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ARTICLE

Panoramic-reconstruction temporal imaging for
seamless measurements of slowly-evolved
femtosecond pulse dynamics
Bowen Li1,2, Shu-Wei Huang1, Yongnan Li1,3, Chee Wei Wong1 & Kenneth K.Y. Wong 2

Single-shot real-time characterization of optical waveforms with sub-picosecond resolution is

essential for investigating various ultrafast optical dynamics. However, the finite temporal

recording length of current techniques hinders comprehensive understanding of many

intriguing ultrafast optical phenomena that evolve over a timescale much longer than their

fine temporal details. Inspired by the space-time duality and by stitching of multiple micro-

scopic images to achieve a larger field of view in the spatial domain, here a panoramic-

reconstruction temporal imaging (PARTI) system is devised to scale up the temporal

recording length without sacrificing the resolution. As a proof-of-concept demonstration, the

PARTI system is applied to study the dynamic waveforms of slowly evolved dissipative Kerr

solitons in an ultrahigh-Q microresonator. Two 1.5-ns-long comprehensive evolution portraits

are reconstructed with 740 fs resolution and dissipative Kerr soliton transition dynamics, in

which a multiplet soliton state evolves into a stable singlet soliton state, are depicted.
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The capability of characterizing arbitrary and non-repetitive
optical waveforms with sub-picosecond resolution in a
single shot and in real-time is beneficial for different fields,

such as advanced optical communication1, 2, ultrashort pulse
generation3, 4, optical device evaluation5 and ultrafast bio-
imaging6–8. Moreover, it has helped to unveil the fascinating
ultrafast phenomena in optics, such as the onset of mode-
locking9, 10, soliton explosions11, 12 and optical rogue waves13–15,
as well as many other fields16–18. Temporal imaging is one of the
most promising techniques perceived and developed to meet the
need of single-shot real-time waveform characterization7, 8, 14, 15,
19–28. On the basis of space–time duality19–21, quadratic phase
modulation (time lens) and dispersion can be properly combined
to significantly enhance the temporal resolution14, 15, 22–26 and a
record value of 220 fs has been demonstrated26. On the other
hand, just like there is always a limitation on the field-of-view in
any spatial imaging systems, the single-shot recording length of
temporal imaging systems has been hitherto limited to <300 ps23.
Owing to this limitation, the time-bandwidth product (TBWP,
the ratio between the recording length and the temporal resolu-
tion) of the state-of-the-art temporal imaging systems has not
exceeded 45026. Such situation hinders the applications of tem-
poral imaging systems to study many important optical nonlinear
dynamics, where not only fine temporal details but also long
evolution information are necessary for a comprehensive
understanding of the phenomena. For example, studying the
dynamics of dissipative Kerr solitons29–31 is of particular interest
because of their potential applications in low-phase noise
photonic oscillators32, 33, broadband optical frequency synthesi-
zers34, 35, miniaturized optical clockwork36 and coherent terabit
communications37. While the soliton generation benefits greatly
from the ultrahigh-quality factor (Q) of the microresonator, the
ultrahigh Q also renders its formation and transition dynamics
slowly evolved at a timescale much longer than the cavity
roundtrip time38, 39, which causes significant challenges in the
experimental real-time observation. Similarly, an optical metrol-
ogy system that combines the feats of fine temporal resolution
and long measurement window is also desired in the study of
optical turbulence and laminar-turbulent transition in fibre
lasers40, 41, which leads to a better understanding of coherence
breakdown in lasers and laser operation in far-from-equilibrium
regimes. To capture comprehensive portraits of these processes,
as well as many other transient phenomena in nonlinear optical
dynamics14, 15, 42, 43, a temporal imaging system with a TBWP
much greater than 1000 is necessary.

