However, Lee's high energy prediction was convincing enough that it was

chosen by that group to be their preferred prediction.
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Figure IV.10. Membrane Binding domain for the C2 domain of human
coagulation factor VIII. (a) NMR structure (b) Lee prediction and (c) Moult
prediction. Pictures generated with MIDAS ribbonjr (Ferrin et al., 1988). The
N-terminus is red, the C-terminus is blue, and the middle of the sequence is
green.
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One partially successful example of ab-initio protein folding was the

effort of Covell on Chymotrypsin/Elastase Inhibitor-1. His predicted

structure for this 65 residue protein was 7.3 Å rim.s. from the actual structure.
At the simplest level of comparison, this difference is ~3 standard deviations

from an average random structure, but -5 standard deviations from the

actual structure (Table IV.3). The soap bubble value is indicative of a loosely

similar structure. Visual inspection also shows some structural similarities

between the experimental and predicted structure (Figure IV.11). Five

disulfide bonds were present in this protein and the exact pairings were made

known to the investigators. Covell did not use these pairing during the

prediction phase of his work, but only later as a check on the accuracy of his

prediction. Since he did have knowledge of these pairings before hand, this

prediction cannot be considered entirely "blind". Still, disulfide bridge
information is often available in advance of a structure determination and

thus provides a useful type of experimental structure constraint for ab-initio
methods (Cohen et al., 1986b; Curtis et al., 1991) i
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Figure IV.11. Chymotrypsin/Elastase Inhibitor (a) predicted and (b)
experimental. Picture generated with Midas Neon (Ferrin et al., 1988). Q
carbon representation with exaggerated carbon radius used to emphasize the
topological features. The tube was colored in a rainbow pattern
corresponding to the amino acid number. The N-terminus is red, the C
terminus is blue, and the middle of the sequence is green.
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Conclusion

Accurate tertiary structure prediction is not possible today. Overall fold

prediction is possible and has been demonstrated. We can predict the overall

fold of a protein when that protein has a recognizable motif. Examples are

the leucine zipper seen in Chorismate Mutase and Replication Terminator

Protein, and the O/3 barrels Xylanase and 6-phospho-beta-D-galactosidase.

We are also aided by a large degree of symmetry present in the amino acid

sequence, which translates to symmetry in the three-dimensional structure.

We can predict the approximate structure of extremely small proteins, such as

the Membrane-binding domain for the C2 domain of human coagulation

factor VIII. For these tiny proteins, it is possible to pursue extensive

conformational searches to predict a protein's tertiary structure.

Unfortunately, the predicted structures are still 44 Å rim.s. from the
experimental structures. There is hope that these methods may be extended

to somewhat larger proteins as shown by Covell's prediction of

Chymotrypsin/Elastase Inhibitor-1, but in this example, the structural
resemblance is tenuous.

We still have difficulty with proteins that have unusual folding

motifs, such as Domain 3 of Staufen and the Subtilisin Propiece. In addition,

most of the recent advances made in structure predictions have been due to

the exploitation of multiple sequence alignments. When the quality of these

alignments was poor as was seen with the Replication Terminator Protein

and Synaptotagmin I C2, prediction accuracy suffered. Given the current

level of prediction accuracy, we recommend the use of as much experimental

110



information as possible in structure prediction and/or subsequent validation

(Cohen et al., 1986b; Cohen & Sternberg, 1980b; Jin et al., 1994).

To improve tertiary structure prediction, multiple sequence

information may have to be included in the Primary – Tertiary methods.

Already, this information could improve the distance matrix approaches by

using sequence variability information across an aligned family to narrow the

range of coordination numbers for contact map approaches. Multiple

sequence alignments could also be adapted to calculate more specific contact

potentials. We expect that the next generation of tertiary structure prediction

strategies will exploit multiple sequence information. :

.
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Chapter 5

Multiple Sequence Information for Threading
Algorithms

This chapter has been submitted for publication in the Journal of Molecular

Biology for 1996
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Introduction

The solution to the inverse protein folding problem lies in identifying

amino acid sequences that are compatible with a given protein structure.

Beginning with the work of Eisenberg and coworkers (Bowie et al., 1991),

threading algorithms have emerged as a valuable tool for identifying

structure-sequence correlations. While many threading algorithms have

succeeded in associating protein folds with compatible sequences, a recent

analysis of these methods suggests that the sequence alignments implicit in

the "correct" threading of a sequence through a structure are frequently

incorrect (Lemer et al., 1995). Presumably, these errant alignments

undermine the efficacy of existing threading algorithms.

