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Abstract

Plants and animals sense conserved microbial signatures through re-
ceptors localized to the plasma membrane and cytoplasm. These recep-
tors typically carry or associate with non-arginine-aspartate (non-RD)
kinases that initiate complex signaling networks cumulating in robust
defense responses. In plants, coregulatory receptor kinases have been
identified that not only are critical for the innate immune response but
also serve an essential function in other regulatory signaling pathways.
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PROLOGUE
Here we provide a brief historical perspective
on the discoveries of plant receptors that
perceive conserved microbial signatures. We
review major concepts and definitions of

resistance genes and conserved microbial sig-
natures; discuss the functions, characteristics,
and identities of plant receptors involved
in the perception of conserved microbial
signatures; examine how this knowledge might
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Broad-spectrum
resistance: immunity
to a wide range of
pathogens (e.g., all
species within a genus
or several pathogen
genera); not restricted
to a single specific
strain

guide the discovery of novel receptors; and
assess the current state of the field, with a focus
on the emerging knowledge regarding signaling
events occurring at the plasma membrane. We
conclude with a look at how systems-biological
analyses are providing new insights into the in-
teractions of plants with pathogens and describe
emerging applications for crop improvement.

MOVING FORWARD BUT
FORGETTING NOTHING

The ability to recognize patterns encountered
in the past and respond to their reoccurrence
through specific signaling pathways is one
of the most fundamental principles of infor-
mation processing in biological organisms.
During the course of evolution, plants and
animals have acquired the capability to per-
ceive endogenous and microbially derived
compounds and respond with robust defense
responses.

In the early 1970s, scientists discovered that
plants possess perception systems for micro-
bially derived compounds and that trigger-
ing these systems induces the production of
antimicrobial metabolites termed phytoalexins
(7, 110, 112). These initial studies involved the
use of fungal and oomycete pathogens and their
perception in a wide range of plant species (9,
50, 110). Several years later, Albersheim and
colleagues (81) demonstrated that endogenous
plant cell wall polysaccharides produced during
pathogen infection are also able to elicit similar
defense responses. Collectively, these endoge-
nous or microbially derived molecules were re-
ferred to as elicitors.

Many of these elicitors were assumed to
be pathogen cell wall–derived glucans, and in
the mid-1980s it was demonstrated that a glu-
can heptamer from cell wall preparations of
the oomycete Phytophthora sojae pv. glycinea
could serve as an elicitor (190, 191). Soybean
or pea plants treated with this and other elic-
itors derived from oomycete or fungal cell
walls become resistant to subsequent infec-
tion with a pathogen strain that can normally
cause disease (called a virulent strain) (9, 79).

These observations gave rise to the concept
that elicitor-induced resistance was likely to be
broad spectrum—that is, that a particular elici-
tor is common to a wide range of pathogens—
and further suggested a central role for elicitor
recognition in plant immunity.

An intense hunt began in the late 1980s to
identify more elicitors, their corresponding re-
ceptors, and the genes encoding them. Progress
was driven by innovative biochemists that used
cell culture bioassays (e.g., parsley, soybean,
tomato, rice) to monitor early responses of plant
cells (e.g., ion fluxes, medium alkalization, re-
active oxygen species production, protein phos-
phorylation) to diverse microbial signals (e.g.,
oligosaccharides, peptides, lipids) (19, 61, 80,
121). Although this approach led to the dis-
covery of many more elicitors, it was far more
challenging to identify the corresponding re-
ceptors. Biochemists were able to demonstrate
the presence of specific high-affinity elicitor-
binding sites on intact plant cells and isolated
plasma membranes (13, 44, 160, 193), but at-
tempts to purify these receptors were mostly
unsuccessful. Although the pure biochemical
approach led to the identification of the sol-
uble glucan heptamer elicitor-binding protein
from soybean [glucan-binding protein (GBP)]
(148, 213), the lack of available genetic tools
made it difficult to test its requirement for glu-
can perception and binding. Proof that the soy-
bean protein is a receptor is still lacking.

Concurrent but independent efforts were
launched by animal biologists to identify re-
ceptors for microbial inducers of immunity,
equivalent to the elicitors of the plant world.
The groundwork for receptor discovery was
laid as early as the 1890s, when heat-stable
molecules of microbial origin were shown
to induce fever and shock in a mammalian
host. Foremost among the inducers was endo-
toxin [lipopolysaccharide (LPS)], represented
in most gram-negative bacteria (17). Widely
known for its ability to induce septic shock, LPS
is perhaps the most powerful elicitor of inflam-
mation known in mammals, but it is not unique
in a qualitative sense. Lipopeptides, double-
stranded RNA, microbial DNA, flagellin, and
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Resistance gene (R
gene): the single
polymorphic locus in
the host that confers
resistance to a
particular strain or
class of microbes

Avirulence gene (avr
gene): a microbial
gene that encodes a
protein (including
modifying enzymes,
scavenging molecules,
and effectors) that
determines the
specificity of the
interaction with the
host

Conserved microbial
signature: a widely
distributed and
conserved microbial
molecule that is
required for basic
microbial fitness; host
perception triggers an
innate immune
response

Toll-like receptors
(TLRs): one class of
receptors involved in
conserved microbial
signature perception in
animals

other molecules of microbial origin elicit in-
flammatory responses similar to those provoked
by LPS. The identification of the receptors for
these molecules was a central challenge in the
field of animal and plant immunity (178).

SOME PLANT RESISTANCE
GENES RECOGNIZE
CONSERVED MICROBIAL
SIGNATURES

In 1942, Flor, working with the rust disease
of flax, proposed the gene-for-gene hypothe-
sis based on genetic analyses of the variation
within host and pathogen populations. He used
the terms host resistance genes (R genes) and
pathogen avirulence genes (avr genes) (66, 67).
The presence of corresponding avr-R genes in
each organism leads to recognition and the ac-
tivation of defense responses, limiting infec-
tion. Flor’s hypothesis suggested that specific
sensors for microbial molecules were present
in their hosts. Many of these R genes were
highly variable, being present in only a few
plant varieties, and many R genes did not con-
fer broad-spectrum resistance, specifying re-
sistance to only some races of a particular
pathogen species.

Because both virulent and avirulent
pathogens often carry elicitors, these molecules
were not considered to be the determinants of
race-specific resistance (2). These observations
led to a long debate among plant biologists.
Many believed that gene-for-gene resistance
had little to do with elicitor perception and
that R proteins were not receptors for elicitors
(111). Still, some scientists predicted that
products of certain R genes might in fact
recognize conserved microbial signatures
(19, 177). The isolation of diverse classes of
R genes allowed for direct testing of these
disparate views.

In the 1990s, an avalanche of genetic exper-
iments in many labs led to the isolation of the
first R genes from multiple plant species. These
discoveries established that diverse molecules
and mechanisms govern the resistance pheno-
types described by Flor and Albersheim. Many

of the first R genes isolated encoded cytoplasmic
NLRs [nucleotide-binding site domain (NBS),
leucine-rich repeat (LRR)–containing intracel-
lular proteins]: These include Arabidopsis RPS2
(resistance to Pseudomonas syringae 2), which was
isolated using a map-based cloning approach
(147), as well as flax L6 and tobacco N, which
were isolated by transposon tagging (126, 222).
Both N and L6 carry a TOLL-interleukin re-
ceptor (TIR) domain. RPS2 recognizes the
P. syringae avr gene product avrRpt2 (8, 16,
139, 140, 147). L6 recognizes specific vari-
ants of the flax rust protein AVRL567 in
a sequence-specific manner (53, 54). N rec-
ognizes the helicase domain of TMV (to-
bacco mosaic virus) replicase proteins (25,
162). Many additional NLR proteins were
later shown to directly or indirectly perceive
highly variable avr gene products, now called
effector proteins. Pathogens secrete effectors
into the plant apoplast or, in the case of
bacteria, directly into the plant cell using
type III secretion.