While the most straightforward way to implement a time lens
is to use a phase modulator, the TBWP using this approach is
fundamentally limited by the maximum achievable modulation
depth and is typically <1044–46. Alternatively, a time lens can be
constructed all-optically through cross-phase modulation47, 48.
However, similar limitations exist, since large modulation depth
requires high pump power, which in turn induces self-phase
modulation on the pump pulse and distorts the temporal inten-
sity envelope. Consequently, the reported TBWPs using this
approach are only ~2047, 48. Therefore, state-of-the-art temporal
imaging systems are mostly implemented through parametric
mixing with a linearly chirped pump pulse, where TBWPs up to
several hundred have been achieved7, 8, 14, 15, 22–28. The practical
limitation on further improvement of the TBWP in parametric
temporal imaging systems originates from the maximum effective
pump bandwidth and the maximum pump dispersion20, 21. While
the effective pump bandwidth is restricted by phase-matching
condition in parametric conversion, excessive pump dispersion
degrades system performance by inducing both large third-order-
dispersion (TOD) aberration and undesired propagation loss.
Therefore, it is impractical to substantially improve the TBWP of

temporal imaging systems under conventional configuration.
Meanwhile, limitations on TBWP also exist for other techniques
that achieve comparable performance4, 49–52. Single-shot real-
time spectral interferometry52 has been adopted to reconstruct
the time-domain information, achieving a temporal resolution of
~400 fs. However, its temporal recording length is limited by the
spectral resolution (10 pm) to ~350 ps, which results in a TBWP
of 875. Another measurement technique combines spectral slicing
of the optical signal with parallel optical homodyne detection
using a frequency comb as a reference51. Even though a TBWP
larger than 320,000 has been demonstrated at a temporal reso-
lution of ~6 ps, it is practically challenging to reach the sub-
picosecond regime. Acknowledging current existing methods, a
waveform measurement technique achieving sub-picosecond
temporal resolution and long temporal recording length is
urgently needed and it will be a powerful tool for studying
ultrafast dynamics in different areas.

In order to achieve this goal, we propose and experimentally
demonstrate a panoramic-reconstruction temporal imaging
(PARTI) system, in analogy with the wisdom of stitching multiple
mosaic images to achieve larger-field-of-view in the spatial
domain53, 54. The PARTI system consists of a high-fidelity optical
buffer, a low-aberration time magnifier and synchronization-
control electronics. Through the PARTI system, different parts of
a transient optical dynamic waveform can be characterized
sequentially in multiple steps. After signal processing, a magnified
panoramic image of the original waveform is reconstructed from
multiple mosaic images. A temporal recording length of 1.5 ns is
realized without sacrificing the 740 fs resolution, thus achieving a
TBWP of over 2000, about five times larger than the record value
previously demonstrated in conventional temporal imaging sys-
tems26. As a proof-of-concept demonstration, the PARTI system
is applied to observe the dissipative Kerr soliton transition
dynamics in an ultrahigh-Q microresonator and two distinct
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Fig. 1 Working principle of the PARTI system. a Slowly evolved dissipative
Kerr soliton dynamics in an ultrahigh-Q microresonator, obtained by
numerically solving the Lugiato–Lefever equation. The orders-of-magnitude
difference in the timescale between the cavity time and the evolution time
poses an experimental challenge to capture the comprehensive picture of
the dynamics. b The schematic representation of the PARTI system. The
optical buffer generates multiple replicas (represented by blue, green and
red, respectively) of the SUT and the subsequent time magnifier captures
different portions of the SUT waveform on each replica. After data
processing on the system output, the original long SUT waveform can be
reconstructed through waveform stitching
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multiplet-to-singlet dissipative Kerr soliton transition dynamics
are observed.

Results
Principle of operation. Figure 1 shows a simulated example of
dissipative Kerr soliton dynamics and describes how the PARTI
system captures the slowly evolved process in a single-shot
manner. As shown in Fig. 1a, in the governing Lugiato–Lefever
formalism55, 56, the dissipative Kerr soliton dynamics is depicted
in a two-dimensional (2D) space spanning by the cavity time τ
and the evolution time t. Although the temporal structure of the
intra-cavity field is detailed in the τ dimension at the sub-
picosecond timescale, the evolution and transition dynamics is
portrayed in the t dimension at a much longer nanosecond
timescale, which is associated with the cavity photon time of the
microresonator. At the beginning of the evolution, the cavity
exhibits a triplet soliton state. However, at around 1 ns, the top
two solitons start to be attracted to each other and finally merge
into a single soliton at ~1.2 ns. The bottom soliton also shifts
upwards during the soliton fusion. After 1.6 ns, a stable doublet
soliton state is reached, where both solitons exhibit higher
intensity owing to the energy conversion inside the micro-
resonator. To comprehensively characterize this soliton-fusion
process, a recording length of at least 1 ns is desired, while a sub-
picosecond temporal resolution is required to effectively resolve
the soliton shape. Therefore, a TBWP larger than 1000 is
necessary.