Recent algorithmic advances in protein secondary structure prediction

exploit the additional structural information inherent in a family of aligned

amino acid sequences (Benner et al., 1994; Rost & Sander, 1993). In large part,

their success is due to the utility of these alignments in separating structurally

relevant regions from incoherent sequence information by recognizing

amino acid positions that are relatively conserved or more freely variable. In

an effort to explore the utility of positional variability measures, we have

developed a method with a simplified structural environment-sequence

potential for threading (The Test of Optimal Mutagenesis or TOM) and

compared this algorithm with a literature standard: THREADER (Jones et al.,

1992). This analysis demonstrated that the current standards for assessing the

success of threading algorithms need to be made more rigorous.

Historically, threading methods have been evaluated using a modest

set of test cases. A familiar example is to thread, without gaps, a protein
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sequence on every structure equal to or longer than itself (Hendlich et al.,

1990). Another control involves swapping the sequence of a protein with that

of a protein of equal length, and rating the scoring function's ability to

distinguish the correct from the swapped structure (Novotny et al., 1988).

Unfortunately, these test cases have a sufficiently large number of structure

sequence incompatibilities that simplistic threading algorithms identify the

errant structures with perfect or near perfect predictability. To evaluate the

relative performance of TOM versus THREADER, we developed a new test

case derived from an exhaustive analysis of all of the structural matches

within a unique set of protein structures. A summary of our approach is

given in Figure V.1. We compared 113 sequences from large homologous

families (> 15 members, where at least one member of each family is present

in the PDB) with 305 high resolution structures. 56 of the sequences had at

ieast one close structural match other than itself (or members of the same

homologous family) in the set of 305 structures. Our definition of close

structural matches is given in the "methods" section. The test case involves

searching our database of structures with an amino acid sequence. The

structure-sequence matches are ranked by score, and a correct "hit" for each

test is recorded when the highest scoring non-identical structure-sequence

pair has a corresponding structure-structure match. This test case mimics

blind structure predictions akin to the Asilomar folding challenge (Lemer et

al., 1995). While this test set is not totally independent of the training set, we

have used a jackknife data analysis strategy to minimize memorization
effects.

This test case allowed us to differentiate the performance of TOM and

THREADER. Due to the dissimilarities between these two algorithms, it is

not possible to determine the extent to which the inclusion of multiple
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Figure V.1. A set of structures spanning the known protein folds (with less than
25% sequence identity to one another) is paired down to a test set of structures.
The resolution filter eliminates all structures with less than 2.5 Å resolution.
The resulting group represents our set of folds. With the homologous sequence
filter this set is further paired down to include only those with at least 15
sequences in an associated multiple sequence alignment. The test set is
generated with the structural match filter by keeping only those proteins that
have structural matches other than themselves in the set of folds. The test case
is to thread the sequence alignment from each protein in our test set against the
set of folds. In each case, the highest scoring fold (excluding matching a
sequence to its own native fold) is chosen. A more detailed description of each
step is found in the "methods" section. The helical bundle was generated with
MOLSCRIPT (Kraulis, 1991).
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sequence information was responsible for the improvement. For this reason,

an alternative version of TOM which does not employ variability

information (TOM NOVAR), was developed in parallel with TOM. TOM

NOVAR is otherwise identical to TOM. Contrasting TOM, TOM NOVAR

and THREADER has revealed important insights into what makes threading

algorithms succeed or fail.

Results and Discussion

The performance of TOM, TOM NOVAR, and THREADER on our test

case is summarized in Table V.1. Clearly, multiple sequence information

improved the performance of TOM relative to TOM NOVAR and

THREADER. For each of the correct structure-sequence matches (or "hits")

identified by TOM in our test case, we also evaluated the accuracy of the

sequence alignments produced by both TOM and TOM NOVAR. TOM and

TOM NOVAR were evaluated on the same set of "hits" in order to directly

compare the algorithms. Unfortunately, since TOM NOVAR is being tested

on the matches produced by TOM, it is possible that its performance is

hampered. The alignments produced by both algorithms were compared to

the alignments produced by an automated structure comparison algorithm

(Falicov & Cohen, 1996). We counted the number of correctly aligned

positions and divided by the number of residues aligned in the structural

alignment. At the maximum stringency or "0" resolution level, the aligned

positions had to be identical in the threaded and structural alignments. At

the "+1" resolution level, a one residue discrepancy was still considered to be

an acceptable alignment. Realistically, automated alignment algorithms that

compare structures will differ at the "0" resolution level but will be

concordant at the "+1" threshold. At the more modest "+3" or "+5"
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Table V.1. Number of correct folds identified.

