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Abstract 

Challenges of Evaluating the Causal Effects of Early Childhood Development Programs 

By 

Ann Weber 

Doctor of Philosophy in Epidemiology 

University of California, Berkeley 

Professor Ira B. Tager, Co-Chair 
Professor Lia H. Fernald, Co-Chair 

 
 
Over 200 million children under five years old in low- and middle-income countries (39% of 
preschool children in developing countries) are estimated as not achieving their potential across 
multiple domains of development (including sensori-motor, cognitive, language, and social-
emotional development).  Although there is evidence of benefit to child development for a wide 
range of interventions, results from assessments of scaled-up programs are less conclusive.  
Therefore, the assessment of large-scale early child development (ECD) programs in developing 
countries is a priority.  This dissertation focuses on several methodological issues in evaluating 
large-scale ECD interventions that threaten the validity of finding a program benefit.  
Specifically, I address two important areas of evaluation: 1) the challenge of obtaining an 
unbiased measure of language development in a setting for which the test was not developed; 
and 2) the analytic process of determining whether the ECD intervention had a benefit that 
actually is the result of the intervention, given an unbiased developmental outcome.   
 
To demonstrate these challenges, I make use of data collected over a 14 year period for a 
national nutrition program in Madagascar.  First implemented in 1999 by the National Office of 
Nutrition (ONN) in Madagascar, the program has expanded to include 5550 sites with coverage 
of approximately 1.1 million children.  The program takes a comprehensive approach to 
improving early child nutritional status, targeting children less than 5 years of age and including 
multiple activities that have been found to be associated with better child outcomes.  A wide 
spectrum of developmental outcomes was assessed in four national surveys in Madagascar, 
including physical growth (height and weight), and motor, cognitive, language, and behavioral 
skills.  In my dissertation, I focus on only two of these measures: weight-for-age (a measure of 
short-term nutritional status) and receptive language (understanding of words, gestures or 
phrases), as assessed by an adaptation of the U.S. version of the Peabody Picture Vocabulary 
Test, 3rd edition (PPVT-III). 
 
Tests of early child cognition and language that were developed and carefully validated in one 
country are not guaranteed to maintain their properties when adapted and translated for use in 
another.  The risk of censoring is high, and bias from differential item functioning (DIF) can be 
introduced when administering the test to different subgroups (e.g., ethnicities) within the same 
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country.  Using longitudinal data from two rounds of testing (when children were 3-6 years and 
7-10 years of age) I apply item response theory (IRT) models to assess the performance of the 
PPVT in Madagascar.   My analysis uncovers problem items (e.g., bias from DIF by dialect 
spoken in 55% of items), censoring in a large proportion of the children, and patterns of 
responses related to test fatigue.  This information can be used to identify items that need to be 
dropped before estimating the program effect (e.g., items with strong, significant DIF); and items 
that should be replaced, modified, or re-ordered in future work (to avoid censoring and test 
fatigue).  Although my analysis focuses on a test of vocabulary, many of the issues apply to any 
multi-item instrument intended to capture a latent construct.   Such multi-item measures are 
commonly used in ECD intervention research and include other tests of language and memory, 
as well as non-verbal tests of cognition and socio-emotional behavior scales.  I present lessons 
learned from working with the PPVT in Madagascar and make recommendations for how these 
lessons can be applied in other developing country settings.   
 
Presuming that the developmental outcome is assessed without bias, there remains the analytic 
challenge of determining whether an ECD intervention has a benefit that actually is the result of 
the intervention.  I make use of a detailed, step-by-step roadmap for estimating the average 
treatment effect (ATE) of Madagascar’s program on children’s mean weight-for-age in a 
community between 1997 and 2004.  The evaluation of the Madagascar program is complicated 
by the fact that the selection into the program was non-random and strongly associated with the 
pre-treatment (lagged) outcome.  The availability of pre-program data allows me to define the 
outcome as either the post treatment value or the change from pre-treatment to post-treatment.  
Using these two outcome definitions, I contrast identification results for three common statistical 
parameters that under different assumptions are equivalent to my target parameter, the ATE.  
These statistical parameters are a post-treatment estimand commonly used in epidemiology that 
adjusts for measured confounders, and two difference-in-differences estimands (one of which is 
popular in econometrics) that can address certain types of unmeasured confounders.  For 
identification, I make the assumptions underlying each of these estimands explicit and 
demonstrate the consequences of alternate choices using directed acyclic graphs and data 
simulations.  Finally, I describe and compare three methods of estimation for each of the three 
estimands: traditional parametric regression, inverse probability of treatment weights (IPTW or 
propensity score weighting), and targeted maximum likelihood estimation (TMLE).  Throughout, 
I avoid imposing parametric model assumptions unless they are firmly supported by knowledge, 
and deliberately keep the process of identification separate from the process of estimation in 
order to avoid the common confusion of the two. 
 