Figure 1b shows how the PARTI system overcomes the
limitation of TBWP in conventional temporal imaging systems
and thus captures the slowly evolved soliton dynamics. The signal
under test (SUT) is a pulse train that schematically represents the

2D evolution in Fig. 1a. Since the SUT is transient and non-
repetitive, the concept of sample scanning in the spatial domain
cannot be conveniently adopted in temporal imaging systems. To
address this problem, a fibre-loop-based optical buffer is
integrated with a time magnifier to realize temporal scanning
using stroboscopic signal acquisition57, 58, a technique commonly
adopted in sampling oscilloscopes. As shown in Fig. 1b, the
optical buffer creates multiple identical replicas of SUT with a
constant time interval, which will be subsequently measured by
the following time magnifier, thus realizing the temporal scanning
on a transient SUT. Using the optical buffer, SUT replicas can be
generated with a pre-defined period of T1. If the measurement
period of time magnifier is T2, then in each frame, the time
magnifier captures a different section of the long waveform with a
step size equal to |T1−T2|. Furthermore, by matching the step size
to the recording length of the time magnifier, seamless
measurement of a long waveform can be realized. The output
of the PARTI system represents the magnified waveform
corresponding to different sections of the long SUT and is
recorded by a high-speed real-time oscilloscope. After data
processing, neighbouring frames of magnified waveform will be
stitched together to reconstruct a magnified panoramic image of
the original SUT. Therefore, the effective single-shot recording
length is scaled by the number of replicas without sacrificing the
temporal resolution, thus substantially enhancing the TBWP.

Low-aberration time magnifier. The foundation to construct the
PARTI system is a parametric time magnifier with low aberration.
The four-wave mixing (FWM) process was chosen as opposed to
other parametric processes because it allows high-quality pro-
cessing of SUT, pump and output simultaneously in the
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Fig. 2 Schematic representation and performance of the low-aberration time magnifier. a Experimental setup of the low-aberration time magnifier with the
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telecommunication band21. In addition, since multiple frames of
magnified waveform need to be stitched together to obtain the
panoramic image, it is critical to ensure a stable impulse response
across the recording window of the time magnifier, i.e., a low-
aberration FWM time magnifier. For an in-focus time magnifier,
the main aberration comes from the TOD in the dispersive path
for input and pump59. To construct a low-aberration time mag-
nifier with long recording length, the combination of dispersion
compensating fibre (DCF) and large effective-area fibre (LEAF) is
used to achieve large linear dispersion (fourth and higher-order
dispersion neglected). As shown in the experimental setup in
Fig. 2a, both the input dispersion and the pump dispersion is
provided by combining DCF and LEAF. Since the LEAF has the
opposite dispersion slope (0.08 ps nm−2 km−1) compared to the
DCF (−0.598 ps nm−2 km−1), combining the two types of fibre
according to the ratio of their dispersion slope results in linear net
dispersion. Moreover, LEAF features in very small dispersion-to-
dispersion-slope ratio (KLEAF=D/S= 45 nm) compared to stan-
dard single-mode fibre (SMF) (KSMF=D/S= 275 nm). Therefore,
using a LEAF fibre to compensate dispersion slope of DCF
sacrifices much less net dispersion compared with using SMF,
which facilitates achieving large linear dispersion with moderate
insertion loss. In the current system, the SUT is dispersed for 35
ps2 before being combined with the pump through the

wavelength-division multiplexer (WDM). In the lower branch of
the system, a broad-band mode-locked laser (MLL) goes through
a dispersion of 71.2 ps2 and is then pre-amplified by a low-noise
erbium-doped fibre amplifier. The following band-pass filter
selects the spectral component from 1555 to 1565 nm, which is
subsequently amplified again to 100 mW to generate the pump
for the time magnifier. The pump and SUT are launched together
into the highly nonlinear fibre (HNLF), and the generated idler is
filtered out and goes through the output dispersion (2152.5 ps2),
which is then amplified again to become the final output of the
time magnifier. Overall, the system satisfies the imaging condi-
tion20
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magnification ratio is