Algorithm Fraction (%) of folds
correctly matched

TOM 25/56 (45%)

TOM NOVAR 16/56 (29%)

THREADER 11/56 (20%)
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resolution level, an acceptable alignment accommodated a disagreement of as

many as 3 or 5 residues. The results for TOM and TOM NOVAR are

summarized in Table V.2. The actual accuracy of TOM on a residue by

residue percentage basis for each structure-sequence pair is shown in Table

V.3. We believe that the stringency level of "+5" is approximately equivalent

to the structural overlap method employed by Wodak and co-workers to

review threading predictions presented at the Asilomar conference (Lemer et

al., 1995). At this level, the TOM algorithm predicted over 50% of the

structural alignment correctly in 22 out of 25 cases. This compares favorably

with the results presented at Asilomar; only Sippl and co-workers were more

accurate on the limited set of three proteins that constituted this blinded

challenge.

However, we believe that agreement at the "+1" resolution level more

realistically represents the match between the sequence and the correct

environmental positions in the fold. At this level of resolution, TOM

correctly predicted 30% or more of the structural alignment for 21 out of 25

cases, while TOM NOVAR was successful in 16/25 cases. Multiple sequence

information clearly improved the alignment accuracy. Interestingly, the

number of cases that matched over more than 50% of the alignment was

significantly decreased, just 15/25 and 13/25 for TOM and TOM NOVAR

respectively. This leads us to believe that the structure-sequence matches

identified by TOM require just 30-50% of the structure-sequence alignment to

be correct in order to generate sufficient signal to distinguish it from alternate

folds. These correctly aligned residues in some cases comprise one portion of

the fold, and in other cases they are spread throughout the fold.

This work demonstratess an improvement over existing methods at

two levels. First is the inclusion of additional information from mulitple
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Table V.2. Summary of sequence alignment accuracy.

Stringency Minimum 96 of | Fraction (%) of alignments correctly

sequence correctly predicted

aligned

TOM TOM NOVAR

0 30% 14/25 (56%) 11/25(44%)

0 50% 6/25 (24%) 8/25 (32%)

0 90% 4/25 (16%) 4/25 (16%)

+1 30% 21/25 (84%) 16/25 (64%)

+1 50% 15/25 (60%) 13/25 (52%)

+1 90% 6/25 (24%) 5/25 (20%)

+3 30% 23/25 (92%) 20/25 (80%)

+3 50% 20/25 (80%) 18/25 (72%)

+3 90% 6/25 (24%) 6/25 (24%)

+5 30% 25/25 (100%) 22/25 (88%

+5 50% 22/25 (88% 20/25 (80%)

+5 90% 12/25 (48%) 11/25 (44%)
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Table V.3. Sequence alignment percentage accuracy of TOM at three different

stringency levels.

Sequence (PDB | Structure (PDB | Stringency Stringency Stringency Stringency

entry" + chain entry + chain "0" "+1" "+3" "+5"

descriptor) descriptor)

