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Abstract 

This paper presents a one dimensional nonlinear stress-strain model called ARCS (Axis 

Rotation and Cubic Spline) capable of reproducing any user-input modulus reduction and 

damping curve. Unlike many previous nonlinear models, the ARCS model does not utilize 

Masing's rules, nor does it require a specific functional form for the backbone curve such as a 

hyperbola. Rather, the model matches the desired modulus reduction curve by fitting cubic 

splines to the implied stress-strain curve, and matches the damping curve by utilizing a 

coordinate transformation technique in which one axis lies along the secant shear modulus line 

with the other axis in the orthogonal direction for a particular unload-reload cycle. Damping is 

easily controlled in the transformed coordinate space. An inverse coordinate transformation 

returns the desired stress. The integration algorithm is independent of strain step size, meaning 

that the returned stress for a large strain increment is identical to the stress that would be 

returned by subdividing the strain increment into smaller increments. Small-strain damping may 



be modeled hysteretically, avoiding the need for supplemental viscous damping. The model is 

shown to match the results of laboratory cyclic simple shear tests involving deliberately irregular 

stain histories. The performance of the model is illustrated in a set of ground response 

simulations where its predictions are compared with those of existing models. The ARCS model 

does not explicitly account for rate effects, cyclic degradation, or pore pressure generation. 

However, the equations can potentially be adapted in more advanced constitutive models to 

capture these effects. Such implementations are reserved for future publications. 

1 Introduction 

Earthquake ground motions are influenced by source, path, and site effects. Site effects are 

most commonly considered using either (1) nonlinear site amplification functions that depend on 

the average shear wave velocity in the upper 30m (Vs30), or (2) site-specific one-dimensional 

ground response analysis. Ground response analyses are performed using equivalent linear 

(EL) procedures, in which the shear modulus and damping are taken as time-invariant values 

set to be consistent with mobilized shear strains, or nonlinear (NL) procedures, in which 

nonlinear hysteretic unload/reload behavior is utilized to match desired modulus reduction and 

damping behavior. Recent studies indicate that NL procedures are superior to EL when 

mobilized shear strains exceed about 0.4% [1,2] or even as low as 0.05% [3]. These strain 

levels are exceeded at many sites where strong ground motions are imposed on soft soil 

profiles. 

Nonlinear site response models focus on matching small-strain behavior measured in laboratory 

devices at shear strains lower than about 0.1 to 0.3%, but these models are often extrapolated 

beyond their range of experimental validation to larger strains. This extrapolation can cause an 

under- or over-prediction of shear strength depending on the ratio of shear strength to small 

strain shear modulus, Gmax. These shear strength errors can translate to ground motion 



prediction errors [4,5,6]. Developing models that accurately capture small strain behavior and 

shear strength is obviously important for nonlinear site response simulations. 

This paper presents a one-dimensional nonlinear stress-strain model called ARCS (Axis 

Rotation and Cubic Spline) capable of reproducing any user-input modulus reduction and 

damping curve. Existing models commonly used in site response modeling are discussed first to 

illustrate the need for improved models. This is followed by presentation of the proposed 

modeling equations, which are shown to precisely match any user-input modulus reduction and 

damping curve. The ARCS model is then compared with direct simple shear laboratory 

experiments conducted on sand and peat soils to illustrate key features of behavior and 

compare with existing model formulations. Lastly, the model has been implemented in 

DEEPSOIL using the recently developed user-defined model, and the performance of the model 

is illustrated through a set of ground response simulations on a simple profile, and the results 

are compared with those obtained with existing models. 

2 Modulus Reduction Behavior of Existing Models 

User inputs to a one-dimensional ground response analysis for each soil layer include: (1) 

maximum shear modulus, (2) modulus reduction curve, and (3) damping ratio curve. Existing 

nonlinear models vary in their ability to capture the desired modulus reduction and damping 

behavior. Models are categorized as either one-dimensional, consisting of a backbone curve 

and unload-reload relations, or multi-dimensional plasticity formulations consisting of a yield 

surface, hardening law, and flow rule. 

Many nonlinear codes use a hyperbolic equation to model the backbone curve (e.g., 

DEEPSOIL: [7]; D-MOD: [8]; and Tess: [9]). The hyperbolic formulation was first introduced by 

Kondner and Zelasko [10] and later modified by, for example, Hardin and Drnevich [11] and 



Darendeli [12]. In the special case where the desired modulus reduction curve happens to be 

hyperbolic, then these models are capable of precisely matching the desired modulus reduction 

curve. However, the desired modulus reduction curve generally does not correspond to a 

hyperbolic backbone function, resulting in a misfit between the user-input modulus reduction 

curve and the hyperbolic curve.  

Small misfits in the modulus reduction curve can translate to significant misfits in the stress-

strain curve at high strain, resulting in errors in the desired shear strength (e.g. [4], [5], [6], [13]). 