M ¼ Φ
00
2

Φ
00
1

¼ 61:5: ð2Þ

To characterize the performance of the time magnifier, a
femtosecond pulse with 10 nm bandwidth and centre wavelength
of 1543 nm is used as input of the system. As shown in Fig. 2b, in
the FWM spectrum after the HNLF, a narrow-band idler is
generated, which is then filtered out and becomes the temporally
magnified signal after output dispersion. The femtosecond pulse
is shifted temporally across 300 ps input window (input time
scanning) and the corresponding output waveform is recorded.
As shown in Fig. 2c, the output time is linearly proportional to
the input time with a slope of 61.5. Moreover, the output pulse
width during input time scanning is stable at 54 ps. The
corresponding output pulse shape (intensity normalized indivi-
dually) is also almost identical (Fig. 2d), which indicates very
small aberration from TOD. This feature is most critical for
implementing the temporal scanning microscope, as ideally the
overlapping areas should be identical in neighbouring measure-
ment frames so as to be clearly identified for image stitching. The
small fluctuating tail of the waveform results from the impulse
response of the photodetector, which is shown in the inset. On
the basis of the results above, the average measured pulse width is
54 ps/61.5= 878 fs. Since the real pulse width of the input signal
is measured to be 470 fs through auto-correlation, the de-
convolved impulse response or the temporal resolution of the
time magnifier is calculated to be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8782 � 4702
p

¼ 740fs. There-
fore, the low-aberration time magnifier achieves a large TBWP of
300 ps/740 fs= 405.4 enabled by the large linear dispersion links
in the system, which is comparable to the largest TBWP
previously demonstrated in temporal imaging systems26.

Optical buffer and timed replication. To generate multiple
replicas of SUT for subsequent stroboscopic signal acquisition
(discussed in the next section), a fibre-loop-based optical buffer is
designed and the experimental setup is shown in Fig. 3a. During
operation, a section of waveform will be carved out by amplitude
modulator 1 (AM1) and loaded into the buffer through a 50/50
coupler. After each circulation inside the fibre-loop cavity, 50% of
the buffered waveform is coupled out as a replica, while the other
50% is circulated for the next round. The total cavity length is
designed to be around 8.2 m and the cavity period can be fine-
tuned from 39.7 to 40 ns using the optical delay-line in order to
match the frame rate of the time magnifier. AM2 functions as a
switch by controlling the intra-cavity loss. The switch is turned on
only when the SUT passes the AM2 and therefore, the AM2
controls the number of replicas generated from the buffer. More
importantly, the periodic switching of AM2 prevents the self-
lasing operation of the optical buffer, which substantially sup-
presses the amplification noise during the buffering. In addition, a
WDM filter with a passband from 1537 to 1547 nm further
minimizes the buffering noise. A 2 m erbium-doped fibre (EDF)
pumped by 980 nm laser diode provides a maximum gain of ~20
dB to compensate the total cavity loss (≈12 dB). To minimize the
dispersion distortion, 0.5 m DCF is added to the cavity and the
net dispersion of the buffer is measured to be ~6.12 × 10−3 ps2

(see Supplementary Note 1 for details), which corresponds to the
dispersion of only 0.28 m SMF. For a 740 fs optical pulse (equal to
the resolution of the time magnifier), such residual dispersion will
only result in <5% pulse shape distortion after ten roundtrips.
Therefore, the influence of residual net dispersion is small enough
to be neglected. Finally, by optimizing the polarization controllers

(PC) both outside and inside the cavity, the buffer generates high-
fidelity replicas of the input waveform.