My findings show that I am faced with a serious bias trade-off when choosing an estimand for 
the ATE of the Madagascar nutrition program.  A post treatment estimand controls for 
confounding due to the lagged outcome but not from possible unmeasured confounders.  The 
difference-in-differences estimands do not control for confounding by lagged outcome, but have 
the potential to adjust for a certain type of unmeasured confounding.   However, the difference-
in-differences estimands have the potential for introducing bias if the additional assumptions 
they require (beyond those needed for the post-treatment estimand) are not met.  The three 
estimands result in very different estimates of effect in the Madagascar study, regardless of 
method of estimation.  The estimates for the ATE from the post-treatment estimand are less than 
one tenth of a standard deviation (SD) improvement in community mean weight-for-age z-score 
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(as compared to the WHO reference population).   The two difference-in-differences estimands 
are comparable to each other, with estimates of the ATE ranging from 0.24 to 0.28 SD increase 
in mean weight-for-age z-score (statistically significant with all estimation methods).  However, 
since I am unable to estimate either the magnitude or direction of possible confounding from 
unmeasured factors, or the magnitude or direction of bias from the failure of the assumptions to 
hold, I conclude that my best choice is the post treatment estimand.  This simple estimand adjusts 
optimally for known measured confounders and is equal to the ATE under the fewest 
assumptions. 
 
Given this choice of estimand, the choice of estimator can still make a difference.  In fact, the 
only significant effect for the post-treatment estimand was obtained with TMLE (estimate of the 
ATE = 0.066 SD, CI: 0.001, 0.146 SD).  TMLE has specific advantages over either parametric 
regression or IPTW, and improves on both by implementing a bias reduction step to estimate the 
target parameter of interest.  In addition, TMLE is considered doubly robust to model 
misspecifications.   Therefore, I conclude that TMLE is a better choice for estimation over the 
other two methods, and that my best estimate of the ATE is small, but statistically significant.  
Alternate target parameters and alternate estimation approaches are unlikely to resolve the 
uncertainty of the choice of estimand for the Madagascar evaluation.  However, future analytic 
work on other nutritional outcomes (e.g., height-for-age) and longer term effects of the program 
(e.g. from a third wave of data in 2011) may provide an accumulation of evidence of a causal 
benefit of Madagascar’s nutrition program. 
 
There is mixed evidence of the effectiveness of large-scale nutrition programs on early child 
development outcomes.  Although the lack of consistent results is generally attributed to possible 
problems of implementation and governance of the program, the failure to find a statistically 
significant effect (or alternatively, the success of finding one) may, in fact, be due to the types of 
problems described in my dissertation.  There may be bias in the outcome (or other) measure, 
failure of the causal assumptions to hold, or bias from the method of effect estimation.  
Misleading estimates of a program’s benefit (in either direction) have significant policy and 
funding implications for the program.  More importantly, the decisions made based on an 
evaluation have consequences for the children the programs are trying to help.  I present tactics 
for addressing several methodological challenges to evaluation and urge investigators to update 
and/or reconsider their analytic approaches to evaluations.  Since ECD intervention research is 
often inter-disciplinary, I recommend learning new methods from other disciplines and to use the 
best methods that are at our disposal. 
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Chapter 1: Background 

1.1 Introduction 
Over 200 million children under five years of age in low- and middle-income countries (39% of 
preschool children in developing countries) are estimated as not achieving their potential across 
multiple domains of development.1  These domains are broad and encompass sensori-motor, 
cognitive, language, and social-emotional development.  Key risk factors have been identified 
that are associated with this failure in achievement, including inadequate cognitive stimulation, 
iodine deficiency, and other factors frequently associated with poverty (e.g., infections).2, 3  In a 
review of the effectiveness of existing interventions that aim to improve early child development 
(ECD), the authors find evidence of “substantial and positive effects” from a number of 
interventions studied in experimental settings.4  However, they report that “results from 
assessments of scaled-up programmes were more variable.”4  Possible explanations given for this 
discrepancy include the difficulty of expanding coverage of a program while maintaining quality, 
or the lack of local capacity-building for implementation.  The authors recommend prioritizing 
the assessment of national ECD programs, but they do not discuss the complexities of planning 
and performing such an evaluation.  The potential limitations and pitfalls of the usual methods 
involved in evaluating the success (or failure) of large-scale interventions are often overlooked.   
 
Problems exist throughout the evaluation process and are not limited to the significant logistical 
and technical constraints of administering a survey to thousands of households in hundreds of 
communities in a national study.  This dissertation addresses problems related to two important 
methodological areas in evaluation: 1) the challenge of obtaining an unbiased measure of 
cognitive or language development in an ethnically and linguistically diverse low-income 
country setting; and 2) the analytic process of determining whether the ECD intervention had a 
benefit that actually is the result of the intervention (i.e., had a causal effect).  Given that we are 
frequently faced with less than ideal data in an evaluation, our ability to make a causal claim of 
benefit may be compromised.  For example, when the intervention is not randomly assigned for 
ethical reasons (as is often the case in a scaled-up program), investigators are forced to confront 
the fact that communities that receive the intervention may be systematically different than those 
that do not (i.e., there is confounding).  However, the underlying motivation of an evaluation is 
to learn if there is a causal benefit of the program.  A significant association alone may be 
insufficient evidence that the program “works.”  If we want to inform policy based on our 
research, then we must minimize possible sources of bias and tackle causal inference with all of 
its complexities.  To demonstrate some of these challenges in the evaluation of ECD 
interventions, I make use of a long-running national nutrition program in Madagascar.  Although 
my work is based on a study conducted in a low-resource setting, the methods and conclusions 
are applicable to the evaluation of early childhood programs and policies throughout the world. 
 