Other R genes isolated at this time included
the tomato PTO kinase, the rice XA21 receptor
kinase (RK), and the tomato receptor-like pro-
tein (RLP) CF9, which lacks a kinase domain
(101, 141). As Arabidopsis became established
as a highly tractable genetic system, many
laboratories interested in the plant innate im-
mune response shifted their focus to studies of
Arabidopsis NLRs, which are abundant in dicot
genomes and give rise to easily distinguished
phenotypes.

Of the plethora of R genes isolated in
the 1990s, only rice Xa21, which encodes an
RK with predicted extracellular LRR, trans-
membrane (TM), juxtamembrane ( JM), and
intracellular kinase domains, was hypothesized
to recognize a conserved microbial signature,
a property not previously noted in studies
of most other R genes (96, 116, 177, 198).
Indeed, we now know that XA21 binds a
type I secreted, sulfated peptide called AxYs22,
derived from the Xanthomonas oryzae pv. oryzae
(Xoo) Ax21 protein, which is highly conserved
in all Xanthomonas species as well as closely
related genera (82, 133).
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Non-RD kinases:
kinases that lack the
highly conserved
arginine (R) that
precedes the catalytic
aspartate (D) typical of
most kinases

Soon after the isolation of the plant R pro-
teins, the fly Toll and mouse Toll-like receptor
Tlr4 genes were isolated and shown to encode
membrane-anchored receptors that are also
involved in microbial recognition and defense.
TOLL and TLR4 carry striking structural sim-
ilarities to XA21 as well as the TIR motif found
in L6 and N. Like XA21, TLR4 recognizes
a conserved microbial signature, LPS. TOLL
recognition of a cleaved endogenous peptide
triggers the production of antimicrobial
peptides. In contrast to XA21, which carries
a non-arginine-aspartate (non-RD) kinase
integral to the receptor, TLR4 and TOLL
associate with non-RD kinases [e.g., IRAK1
(interleukin-1 receptor-associated kinase 1)
and RIP1 (receptor-interacting protein 1)]
through adaptor proteins (178).

In plants, interest in recognition of con-
served microbial signatures was rekindled
five years after the isolation of XA21 by
the identification of flagellin—or peptides
spanning the conserved flg22 peptide present
in its N-terminal region—as a strong elicitor of
the Arabidopsis immune response (60) and the
isolation of the corresponding receptor, FLS2,
in 2000 by positional cloning and transgenic
complementation of a null genetic background.
The observation that XA21, TLR4, and FLS2
have similar domain structures and that they
all recognize conserved microbial signatures
suggested that they might function in a similar
manner (Figure 1).

The subsequent demonstration that FLS2
binds to flagellin provided the first molecu-
lar evidence that plant receptors can physically
bind conserved microbial signatures and that
this binding contributes to the defense response
(35, 228). A few years later, Arabidopsis EFR
(EF-Tu receptor) was identified as the receptor
for the conserved microbial signature EF-Tu
(elongation factor thermo-unstable) (227). EFR
is also an LRR-RK and was identified based on
its homology with FLS2. It belongs to the same
RK subfamily as FLS2 and XA21 (subfamily
XII) (196).

Just as it has taken a long time for the
plant biology community to accept that some

classically defined R genes, such as XA21,
actually encode for receptors for conserved mi-
crobial signatures, it took a long time for some
to accept that FLS2 plays an important role
in conferring host resistance during infection.
Opinion began to shift with the discovery that
a mutation in FLS2 left Arabidopsis susceptible
to the bacterial pathogen P. syringae (228)
and with the demonstration that XA21 could
bind a highly conserved Xoo-derived peptide
(133). In addition to the well-characterized
XA21, FLS2, and EFR RKs, several RLPs and
RKs have been shown or hypothesized to be
involved in recognition of other conserved mi-
crobial signatures (Table 1) (20, 32, 178, 211).
Conversely, a number of conserved microbial
signature molecules, including proteins, fatty
acids, and oligosaccharides, have been isolated
from bacteria, fungi, and oomycetes, but their
receptors have not been identified (20).

A DISCURSIVE SNAPSHOT
OF THE PLANT INNATE
IMMUNE SYSTEM

Knowledge about the molecular structures of
elicitors and their cognate receptors provided a
critical framework for understanding plant re-
sponse to infection (20, 102, 159). Researchers
are now in a position to advance some general
principles on their nature and function.

Conserved microbial signatures (exogenous
elicitors) are now generally considered to
be equivalent to animal pathogen-associated
molecular patterns (PAMPs) (159). As these
conserved molecules also occur in non-
pathogenic bacteria, several researchers
prefer the term microbe-associated molecular
patterns (MAMPs). One key aspect of the def-
inition of PAMPs and MAMPs is that they are
conserved and widely distributed within a class
of microbes (144). For this reason, we use the
term conserved microbial signatures through-
out this review. Endogenous elicitors that are
released from the host by enzymatic or me-
chanical processes controlled by the pathogen
are now widely referred to as danger-associated
molecular patterns (DAMPs) (20, 142).

www.annualreviews.org • Plant Innate Immunity 455
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Receptor-like
protein

Intracellular
soluble receptor

Receptor
kinases

Extracellular
soluble receptor

Plasma membrane

Plasma membrane

Plasma membrane

Apoplast

Cytoplasm

Domain
examples

LRR

LysM

GDPD

Lectin

EGF-like

Domain
examples

LRR

Lectin

Domain
examples

LRR

START

Pseudokinase

Domain
examples

LRR

LysM

Plasma membrane

Apoplast

Cytoplasm

or

Apoplast

Cytoplasm

Apoplast

Cytoplasm

Ligand-
binding
domain 

Non-RD
kinase

domain

Juxtamembrane
domain

Transmembrane
domain

GPI anchor Linker
domain

C-terminal
tail

Figure 1
Structure of known and predicted receptors of conserved microbial signatures. Plant receptors of conserved
microbial signatures contain four principal structural subfamilies, shown here schematically along with
examples of known or potential ligand-binding domains for each. (For details on specific examples for each
subgroup, see Table 1.) Structural domains are marked according to the key. To date, all confirmed plant
receptor kinases recognizing a conserved microbial signature carry a non-arginine-aspartate (non-RD)
kinase domain. Abbreviations: EGF, epidermal growth factor; GDPD, glycerophosphoryldiester
phosphodiesterase; GPI, glycophosphatidylinositol; LRR, leucine-rich repeat; START, StAR-related lipid
transfer.