1ads_ 1ghsa 9 10 27 44

1apme 1irk_ 35 45 49 50

1apve 1Smra 32 69 84 100

1babb 2mge_ 100 100 100 100

1cdta 3ebx_ 0 18 55 80

1cpcb 1cpca 55 56 61 76

1eca_ 3sdha 40 51 86 95

1gdm_ 1babb 24 34 60 83

1 holca 1dhr_ 31 31 63 86

1 knt 7pti- 98 98 98 98

l laal AMICYANIN. lads AI DOSE REDUCTASE: lap.me E chain of C-AMP DEPENDENT PROTEIN KINASF, lapve E chain of ACID
I'ROTEINASE: larh ACHROMOBACTER PROTEASE l; lars ASPARTATE AMINOTRANSFERASE, lash HEMOGLOBIN, 1babb
B chain of HEMOG, OBIN, bet BETA-NERVE GROWTH FACTOR; 1bgeb B chain of GRANULOCYTE COLONY-STIMULATING
FACTOR, lbnda A chain of MALATE DEHYDROGENASE: 1caua A chain of CANAVALIN; 1 caub B chain of CANAVALIN; 1ccr_
CYTOCHROME C, lcde PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE, ledta A chain of CARDIOTOXIN V4: 1cpca
A chain of C-PHYCOCYANIN: 1cpcb B chain of C-PHYCOCYANIN: 1cus CUTINASE; 1dhr DIHYDROPTERIDINE REDUCTASE;
ldts DFTHIOBIOTIN SYNTHASE; 1eca HEMOGLOBIN III; 1 foaa A chain of FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE; 1 fm.c_
FFRRFIXOXIN NADP. OxidorFDUCTASE; 1■ rpa A chain of FRUCTOSE-1,6-BISPHOSPHATASE, ifrub B chain of FC RECEPTOR
(NIONAIAI). Igdha A chain of D-GLYCERATE DEHYDROGENASE; 19.3m LEGHEMOGLOBIN. lghsa A chain of 1,3-BETA
Gi UCANASH (ISOZY ME II). Igky GUANYLATE KINASE; 1hdca A chain of 3-ALPHA, 20-BETA-HYDROXYSTEROID
DEHYDROGENASE; 1hlb HEMOGLOBIN; 1hmy HHAI DNA METHYLTRANSFERAS; 1hnee E chain of ELASTASE. lhucb B chain
of CATHEISIN B : 1 huw HUMAN GROWTH HORMONE, life FATTY ACID BINDING TROTEIN; lilrl 1 chain of INTERLEUKIN 1
RECEPTOR ANTAGONIST PROTEIN; lirk INSULIN RECEPTOR; livol INFLUENZA A SUBTYPE N2 NEURAMINIDASE; 1knt_
COLLAGEN TYPE VI. 11dm L-LACTATE DEHYDROGENASE; 11k, LEUKEMIA INHIBITORY FACTOR, lipe APOLIPOPROTEIN-E3;
lmina A chain of NITROGENASE MOLYBDENUM-IRON PROTEIN; 1 minb B chain of NITROGENASE MOLYBDENUM-IRON
PROTEIN: Imup MAJOR URINARY PROTEIN: 1nar NARBONIN; lofy FLAVODOXIN: 1pfka A chain of
PHOSPHOFRUCTOKINASE; 1php 3-PHOSPHOGLYCERATE KINASE; 1ppm PAPAIN: 1pty SCORPION TOXIN II; 1rsy_
SYNAPTOTAGMIN L, 1smra A chain of RENIN, 1tgs; I chain of TRYPSINOGEN; 1 tie TRYPSIN INHIBITOR; 1 timl_ENDO-1,4-BETA
D-GLUCANASE, itphl 1 chain of TRIOSEPHOSPHATE ISOMERASE, 1tpla A chain of TYROSINE PHENOL-LYASE; 1xnb_
XY LANASF, 1zaac C chain of ZIF268E 2ak3a A chain of ADENYLATE KINASE ISOENZYME-3, 2alp_ALPHA-LYTIC PROTEASE,
2av.h 1,3-1,4-BETA-D-GLUCAN 4 GLUCANOHYDROLASE 2azaa A chain of AZURIN; 2bbkh H chain of METHYLAMINE
DEHYDROGENASE; 2ccva A chain of CYTOCHROME C, 2cdv_ CYTOCHROME C3, 2&nd NADH-DEPENDENT NITRATE
REDUCTASE; 2dri D-RIBOSE-BINDING PROTEIN: 2hbg HEMOGLOBIN; 2hhma A chain of INOSITOL MONOPHOSPHATASE;
2hmza A chain of HEMERYTHRIN: 2hpea A chain of HIV-2 PROTEASE: 2ihl PROTEIN G, 2nge MYOGLOBIN; 2mnr_
MANDELATE RACEMASE, 2mtac C chain of METHYLAMINE DEHYDROGENASE; 2pia PHTHALATE DIOXYGENASE REDUCTASE;
2rspb B chain of ROUS SARCOMA VIRUS PROTEASE: 2sil SIALIDASE, 2sn3_NEUROTOXIN; 2tgi TRANSFORMING GROWTH
FACTOR-BETA 2, 3aahb B chain of METHANOL DEHYDROGENASE; 3cd4 CD4; 3chy CHEY: 3dfr DIHYDROFOLATE
REDUCTASE, 3ebx ERABUTOXIN: 3sdha A chain of HEMOGLOBIN I; 3sgbi I chain of PROTEINASEB; 4enl ENOLASE; 4fxn_
FLAVODOXIN; 5p21 C-H-RAS pºl PROTEIN CATALYTIC DOMAIN; 6fabl L chain of ANTI-PHENYLARSONATE ANTIBODY; 7pti
TRYPSIN INHIBITOR, 8atca A chain of ASPARTATE CARBAMOYLTRANSFERASE, 8fabb B chain of IMMUNOGLOBULIN IGG1 FAB
FRAGMENT,
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1ldm 1bmda 26 62 83 90