To visualize the performance of the buffering, arbitrary
waveforms (see Supplementary Note 2 for details) generated
from an ultrahigh-Q microresonator are used as SUT and
launched into the optical buffer to generate ten replicas. All the
SUT have the duration of ≈5 ns and spectral bandwidth of ≈10
nm, but the waveforms shapes are distinct from each other.
Figure 3b shows the output waveform of ten replicas for a certain
SUT after the buffering. The shape as well as the intensity of the
SUT are well preserved during buffering. In Fig. 3c, the ten
replicas in Fig. 3b are overlapping together (grey curves) and are
compared to the averaged waveform (blue curve). It is obvious
that the optical buffer can generate high-fidelity replicas, which
only exhibit small fluctuations (<10%) during each buffering
compared to the averaged reference. Figure 3d,e show similar
performance for two more arbitrary examples of SUT. To
quantitatively evaluate the buffering fidelity, a total of 20 different
SUTs are tested. As shown in Fig. 3f, for each SUT, the cross-
correlation coefficient between different replicas and the first
replica (original waveform) are calculated and represented by
purple columns, while the blue triangles shows the average value
of the 20 SUTs. The first column set represents the cross-
correlation coefficient of the first replica with itself (i.e., auto-
correlation) and therefore the value equals 1 for all 20 SUTs. After
the first buffering time, the coefficients start to decrease gradually
with each buffering, which indicates larger and larger deviations
from the original waveforms owing to the buffering distortions.
However, even for the tenth replica, the average cross-correlation
coefficient is still larger than 0.99. Therefore, the optical buffer is
able to generate high-fidelity replicas for arbitrary temporal
waveforms. As the dispersion broadening is far below the
temporal resolution of direct measurement (≈18 GHz band-
width), the majority of the deviation is attributed to the
amplification of noise and gain narrowing effect in the buffer
and thus reducing the cavity loss and inclusion of gain equalizers
can further improve the quality of the optical buffer, if necessary.

Stroboscopic signal acquisition and the PARTI system.
Equipped with the low-aberration time magnifier and high-
fidelity optical buffer, the PARTI system is implement based on
the concept of stroboscopic signal acquisition57, 58. The basic idea
has already been illustrated in Fig. 1. By inducing a period dif-
ference between the buffered replicas and the pump pulses, the
time magnifier captures a different section of SUT consecutively
on each replica. In this way, a long SUT can be fully scanned in
multiple steps and the complete waveform can be reconstructed
from the magnified waveform of each stroboscopic acquisition.
The experimental detail of implementation is shown in Fig. 4a. To
emphasize the key components for stroboscopic acquisition, the
synchronization electronics are highlighted, while the optical
buffer and the time magnifier are simplified and slightly sha-
dowed. The key electronics can be divided into the following
three groups. First of all, a repetition-rate-stabilized femtosecond
fibre MLL and a 1.2 GHz photodetector together generate a 250
MHz electrical clock signal, which serves as the time base of the
whole system. Secondly, an arbitrary waveform generator
(AWG), and a delay generator create electrical patterns that
control the stroboscopic acquisition. Finally, the three AMs
convert the electrical patterns to the optical domain, which
control the SUT loading (AM1), optical buffer switching (AM2)
and time-magnifier-pump generation (AM3), respectively.

The detailed timing chart of the system is shown in Fig. 4b. As
indicated by the vertical blue dashed line, the whole system is
operated with a frame rate of 2 MHz. In every 500 ns, the AM1
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will load from input a 5-ns-long waveform as SUT (first
horizontal axis). After the SUT is loaded into the buffer, AM2
will be switched on only when the SUT arrives in each circulation.
Therefore, in the second horizontal axis, AM2 opens every 40 ns
and generates ten identical replicas in each 500 ns frame. Ideally,
the separation of each gating should be identical with the cavity
period of the buffer (39.85 ns). But limited by the sampling speed
of AWG (1 Gs s−1), the separation is set as 40 ns. However, since
each SUT is only circulated for ten times inside the buffer and the
gating width (10 ns) is much broader than the SUT duration, the
slight mismatch between the gating period and the cavity period
will not influence the performance of the buffer. After the
buffering, ten replicas will be generated with a separation equal to
the cavity period (fourth horizontal axis). AM3 performs pulse-
picking on the MLL to generate a pump for the time magnifier
every 40 ns (third horizontal axis). The corresponding real
electrical driving signals for three AMs are shown in Fig. 4c.
Owing to the period difference (150 ps) between the time
magnifier and the SUT replicas, the time magnifier will scan
the SUT from left to right with a step of 150 ps, thus realizing the
stroboscopic signal acquisition.