Receptors of
conserved microbial
signatures: R
proteins that confer
broad-spectrum
resistance; also known
as pattern recognition
receptors (PRRs)

Highly Conserved Microbial
Signatures Are Not Invariant
Owing to the explosion of studies on per-
ception of conserved microbial signatures,
it has become apparent that some of these
molecules are distributed quite widely across
genera (e.g., flagellin) or more narrowly within
a genus (e.g., Pep13) (23). Researchers have
also confirmed that plants carry a genetically
diverse repertoire of receptors of conserved
microbial signatures, with differences between

and within species. For example, rice XA21 has
so far been identified only in the wild species
Oryza longistaminata, even though the ligand
Ax21 is highly conserved in all Xanthomonas
species and related genera. Recognition of the
conserved microbial signature EF-Tu or the
glucan heptamer is restricted to Brassicaceae
or Fabaceae, respectively (64, 123).

Recent research from several laborato-
ries has revealed that pathogens are able to
modify the conserved microbial signature by
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Hypersensitive
response (HR): a
form of programmed
cell death induced
after pathogen
recognition and
believed to contribute
to the restriction of
pathogen growth

mutations or posttranslational modifications
to mask their recognition. This may represent
an active virulence strategy of the pathogen to
evade recognition by a given set of receptors.
For example, flagellins from distinct Acidovorax
avenae isolates with the same primary amino
acid sequence are differentially recognized in
rice depending on the presence or absence
of glycosylation (30, 91, 207). Glycosylated
P. syringae pv. glycinea flagellin, mediated by the
putative glycosyltransferase ORF1, is no longer
recognized by its host, soybean (205). Simi-
larly, several isolates of P. syringae pv. tomato
or of Xanthomonas campestris pv. campestris
display amino acid polymorphisms within
flagellins that mask their recognition in tomato
or Arabidopsis, respectively (27, 200). In the
case of Ax21, tyrosine sulfation is required for
XA21 binding and immunity (133). Pathogens
also employ scavenging proteins, which bind
conserved microbial signatures, to evade recog-
nition. The fungal plant pathogen Cladosporium
fulvum, for example, secretes molecules (called
ECP6s) that are able to bind chitin, making it
inaccessible for plant receptors (49).

The Plant Response to Conserved
Microbial Signatures Can Be
Weak or Robust

The recognition of conserved microbial sig-
natures and DAMPs by plant receptors—also
called pattern recognition receptors (PRRs)—
represents the first layer of the plant immune
system (38, 102). Plant biologists often call this
immune response pattern- or PAMP-triggered
immunity (PTI). Virulent pathogens are able
to suppress PTI by employing effectors that
target signaling components. Plants, in turn,
have evolved specific recognition machinery
to detect such effectors. These plant molecules
belong to several classes of proteins, the most
abundant being the NLRs (55, 59, 140). The
activation of these effector receptors, either
directly or indirectly, leads to effector-triggered
immunity (ETI) and is often associated with a
hypersensitive response (HR) (20, 102).

PTI does not always fully restrict pathogen
proliferation; it sometimes leads to a qualita-
tively weak defense response. However, PTI
can also result in a very robust resistance re-
sponse, as observed for XA21- and FLS2-
mediated immunity in rice (198, 207). In fact,
in monocots, most of the predicted receptors
of conserved microbial signatures confer ro-
bust resistance (Table 1). Similarly, the ob-
servations that Arabidopsis mutants impaired in
their response to multiple conserved microbial
signatures are hypersusceptible to a wide range
of pathogens indicate the importance of PTI in
resistance (179, 187). Conversely, ETI can also
be weak or strong, depending on the allele (58,
102). Thus the perception of conserved micro-
bial signatures can be weak or robust depending
on the ETI or PTI system being studied.

Plant recognition of effectors often triggers
an HR, whereas an HR is not always present
during recognition of conserved microbial sig-
natures. Still, this distinction is not clear-cut, as
some conserved microbial signatures are also
known to elicit HR-like symptoms in their
hosts. For example, flagellin from an avirulent
strain of A. avenae and LPS triggers an HR in
rice (52, 207). Similarly, several conserved mi-
crobial signatures from oomycetes, called elic-
itins, induce an HR-like response in tobacco
(105, 224).

RECEPTORS OF CONSERVED
MICROBIAL SIGNATURES
AND BEYOND

An Attempt to Define and
Predict Receptors of Conserved
Microbial Signatures

As indicated above, receptors of conserved
microbial signatures typically confer broad-
spectrum resistance. Microbes have evolved
changes in the amino acid sequence and
posttranslational modification of the ligands
that can influence detection and secrete effec-
tors to suppress PTI.
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Non-RD kinase
motif: a hallmark of
kinases involved in
innate immune
signaling in plants and
animals

Most plant receptors of conserved micro-
bial signatures identified so far are plasma
membrane–localized RKs, RLPs, and extra-
cellular soluble proteins that recognize their
ligands in the apoplastic space (Table 1). In
addition, several structurally related proteins
are predicted to be receptors of conserved mi-
crobial signatures as they have a confirmed role
in (broad-spectrum) disease resistance or are
known to bind a conserved microbial signature
(Table 1). The recognition of conserved mi-
crobial signatures is most likely not restricted to
the apoplastic space because several cytoplasmic
non-RD kinases were recently identified as con-
ferring broad-spectrum disease resistance (21,
22, 71). Clearly, as more genomes (especially
monocot genomes) are explored, new receptor
variants will be found (Figure 1, Table 1).

To date, all characterized plant RKs that
carry the non-RD kinase motif are involved
in the recognition of conserved microbial sig-
natures. Furthermore, such proteins typically
confer the broad-spectrum resistance char-
acteristic of receptors of conserved microbial
signatures. Thus the non-RD motif might be
diagnostic of a role in innate immune signaling.
However, the converse is not true: Not all
kinases involved in immune responses belong
to the non-RD subclass as, for example, many
receptors of conserved microbial signatures
associate with coregulatory RKs that belong
to the RD kinase subclass. Therefore an RD
kinase may still be involved in the defense
response, but it is typically not the initial kinase
involved in signal initiation. To date, all recep-
tors involved in DAMP perception belong to
the RD subclass. Similarly, RKs governing de-
velopmental responses are typically RD kinases.

RKs, and in particular RKs from the
non-RD kinase subclass, underwent a huge
expansion in plants as compared with animals
(48, 196). Whereas humans have 10 predicted
TM receptors of conserved microbial sig-
natures that associate with non-RD kinases,
plants have many times more. It is tempting to
speculate that plants compensate for the lack of
an adaptive immune system with an increased

reliance on recognition of conserved microbial
signatures. Furthermore, there are vast differ-
ences within the plant kingdom. For example,
genome analyses have revealed that rice has
approximately 10 times as many non-RD RKs
(328 non-RD RKs) as Arabidopsis (35 non-RD
RKs) (31, 48, 178). It may be that the expansion
of non-RD kinases in rice is representative of
a divide between monocots and dicots.

Innate Immunity Mediated
by XA21 and XA21D

As described above, the rice Xa21 gene confers
broad-spectrum resistance to Xoo and was
isolated by positional cloning from the wild
species of rice, O. longistaminata (198). XA21-
mediated immunity is triggered by the type
I secreted, sulfated peptide AxYs22. Isolated
field strains that lack the predicted secretion
or sulfation components are only weakly
virulent in plants carrying XA21 (40, 46).
This suggests that the sulfated Ax21 protein
is required for bacterial fitness under field
infection conditions. Ax21 tyrosine sulfation
is mediated by the sulfotransferase encoded by
raxST (S.W. Han & P.C. Ronald, manuscript
submitted). Similarly to Pseudomonas ORF1,
which is critical for glycosylation and deter-
mines host specificity, raxST can be considered
an avirulence determinant because strains
lacking raxST are not recognized by XA21 and
are virulent in rice greenhouse tests.