1]pe- 2ccva 0 0 25 30

1mina 1minb 29 52 57 69

1 of v_ 4fxn_ 49 62 79 95

1ppn_ 1hucb 33 41 52 71

1pt; 2Sn3_ 25 71 85 100

1tgsi 3sgbi 2 92 94 94

2ak3a 1gky_ 31 36 49 60

2Cnd 1fnc_ 41 46 63 65

2mge_ 1babb 94 99 100 100

2sn3_ 1pt; 56 85 85 100

3ch y_ 4fxn_ 20 63 80 80

3sgbi 1tgsi 98 100 100 100

4enl_ 1pt; 3 18 33 38

7pti 1knt_ 2 98 1()() 1()()
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sequences which leads to more accurate threading. Second, the use of a

carefully constructured test case is necessary to recognize this improved

performance. A useful threading test set must be both fair and sufficiently

difficult that not all algorithms can succeed on any individual case and no

algorithm can succeed in all cases. Most extant test cases for threading

algorithms fail to meet these criteria. For example, a common proof of

relevance involves threading a sequence onto a group of structures equal to

or longer than itself. The test is considered a success if the sequence

recognizes its own structure. Without gaps, this is an example of a highly

cooperative event for which almost every threading function in the literature

can succeed. Also, the exact structure is likely to be compatible with its

specific sequence from a variety of perspectives. For example, exact hydrogen

bond potentials that emphasize the importance of side chain-side chain or

side chain-main chain hydrogen bonds will quite easily find the exact

structure for a sequence from a wide variety of alternatives. Unfortunately,

these same potentials are not necessarily useful for the realistic threading

problem where the correct structure is unknown. Finally, when gaps are

allowed in a test case that contains an exact sequence structure match, it can be

difficult to separate the utility of the threading algorithm from the

importance of a stringent gap penalty; as the gap penalty is increased, the

gapped threading problem converges to the ungapped threading problem,

with an almost invariable increase in performance.

We sought a test set that was truly orthogonal to the training set. To

approximate this goal, we used a non-redundant set of protein structures,

each of which had 25% or less sequence identity to all other members of the

set. In addition, we systematically removed the native structure from the

training set before testing. In an effort to make the test set more challenging,
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all structures even remotely structurally similar to the native structure were

removed from the training set using the criteria of Falicov and Cohen (1996).

This should help to avoid the possibility of memorizing aspects of the native

structure implicit in the homologous structures present in the training set.

We used one set of gap parameters for the entire set of proteins in the

test case. This appears to be an obvious step, but in practice,

reparameterization for each protein within a test set is a common occurrence

in the literature. Whenever a test of globin fold recognition and

imunoglobulin fold recognition are carried out separately with different gap

penalties, a limited reperamaterization has occurred. This can improve

algorithm performance in a fashion that does not easily generalize to the

unknown test cases. Similarly, a constant definition of a structural match in

the form of an overlap score was used. A constant cutoff of structural

similarity was chosen so that we could not influence our choice of a hit by

subjective feelings of what should be a hit.

Finally, an abridged test case was generated with completely separate

training and testing sets. This limits the statistical power of the test case, but

improves the likelihood that the results are generalizable to novel sequences.

30 sequences were compared against 29 structures to identify the nearest non

native sequence-structure match. The results are summarized in Table V.4.