To address this problem Hashash et al. [14] suggests that the high strain portion of the user-

specified modulus reduction curve can be adjusted so that the resulting fitted curve provides the 

correct shear strength. However, this increases the misfit at low strain. Furthermore, Matasovic 

and Vucetic [8] introduced a modified version of the hyperbolic Kondner and Zelasko model 

where the introduction of two curve-fitting constants improves the modulus reduction curve 

match. Yee et al [15] proposed a hybrid procedure where the modulus reduction curve is 

modified to match the shear strength at high strains and obtain a more reasonable backbone 

curve. The procedure utilizes the prescribed modulus reduction curve below a transition strain, 

γt, and a hyperbolic model above γt. The stress and tangent modulus values are continuous at γt. 

However, the Yee et al. model cannot be perfectly fit by a hyperbolic model, often resulting in a 

mismatch between the desired shear strength and that achieved in the nonlinear site response 

code. Groholski et al. [16] proposed a new general quadratic hyperbolic (GQ/H) model in which 

the functional form of the backbone curve is derived from the bivariate quadratic equation. This 

quadratic equation is fitted to the modulus reduction curve at strains lower than a specified 

shear strain level. At large strains the quadratic equation is set to match a target shear strength. 

Between the small strain behavior and the shear strength the model provides flexibility in the 

nonlinear behavior. Although the GQ/H model constitutes a significant improvement over 

previous models, the resulting curve does not perfectly fit the target modulus reduction curve. 



Plasticity models aim at reproducing the behavior of a material by using a set of constitutive 

laws. They are usually composed of a flow rule, a hardening law, and one or several yield or 

bounding surfaces. Multi-dimensional plasticity models typically incorporate nonlinear behavior 

using either multiple nested yield surfaces or bounding surface formulations. In multiple yield 

surface models (e.g. [17], [18]), the backbone curve is controlled by setting the plastic modulus 

associated with each yield surface. The resulting backbone curve is piecewise linear when a 

constant plastic modulus is assigned to each yield surface. The PressureDependMultiYield and 

PressureIndependMutliYield [18] material models implemented in OpenSees can be configured 

to match a user-specified modulus reduction curve. In bounding surface plasticity models, the 

plastic modulus is defined based on the distance in stress space between a current point and an 

“image” point on a bounding surface (e.g., [19], [20], [21]). The hardening function that controls 

the evolution of the plastic modulus may be adjusted to match a desired modulus reduction 

curve. For example, Boulanger and Ziotopoulou [21] adjusted the PM4Sand model to match the 

modulus reduction and damping curves for sand by EPRI [22]. However, the modulus-reduction 

curve is "hard coded" and is not an input to the PM4Sand model, though users could 

conceivably alter the modeling constants to fit any desired modulus reduction curve (a 

significant effort). 

3 Damping Behavior of Existing Models 

Soil damping can arise from hysteretic cyclic loading behavior of the soil skeleton, relative 

displacement between the solid and fluid phases, or other sources of energy loss. Damping is 

commonly divided into the “small-strain” region where the soil response is elastic, which is often 

modeled using numerical procedures such as Rayleigh damping, or the “large-strain” region, 

which is modeled by the unload-reload behavior of the stress-strain model. Masing [23] rules 



and extended Masing rules (e.g., [24], [25], [26]) are most common in nonlinear site response 

codes [2].  

The extended Masing rules are stated as follow: 

1. The stress-strain curve follows the backbone curve during initial loading.  

2. If a strain reversal happens at point (γrev;τrev), the unloading or reloading curve has a shape 

that is identical to the backbone curve enlarged by a factor n. In its original paper, Masing 

used n=2, it was later modified by Pyke [24], where n can deviate from 2, to provide a better 

match of the damping at higher strain. 

3. If the unloading or reloading curve exceeds the maximum past strain and intersects the 

backbone curve, it follows the backbone curve until the next stress reversal. 

4. If the unloading or reloading curve crosses an unloading or reloading curve from a previous 

cycle, it follows the curve of that previous cycle. 

When Masing rules are used with n=2, the initial slope of the unloading or reloading curve is 

equal to the maximum shear modulus Gmax, and the model shows no hardening or softening (i.e. 

loops are closed).  

Masing rules tend to over predict damping at large strains [27], and do not provide hysteretic 

damping at small strains (i.e., in the range where G/Gmax = 1). Several solutions have focused 

on modifying the second Masing rule to obtain reasonable hysteretic damping at high strains. 

The Cundall-Pyke hypothesis [24] evaluates n based on the shear strength. This formulation 

improves damping at high strain and creates some degradation. To match the damping curve, 

Darendeli introduced a damping reduction factor now used in several codes [12]. This 

formulation does not create degradation, and only acts on the area of the stress-strain loops. 

Based on Darendeli’s work, Phillips and Hashash [27], introduced a damping reduction factor 

that provides a better fit of the curve at large strains.  



Small-strain damping is commonly modeled using frequency-dependent Rayleigh damping, 

which introduces mass- and stiffness-proportional viscous damping terms to the equation of 

motion. Most nonlinear codes utilize the formulation by Rayleigh and Lindsay [28], which 

enables matching a desired damping value at either 2 frequencies (two-mode Rayleigh 

damping) or 4 frequencies (extended Rayleigh damping). At other frequencies, damping is 

either too low or too high, making the damping frequency-dependent in a manner that is 

inconsistent with laboratory results [29,30]. Phillips and Hashash [27] established, and 

implemented in DEEPSOIL, a frequency-independent viscous damping formulation, based on 

the work of Liu and Gorman [31]. TESS [9,24] uses an unload/reload rule to produce hysteretic 

damping at low strains. The procedure however can result in over prediction of damping at large 

strains [2].  