The conservation of Ax21 in all sequenced
Xanthomonas species and closely related gen-
era indicates that Ax21 serves a key biological
function. Eight rax (required for Ax21 activity)
genes have been isolated so far: raxA, raxB, and
raxC encode components of a predicted type I
secretion system; raxST, raxP, and raxQ encode
enzymes involved in sulfation; and raxH and
raxR encode a predicted histidine kinase and
cognate response regulator, respectively (26,
192, 197). This, together with the finding that
the expression of all eight rax genes is density
dependent and inducible at low densities by the
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exogenous application of Ax21, suggested that
Ax21 is a quorum sensing (QS) factor (132).

QS is a process where small molecules serve
as signals to recognize cell population size, lead-
ing to changes in expression of specific genes
when the QS factor has accumulated to a certain
threshold concentration (132). We have now
shown that Ax21-mediated QS controls motil-
ity, biofilm formation, and virulence (83, 176).
Genetic evidence suggests that Xoo RaxH is the
receptor for Ax21 (83). These studies point to
a model where XA21 intercepts Ax21/RaxH-
mediated bacterial communication and uses
this information to mount a potent immune
response.

These studies establish a critical role for a
conserved microbial signature both in QS of
a gram-negative bacterium and in activation
of the host immune response. Because analysis
of the genome sequences of gram-negative
bacteria reveals an abundance of predicted
type-I-secretion-system secreted peptides or
small proteins (83, 146), it may be that other
gram-negative bacteria also use small proteins
for QS. Furthermore, it is possible that some
of the hundreds of predicted orphan receptors
of conserved microbial signatures in rice and
other plant species—for which no correspond-
ing conserved microbial signature has been
identified—will detect such molecules (48).

An Xa21 family member called Xa21D is
able to confer partial resistance to Xoo and
confers the same broad-spectrum resistance,
suggesting that recognition of Ax21 also
triggers XA21D-mediated resistance. Xa21D
encodes a predicted secreted extracellular
soluble protein with an LRR domain 98%
identical to that of XA21 (217). In contrast to
XA21, XA21D lacks both TM and intracellular
signaling relay domains. How does an exclu-
sively extracellular-localized receptor induce
an intracellular signaling cascade? XA21D
potentially works analogously to MD2, an
extracellular soluble protein necessary for LPS
perception in mammals. LPS binding to MD2
induces a heterocomplex formation with TLR4
and subsequent intracellular signaling (1).

Innate Immunity Mediated by FLS2, a
Receptor with Multiple Ligands
Flagellin, the building block of the eubacterial
flagellum, is recognized by its cognate receptor
FLS2 in nearly all plant species tested. The
recognized domain within flagellin is not
necessarily the same for all plant species. For
example, in addition to the classical flg22
peptide, tomato is able to recognize a shorter
version (called flg15) and a second, newly iden-
tified, conserved 28-amino-acid region just
C-terminal of flg22 (called flgII-28) (14, 27,
172). Similarly, rice is able to recognize flg22
but is more responsive to full-length flagellin
protein (204). This difference in recognition
specificity is an intrinsic property of the respec-
tive receptors of conserved microbial signatures
and is most likely caused by changes in the
extracellular LRR ligand-binding domain.

In recent years orthologous FLS2 receptors
have been isolated from tomato, tobacco, and
rice (84, 172, 204). All of these receptors display
high levels of identity to Arabidopsis FLS2 at
the amino acid level and also mediate flagellin
perception. It is not known how these ortholo-
gous receptors recognize their ligands, because
computational and phylogenetic approaches
suggested different amino acid residues as
important for ligand binding (3, 20, 56). Crys-
tallographic studies of the extracellular LRR
domains in complex with the cognate ligands
are needed to reconcile these disparate views.

Two recent studies suggested that AtFLS2
has a broader recognition capacity than ini-
tially anticipated. First, Ax21-derived peptides
(in particular the axYs22-A1 peptide, which
does not naturally occur in Xoo) activate FLS2-
mediated Arabidopsis immunity. Genetic studies
suggest that the A1 peptide occupies the same
binding site as flg22 (47). This result is surpris-
ing because rice FLS2 does not appear to sense
Ax21 or Ax21-derived peptides; that is, rice
plants lacking XA21 (that still carry OsFLS2)
do not respond to Ax21, AxYs22, or the A1 pep-
tide with measurable resistance (133, 198). It is
not known how AtFLS2 retained or acquired its
ability to recognize the A1 peptide in the course
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of evolution or whether FLS2 from other dicots
or monocots also recognizes similar peptides.

AtFLS2 has also been suggested to medi-
ate stem cell–specific immunity through the
recognition of Clavata 3-peptide (CLV3-p)
(127). The CLV3-p receptor regulates stem
cell homeostasis in the shoot apical meristem
(12). CLV3-p triggers responses reminiscent of
those elicited by flg22 in mesophyll protoplasts.
However, the ligand-binding affinity of AtFLS2
for CLV3-p is low compared to flg22 (12, 14).
Nonetheless, in this study, both clv3 and fls2
mutants showed a reduced defense gene expres-
sion and increased susceptibility to virulent bac-
terial pathogens in the shoot apical meristem
(127). It will be interesting to test whether or-
thologous CLV3 peptides in other plant species
also contribute to immunity mediated by
FLS2.

Future studies will help elucidate whether
FLS2 recognition of Ax21-derived and CLV3-
related peptides is relevant outside the labora-
tory and whether heterodimerization between
different Arabidopsis receptors of conserved
microbial signatures increases the recognition
capacity, as has recently been shown for
mammalian TLRs (108). It is also worthwhile
to consider whether the relaxed specificity
observed for FLS2 allows the efficient use of a
limited number of receptors for the detection
of multiple conserved microbial signatures.

Innate Immunity Mediated by EFR

The recognition of EF-Tu or its fully active
elicitor peptide (elf18) is restricted to the fam-
ily Brassicaceae (123). The extracellular LRR
of EFR is highly glycosylated, which seems to
be important for ligand binding as mutation of
a single predicted glycosylation site compro-
mises elf18 binding despite correct localization
of the mutated protein to the plasma membrane
(85). Elf18 most likely binds to the concave sur-
face of the horseshoe-like LRR as mutations
of predicted ligand-binding sites identified by
several computational methods compromise
EFR-mediated immune responses (89).

Innate Immunity Mediated by CEBiP,
CERK1, LYM1, and LYM3: LysM
Domain–Containing Receptors
Recognizing Glucan-Based Conserved
Microbial Signatures

Chitin (a polymer of N-acetyl-D-glucosamine)
is a major component of fungal cell walls and
is recognized by animals and plants. Rice and
tomato cell cultures respond to chitin fragments
by membrane depolarization or medium al-
kalization, respectively (63, 121). The cognate
receptor CEBiP (chitin oligosaccharide
elicitor-binding protein) in rice was identi-
fied by biochemical binding assays, peptide
sequencing, subsequent cloning, and silencing
of the coding gene (104). CEBiP is an RLP
with extracellular LysM domains involved
in ligand binding, a single TM domain,
and a cytoplasmic C-terminal tail without
a kinase domain. It is predicted to be GPI
(glycophosphatidylinositol)–anchored to the
membrane. Thus, CEBiP differs from EFR,
FLS2, and XA21 in that it lacks a predicted
signaling module integral to the receptor.
It is therefore tempting to speculate that
CEBiP recruits a non-RD kinase for signal
initiation, reminiscent of the association of the
non-RD kinases IRAK1 and RIP1 with animal
receptors of conserved microbial signatures
such as NLRs and TLRs (108). However,
no such protein has been identified. Instead,
CERK1 (chitin elicitor receptor kinase 1),
a LysM-containing RD RK, is required for
full chitin responsiveness in rice and directly
interacts with CEBiP, forming ligand-induced
heteromeric complexes in vivo (194).