Note that the scores are greatly improved relative to the standard test case

(Table V.1). This is not due to a substantial increase in performance. The
smaller number of alternative incorrect folds decreases the odds that an

incorrect fold will receive a high score.
Structural Matches

An accurate, unbiased definition of what represents a structural match

is required to develop a useful test set. Many methods have been developed
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Table V.4. Number of correct folds identified for an abreviated test set
Algorithm Fraction (%) of folds

correctly matched

TOM 23/30 (77%)

TOM NOVAR 19/30 (63%)

THREADER 12/30 (40%)
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to compare structures, beginning with the early computational work of

Rossman and Argos (1976) and the taxonomic studies of Richardson (1981).

Taylor and Orengo (1989) have used double dynamic programming

approaches to structural alignments, but had to employ an empirical gap

penalty. Falicov & Cohen (1996) developed a differential geometry algorithm

that calculates the approximate surface of minimum area or "soap film."

between two structures. This soap film is relatively insensitive to insertions

and deletions (gaps), resulting in a method for comparing structures of

different lengths. To avoid length artifacts, the surface area value is scaled for

the length of the two proteins resulting in a ratio score. This structural

comparison has demonstrated a high degree of concordance between what we

and others believe to be structural matches (Falicov & Cohen, 1996), and is the

algorithm we have chosen to use.
Two different criteria for structural matches were chosen. These were

selected both by examining a dendrogram of structural similarity for

concordance with previous taxonomic work, (Figure V.2) and individual

structural comparisons for specific difficulties (Figure V.3). We determined

that a ratio score of 0.2 was indicative of a close structural match, and 0.3 a

weak but noticeable structural match. These ratio scores were applied

uniformly to the protein structural comparisons that gave rise to the test case.

Algorithmic Issues

In order to analyze the effects of multiple sequence information on

threading, we employed an otherwise straightforward algorithm similar to

that used by Eisenberg and co-workers (Bowie et al., 1991). This algorithm

models the protein structure as a string of environments, and aligns the

sequence with the structure using a dynamic programming matrix. The
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Figure V.3. Stereo view of two different protein-protein comparisons by the
Soap Film method of Falicov and Cohen (1996). In (A), the two proteins are
1ilr 1 chain (green) and 1cew I chain (red). The ratio score is 0.288. In (B) the
two proteins are 2aza A chain (green), and 1aaj (red). The ratio score is 0.194.
We consider an ratio score of 0.2 or lower to be a close structural match, and
0.3 or lower to be an approximate structural match. PDB entries are as
specified in the footnote to Table V.3.
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structure-sequence matches are scored by assigning a value for each amino
acid residue to be found in each environment.

The efficacy of this base algorithm is demonstrated by comparing TOM

NOVAR and THREADER, as seen in Table V.1. On our threading test, TOM

NOVAR outperformed THREADER by a 9% margin (29% to 20%). Since

TOM NOVAR and THREADER are both based on matching a single sequence

with a single structure, the difference in performance must be attributable to

the algorithm or the alignment strategy. Part of THREADER's scoring

function is a pair potential. We suspect that many implementations of pair

potentials incorporate too much short range information. Most threading

algorithms derive their threading potentials by analyzing the matches

between sequences and their three dimensional structures. However, a

threading algorithm is supposed to locate a structure that is compatible with a

sequence that is similar but not identical to the actual structure. We believe

that pair-potentials as they are presented in THREADER may tend to

recognize the structure-sequence pair, at the expense of capturing some of the

more general similarities of an analogous structure.

In addition, THREADER calculates a "local" alignment. It does not

take into account the entire sequence and structure; instead it focuses on a

smaller region. We have found that both TOM and TOM NOVAR

demonstrated substantial improvement with a "global" implementation of

the dynamic programming algorithm. It is possible that this "global"

alignment is responsible for much of the improvement seen in the structure

sequence alignments produced by TOM.

The Utility of Multiple Sequence Information

We took advantage of the information inherent in a family of aligned

sequences by analyzing the variability of each position in the sequence.
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Rather than focus on the overall variability of a sequence position, we

subdivided the variability into hydrophobic and hydrophilic subsets. Benner

and co-workers observed that extensive hydrophilic variability across the

subset of hydrophilic amino acids is often associated with the surface

exposure of a residue. In addition, they observed that a similar degree of

variability restricted to hydrophobic residues with the explicit absence of

hydrophilic residues is indicative of a buried side chain (Benner et al., 1994).