This background chapter is organized as follows.  Section 1.2 explains why a national nutrition 
program in Madagascar provides an excellent opportunity to explore the complexities of 
evaluation.  Section 1.3 describes the measurement challenge faced by researchers who want to 
evaluate program effects on a measure of cognitive development, specifically of language ability.  
The challenges associated with estimating a causal benefit using observational data are split into 
two sections.  Section 1.4 addresses the problems of definition and identification of the target 
parameter of interest (i.e., the estimate used to infer program benefit or lack thereof), and section 
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1.5 addresses the problem of estimating the target parameter.  Section 6 concludes with the 
implications of this work. 

1.2 Why a Malnutrition Intervention in Madagascar? 
Malnutrition has wide-ranging consequences for children’s health and development, including 
their physical growth, gross and fine motor skills, cognitive and language skills, and social-
emotional development. 5, 6  Malnutrition is characterized by both under- and over-nutrition, and 
is typically assessed with the use of binary indicators that compare the weight and height (or 
length, depending on age) of a child to that of a reference population of well- nourished and 
healthy children of the same age and gender.  The most common indicators for under-nutrition 
are: underweight, stunting and wasting, which indicate that a child is two standard deviations 
below the median of the reference population for weight-for-age, height-for-age and weight-for-
height, respectively.   
 
Underweight is a near-term marker for inadequate nutrition and is estimated to be responsible for 
the largest proportion of the death and disease burden associated with malnutrition 
(approximately 19% of deaths and disability adjusted life years in children under 5 years).6  
Stunting is associated with long-term under-nutrition and has been identified as a key predictor 
of later cognitive function (discussed in more detail below) with sufficient evidence available to 
recommend intervention.1, 7  Poor cognitive development is also associated with severe micro-
nutrient deficiencies (e.g., from lack of iodine) independently of the link through stunting.8, 9  
Wasting is an indicator of recent weight loss (e.g., from starvation or disease), and in severe 
cases is cause for immediate treatment and/or referral to a health clinic. 
 
In Madagascar, approximately 50 percent of children under five are estimated to be stunted.10  In 
1999, the Madagascar National Office of Nutrition (ONN) implemented a program, named 
SEECALINE, to help address this problem.  The project experienced a period of sustained 
growth throughout the country through 2008, expanding to include 5550 sites with coverage of 
approximately 1.1 million children (or about a third of children under 5 years of age in 
Madagascar).11  The program expansion stopped in 2009 after a presidential coup and subsequent 
economic crisis, which is unresolved to this day.  Despite the recent political and economic 
instability, the program has remained operational, making SEECALINE one of the few long-
running and large-scale nutrition interventions in Africa.11  The government’s continued 
investment and ownership of the program is evidenced by the integration of the program into 
long-term strategic priorities of the country and their stated interest in expanding the intervention 
to include additional activities for participants (e.g., early child stimulation).12  The ONN hopes 
that evidence of long term benefits of the SEECALINE program will justify the continuation of 
the program in the event of renewed international engagement of the donor community. 
 
The Madagascar program provides an opportunity to fill in the gap of knowledge of the 
effectiveness of nutrition programs running on a national scale in a low-income country.  In 
addition, SEECALINE offers several compelling reasons for study:  an emphasis on a sensitive 
period of child development, a comprehensive approach to improving children’s nutritional 
status, and the availability of nationally representative assessments of a wide range of outcomes.  
The relevance of each of these aspects of the program to evaluating an ECD intervention will be 
discussed in the sub-sections below. 
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1.2.1 A Framework for Early Child Development 
The timing of the Madagascar program is strategic: the first five years of life are periods of rapid 
development when children’s developmental trajectories are inextricably linked to influences of 
their environment (nutritional and otherwise).13  Advocates of intervening early in a child’s life 
refer to the study of neuroscience and the developing brain for their supporting evidence.  
Specifically, they refer to the notion of critical and sensitive periods during which time areas of 
the brain mature and become specialized.14  From a life-course perspective, these periods can be 
interpreted broadly to represent a time window during which an exposure can have either adverse 
or protective effects on development and subsequent outcomes.15  A critical period represents a 
limited window, whereas a sensitive period has a wider scope of opportunity for modifying or 
reversing the effect of exposures beyond a critical time frame.  If we intervene during either of 
these periods, the brain (or body) may have sufficient plasticity (or resilience) to recover from 
earlier deprivation and achieve normal or near-normal development.  For example, the first two 
years of life are considered a strategic window (i.e., a critical period) for intervening to prevent 
stunting, which is generally considered irreversible after this point.16  More recently, however, 
there has been some evidence of catch-up growth after the age of two years, suggesting a wider 
window (i.e., a sensitive period).17 
 