An important consideration for NL methods is that the authors are not aware of any published 

models that permit exact simultaneous matching of any user-input modulus reduction and 

damping curve. Desired modulus reduction and damping curves often deviate from hyperbolic 

behavior, forcing users to choose to fit certain behaviors while accepting misfits in others [32]. 

The model formulation in the next section provides a precise fit to a discrete user-input modulus 

reduction and damping curve.  

4 Formulation of the ARCS Model 

4.1 Backbone Curve 

During initial/virgin loading, a backbone curve is derived from the desired modulus reduction 

curve, and is fit with cubic splines (Fig. 1). Cubic spline interpolation is a mathematical method 

that has been extensively described in numerous textbooks (e.g. [33]). The cubic splines pass 

through all of the user-input data points, resulting in a smooth continuous modulus reduction 



curve and stress-strain backbone curve. For comparison with the cubic spline fit, Fig. 1 also 

shows a hyperbolic fit performed using two different approaches. In the first approach, the 

hyperbola is fit by least squares regression to the G/Gmax and log(γ) values. This fitting results in 

a misfit at high strain that causes an under-prediction of shear strength in this case. The second 

approach fits the hyperbola to the stress-strain data, which provides a better fit of shear 

strength, but significant misfit to the modulus reduction curve at small strains. The cubic spline 

method is more flexible than fitting a single hyperbola because the cubic spline interpolation 

passes through all of the data points, precisely fitting the user-input data. 

  

  

Figure 1 Evaluation of the curve fitting method on (a) the modulus reduction curve and (b) the backbone curve 

4.2 Unload/Reload Rule 

The unload-reload rule is formulated to satisfy the following criteria: 

(i) The secant modulus of the stress-strain loops matches a user-defined modulus-reduction 

curve, 

(ii) When subject to uniform cyclic strain amplitude input, the stress-strain loops close and 

repeat, exhibiting no cyclic degradation or stiffening, 



(iii) The area inside the stress-strain loops matches a user-defined damping curve, even at 

small strains where the modulus-reduction value is one, 

(iv) The stress-strain loops are concave about the secant modulus line. 

4.2.1 Rotation of the Coordinate System 

Upon the first unloading a coordinate transformation is introduced to control the modulus 

reduction and damping behavior. The values of strain and stress at the first unloading point are 

(γL, τL), and a target reversal point is defined as (γR, τR) = (-γL, -τL), as shown in Fig. 2. If 

unloading progresses, the curve will pass through the reversal point. A new coordinate system 

is defined such that the γ' axis lies along a line that runs through (γL, τL) and (γR, τR), at an angle 

θ from the γ axis, and the τ' axis is orthogonal to γ'. The origin of the rotated coordinate system, 

(γo,τo), lies at the center of (γL, τL) and (γR, τR), which happens to be (0,0) for the first unload 

cycle, but (γo,τo) may translate upon asymmetric loading, following rules described in the next 

section. 

  

Figure 2: Stress-Strain loops during (a) Unloading and (b) Reloading 

The definition of θ depends on the loading direction, defined by Eq. 1a for loading in the +γ 

direction and Eq. 1b for loading in the –γ direction. 

 



The values in one coordinate system are related to those in another by Eqs. 2 and 3. Note that 

the units of γ' and τ' are meaningless because the coordinate transformation is performed on 

axes with differing units. However, this is inconsequential because the transformation is utilized 

merely as a means to satisfy the desired criteria, and an inverse transformation recovers the 

values of τ and γ .  
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To satisfy criterion (i), the value of θ must be selected to be compatible with a modulus 

reduction curve based on the cyclic shear strain amplitude. In this case, θ = atan(Gsec), and Gsec 

is interpolated from the modulus reduction curve at a cyclic strain amplitude, γc, defined as half 

of the peak-to-peak strain amplitude (Eq. 4). 

𝛾𝛾𝑐𝑐 =
|𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿|

2
 (4) 

 

4.2.2 Stress-Strain Curve in Rotated Coordinate Space 

Having defined the coordinate transformation, a function is now selected to define the unload-

reload behavior in the transformed coordinate space. We select a biquadratic equation (Eq. 5) 

 

𝜃𝜃 = tan−1
𝜏𝜏𝑅𝑅 − 𝜏𝜏𝐿𝐿
𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿

  (1a) 

𝜃𝜃 = tan−1
𝜏𝜏𝑅𝑅 − 𝜏𝜏𝐿𝐿
𝛾𝛾𝑅𝑅 − 𝛾𝛾𝐿𝐿

− 𝜋𝜋  (1b) 

 



because it is the simplest possible form that is symmetric about the τ' axis and contains three 

constants (a, b, and c) that can be solved to satisfy the three remaining criteria.  