Thus, to perform the threading analysis we reclassified each amino acid in the

sequence into one of four new amino acid types based on the hydrophobic

and hydrophilic variability of the associated multiple sequence alignment (see

methods section).

To calculate the variability of the sequence alignment, we classified

each of the amino acids into one of three categories: hydrophobic,

hydrophilic, and ambivalent. The hydrophobic amino acids all show a strong

tendency to be buried. The hydrophilic amino acids show a strong tendency

to be exposed. The ambivalent amino acids have approximately equivalent

tendencies to be buried or exposed. Bowie et al. (1990) classify hydrophobics

(HQ) as {Phe, Ile, Leu, Met, Val, Trp, Cys), hydrophilics (HP) as {Asp, Glu, Lys,

Asn., Gln, Arg), and ambivalents (HA) as {Ala, Cys, Gly, His, Pro, Ser, Thr,

Tyr).

We take issue with the classification of cysteine and serine. Cysteine

behaves as a hydrophobic amino acid if it is part of a disulfide bond and

behaves as a hydrophilic amino acid otherwise. In the absence of knowledge

about the redox state of the protein, we believe that cysteine belongs in the

ambivalent category. Serine also created a mild dilemma. From a study of

multiple sequence alignments and protein structures, we concluded that the

mutational rate, and the typical location of serine on the protein surface
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exposed to solvent, placed serine in the hydrophilic category. Benner et al.

(1994) also classified amino acids into three or four similar categories. They

employed several different grouping in their papers, and some were quite

similar to the ones used in the present work.

The evolutionary breadth of the multiple sequence alignment, and to

some extent the actual number of sequences present in the associated

multiple alignment, strongly influences the performance of TOM. During

the variability calculation, the sequences are weighted so that alignments

with different numbers of sequences produce the same overall signal.

However, the precision of the variability calculated for a position within an

alignment is a function of the number of sequences. When we tested families

that had between 7 and 14 sequences in the associated multiple sequence

alignment, we were able to locate a correct structure-sequence match in only

15% of the cases. By contrast, for sequences with more complete multiple

sequence alignments, 45% of the correct matches were identified. In the

absence of variability information (i.e. TOM NOVAR), 29% of the correct

matches were identified. This result indicates that when variability

information is far from complete, it may be more appropriate to ignore this

information. When too few sequences are present in the alignment, or when

those present are insufficiently different, the variability observed in a position

may not be representative of the variability expected in a larger alignment.

For example, in an alignment with 7 sequences, at a given position, variation

amongst hydrophobics may be seen, indicating a tendency to be buried.

However, a larger alignment might reveal a hydrophilic amino acid,

changing this tendency towards exposure.

Conclusion
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Central to our work is the value of an adequate test case. We believe

that we were able to demonstrate the advantages of multiple sequence

information due to the rigor of our test case. With this test case we will be

able to evaluate future threading algorithms accurately, and thus gain insight

into methods to improve the performance of threading algorithms.

By comparing TOM, TOM NOVAR and THREADER, we postulate that

most current formulations of pair-potentials incorporate too much short

range information. This information allows exact identification of the crystal

structure, but can hamper the determination of similar folds. We have

shown that algorithms based on the tendency of an amino acid to be buried or

exposed (TOM NOVAR) are effective for threading. This is related to the

conservation of patterns of burial and exposure across similar folds. The

TOM algorithm demonstrates that the information in multiple sequence

alignments can be used to improve the performance of threading algorithms.

Methods

Generation of multiple sequence alignments

The multiple sequence alignments used in the TOM method were

generated by Sander and co-workers and were accessed from the HSSP

database (Sander & Schneider, 1991). Each sequence is aligned to the

sequence of a protein of known structure, and is predicted to fold to the same

overall structure. New sequences added to these or other alignments are

accepted or rejected based on whether their level of sequence similarity is

greater than the threshold value t|L) in the following equation:
t(L)=290.15L-0.50% +3

where L is the length of the homologous region. This equation applies

for L in the range of 10-80 residues. L values less than 10 are always rejected.
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For L values greater than 80, t{L) is set at 28 percent (Sander & Schneider,

1991).

Calculation of variability

The information in the multiple sequence alignment is reduced to a

one dimensional string of amino acids. In TOM, each standard amino acid in

the multiple sequence alignment is broken down into one of four classes

based on its hydrophobic and hydrophilic variability. Thus, the standard

twenty amino acids are broken down into a total of 80 amino acid categories.