In contrast to height-for-age, cognitive development is thought to be characterized by a long 
sensitive period.  Cognitive function, or cognition, refers to the developmental domain 
responsible for processing and applying information, and includes sustained attention, memory, 
problem solving, decision making, and language proficiency.18  Although the first few years of 
life are characterized by children’s rapidly increasing ability to interact with others and express 
themselves (as any parent can attest), higher cognitive processes associated with the prefrontal 
cortex, such as language and cognitive control, have not achieved adult levels of development 
until late in adolescence.14 
 
Evidence from animal models indicates that specific areas of the brain integral to cognitive 
development, such as the cortex, hippocampus and striatum, are sensitive to nutritional 
deficiencies during the first two years of life. 9, 19  In humans, naturally occurring experiments 
provide some of the best evidence of how sensitive humans are to environmental deprivation and 
the importance of the timing of an intervention to improve cognitive outcomes.  One particularly 
fascinating example is the English and Romanian Adoptees (ERA) study.20  Children living in 
state-run Romanian orphanages experienced varying durations of severe deprivation prior to 
their adoption into the United Kingdom (UK).  Researchers found that Romanian children placed 
prior to 6 months of age performed as well cognitively at age 4-6 years as children born in the 
UK.  But children placed after 6 months had lower scores on intelligence tests at 4-6 years, as 
compared to children placed before 6 months.20  In addition, the investigators found evidence of 
a long sensitive period for cognitive development.  Adopted children with the lowest IQ scores at 
age 6 years (98% of whom were over 6 months on arrival in the UK) significantly increased their 
score by age 11 (although they did not catch up completely with higher scoring children). 
 
By targeting nutrition during the first five years of life, Madagascar’s SEECALINE program 
works within a framework for child development that addresses a critical and sensitive period 
model.  In addition, the program may have a latent effect on children.  Specifically, a life-course 
latency model suggests that exposure to an intervention during early periods of development can 
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have effects that influence outcomes later in life (even decades later).15, 21  This model and other 
life course models (i.e., cumulative and pathway models) provide a framework for the link 
between early stunting and later cognitive outcomes.  Evidence for such a link is primarily found 
in observational studies and natural experiments.  The strongest evidence comes from a meta-
analysis of 5 longitudinal studies in low to mid-income countries.  The authors of the analysis 
found that stunting in children less than 2 years of age was predictive of shorter adult height, 
lower attained schooling, reduced adult income, and decreased off-spring birth-weight.16  Strong 
evidence also comes from natural experiments, in particular the English and Romanian Adoptees 
(ERA) study discussed above.20   In addition, cognitive abilities established in childhood have 
been shown to persist into adulthood: skills in pre-school are associated with later success in 
school (e.g., grade completion) and adult economic productivity (e.g., wages and 
employment).13, 22 

1.2.2 Madagascar’s Comprehensive Program 
SEECALINE is a comprehensive community-level program, incorporating multiple activities 
that have been found to be associated with better child outcomes (see examples below).  
Community programs differ from individual treatment regimens in that they are typically made 
available to all (or most) residents of a community and sharing of information within a 
community is often encouraged.  Examples of other community level ECD programs include 
national child health days,23 breast-feeding promotion campaigns,24, 25 provision of day care 
services,26 conditional cash transfers,27-29 and combinations of these.28, 30  Community 
interventions have the potential to reach a large segment of the population.30    
 
The Madagascar program includes growth-monitoring activities of children and nutrition 
education of their primary caregivers in a community center setting.31  Trained nutrition workers 
weigh children (0 to 3 years of age) at monthly meetings, record the information in a growth 
chart, and provide the mothers with a private consultation if their children’s growth falls below 
international guidelines for a given month.  Children who are identified as severely malnourished 
(i.e., with a weight-for-height that is 3 standard deviations below the median of a reference 
population) are referred to a health clinic for treatment.  The evidence of benefit to children from 
other large-scale growth monitoring and promotion programs is limited.23, 32, 33  For example, 
improved growth was reported only among the youngest children in Uganda’s Nutrition and 
Early Child Development Project, and no significant effects were reported for cognitive 
development of children.15,33  This limited evidence of benefit is thought to be related to 
“coverage, intensity of contact, health worker performance, adequacy of resources, and the 
ability and motivation of families to follow advice.”33  
 
In addition to the growth monitoring activities, SEECALINE mothers are educated about the 
importance of exclusive breastfeeding during the first 6 months of a child’s life, and of continued 
breastfeeding to 12-24 months.  There is strong evidence of benefit from breastfeeding, 
specifically on child morbidity and mortality.7, 25  However, there is inconclusive evidence of the 
effectiveness of large-scale breastfeeding promotion programs to improve growth in children.25  
In terms of cognitive benefit, most of the evidence is based on observational studies, as well as 
on the biological plausibility that a benefit would exist.  For example, breastfeeding promotes 
intake of high quality nutrients and fatty acids that are essential for brain development.34  In 
addition, breastfeeding benefits children by improving their immune response, limiting their 
exposure to pathogens from other food sources, and increasing maternal-child interaction.35  
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Perhaps the strongest evidence of a cognitive benefit comes from an experimental trial in Belarus 
that was modeled on the Baby-Friendly Hospital Initiative by the WHO and UNICEF.  
Investigators of the Belarus study reported higher means on all of the Wechsler Abbreviated 
Scales of Intelligence among breastfed children who were followed to 6.5 yrs.36  However, no 
benefit of the Belarus program was found for height.37 
 