𝜏𝜏′ = 𝑎𝑎 𝛾𝛾′4 + 𝑏𝑏 𝛾𝛾′2 + 𝑐𝑐 (5) 

 

The shape of the function describing a half loop in the transformed coordinate system is shown 

in Figure 3a, where the target reversal strain in the transformed system, γ'in, is defined by Eq. 6. 

Note that the stress-strain loop is symmetric about the γ’ and τ' axis in τ’-γ’ space, but do not 

appear symmetric about the γ’ axis in the τ-γ space. The lack of symmetry is due to stretching of 

the axes upon coordinate transformation due to the stress and strain axes having different units. 

The stress-strain curves in τ-γ space nevertheless exhibit a reasonable shape. 

𝛾𝛾′𝑖𝑖𝑖𝑖 =
𝛾𝛾𝑅𝑅 − 𝛾𝛾0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (6) 

 

 

Figure 3 a) Half loop in the transformed coordinate system, and b) definition of damping 

Criterion (ii), (iii), and (iv) are satisfied by Eqs. 7, 8, and 9, respectively.  

𝜏𝜏′(𝛾𝛾′𝑖𝑖𝑖𝑖) = 0 (7) 



 

Criterion (ii), requiring that the unload-reload loops close with no cyclic degradation or 

hardening, is satisfied by setting τ' = 0 at γ' = ±γ'in (Eq. 7). Criterion (iii), requiring the area inside 

the loop to match a target damping value, is satisfied by Eq. 8. The equivalent viscous damping 

ratio D is selected from the input damping ratio curve based on the cyclic strain amplitude (eq. 

4). The damping ratio is defined by D=2A/(4πB), where A is the area beneath half of the loop as 

shown in Fig. 3a, and B is the area of the triangle shown on Figure 3b and is equal to: 

 

Criterion (iv), requiring that the stress-strain curve be concave about the secant shear modulus 

line is equivalent to requiring that d2(τ’)/d(γ’)2 must be negative (Eq. 9). A bi-quadratic equation 

has two inflexion points that are symmetrical with respect to the apex. Forcing the inflexion 

points to lie at ±γ’in automatically satisfies Eq. 9.  

Substituting Eq. 5 into Eqs. 7, 8, and 9 and solving the linear system of equations for a, b, and c 

results in Eqs. 11, 12, and 13: 

� 𝜏𝜏′(𝛾𝛾′)𝑑𝑑𝑑𝑑′

𝛾𝛾′𝑖𝑖𝑖𝑖

−𝛾𝛾′𝑖𝑖𝑖𝑖

= 𝐴𝐴 = 𝛾𝛾′𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (8) 

 

𝑑𝑑2(𝜏𝜏′)
𝑑𝑑(𝛾𝛾′)2

≤ 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝛾𝛾′ ∈ −𝛾𝛾′𝑖𝑖𝑖𝑖. . 𝛾𝛾′𝑖𝑖𝑖𝑖 (9) 

𝐵𝐵 =
(𝜏𝜏𝑅𝑅 − 𝜏𝜏0) ∗ (𝛾𝛾𝑅𝑅 − 𝛾𝛾0)

2
 (10) 



 

Applying an inverse coordinate transformation to Eq. 5 using Eqs. 2 and 3 results in an implicit 

relationship between strain and stress (Eq. 14): 

𝜏𝜏 = [(𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃] sin𝜃𝜃 + [𝑎𝑎((𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃)4 +

𝑏𝑏((𝛾𝛾 − 𝛾𝛾0) cos 𝜃𝜃 + (𝜏𝜏 − 𝜏𝜏0) sin𝜃𝜃)2 + 𝑐𝑐] cos𝜃𝜃 + 𝜏𝜏0  
(14) 

 

In Eq. 14 the only unknown is τ, reducing the problem to a simple root-finding exercise. For the 

example problems presented herein, the root is solved using Ridders’ Method [34], an algorithm 

based on the false position method which is unconditionally stable as long as the two initial 

guesses lie on each side of the root. The root is automatically bracketed when the initial 

guesses are set equal to the stress at the previous time step and the target stress point. Other 

methods converge more rapidly (e.g., Newton-Raphson), but are not always able to converge 

upon the desired root. Ridders' method converges more quickly than other unconditionally 

stable methods, such as the bisection method. 

4.2.3 Asymmetrical Loading 

Thus far, focus has been on symmetric loading, where (γR, τR) = (-γL, -τL), and (γo, τo) lies at 

(0,0). Asymmetrical loading conditions occur when (γR, τR) ≠ (-γL, -τL), meaning that the center of 

the unload-reload loop shifts away from the τ-γ origin, as illustrated in Fig. 4 and defined in Eq. 

14. 