CEBiP orthologs are also involved in chitin
perception in other plant species. Silencing
of CEBiP in barley leads to enhanced suscep-
tibility to the fungal pathogen Magnaporthe
oryzae (208). Similarly, in the legume Medicago
truncatula LYM2, a GPI-anchored protein
orthologous to CEBiP is able to bind chitin
fragments via its LysM domains (65).

In Arabidopsis, mutations in AtCERK1
abolish sensitivity to chitin fragments (149,
215). In a forward biochemical study aimed at
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BAK1 (BRI1
associated kinase 1):
an important
coregulatory receptor
kinase involved in
cell-death control,
innate immunity, and
development

Urediniospores:
thin-walled spores of
fungi such as rusts and
smuts

isolating chitin-binding proteins, AtCERK1
was identified as one of the major chitin-
binding complex components (164). However,
because AtCERK1 displays a relatively low
chitin-binding affinity in vitro (95), it is not
clear what the actual receptor protein is.
Another predicted component of this complex
is one of the three CEBiP homologs encoded
in the Arabidopsis genome. One of these
AtCEBiP proteins is present in the chitin-
binding complex, but at low stoichiometry
(164). It is not known whether any of these
three CEBiP homologs is required for chitin
perception in Arabidopsis.

AtCERK1 is not only involved in chitin
perception, because an Arabidopsis line carrying
a mutation in AtCERK1 is also impaired in the
perception of an additional distinct conserved
microbial signature and is more susceptible to
bacterial pathogens (75, 76, 223). Peptidoglu-
cans (PGNs), major components of bacterial
cell walls, were recently identified to be the
sought-after conserved microbial signatures
(223). The two LysM domain–containing
predicted GPI-anchored proteins AtLYM1
and AtLYM3 bind directly to PGN in vitro
at a physiologically relevant concentration.
AtCERK1 also binds to PGN, albeit with
much lower affinity. All three proteins are
nonredundantly required for PGN perception
in vivo and for resistance to bacterial pathogens
(223). These results suggest that CERK1 serves
a role as coreceptor or coregulatory RK in
at least two independent conserved microbial
signature binding complexes, namely chitin
and PGNs. So far no non-RD kinase has been
identified as required for chitin and PGN
perception. If no such non-RD kinase partners
are found, LysM domain–containing receptors
recognizing glucan-based conserved microbial
signatures would be the first receptors of
conserved microbial signatures that lack a
non-RD signaling domain.

Innate Immunity Mediated
by LeEIX1 and LeEIX2

Tobacco and tomato recognition of a 22-kDa
fungal protein, β-1-4-endoxylanase—also

referred to as ethylene-inducing xylanase
(EIX)—triggers ethylene production. Recog-
nition of EIX is independent of its enzymatic
activity (72). A map-based cloning approach
in tomato isolated two RLPs, LeEIX1 and
LeEIX2, as potential receptors of conserved
microbial signatures (175). Both RLPs can bind
EIX, but only LeEIX2 confers EIX responsive-
ness. LeEIX1 is a negative regulator of EIX per-
ception as it attenuates EIX-induced ethylene
production when overexpressed in tobacco (11).
Surprisingly, LeEIX1 requires the tobacco or-
tholog of the coregulatory RK AtBAK1 (BRI1
associated kinase 1)—which is known to posi-
tively contribute to flagellin perception in to-
bacco (88)—to exert its negative function (11).

Innate Immunity Mediated by the
Cytoplasmic Non-RD Kinases RPG1
and WKS1

Stem rust on barley is caused by Puccinia grami-
nis f. sp. tritici, which was once a devastating
disease in North America. The introduction of
RPG1 (reaction to Puccinia graminis 1) in com-
mercial variants has conferred a durable broad-
spectrum resistance to many isolates since the
mid-1940s. The R gene corresponding to RPG1
was identified by map-based cloning and found
to encode a dual protein kinase (22, 92). Both
kinases of RPG1 carry the non-RD motif and
are required for disease resistance, yet only
protein kinase 2 has catalytic activity in vitro
(152). RPG1 localizes to the plasma membrane
and cytosol, where it is phosphorylated within
minutes after urediniospore attachment to the
leaf surface (154). Phosphorylation is required
for RPG1 protein degradation via the protea-
some pathway after pathogen perception, and
both kinases are required for disease resistance
(153, 154).

Two potential ligands were recently isolated
from urediniospores of P. graminis by affinity
chromatography. Only the simultaneous
application of both potential ligands induced
RPG1-dependent HR-like response in barley
and RPG1 phosphorylation and degradation
(155). Both proteins independently bind
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Activation segment:
a positional conserved
region of protein
kinases that regulates
their catalytic activity

directly to RPG1 in the yeast two-hybrid
assay, yet it is not clear how these proteins
can enter into the plant cytoplasm or whether
they form heteromeric complexes in planta.
Importantly, the predicted functional domains
of both potential ligands are highly conserved
in many fungal plant pathogens. Based on
these results, we hypothesize that RPG1 is a
cytoplasmic receptor of conserved microbial
signatures or is part of a receptor complex that
initiates downstream signaling. Similarly, in
wheat the intracellular non-RD kinase WKS1
(wheat kinase start 1) confers broad-spectrum
disease resistance to many different races of the
strip rust fungus Puccinia striiformis f. sp. tritici
(71).

Surveillance of Plant Cell Wall
Integrity Mediated by WAK1

Plants sense microbial intrusion by recogniz-
ing DAMPs such as lytic plant cell wall frag-
ments, e.g., oligogalacturonides (OGs) (19,
158). Through use of a domain swap approach
between EFR and WAK1 (wall-associated ki-
nase 1), it was demonstrated that fusion of the
WAK ectodomain with the EFR TM and intra-
cellular kinase domain is able to perceive OGs
and induce typical EFR-mediated responses,
such as ethylene production and defense gene
expression (24). Similarly, the TM and cyto-
plasmic kinase domains of WAK1 fused with
the ectodomain of EFR are able to perceive
elf18, triggering an oxidative burst (24).

Because WAK1 is an RD kinase that
recognizes an endogenous ligand produced
during infection rather than a receptor for
conserved microbial signatures (which gen-
erally fall into the non-RD kinase subclass)
it is tempting to speculate that WAK1 is
functionally distinct from receptors of con-
served microbial signatures. Instead, it may fall
into the subclass of RKs that are involved in
development. These include many RD RKs,
such as BRI1 (brassinosteroid insensitive 1). In
support of this hypothesis, OGs are potentially
perceived not only during pathogen infection
but also during normal growth (184). These

intriguing studies further support a clear con-
nection between defense and developmental
response.