Finally, SEECALINE participants are given guidelines for proper hygiene and complementary 
feeding practices, along with a cooking lesson and meal for attendees.  In a systematic review of 
complementary feeding interventions in developing countries, parent educational programs were 
found to have a modest effect on child growth, with the most effective being those that 
emphasized feeding nutrient-rich animal-source foods.38  None of the reviewed educational 
programs reported cognitive, language, or behavioral outcomes.  Unlike some other nutrition-
related programs (i.e., Ecuador's National Food Nutrition Program,39 Bangladesh’s Integrated 
Nutrition Project,40 and Senegal’s Community Nutrition Project),41 SEECALINE does not 
provide fortified food or micronutrient, protein or energy supplements to participants. 

1.2.3 Child Development Outcomes 
Data collected over a 14-year period in Madagascar provides a rich source of information for 
testing the evidence of the program’s effectiveness.  The dataset includes a series of three 
nationally-representative cross-sectional anthropometric surveys that were administered in 
1997/98, 2004 and 2011, with the first baseline survey administered prior to the beginning of the 
program roll-out.  These surveys were administered in communities that became treatment and 
control sites after 1998.  In addition to the repeated cross-sections, a prospective cohort of over 
1000 children was followed from communities surveyed in 2004 when the children were less 
than 3 years of age.  Seventy-five participating communities and 75 matched non-participating 
communities were randomly selected for this longitudinal follow-up.     
 
A wide spectrum of developmental outcomes was assessed among children in Madagascar as 
part of the above surveys.  Physical growth (height and weight) were measured in children under 
5 years of age in each of the cross-sectional surveys, as well as in all households of children 
participating in the longitudinal cohort.  Development across multiple domains (including 
physical, mental, and behavioral) was assessed in the longitudinal cohort at two follow-up 
periods, 2007 and 2011, when the children were 3 to 6 years and 7 to 10 years of age.  In 
addition, mathematical and literacy achievement was evaluated in 2011.  In my work presented 
here, for reasons described below, I focus on only two of these measures: weight-for-age  and 
receptive language (i.e., comprehension of words, phrases and gestures used by others), as 
assessed by an adaptation of the Peabody Picture Vocabulary Test, version 3 (PPVT-III).42   
 
I chose weight-for-age because it is one of the primary nutritional outcomes targeted for the 
program evaluation.  Although prone to random error, I also chose weight because it is generally 
an outcome for which sources of systematic error have been previously identified and can be 
avoided during measurement.  A prior analysis of the Madagascar program made use of the first 
two serial cross-sectional surveys to evaluate the impact on weight-for-age.43  The authors of this 
previous analysis found that the program reduced the prevalence of child underweight in treated 
communities during a period of worsening malnutrition in non-treated communities (between 
1997/98 and 2004).43  I revisit these results in the context of a detailed framework for evaluation 
(see sections 1.4 and 1.5).  
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The reasons for my focus on vocabulary (a secondary, more distal outcome of the evaluation) are 
several.  Language proficiency is an important domain of cognition and is integral to children’s 
development across other domains of cognition (such as memory and problem solving), as well 
as to socio-emotional development.  Children’s ability to communicate their feelings and 
thoughts and to understand directions from parents and teachers is largely a function of their 
vocabulary and communications skills and is critical for their future success in school.44  Early 
measures of vocabulary knowledge include lists of common words that caregivers check off as 
being understood (receptive) or spoken (expressive) by a child.45  Expressive language 
(production of sounds, words, or phrases) can be measured as soon as children start to babble by 
counting the number and complexity of sounds an infant makes per minute.  Similarly, receptive 
language can be assessed in infants by asking the mother what words a child understands or 
responds to.  As children enter their preschool years (3 to 5 years of age), many tests of 
language, such as the PPVT, involve direct interaction with the child and no longer rely on the 
report of a caregiver.  The PPVT can be used into adulthood and was used to assess the 
children’s mothers in 2007 and the community nutrition workers in 2011.   
 
Finally, early language ability is predictive of later school achievement across differing cultural 
contexts.44, 46  Assessments of children’s receptive vocabulary have been shown to be strongly 
correlated with poverty in other developing country settings,47 as well as in Madagascar.48  These 
results make it highly likely that my research has the potential for relevance outside of 
Madagascar.  In the next section, I describe the importance of evaluating the performance of an 
instrument, such as the Peabody Picture Vocabulary Test (PPVT), after it has been translated and 
used in a context for which it was not originally developed.  