To directly visualize the stroboscopic signal acquisition,
amplified spontaneous emission from an erbium-doped fibre
amplifier is used as SUT and combined with time-magnifier
pump when the whole system is operated according to the timing
chart. The corresponding waveform is shown in Fig. 4d. As
observed in the left inset, in each 500 ns period, the first replica of

the waveform section (broad and flat pedestal, orange) is aligned
with the pump (sharp peak, blue) on the left side while in the last
frame, the time-magnifier pump is already scanned to the right
side, as shown in the right inset. In this way, the ten output
frames will be generated in each 500 ns period, which
corresponds to the magnified waveform at ten consecutive
positions of the SUT. By identifying the overlapping areas of
the output waveform in neighbouring frames, the ten sections of
magnified waveform can be stitched together to reconstruct a
much longer continuous waveform (see Supplementary Note 3
for details). Consequently, the recording length of the time
magnifier can be scaled by the number of replicas while
maintaining the high temporal resolution. Overall, the current
PARTI system demonstrates a TBWP of more than 2000, about
five times larger than the recording value achieved to date in
temporal imaging systems26.

Measurement of dissipative Kerr soliton dynamics. Finally, to
demonstrate the capabilities of the PARTI system, the system is
applied to observe the dynamic evolution of dissipative Kerr
solitons inside an ultrahigh-Q microresonator. The correspond-
ing FWM spectrum measured after the time lens is shown in
Supplementary Fig. 3. The final output of the system is detected
by an 18 GHz photodetector and then digitized and recorded by a
real-time oscilloscope. After data processing (see Supplementary
Note 3 for details) on the measurement results, two sections of
1.5-ns-long waveform with a 740 fs resolution are reconstructed,
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which represent a TBWP of more than 2000. With the unpre-
cedented measurement capability, fascinating dissipative Kerr
soliton dynamics in a high-Q microresonator is observed. To
clearly visualize the evolution details, we section the one-
dimensional waveform according to the cavity roundtrip time
(11.29 ps) of the microresonator to rearrange the data into a 2D
matrix and create 2D evolution portraits to depict the dissipative
Kerr soliton transition dynamics.

In the first case, a transition process that resembles the
simulation result in Fig. 1a is observed. As shown in Fig. 5a, at the
beginning stage (0 ps to ~400 ps), three solitons (triplet state)
with almost equal intensity exist in the cavity. Figure 5b plots the
waveforms at three different time slices of 0 ps (black), 113 ps
(blue) and 237 ps (red), which shows that the triplet solitons
roughly maintain their intensities and positions in the cavity
throughout the beginning stage. The three curves were vertically
offset for clarity and vertical black dashed lines are plotted
according to the soliton positions at 0 ps (black curve) to
emphasize the position change of solitons at different time slices.

After that, in the middle stage (400 to ~800 ps), the first two
solitons start to be attracted to each other and eventually merge
into a singlet soliton at ~800 ps. The third soliton is also shifted
upwards during the merging of the other two solitons, just like
the simulation in Fig. 1a. However, the third soliton does not
survive during the transition and starts to fade after 500 ps. The
soliton fusion details are shown in Fig. 5c, where waveforms at
440, 565 and 677 ps are shown. At these three specific time
positions, the separation between the first two solitons evolves
from 3.8 to 3 ps and then to 1.5 ps. After this transitioning middle
stage, a singlet soliton state is achieved inside the cavity, and the
state remains for more than 600 ps, or 53 cavity roundtrips.
Similarly, three waveforms in this stage are shown in Fig. 5d,
indicating the high stability during the final stage. Black dashed
curves emphasizing the soliton transition traces are plotted
against the 2D portrait in Fig. 5a,e, which is obtained by
polynomial fitting the peak positions of the solitons.