A PREDICTED FUNCTIONAL
IMPLICATION FOR THE NON-RD
KINASE MOTIF IN INNATE
IMMUNE SIGNAL INITIATION

The activation mechanism of RD kinases,
which carry a conserved arginine immediately
preceding the catalytic aspartate in subdomain
VIb (100, 156), is well studied. Most require
phosphorylation of the activation segment for
full kinase activity (156). The phospho-group
in the activation segment coordinates the pos-
itively charged amino group of the arginine,
leading to stabilization of the otherwise highly
flexible activation segment and thereby enhanc-
ing enzymatic activity.

In non-RD kinases an uncharged amino
acid, usually a cysteine or glycine, replaces the
arginine of RD kinases, suggesting a different
mechanism of activation (48). Several different
regulatory mechanisms have been observed for
mammalian non-RD kinases, such as relief of
autoinhibition by C-terminal extension (120,
195) or tyrosine phosphorylation in the P+1
loop immediately downstream of the activation
segment (143). The crystal structures of sev-
eral non-RD kinases not involved in innate im-
mune signaling reveal a highly ordered confor-
mation of the activation segment in the absence
of phosphorylation (157, 185, 195, 210). These
results suggest that non-RD kinases are consti-
tutively active, which might represent a general
theme of non-RD kinase regulation. Support
for this hypothesis comes from recent results
showing that the ATPase XB24 promotes XA21
autophosphorylation, holding it in a biologi-
cally inactive state. Only upon ligand binding
does the ATPase disassociate, triggering XA21
activation (31).

Arabidopsis FLS2 and EFR and rice XA21
display only a relatively weak kinase activity
in vitro compared with their coregulatory RD
kinase counterparts and with RD kinases in-
volved in development (187; X. Chen, S. Zuo,
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B. Schwessinger & P.C. Ronald, unpublished
data). In addition, the kinase activity of the non-
RD kinases IRAK1, RIP1, RIP2, RIP4, and
XA21 is at least partially dispensable for their
function in immunity (6, 178, 217). In contrast,
the catalytic activity of several coregulatory RD
kinases—such as IRAK4 (99), RIP3 (39, 87),
and AtBAK1 (179, 187)—seems to be crucial
for their function. Together, these observations
suggest that at least part of the function of
non-RD kinases is to serve as phosphorylation-
dependent scaffold proteins (48, 78).

SIGNAL TRANSDUCTION
MEDIATING THE PERCEPTION
OF CONSERVED MICROBIAL
SIGNATURES AT THE PLASMA
MEMBRANE

Studies of animal TM receptors indicate that
the first event after ligand binding is often a
ligand-induced conformational change (134).
This conformational change leads to homo-
and heteromerization, kinase activation by
repositioning of the intracellular domain, and
interaction with downstream signaling compo-
nents (103). Even though a ligand-induced con-
formational change has not been demonstrated
for plant receptors of conserved microbial sig-
natures, it is assumed that such a change consti-
tutes a likely first downstream signaling event.

Phosphorylation is the earliest measur-
able response upon perception of conserved
microbial signatures (80, 186). For example,
conserved microbial signature treatment of
tomato, pine, parsley, and bean cells leads to
phosphorylation of specific proteins (28, 61,
80, 181). The importance of these phospho-
rylation events was revealed by demonstrating
that kinase inhibitors block all other known
early signaling events, such as Ca2+ uptake
and membrane depolarization (43, 61). In-
terestingly, PTI signaling seems to require
constant dephosphorylation to stay turned off,
as phosphatase inhibitors induce responses
reminiscent of conserved microbial signa-
ture treatments (62, 202) and silencing of
phosphatases leads to cell death (163).

PHOSPHATASES TUNE DOWN
THE SIGNAL

Phosphatases directly target the kinases of re-
ceptors of conserved microbial signatures. The
general kinase-associated protein phosphatase
(KAPP) interacts with the AtFLS2 kinase do-
main and negatively regulates AtFLS2 signaling
(77). In rice, XA21 does not bind KAPP (214).
Instead, XA21-mediated immunity is down-
regulated by the type 2C phosphatase XB15
(XA21-binding protein 15) (163). The reduc-
tion in XB15 expression leads to spontaneous
cell death, suggesting an additional important
role of XB15 in the constitutive regulation of
XA21 and potentially other receptors of con-
served microbial signatures in the absence of
pathogens. The interaction of XB15 requires
XA21 kinase activity. Phosphorylation of spe-
cific amino acids in the XA21 JM domain is
critical for binding of XB15 and other binding
proteins, suggesting that the JM domain serves
as a key scaffolding domain. XB15 likely tar-
gets phosphorylation sites important for XA21
activation (34, 163). To gain insight into the
regulation of non-RD receptors of conserved
microbial signatures such as XA21, it will be im-
portant to identify the full complement of auto-
and transphosphorylation sites and investigate
their functional role in PTI signaling.

COREGULATORY RECEPTOR
KINASES: BAK1, SERKs, AND
EVER MORE RECEPTOR KINASES

AtBAK1, an LRR-RK of the SERK (somatic
embryogenesis receptor kinase) family, forms
ligand-dependent heteromeric complexes with
several receptors of conserved microbial signa-
tures, such as AtFLS2, AtEFR, and other RKs
such as AtPEPR1 and -2 (AtPEP1 receptor
1 and 2), which are involved in endogenous
peptide-mediated secondary defense signaling
(37, 88, 166, 179, 187). AtBAK1 was initially
identified as a positive regulator of brassino-
steroid (BR) responses (an important pathway
regulating plant growth and development),
forming a ligand-dependent complex in vivo
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with the LRR-RK AtBRI1, the main BR recep-
tor (42, 117). In addition, AtBAK1 and its closest
homolog AtBKK1 (BAK1-like 1) are genetically
partially redundant negative regulators of cell
death (86, 114, 187). AtBAK1 also interacts
with the LRR-RK AtBIR1 (BAK1 interacting
receptor 1) and the copine protein AtBON1
(BONZAI 1) (73, 221). Both atbon1 and atbir1
display constitutive cell death that is partially
reversible by high temperatures and muta-
tions in genes typically associated with ETI
signaling (73, 136, 221). Because one of these
genes encodes the NBS-LRR protein SNC1
(suppressor of npr1-1, constitutive 1), it is
possible that SNC1 guards the integrity and/or
activity of a multimeric complex containing
AtBAK1, AtBKK1, AtBIR1, and AtBON1.

Atbak1 mutants are impaired in the percep-
tion of a plethora of fungal-, bacterial-, and
oomycete-derived conserved microbial signa-
tures (36, 70, 179). Yet only the identifica-
tion of the novel mutant allele atbak1-5, which
is specifically impaired in PTI signaling with-
out displaying any other pleiotropic defects
in development or cell-death control, revealed
that AtBAK1 contributes directly significantly
to disease resistance against biotrophic and
hemibiotrophic pathogens (179, 187).