1.3 Measurement – the case of language 
In the U.S., there are well-recognized and accepted standards to promote the sound and ethical 
use of tests.49  The stakes are high when results on a test can mean the difference between getting 
into a private school or college, or not; getting a job or a promotion, or not; receiving treatment, 
or not.  As a result, great care is taken by U.S. test publishers to develop a “bias-free” test, 
avoiding bias that results in systematically lower or higher scores for a given sub-group of 
respondents (i.e., from differences due to gender, ethnicity, or socio-economic status).  However, 
the development of a new test is a complex and time- consuming process and can be very 
expensive.  For example, the multi-step process for developing the PPVT included extensive 
research on common English words used in the U.S., consultation with subject matter experts, 
iterative cycles of piloting items and performing reliability and validation checks, and 
establishing age and gender-appropriate standards using a representative sample of the U.S. 
population.50  The PPVT was first created in 1959 and is already in its 4th revision; each revision 
attempting to reduce sources of bias (e.g., in each revision, images have been modified to be less 
culturally-biased). 
 
In a series of articles on child development research in Africa, the authors repeatedly emphasize 
the need for “the design and local validation of developmental assessment tools.”51  However, 
due to budgetary and time constraints, U.S.-developed measures are commonly adapted and/or 
translated for use in developing countries (e.g., see the list of tests in the Nores & Bartlett review 
of early child development interventions).52  The evaluation of the Madagascar program was no 
exception.  Tests developed and carefully validated in one country are not guaranteed to maintain 
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their properties if they are adapted and translated for use in another country, and need to be re-
validated in the new setting.53  The process of translation and administration of the test in a 
different cultural and socio-economic setting may result in the loss of the test’s psychometric 
properties and introduce bias into the study evaluation.  For example, the difficulty of a test item 
may increase or decrease when translated, changing the overall order of item difficulty.  A lack 
of knowledge of the age at which children achieve developmental milestones in the local context 
may result in some children hitting a stopping rule prematurely and being censored from taking 
later, potentially easier items.   
 
These issues are discussed in a recent World Bank (WB) publication of a toolkit for adapting or 
developing instruments for assessing children in low-income settings.44  While acknowledging 
the real world constraints, the authors of the toolkit offer practical advice for achieving test 
fairness that include (but are not limited to): careful selection of test materials that are culturally 
appropriate, working with local experts in adaptations and translation, and understanding how 
developmental milestones may differ in the local context.  Many of these recommendations were 
followed in the Madagascar evaluation.  The selection of the tests was based on their successful 
use in other developing countries.48  For example, the PPVT has been translated into many other 
languages and has been used extensively throughout the world for assessing children’s language 
skills.  These uses of the PPVT include a multi-country prospective cohort study of the effects of 
poverty 54 and assessments of the effect of interventions, including nutrition-related experimental 
trials.28, 52, 55  Prior to administration of the test in the Madagascar survey, the words for the 
PPVT were carefully translated in collaboration with a local clinical psychologist.  Pilot runs 
were used to verify that Malagasy children understood and accepted the test.  Although 
reliability checks were performed, no additional validation checks were completed prior to 
administering the survey, such as a comparison to a gold standard instrument (none exists for 
Madagascar). 
 
In the absence of a gold standard instrument against which to validate the PPVT, it is of 
paramount importance that I establish the internal validity of the measure in Madagascar, after 
the fact, but before drawing inference about the program effect.  In chapter 2, I explore three 
main areas of test reliability and validity for the PPVT.  First, I assess the overall test and item 
level performance of the instrument using item response methods (IRM) separately from two 
survey years (when children were 3 to 6 years and 7 to 10 years of age).  Second, I estimate the 
degree of differential item functioning by factors that have been frequently investigated in other 
settings with the same instrument (e.g., gender and language).   Differential item functioning 
(DIF) is a form of bias that can be introduced if test takers with similar aptitudes from different 
subgroups give different responses to items on a test.56, 57  Third, I evaluate the benefits of 
combining the data from the two survey periods in a two-dimensional model that allows for 
information to be shared across years.  I describe the item response methods and discuss their 
relative strengths over classical test theory (CTT).  Although I am unable to establish the external 
validity of the measure outside of Madagascar (i.e., how well the items and instrument would 
perform in another language and context), the results may be generalizable to Malagasy children 
in areas excluded from the study (i.e., provincial capitals).  I present my lessons learned about 
working with the PPVT in Madagascar (e.g., how to test the instrument performance and 
administer the test in the field) and make recommendations for how these lessons can be applied 
in other developing country settings. 
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1.4 Identification of the target parameter – the case of pre/post data 
In chapter 3, I apply the first steps of a roadmap for evaluating the effect of the Madagascar 
nutrition program on children’s mean weight-for-age in a community.58  These steps include 
specifying my research question and causal parameter of interest (the population average 
treatment effect or ATE), and assessing identifiability given the data that I actually observe.  
Importantly, I present the first part of the road map separately from the second part, which 
includes the methods of estimation and inference, and is presented in chapter 4.  I emphasize this 
separation because it is common for the process of identification to be muddled with the process 
of estimation.  In an introductory chapter on econometric evaluations of social programs, Nobel 
laureate James Heckman and co-author Edward Vytlacil point out that analysts often confuse the 
three main issues that face an evaluation: definition, identification and estimation.  The authors 
state that “particular methods of estimation (e.g., matching or instrumental variable estimation) 
have become associated with ‘causal inference’ and even the definition of certain ‘causal 
parameters’ ...”59    
 