In addition to the first example, a different dynamic process is
also observed which also generates the singlet soliton state
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eventually but without soliton fusion. As shown in Fig. 5e, in the
first stage (0 to ~370 ps) two solitons co-exist in the cavity. In
the meantime, the doublet solitons repulse each other slightly and
the first soliton gradually fades away. At ~370 ps, the upper
soliton disappears, but at the same time two other solitons
emerge. In the second stage (370–1 ns), in contrast to the first
stage, the triplet solitons are attracted to the centre slowly. At the
end of the second stage, both the top and bottom solitons fade
away, while the middle one survives and evolves into a singlet
soliton with higher intensity in the final stage (1–1.5 ns). Similar
to the first example, the singlet soliton state is much more stable
compared to previous states and lasts over 500 ns. Again,
waveforms at three different time slices are plotted together for
each distinct stage, which shows weak pulse repulsion (f), weak
pulse attraction (g) and stable single soliton state (h).

Notably, these two soliton dynamics are observed with the
same excitation protocol in the same microresonator. It has been
shown, both theoretically and experimentally29, 39, that the
dissipative Kerr soliton formation is not a deterministic process,
and soliton states with different orders can be accessed with a
certain probability. The reason for such a stochastic behaviour is
that these dissipative Kerr solitons can only be generated after the
transition from chaos states which by nature are sensitive to
initial conditions and noise processes. Future application of
PARTI can unveil the probability function and depict the route
out of chaos, leading to a better understanding of dissipative Kerr
soliton formation. Specific excitation protocols to avoid the
chaotic region have been proposed and theoretically studied60,
and it can be realized and verified experimentally in conjunction
with PARTI. Furthermore, PARTI can be applied to study other
fascinating nonlinear dynamics including Kerr frequency comb
generation beyond Lugiato–Lefever equation61 and novel mode-
locking dynamics via Faraday instability62.

Discussion
As the first proof-of concept demonstration, the stroboscopic
signal acquisition (temporal scanning) is performed con-
servatively to ensure the accuracy of waveform reconstruction. It
is worth noticing that while the single-shot recording length of
the time magnifier is as large as 300 ps, the current temporal
scanning adopts a step-size of only 150 ps. Therefore, in two
consecutive scanning steps, ~50% of the measurement results are
repetitive, which are used as the reference for waveform stitching.
Despite this conservative configuration, 1.5-ns-long waveforms
are reconstructed with 740 fs resolution, representing a record-
high TBWP of 2027. The TBWP of the system will be further
substantially scaled by reducing the repetitive percentage in
neighbouring steps and by increasing the number of buffering
times. Currently, the step size is limited by the non-uniform
responsivity across the recording window of the parametric time
lens (Supplementary Fig. 3d). Because of the worse signal-to-
noise near the boundaries of recording window, a small step size
is adopted during experiment, so that the reconstructed long
waveforms only consist of the high-quality waveforms in the
centre area of the recording window. An optical source with
higher spectral flatness and nonlinear media with smaller TOD
will contribute to a more uniform responsivity across the
recording window of the time lens. Ideally, with a flat respon-
sivity, the step-size can be identical with the recording length (i.e.,
no overlapping areas) to reconstruct continuous dynamic wave-
forms. Moreover, using a better designed optical buffer, the
number of buffered replicas can also be substantially increased
(see Supplementary Note 4 for detailed analysis). For example,
some optical buffers have demonstrated generating more than
100 replicas with acceptable signal-to-noise degradation63, 64.

Therefore, under the scenario of non-overlapping scanning and
100 times buffering, the PARTI system can theoretically capture a
30-ns-long non-repetitive dynamic waveform with 740 fs resolu-
tion (TBWP larger than 4 × 104), which will serve as a powerful
tool for studying different kinds of ultrafast optical dynamics.
Moreover, the generalized idea of waveform replication combined
with single-shot acquisition is also applicable to other measuring
techniques, such as the real-time spectral interferometry52.
Therefore, our technique not only represents an advanced tem-
poral imaging system but may also stimulate more analogous
innovations in the family of single-shot ultrafast measurement
techniques.