AtBAK1 has a specific mechanistic require-
ment for the different signaling pathways.
AtBAK1-dependent cell-death control, PTI,
and BR signaling require the kinase activity
of AtBAK1 but in a differential manner. The
phosphorylation site T450 in the activation seg-
ment of AtBAK1 is not required for its role in
cell-death control but is essential for its func-
tion in PTI and BR signaling (219). In the BR
signaling pathway, AtBAK1 accomplishes the
function of a signal enhancer via bidirectional
transphosphorylation and activation between
AtBAK1 and AtBRI1 (219). This role as sig-
nal enhancer can be uncoupled from its role in
PTI signaling, as a single amino acid change
close to the active site of AtBAK1 changes its
phosphorylation capacity and renders it un-
fit specifically for innate immune signaling
(187). This suggests that AtBAK1 differen-
tially regulates the three signaling pathways by

discriminative auto- and transphosphorylation
events (187). This hypothesis is further sup-
ported by the identification of a tyrosine
phosphorylation site in the C-terminal tail of
AtBAK1 specifically required for BR signaling
(161). These results indicate that intracellular
domains of different ligand-binding receptors
display distinct activation mechanisms. In the
case of Arabidopsis FLS2 and EFR, phospho-
rylation of the receptor and coregulatory RKs
is a consequence of rather than a requirement
for the near-instantaneous complex formation
with AtBAK1 (186, 187). This is in contrast
to the requirement of AtBRI1’s kinase activity
for the ligand-induced complex formation with
AtBAK1 and its phosphorylation in vivo (219).
The differential mechanistic requirement is not
restricted to the intracellular domain, because
a single amino acid change in the extracellular
LRR domain of AtBAK1 specifically enhances
the complex formation with AtBRI1 and BR
signaling but blocks its interaction with AtFLS2
(98).

AtBAK1 is not the only AtSERK family
member found to be involved in PTI signaling.
Its closest homolog, AtBKK1, plays a partially
redundant role and forms ligand-dependent
complexes with at least two receptors of
conserved microbial signatures in vivo (179).
Similar partially redundant roles among other
AtSERK family members were observed for BR
signaling (36).

The requirement of coregulatory RKs
is conserved in both dicots and monocots.
For example, in Nicotiana benthamiana, plants
silenced for NbBAK1 are less sensitive to
several conserved microbial signatures and
are more susceptible to oomycete pathogens
(29, 88). The suppression of expression of a
SERK homolog in lettuce renders plants more
susceptible to the fungal pathogen Sclerotinia
(183); similarly, the suppression of LeSERK1
or LeBAK1 expression in tomato compromises
the LeVe1-mediated resistance to Verticillium
dahliae and Verticillium albo-atrum race 1 (68,
69). In rice, the overexpression of OsSERK1
confers increased resistance to M. oryzae (93).
Rice lines carrying mutations in XAK1 (XA21
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A BRIEF EXCURSION INTO THE
EVOLUTIONARY ORIGIN OF CONSERVED
MICROBIAL SIGNATURE PERCEPTION
IN PLANTS

The ability to recognize flagellin and BR, which both rely on
coregulatory RKs from the SERK family, seems to have arisen
with the acquisition of seed development, because predicted
FLS2 and BRI1 orthologs are absent from the genome of the
lycophyte Selaginella moellendorffii (3, 51). In contrast, SERK ho-
mologs can be found in the genomes of all land plants—including
S. moellendorffii and the moss Physcomitrella patens—but are absent
from green algae. Thus it appears that FLS2 (and possibly other
receptors of conserved microbial signatures and BR receptors) has
potentially co-opted the same evolutionarily more conserved sig-
naling module involved in plant endogenous peptide signaling al-
ready present in mosses (107). Similar LysM domain–containing
proteins, which are involved in glucan-based conserved microbial
signature perception, first appeared in vascular plants and are ab-
sent from mosses and algae. Does this mean that nonvascular
plants do not recognize microbial signatures? No. P. patens and
brown algae are also responsive to crude elicitor preparations of
fungal pathogens or cell wall components released during the in-
fection process (165, 167). Very little is known about the immune
system of green algae, the closest ancestors of land plants.

associated kinase 1), an OsSERK1 ortholog, are
incapable of mounting an XA21-mediated
immune response (X. Chen & P.C. Ronald,
unpublished data). The function of SERKs also
seems to be conserved in BR signaling because
rice plants silenced for XAK1 are partially
insensitive to BR (X. Chen & P.C. Ronald, un-
published data) (see sidebar, A Brief Excursion
into the Evolutionary Origin of Conserved
Microbial Signature Perception in Plants).

Several additional coregulatory RKs have
been implicated in the perception of conserved
microbial signatures. These include AtFER
(FERONIA), AtCRK20a (cysteine rich kinase
20a), HvCRK1 (cysteine rich kinase 1), and
many others (57, 113, 115, 171). An important
future research focus will be to elucidate the ex-
plicit role of these predicted coregulatory RKs
in PTI.

MEMBRANE-ASSOCIATED
CYTOPLASMIC KINASES

Several cytoplasmic membrane–localized ki-
nases, such as AtBIK1 (Botrytis induced ki-
nase 1), AtPBS1 (AvrPphB susceptible 1), and
AtPBLs (PBS1-like proteins), are partially re-
dundant in the signal transduction immediately
downstream of the recognition of conserved
microbial signatures, including flg22, elf18, and
chitin (137, 225). AtBIK1 constitutively inter-
acts with AtFLS2 and AtEFR, and possibly with
AtBAK1. After ligand recognition, AtBIK1 is
released from the receptor complex (137, 225).
The release of AtBIK1 from the multimeric
RK complex requires AtBAK1, suggesting that
AtBAK1 activates AtBIK1 via transphospho-
rylation. The only identified phosphorylation
sites on AtBIK1 are in the activation segment
of residues that are known to be required for
full enzymatic activation of RD kinases. Mu-
tation of these conserved sites compromises
AtBIK1 kinase activity and its function in PTI
signaling. It is currently unknown whether
these sites are auto- or transphosphorylation
sites and whether AtBIK1 requires phosphory-
lation on additional regulatory sites for full ac-
tivation. AtFLS2 and AtBAK1 kinase domains
are transphosphorylated by AtBIK1 in vitro.
In the future it will be interesting to identify
the corresponding phosphorylation sites and
test their functions in immune signaling. How
AtBIK1 mediates AtBAK1-independent signal-
ing downstream of AtCERK1 and its functional
relationship with Ca2+-dependent signaling
and MAPK (mitogen-activated protein kinase)
cascades remain important research areas.

RECEPTOR ENDOCYTOSIS

It is known that in animals receptor endocytosis
extends beyond signal attenuation by depleting
ligand-binding sites at the plasma membrane
(151). Endocytosed receptors signal from
endosomes and inside the nucleus, triggering
different physiological responses owing to
differential complex composition and regu-
lation (151, 220). Several plant receptors of
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conserved microbial signatures, such as
AtFLS2 and LeEIX2, undergo ligand-induced
endocytosis (10, 173). Coregulatory RKs of the
SERK family are also internalized (124, 180),
but it is unknown whether this occurs while
in complex with the ligand-binding receptor
of conserved microbial signatures. Although
the exact roles and molecular mechanisms
of plant receptor endocytosis are still poorly
understood, pharmacological studies suggest
that it represents an important step in signal
transduction (74, 97, 189).

Recognition of conserved microbial sig-
natures by membrane bound receptors leads
to rapid depolarization of the plasma mem-
brane potential, a rapid oxidative burst, and
activation of intracellular kinase cascades. A
brief review of these signal transduction events
is provided in the Supplemental Appendix
(follow the Supplemental Material link from
the Annual Reviews home page at http://www.
annualreviews.org). This appendix also
includes a brief description of the role of E3
ligases in PTI signaling and the importance of
receptor biogenesis in the endoplasmic
reticulum.