As a consequence of this confusion, analysts faced with a new program evaluation may jump to a 
particular statistical method for estimating a causal effect.  Investigators from different 
disciplines will bring distinct theoretical and analytical frameworks to the problem, which can 
lead to differing estimates of the causal effect and contradictory conclusions, in some cases 
without strong theoretical justification for the approaches used.  The choice of method is 
particularly complex in observational studies, and made even more controversial with the 
availability of pre-treatment outcome data (as I will show in chapter 3).  However, the selection 
of an estimator should happen after defining the research question and causal target parameter, 
and after the underlying assumptions necessary to identify the parameter are made explicit.  By 
separating the evaluation of a program’s effect into two chapters, I hope to underscore the need 
to “define first, identify second, and estimate last” (quoted from Judea Pearl’s forward in 
Targeted Learning by van der Laan and Rose).58 
 
For the Madagascar evaluation, I contrast defining the outcome as either the post treatment value 
or the change from pre to post treatment.  Using these two outcomes, I identify three common 
statistical parameters that under different assumptions are equivalent to the causal target 
parameter of interest (the ATE) and I discuss the advantages and disadvantages of each.60  I 
purposely include two difference-in-differences models that are popular in the field of 
econometrics for pre-post data (also known in social sciences as the change or gain score 
method).60-63  I also include a common approach from the epidemiology literature in which the 
pre-intervention outcome (or lagged outcome) is included in the conditioning set of covariates.  I 
avoid relying on parametric models whenever possible, using graphical models (directed acyclic 
graphs) to make the assumptions underlying the three causal models transparent.  I demonstrate 
how the graphs can be used for locating sources of dependencies among variables.  Finally, I 
highlight these dependencies with data simulations, and show how the estimate of the target 
causal parameter diverges from the truth when the necessary assumptions for a given model fail 
to hold.  Although the context for this chapter is specific to the Madagascar study, the process is 
applicable to any program evaluation for which the investigator seeks to interpret an estimated 
effect of treatment on outcome as a causal effect. 
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1.5 Effect estimation – a comparison of methods 
In chapter 4, I follow the second part of the roadmap for evaluating the Madagascar nutrition 
program.58  The final steps of evaluation include estimation of my target parameter and inference 
(i.e., obtaining confidence intervals around the estimate).  In chapter 3, I define my target 
parameter as the average treatment effect (ATE).  In this next chapter, I evaluate whether the 
required assumptions for identifiability of the ATE are likely to hold in the context of the 
observed data from Madagascar, testing the assumptions where possible.  Once identified, the 
causal target parameter can then be estimated, but a decision is needed about the choice of 
estimator, or method for estimation. 
 
An estimator is a mapping function that takes as input an estimate of the distribution (e.g., my 
observed data as represented by the empirical distribution), and returns as output an estimate of 
the true target parameter value (e.g., the ATE).  Ideally, the estimator is unbiased (the estimate is 
equal to the true target value), consistent (converges to the true value as the sample size 
increases) and efficient (has low variance of the estimate).  A robust estimator is one where these 
desired properties are maintained under a wide set of conditions.  The Madagascar study is 
essentially observational, as the program was assigned non-randomly and evaluated ex-post 
facto.  In order to obtain an unbiased estimate of the program effect on mean weight-for-age, I 
require an estimator that ideally has the properties of a robust estimator described above.  In 
other words, I want an estimator that does the best job possible of minimizing bias from 
observed confounders (due to covariate imbalance across treatment groups), as well as from the 
estimation process itself (i.e., does not introduce additional sources of bias).  In chapter 4, I 
explore the characteristics and relative advantages of three candidate estimators:  traditional 
parametric regression, inverse probability of treatment weights (IPTW or propensity score 
weighting), 64-66 and a relatively new method: targeted maximum likelihood estimation 
(TMLE).58, 67 
 
Although commonly used, traditional regression has serious limitations for causal inference, 
such as the reliance on the correct specification of the parametric equation.  IPTW addresses 
some of the issues associated with parametric regression, but is more sensitive to lack of 
experimentation within subsets of the covariates (i.e., if certain subgroups are never treated or 
always treated).  TMLE is a doubly robust estimator with important advantages over the other 
two estimators.  The method does not rely on parametric model assumptions, is expected to 
reduce the bias and variance of my effect estimate, and is flexible enough to explore target 
parameters either at the population level or at the individual level.68  In addition, I present a non-
parametric, data-adaptive approach for prediction (SuperLearner) to use in tandem with the 
IPTW and TMLE estimators.  Finally, I compare estimates (and confidence intervals) for the 
ATE from these three different estimators, for each of the three statistical parameters described 
in chapter 3. 
 
Once again, the context for this chapter is specific to the Madagascar study.  However, the 
choice of estimator is relevant to any program evaluation for which the investigator seeks to 
obtain an unbiased causal effect estimate of treatment on outcome. 