In conclusion, a PARTI system is developed by integrating a
fibre-loop-based optical buffer with a low-aberration time mag-
nifier. In analogy to a conventional microscope achieving larger
field-of-view by scanning the sample and stitching microscopic
images, our technique provides the possibility to observe ns-long
dynamic waveforms while maintaining the sub-picosecond tem-
poral resolution, thus overcoming the limitation of TBWP in
conventional temporal imaging systems. As a proof-of-concept
demonstration, the PARTI system is applied to observe the dis-
sipative Kerr soliton transition dynamics in an ultrahigh-Q
microresonator. By buffering the selected waveform ten times and
measuring the waveform in ten steps, 1.5-ns-long evolution
processes are reconstructed with 740 fs resolution, which repre-
sents a TBWP of over 2000, about five times larger than the
record value demonstrated to date in conventional temporal
imaging systems26. Moreover, the TBWP in our technique is
scalable to even higher values by using larger number of replicas.
With our technique, two distinct multiplet-to-singlet dissipative
Kerr soliton transition dynamics are observed. The capability in
observing such intriguing phenomena using long recording
length and high resolution will not only facilitate the study of
dissipative soliton dynamics but also various ultrafast dynamic
processes in other fields as well.

Methods
Experimental setup. The optical buffer consisted of a four-port 50/50 coupler, an
optical delay line, an amplitude modulator, a WDM filter, a PC, a 980/1550 WDM
coupler, 0.5 m DCF (DCF38) and 2 m EDF (ER30-4/125). The net dispersion was
estimated by measuring the pulse-broadening of a femtosecond source with an
intensity auto-correlator after single-passing the open-loop buffer. The cavity
period of the buffer was measured by buffering a picosecond pulse and measuring
the separation of buffered replicas. The pump of the temporal magnification system
was generated from a 250MHz optical frequency-comb source (Menlo FC1500-
250-WG), which was bandpass-filtered (1554–1563 nm) and pulse-picked by AM3
to 25MHz. The input dispersion consisted of 200 m DCF (LLMicroDK) and 1.486
km LEAF (Corning), while the pump dispersion consisted of 400 m DCF and 2.97
km LEAF of the same kind. The ratio between the DCF and LEAF was carefully
designed to achieve near-zero TOD. The output dispersion was provided by
combining two dispersion compensating modules (Lucent DCM) with a total
dispersion of −1.689 ns nm−1. The final optical signal was measured by an 18 GHz
photodetector (EOT 3500 f) and subsequently digitized by a 20 GHz real-time
oscilloscope (Tektronix MSO 72004 C) with 100 Gs s−1 sampling rate. The stro-
boscopic signal acquisition was controlled using a 1.2 GHz photodetector
(DET01CFC), an AWG (Tektronix AWG520) and a delay generator (SRS DG645).

Si3N4 microresonator fabrication. First a 5-μm-thick oxide layer was deposited
via plasma-enhanced chemical vapour deposition on p-type 8” silicon wafers to
serve as the under-cladding oxide. Then low-pressure chemical vapour deposition
was used to deposit an 800 nm silicon nitride for the ring resonators, with a gas
mixture of SiH2Cl2 and NH3. The resulting silicon nitride layer was patterned by
optimized deep ultraviolet (DUV) lithography and etched down to the buried oxide
layer via optimized reactive ion dry etching. Next the silicon nitride ring resonators
were over-cladded with a 3-μm-thick oxide layer, deposited initially with low-
pressure chemical vapour deposition (500 nm) and then with plasma-enhanced
chemical vapour deposition (2500 nm). The device used in this study has a ring
radius of 250 µm, a free spectral range of 88.6 GHz, and a loaded quality factor Q of
≈1,000,000.
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Dissipative Kerr soliton generation and modelling. The microresonator was
pumped by a frequency-tunable continuous-wave laser with an on-chip power of
600 mW. For dissipative Kerr soliton generation, the laser frequency was scanned
with a tuning speed of 2 THz s−1, via control of the piezoelectric transducer, across
the cavity resonance from the blue side of the resonance. The soliton dynamics was
modelled by numerically solving the mean-field Lugiato–Lefever equation with the
symmetric split-step Fourier method and the classical Runge–Kutta method. The
simulation started from vacuum noise and the temporal resolution was set to 5 fs.

Data availability. The data that support the plots within this paper and the
findings of this study are available from the corresponding author on request.
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