𝑎𝑎 =
5𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)

32𝛾𝛾′𝑖𝑖𝑖𝑖
4  (11) 

𝑏𝑏 = −
15𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)

16𝛾𝛾′𝑖𝑖𝑖𝑖
2  (12) 

𝑐𝑐 =
25𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋(𝜏𝜏𝑅𝑅 − 𝜏𝜏0)

32
 (13) 



𝛾𝛾0 =
𝛾𝛾𝑅𝑅 + 𝛾𝛾𝐿𝐿

2
 (15a) 

𝜏𝜏0 =
𝜏𝜏𝑅𝑅 + 𝜏𝜏𝐿𝐿

2
 (15b) 

 

 

Figure 4 Asymmetrical Loading (a) Positive Loading (b) Negative Loading 

Defining the values of γL and τL is straightforward; these values are simply the strain and stress 

at which the current reverse loading cycle began. Defining the values of γR and τR (i.e., the 

target value of strain and stress) involves three unload/reload rules, demonstrated through an 

example problem in Fig. 5. For brevity, the example problem is formulated in terms of strains 

(i.e., γL and γR), and the stress updating is omitted but follows the same logic. In Fig. 5a, 

monotonic loading progresses to the first reversal (Fig. 5a) at γ1 and begins unloading such that 

γL = γ1. The size of the unloading loop is not known at the onset of unloading, so the simplest 

assumption is that the target reversal point is γR = -γ1. The first unload / reload rule is:  

Rule 1: When an unloading cycle initiates from the monotonic backbone curve, γR 

= -γL.  

 



Having defined γR, the shape of the unload curve is defined by Eq. 14, and unloading 

progresses along this curve to a value γ2 where a new reverse loading cycle begins. The value 

of γL is now updated to be equal to γ2, while γR is updated to be equal to γ1. The second unload / 

reload rule is: 

Rule 2: When an unloading cycle initiates from a point that is not on the 

monotonic backbone curve, γL is updated to be the strain value at the start of the 

unloading cycle, and the previous value of γL becomes the current value of γR.  

Loading then progresses to a new unloading point at γ3 (Fig. 5c) which is less than γ1. At this 

point, γL = γ3, and γR = γ2 in accordance with Rule 2. Unloading then occurs to a new reloading 

point at γ4 (Fig. 5d) where γL = γ4 and γR = γ3 in accordance with Rule 2. A reload cycle then 

loads beyond γ3 (Fig. 5e) which brings us to the final unload / reload rule: 

Rule 3: When a reloading cycle exceeds γR, the current values of γL and γR are 

erased as internal variables, and the previous values of γL and γR are reinstated. 

Rule 3 requires that all previous values of γL and γR must be stored in computer memory as 

internal variables until they are erased by a cycle that exceeds γR. In Fig. 5e, the loading cycle 

continues back to the monotonic backbone curve at γ1, at which point γL = γ1 and γR = -γ1 in 

accordance with Rule 1, and all previous values of γL and γR are erased from computer memory. 

Upon unloading and reloading, these rules can produce stresses lower than the backbone curve 

as illustrated in figure 5e. This departs from Masing rules, and is driven by the damping 

requirement. 

 

 



 

Figure 5 Evolution of the reversal strain vectors 

5 Example Problems 

An example problem is utilized to illustrate the following features of the model: (1) small-strain 

damping is explicitly modeled in the hysteretic formulation, (2) desired modulus reduction and 

damping curves can be perfectly matched, which differs from other commonly-used models, and 

(3) the solution does not depend on the size of strain increments utilized in a simulation. The 

target damping and modulus reduction curves for the example problem are calculated from 

Darendeli [12] for a soft clay with the following characteristics: PI=40, σ’v=47.5 kPa, γ=15 kN/m3, 

Vs=80 m/s, OCR=1.15, and K0=0.5. The procedure presented by Yee et al. [15] was applied to 



the computed modulus reduction curve to match a target undrained strength Su = 17kPa and the 

transition strain was picked as γt = 0.03%. The target modulus reduction and damping curves 

are presented in Fig. 6. The modulus reduction curve is adjusted at high-strain to match a 

desired shear strength using the Yee et al. procedure, but the damping curve was simply 

extrapolated from Darendeli’s functional form due to absence of recommendations for high-

strain damping. 

 

  

Figure 6. Modulus reduction (a), backbone (b) and damping ratio (c) curves predictions of different models for a 

clay PI=40, σ’v=47.5 kPa, γ=15 kN, Vs=80 m/s, OCR=1.15 K0=0.5.  

5.1 Comparison with Existing Models 

Figure 6 compares the ARCS model with two commonly used models: the GQ/H model used in 

DEEPSOIL 6.1 [16] and the PressureIndependMultiYield (PIMY) Model in OpenSees [18]. 

Response curves from the different models were back-calculated from the results of numerical 

simulations of a single element subjected to sinusoidal loading at different strain amplitudes, 

and comparisons with the desired modulus reduction and damping curves are presented in 

Figure 6. The proposed model and the PIMY both perfectly fit the target modulus reduction 

curve, while the GQ/H model results in a very slight misfit. The misfit appears very small when 

plotted as modulus reduction versus logarithm of shear strain, but is slightly more visible when 

plotted as a stress-strain curve. However, the GQ/H model is able to match the shear strength 



which is one the input parameters of the model. Previous models using the hyperbolic model 

would have resulted in a potential mismatch of the target shear strength. The maximum strain 

level at which the model fits the modulus reduction curve was picked as the transition strain, 

and it was defined that 99% of the shear strength was reached at a strain of 10%. 