The two hydrophobic classes are: Variable Hydrophobic VHô (Hydrophobic
Variability >0.001) or Invariant Hydrophobic IHo (Hydrophobic Variability <
0.001). The two hydrophilic values are Variable Hydrophilic VHP

(Hydrophilic Variability > 0.001) or Invariant Hydrophilic IHP (Hydrophilic

Variability < 0.001).

Variability is calculated as:
N 1-18 Ho (nik, nil ) "wº "w

Hydrophobic Variability (i) = º X.=2 k=1 dkl

º ôHP (nik, nil )*w k "w
N

Hydrophilic Variability (i) = X.

nik E HO, nil e HP
^ N

| if nik 7: nil and orôHo (nik nil ) = >
nik E HA, nil e Hò

(0 Otherwise
■

J

N

"ik e HP, nil e HQ

l if nik * nil and or
6 (n;1. , n : , ) = * >HP \"ik "il

nik E HA, nil e HP

\ 0 otherwise
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Where N equals the number of sequences and nik is the ith amino acid

of the kth sequence. dºl is a measure of the evolutionary distance between

the kth and lth sequences. We use the PAM distance, which is calculated

from the sequence similarity of two sequences using a lookup table calculated

by Dayhoff et al. (1972). whº and wi are the weights calculated for the kth and

lth sequence. The sequences are weighted using the method described by

Sibbald and Argos (1990). The weight of each sequence is approximately equal

to the Voronoi volume of each sequence in sequence space, with the set of

sequences weighted to unit weight. Hò is the set of hydrophobic amino acids

{Phe, Ile, Leu, Met, Val, Trp), HP is the set of hydrophilic amino acids {Asp,

Glu, Lys, Asn., Gln, Arg, Ser), HA is the set of ambivalent amino acids {Ala,

Cys, Gly, His, Pro, Thr, Tyr).

Protein Structure

The protein structure is reduced to a one dimensional string based on

the percentage exposure of each residue (Exposed if 2 29"o, Intermediate if &

29% and 27% and Buried if 7%). The accessible surface areas were

calculated using a modified version of the program ACCESS (Lee & Richards,

1971). The maximum exposure of each residue type was set to the maximum

exposure value found from analyzing each protein structure from a non

redundant set of proteins published in a database by Hobohm et al. (1992).

Score Calculation

A table is calculated representing the compatibility of each amino acid

type (generated from the original amino acid and the multiple sequence

alignment), with each environment type (calculated from the structures

using ACCESS). This table is generated by analyzing a non-redundant set of
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proteins published in a database by Hobohm et al. (1992). The original list

contains 453 proteins. We removed low resolution structures (>2.5 Å
resolution), and structures with fewer than 15 sequences present in the

associated multiple sequence alignment, resulting in the final list of 113

proteins. The score calculations are as follows:

score per table entry(i,j) =

#aa
-

—1

#(aa, in envi) .. º, 1In envi)
# env #aa # env

X. #(aa, in envi) X. X. #(aak in envi)
l - 1 k – 1 l = 1

Where aai is the ith amino acid in environment j (envi).
This score is calculated from the sequences and environments of the

proteins in the 113 protein list. This value represents how much more (or

less) often an amino acid is present in an environment than a hypothetical

"average" amino acid. A positive value represents a positive propensity for

an environment. A separate table is calculated for each sequence in the test

case. For each of these tables we remove the actual structure of the sequence,

and any structure that is similar to the experimental structure, from the list of

113 sequences and structures.

Threading

Each sequence was compared to each structure using a simple dynamic

programming matrix. This dynamic programming alignment allowed us,

given constant gap and extension penalties, to find the optimal alignment

between the string of amino acids representing the sequence and the string of

environments representing the structure. The gap opening and extension

penalties were empirically optimized to be 4.0 and 0.2 for TOM, 4.0 and 0.3 for

143



TOM NOVAR. The threading code is available by anonymous fºp at

ftp.cmpharm in /pub/defay/threader.

Structural Comparison

The protein structure comparisons used to create the test sets were

carried out with Soap Film (Falicov & Cohen, 1996). The cutoff values of 0.2

and 0.3 for structure similarity were determined by analyzing dendrograms

similar to the one shown Figure V.2, and by observing individual structures

such as those shown in Figures V.3.
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