Many additional signaling modules that we
are unable to discuss in detail, such as Ca2+

signature decoding proteins and kinases (122),
MAPK cascades (209), extracellular ATP (206),
and small RNAs (106), also participate in a com-
plex spatial-temporal signaling network that in-
cludes PTI signaling (Figure 2).

HOW PERCEPTION OF
CONSERVED MICROBIAL
SIGNATURES LEADS
TO RESISTANCE

The final aim of conserved microbial signature
perception is the induction of efficient defense
responses that limit pathogen growth. This
involves a massive transcriptional reprogram-
ming via the activation of transcription factors
and chromatin remodeling (138). The resulting
protein synthesis leads to production of PR
(pathogenesis-related) and other defense-
related proteins that contribute to pathogen
restriction mostly via unknown mechanisms.

PTI also alters metabolite composition (182),
and in Brassicaceae glucosinolates are one of
the major groups of secondary defense com-
pounds (15, 41). In addition, plants reinforce
physical barriers by closing their stomata and
enhancing cell wall fortification (90, 145).

Plant defenses are also influenced by many
abiotic and biotic factors. These factors include
hormone levels, the circadian clock, develop-
ment, abiotic stress, and environmental con-
ditions such as temperature (Figure 2) (5, 71,
174, 218).

SYSTEMS ANALYSES OF THE
INNATE IMMUNE RESPONSE

The burgeoning field of systems biology pro-
vides new methodologies to make sense of plant
stress responses, which are often controlled by
highly complex signal transduction pathways
that may involve tens or even thousands of
proteins (131). Several recent studies have
expanded our knowledge of the plant immune
system and led to the identification of new
components.

A recent yeast two-hybrid study tested the
interaction of more than 8,000 Arabidopsis
proteins, including all known core plant innate
immune components, with potential effector
proteins from the two divergent pathogens
Pseudomonas syringae and Hyaloperonospora
arabidopsidis. Effectors from both pathogens
did not specifically target immune receptors
but rather converged on highly interconnected
signaling hubs to disturb the plant innate
immune system (150).

To elucidate stress response signaling
networks in rice, Seo and colleagues (188)
constructed an interactome of 100 proteins by
yeast two-hybrid assays around key regulators
of the rice biotic and abiotic stress responses.
The interactome was validated using protein-
protein interaction assays, coexpression of
transcripts, and phenotypic analyses. Using
this interactome-guided prediction and phe-
notype validation, the authors identified 10
novel regulators of stress tolerance, including
2 from protein classes not previously known to
function in stress responses.
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Complex formation/dissociation
with coregulatory RKs
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Figure 2
Schematic representation of the conserved signaling network triggered by recognition of conserved microbial signatures. The
perception of conserved microbial signatures activates a complex signaling network from the plasma membrane to the nucleus, leading
to protein translation and secretion that culminates in immunity. The plant immune system is modified by multiple exogenous and
endogenous factors (boxes). Individual signaling modules are depicted schematically as ovals, with the upstream modules on top. Each
module’s localization is color-coded according to the key. Abbreviations: MAPK, mitogen-activated protein kinase; RK, receptor kinase.

Advances in plant genomics, transcrip-
tomics, and proteomics have led to the
accumulation of sufficient public data to
construct systems-level models of plant gene
interactions. Such models allow for the pre-
diction and systematic discovery of genes
and associated pathways that control diverse
phenotypes (129, 130). The construction of
AraNet and RiceNet—experimentally tested,
genome-scale gene networks for Arabidopsis
and rice, respectively—provides another strat-
egy to explore the plant response to conserved
microbial signatures (128, 131). For example,

using a RiceNet guilt-by-association approach
followed by focused protein-protein inter-
action assays, Lee et al. (131) identified and
validated novel regulators of XA21-mediated
immunity.

UTILIZING KNOWLEDGE OF
PERCEPTION OF CONSERVED
MICROBIAL SIGNATURES FOR
AGRONOMIC IMPROVEMENT

Research into the innate immune response has
advanced many areas of biology. Because pests
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and disease take an estimated 40% bite out of
potential global yield, knowledge of the plant
immune response is important for agricultural
production. The development of crop varieties
with enhanced resistance to disease remains
an important goal in the field. Recent studies
demonstrate that the transfer of receptors of
conserved microbial signatures between plant
species and families confers broad-spectrum re-
sistance to pathogens that were not previously
controlled or recognized (68, 125, 198). These
studies indicate that the identification of novel
receptors combined with their integration into
crop genomes by breeding or modern molec-
ular tools can have important consequences
for agricultural improvements. Engineered
strategies, such as generation of new chimeric
receptors, have also proven useful. For example,
expression of a chimeric receptor generated by
fusing the rice CEBiP ectodomain to the TM
and kinase domains of XA21 increased chitin
responsiveness and enhanced resistance to

M. oryzae (119). Similarly, fusion proteins
between FLS2 or WAK1 and EFR are also
functional, indicating the broad applicability
of this approach (4, 24). Future goals include
engineering of receptors with broadened and
novel recognition specificities.

A complementary strategy is to use knowl-
edge of the conserved microbial signatures
to develop reagents that can immunize hosts
against infection or antagonists that disrupt
QS-mediated virulence activities and biofilm
formation (203), a process thought to be in-
volved in 65%–80% of bacterial infections (45).
For example, the production of inexpensive,
nontoxic, synthetic structural analogs to Ax21,
which can be readily applied in the field, can
be used to induce XA21-mediated immunity.
Conversely, antagonists that can disrupt critical
virulence functions of the pathogen—possibly
by binding the putative Ax21 receptor, RaxH—
would cripple its ability to form biofilms
(83, 176).

SUMMARY POINTS

1. In plants, receptors of conserved microbial signatures are widespread and diverse and
share structural and functional similarities with animal Toll-like receptors. Predicted
plant receptors include soluble extracellular proteins, receptor kinases, receptor-like pro-
teins, and intracellular kinases.

2. Recent studies suggest that a single receptor can be involved in the perception of multiple
conserved microbial signatures.

3. Currently known plasma membrane–localized receptors of conserved microbial signa-
tures require coregulatory receptor kinases that are shared with developmentally regu-
lated signaling pathways. Signaling specificity is likely achieved through distinct complex
formations and phosphorylation events.

4. The non-RD kinase motif is a hallmark of kinases associated with receptors of conserved
microbial signatures. This conservation suggests yet-to-be-discovered mechanistic prop-
erties that are advantageous for signal initiation.

5. Many of the signaling modules and their temporal activation following perception of
conserved microbial signature are conserved among monocotyledonous and dicotyle-
donous plant species; however, copy number and important mechanistic attributes vary
between these two main classes of flowering plants.
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FUTURE ISSUES

1. Many predicted plant receptors of conserved microbial signatures have not yet been
demonstrated to bind a cognate (microbially-derived) ligand. Many more receptors re-
main to be characterized, and exploiting the huge genomic diversity of plants will advance
this goal.

2. Structural studies are required to identify surface interactions between ligands and their
cognate receptors.

3. There is a paucity of knowledge on the mechanisms regulating activation of non-RD
kinases and their interactions with coregulatory proteins.

4. The knowledge gained about receptors of conserved microbial signatures can be used to
improve crop species using existing and engineered receptors.

5. The plant immune response is complex and is intimately connected to the response to
abiotic and developmental factors.
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