Figure 6c compares the damping curves obtained with the different models. The proposed 

model explicitly includes small-strain hysteretic damping, whereas both the PIMY and GQ/H 

model (through the MRDF-UIUC fit) do not include small-strain hysteretic damping, relying 

instead on other formulations such as Rayleigh damping. OpenSees uses a two-point approach 

to Rayleigh damping (i.e., damping is specified at two frequencies, under-damping occurs 

between these frequencies, and over-damping occurs outside these frequencies). Frequency-

dependent Rayleigh damping is not realistic, and care must be taken to ensure significant errors 

do not arise from this formulation. On figure 6c, the small strain damping indicated for the 

OpenSees simulation is the target damping. In reality the damping curve might be shifted up or 

down depending on the frequency of loading and whether the latter is lower higher than the 

specified two frequencies. DEEPSOIL implements a frequency-independent viscous damping 

formulation developed by Phillips and Hashash [27] which solves this problem, but is 

computationally demanding. 

At large strains the PIMY model over predicts damping, which is a well-known aspect of 

Masing’s rules [32]. The GQ/H model uses damping reduction factors at large strains, based on 

the formulation by Darendeli [12]. This results in a reasonable, but imperfect match of the 

damping curve, which over-predicted damping at some strain levels and under-predicted at 

others. The proposed coordinate transformation model perfectly matches the damping curve at 

all strain levels, eliminating the need for viscous damping, and avoiding over-damping at high 

strain. An outcome of including small-strain damping in the hysteretic formulation of the 

proposed model is that the initial unload-reload tangent modulus must be larger than the secant 



shear modulus to accommodate non-zero area inside the stress-strain loop. This behavior is 

consistent with experimental observations (e.g. [35]). 

5.2 Influence of Strain Increment 

Many plasticity models utilize an explicit integration scheme that requires very small strain 

increments to achieve numerical stability, or an implicit integration scheme in which iterations 

are performed at each time step to ensure numerical stability. Both solutions are sensitive to the 

size of the strain increments in that different solutions will arise from different strain increment 

sizes because the tangent modulus for the increment is evaluated either the beginning (explicit) 

or end (implicit) of the increment. The algorithm presented herein is formulated differently in that 

the stress is computed as the physically meaningful root of Eq. 15 rather than by assuming a 

constant tangent modulus for a particular increment. The solution algorithm therefore does not 

depend on strain increment size, provided that the peak strain values are captured in the 

discretization (for accurate representation of the γL and γR internal variables). Figure 7 presents 

the prediction of the model for a sample of clay subject to sinusoidal loading at different strain 

levels using different discretization densities (4, 40, and 400 increments per cycle). Figure 7 

shows that predictions for a cycle defined by 4 or 40 points lie exactly on the curves described 

by 400 points at every strain level. Thus the response of the model is independent of the 

amplitude of the strain increment. 



 

Figure 7 Comparison of the predictions of the model for cycles defined by 4, 40 and 400 points at strain level 

of (a) 0.001%, (b) 0.1%, (c) 10%. 

6 Comparison with Direct Simple Shear Laboratory Tests 

The University of California, Los Angeles (UCLA) bi-directional broadband direct simple shear 

device [36] was used to apply strain-controlled shear demands on Silica No. 2 dry sand and 

nearly saturated Sherman Island peat specimens with height and diameter of 25.4 and 72.6 mm 

respectively. The strain histories were deliberately irregular, involving local unloading and 

reloading cycles of small amplitudes. The peat was tested at higher strain amplitude than the 

sand because greater shear strains tend to develop in softer soils during earthquake loading. 

The results of the tests are compared with the predictions of the ARCS model, GQ/H in 

DEEPSOIL and the PressureIndependMultiYield (PIMY) model for the test on peat and the 

PressureDependMultiYield (PDMY) model for the test on sand in OpenSees. 

6.1 Direct Simple Shear Tests 

Silica No. 2 is a uniform sand with a median particle size D50=1.60 mm, a coefficient of 

uniformity Cu=1.29 [37] and maximum and minimum dry densities of 1.610 and 1.349 gr/cm3, 

respectively. The dry pluviated specimen of Silica No.2 was prepared at a relative density of 

 



42%, and then consolidated to a vertical pressure of 100kPa. The vertical pressure was kept 

constant during shear to obtained a drained loading condition. The loading path consisted of 

strain-controlled triangular functions in which three cycles of constant strain amplitude of 0.03% 

were followed by three cycles at 0.08%, and so on for 0.44% and 0.9%. An irregular loading 

path was then applied in which small unloading and reloading cycles were superposed on the 

0.9% amplitude triangular function. 

A peat specimen retrieved from a depth of 1.7 m from Sherman Island in the Sacramento-San 

Joaquin Delta, California was tested under undrained conditions using a similar irregular 

triangular loading path, but with shear strain amplitudes of 1.3%, 6.8%, and 13.6%. Details of 

the peat properties are provided by Shafiee [38]. The specimen was consolidated to σvc’ = 60.4 

kPa, and then unloaded to 31.3kPa to achieve an overconsolidation ratio (OCR) of 1.93. The 

organic content of the sample was 75%. The vertical stress was varied during shearing to 

maintain constant specimen height using a servohydraulic actuator and feedback control loop. 

Constant height testing achieves undrained loading conditions. 

6.2 Model Input Parameters 

The input modulus reduction curves were derived using the cyclic testing on the simple shear 

device supplemented by inferred shear modulus at strains lower than the device capabilities. 

The maximum shear modulus was calculated by dividing the shear modulus measured at the 

lowest strain level, by the G/Gmax ratio calculated from the empirical relationship at the same 

strain level, to ensure the curves are continuous. The inferred maximum shear modulus for sand 

and peat was 23504 kPa and 877 kPa, respectively, which correspond to shear wave velocities 

of 128 m/s and 28 m/s. The inferred modulus values were then calculated by multiplying the 

normalized modulus reduction (G/Gmax) calculated from Menq [39] and Kishida et al. [40], for 



sand and peat respectively, by the maximum shear modulus. The modulus reduction curves 

obtained and the associated hyperbolic fits are plotted in Fig. 8. 

The damping curves were derived by fitting cubic splines to the lab data and inferred points. For 

sand, the inferred points were calculated from Menq [39]. For peat, the lowest measured 

damping value (1.9%) was on the order of small-strain values from previous studies [40], and 

the inferred values were all taken as 1.9% (Fig. 8).  

 

Figure 8 Input Modulus Reduction and Damping Curves a) Test on Sand b) Test on Peat 

6.3 Simulations of Direct Simple Shear Tests 

Figure 9 and 10 present the stress-strain loops measured in the lab and predicted by the 

present model (9a and 10a), DEEPSOIL using the GQ/H model (9b and 10b), and OpenSees 

(9c and 10c), for the tests on sand and peat respectively. For the test on sand, the PDMY model 

was used even though the predictions would not differ if the PIMY model was used since the 

sand was dry and tested under drained conditions, therefore inducing no change in confining 

pressure. During shearing the sand sample exhibits hardening, and the secant shear modulus 

increases with the number of cycles. This behavior of dry cohesionless soils has been reported 

previously by Silver and Seed [41], and is related to densification of the sand during cyclic 

loading. Our model does not predict hardening because it utilizes a single modulus reduction 

curve (and hence monotonic backbone curve), but the qualitative nature of the loops are in 



close agreement with the test results. For both tests, the areas of the predicted stress strain 

loops agree with the damping curve, and plot very close to the test results. Furthermore, when a 

small unload-reload cycle moves back on to the monotonic backbone curve, a sharp change in 

slope is observed in both the test data and the model predictions. 

The GQ/H model in DEEPSOIL slightly over-predicts the stresses during initial loading for the 

test on sand (figure 9b) and for the test on peat but accurately matches the shear strength. This 

over-prediction arises from the compromise that is taken when fitting the input modulus 

reduction curve and the target shear strength. Even though the GQ/H and the proposed ARCS 

model have the same target shear strength and modulus reduction curve, the stress-strain 

curves are different due to the different assumptions of the models. The unload/reload loops 

also follow different assumptions and therefore have different shapes. OpenSees follows the 

backbone curve, and is able to capture the initial loading of the soil properly for both the peat 

and sand (figure 9c and 10c). However, the OpenSees model under-damps the sand response 

and over-damps the peat response at high strain. Furthermore, the stress-strain behavior 

exhibits piecewise linear behavior due to the nature of the nested yield surfaces, whereas the 

laboratory data exhibits a smooth stress-strain curve. 

  

 

Figure 9 Stress-Strain loops measured in simple shear test on Silica No. 2 dry sand and predicted by: a) proposed 

model, b) GQ/H, c) PDMY in OpenSees   



 

Figure 10 Stress-Strain loops measured in simple shear test on Sherman Island peat and predicted by: a) our 

model, b) GQ/H, c) PIMY in OpenSees 

7 Nonlinear Ground Response Simulations 

Ground response simulations performed in Deepsoil 6.1 are used to illustrate the performance 

of the model. The ARCS has been implemented in DEEPSOIL using the newly developed User-

Defined Model feature. Two ground motions were applied to a 30m-profile of soft soil with 

PI=30. The two ground motions were sourced from the collection of motions of Baker et al. [42], 

which are intended to be ground motions representing rock conditions. From this ground motion 

records database, motion 8 and motion 23 were selected. Motion 8 is the north component of 

the motion (azimuth 0°) recorded at the Lamont 531 station during the Duzce earthquake, and 

has a peak horizontal acceleration of 0.16 g. Motion 23 is the east component of the motion 

(azimuth 90°) recorded at the WNT station during the Chi-Chi earthquake, and has a peak 

horizontal acceleration of 0.96 g. A constant unit weight was used (18 kN/m3), and the profile 

was divided in 30 layers.  

Modulus reduction and damping curves were calculated from Darendeli’s equations [12] at 

every depth, and the modulus reduction curve was corrected for shear strength following the 

Yee et al. [15] procedure. The target shear strength was calculated using the SHANSEP 



approach [43] based on the equation 16, with b=0.8 and (su/σ’vc)NC=0.3. The shear strength, 

effective stress, preconsolidation pressure, and shear wave velocity profiles are presented in 

figure 11. 
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Figure 11 Effective stress (a), shear strength (a), OCR (b), and Shear wave velocity (b) profiles. Maximum 
mobilized shear strain profiles for the low (c) and large (d) amplitude motion. 

The predictions of the model are compared with the predictions of the modified Kodner and 

Zelasko model (MKZ) using the same input curves, and the predictions of the GQ/H model 

using Darendeli’s initial curves and the same target shear strength. Note that both the MKZ and 

the GQ/H models use the MRDF-UIUC unload/reload rules. As previously discussed the MKZ 

model is not set to match a target shear strength and induces a misfit of the modulus reduction 

curve which induces a misfit of the shear strength. On the contrary the GQ/H model matches a 

target shear strength and provides a smooth transition between an input modulus reduction 



curve and the target shear strength. This transition is not fully based on the modulus reduction 

curve and in the present set of simulations, sometimes predicts an overly stiff response of the 

material. Both models induce a slight misfit of the input damping curve, especially at large 

strains. For both models the small strain damping is modeled using the frequency independent 

viscous damping formulation. 

Figure 12 presents the response spectra for the surface motions and input motions for all the 

simulations. All models display a similar response, especially at longer periods. However, the 

PGA (Sa at high frequency) prediction by the MKZ model is lower than the other two models in 

both cases whereas the GQ/H model and the ARCS model predict similar PGA. For the larger 

motion there are some small differences in the response spectra even at long periods. However, 

the maximum mobilized shear strain profiles shown in Figure 11 c and d clearly illustrates the 

differences between the models. For the small motion, all models predict a similar maximum 

shear strain, but for the larger motion the MKZ model predicts a peak shear strain that is about 

half that of the ARCS model. This difference is explained by the misfit of the shear strength. In 

this example the MKZ constantly over-predict the target shear strength which results in an 

under-prediction of the mobilized shear strain. The difference between the GQ/H model and the 

ARCS model can be explained by the over-stiffness observed in the transition zone (between 

the target modulus reduction curve and the target shear strength), and by the slight over-

prediction of the damping curve at large strains. 

Computational times of all models were compared, and because the ARCS model does not use 

viscous damping, it ran about 2.5 times faster than the MKZ, and the GQ/H models, which had 

similar computational times. The reduction in run-time is attributed to the fact that the proposed 

model uses a hysteretic formulation for small-strain damping, whereas the other models use 

frequency independent viscous damping whose formulation is particularly computationally 

intense. When viscous damping is used, the damping matrix is being updated at every time step 



which slows down significantly the computations. Other ground response simulations performed 

on more complex profiles showed a similar performance with, at times, even greater speed 

improvement. 

 

 

Figure 12 Response spectra for (a) small amplitude input motion (motion 8) (b) large amplitude input motion 
(motion 23) 

High-frequency noise was observed in some of the simulations using the fully hysteretic 

damping scheme of the ARCS model. This unrealistic high frequency content has been 

observed by other researchers using different finite element and finite difference codes, and 

does not pertain specifically to DEEPSOIL. This noise is a known artifact of the Newmark 

integration algorithm [44], and arises because viscous damping was not used in the model 

formulation. The noise can effectively be removed by using an appropriate combination of 

viscous damping and hysteretic damping to achieve the desired overall damping ratio. 

Alternatively, integration algorithms have been proposed to solve this problem such as the α-



method [45] also known as the Hilber-Hughes-Taylor method. However, this integration 

algorithm is not currently available in DEEPSOIL,.  

8 Conclusions 

In this paper we presented a one dimensional nonlinear model for site response analysis called 

ARCS that departs from two concepts commonly used by site response models. Initial loading is 

not controlled by the widely used hyperbolic model, but instead uses a cubic spline fit of the 

backbone curve to match any modulus reduction curve. The hysteretic behavior of the soil is not 

controlled by the original or the extended Masing’s rules, but is controlled by a new unloading 

and reloading rule that uses a coordinate transformation approach to calculate the shear stress, 

regardless of the amplitude of the strain increment. This unloading reloading rule easily controls 

the damping in the transformed coordinate system and provides a perfect fit of any damping 

curve. 

The model captures small-strain hysteretic damping, thereby eliminating the need for Rayleigh 

damping, and it does not over-damp at high strain, which is a well-known problem associated 

with Masing's rules. The ARCS model is well suited for total stress 1D ground response 

analysis, and has been implemented in DEEPSOIL using the newly developed User-Defined 

model feature. The model proves to be faster than existing models because it does not require a 

viscous damping formulation for small-strain damping.  

The one-dimensional kinematic hardening framework developed herein can potentially be 

implemented in a multi-dimensional plasticity formulation for more advanced numerical 

simulations. Such formulations could potentially capture the cyclic stiffening behavior exhibited 

by the sand as it densified during shearing, and the cyclic degradation behavior exhibited by the 

peat in constant volume shearing. However, such an implementation would require a method for 



updating the backbone curve as the effective stress and/or void ratio changes during shear. 

Implementation and extension of the model is reserved for future publications. 
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