1.6 Implications 
A careful evaluation of the impact of the Madagascar program on early child developmental 
outcomes is warranted.  The results from my research may contribute to the gap in knowledge of 
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the effect of an at-scale nutrition education program on children’s early development.  As 
discussed previously, there is mixed evidence of the effectiveness of large-scale ECD programs.  
Although the lack of consistent results is generally attributed to possible problems of 
implementation and governance of the program, the failure to find a statistically significant effect 
(or alternatively, the success of finding one) may, in fact, be due to the types of problems 
described in my dissertation, or a combination of both (i.e., weak implementation and evaluation 
issues).  There may be bias in the outcome (or other) measure, failure of the causal assumptions 
to hold, or bias from the method of effect estimation.  Misleading estimates of a program’s 
benefit (in either direction) have significant policy and funding implications in terms of making 
recommendations for the continuation, expansion, and/or replication of the program elsewhere.  
More importantly, the decisions we make based on the results of any ECD evaluation have 
important consequences for the children we are trying to help. 
 
  



11 
 

Chapter 2: Measurement – the Case of Language 

2.1 Introduction 
Tests developed and carefully validated in one country (such as the U.S.) are not guaranteed to 
maintain their properties if they are adapted and translated for use in another country.  Once 
exported, the test needs to be re-validated in the new setting.53  In this chapter, I focus on a 
translated and adapted version of the Peabody Picture Vocabulary Test, 3rd edition, version B 
(PPVT-III),42 a measure of receptive vocabulary.  I take advantage of existing data from an 
impact assessment of an early childhood nutrition program in Madagascar to explore three areas 
of reliability and internal validity for the PPVT.  First, I assess the overall test and item level 
performance of the instrument using item response methods (IRM) separately from two survey 
years, administered to the same children, four years apart.  Second, I estimate the degree of 
differential item functioning by two factors that have been frequently investigated in other 
settings with the same instrument: gender and language (or dialect).  And third, I evaluate the 
benefits of combining the data from the two survey periods in a two-dimensional model that 
shares information across years.  I present the item response methods that I will use for assessing 
these three areas, and discuss their relative strengths over classical methods. 

2.1.1 Argument for IRT over Traditional 
Classical test theory (CTT, also known as true score theory) is often used for evaluating test 
performance.69 CTT assumes that each person has a “true score” for a particular ability (or 
characteristic) that would have been obtained if the ability had been measured without error.  In 
other words, the observed score (typically the raw score across all items) for a test consists of a 
person’s true score plus measurement error.  This classical approach to evaluating ability is 
implemented primarily at the instrument level and fails to pick up some sources of bias that can 
occur at the item level.56   Item response models (IRM), on the other hand, focus on modeling a 
subject’s response to each item, allowing investigators to test for item-level bias.70  The item 
response theory (IRT) underlying these models, also known as latent trait theory, is commonly 
used in education and psychology for the design, analysis, and scoring of multi-item tests or 
questionnaires that measure underlying (latent) abilities or attitudes.  IRT is rarely used in public 
health.  The simplest model in IRT is the unidimensional Rasch model where the probability of 
an observed response is modeled as a function of person (i.e., ability) and item (i.e., difficulty) 
parameters.71  Specifically, in the Rasch model, the probability of a correct response is modeled 
as a logistic function of the difference between the person (θ) and item (δ) parameters: 
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where X= the response (each item is scored as 0 or 1), n = nth person, and i = ith item.  The 
mathematical unit of the Rasch model is the log-odds unit or logit and is applied to both the 
person ability and item difficulty parameters.  When a person's ability is equal to the item 
difficulty (i.e., the logit difference = 0), there is a 0.5 probability of a correct response to that 
item for that person.  As the person ability increases relative to the item difficulty, the probability 
of a correct response increases above 0.5. Similarly, as the person ability decreases relative to the 
item difficulty, the probability of a correct response decreases below 0.5.  A logit difference of 



12 
 

+1 is equivalent to a probability of 0.73, and a logit difference of -1 is equivalent to a probability 
of 0.27. 
 
By imposing the Rasch model, I accept that the relationship between the test item difficulties and 
the person abilities conforms to the statistical model shown in the above equation.  To put it 
broadly, as the person ability goes up or the item difficulty goes down, the probability of a 
correct response goes up.  In general, IRT is very useful for evaluating whether the items in an 
instrument are working well with the pattern of person responses obtained in a given sample.  
For instance, are respondents of similar ability mostly getting easy items right, hard items wrong 
and medium items right or wrong about 50% of the time?   Information from an IRT model is 
useful for identifying poorly performing items (i.e., items that don’t fit the Rasch model well) 
whose influence can be removed prior to estimating respondent’s ability.    
 
The common approach in settings where there are no local norms for scoring is either to 
calculate a raw score summary of item responses or to calculate age-standardized z-scores for the 
given analytic sample (the raw score is a strong function of age).  Both approaches fail to take 
advantage of the information available at the item level and have the potential of introducing bias 
into the analysis, if the items did not retain their psychometric properties in the adaptation and 
administration of the test.  Item response models (IRM) are probability models and go beyond 
raw scores: they rely on modeling responses to items by all subjects to estimate person ability 
and are not as sensitive to censoring or missing responses as a raw score total.  The Rasch 
principle of specific objectivity states that as long as the Rasch model holds, then we do not need 
any particular set of persons to obtain the item difficulties, nor do we need to give every person 
the same set of items to obtain their relative proficiency estimates.  IRT provides a clear benefit 
over the classical approach, especially in the case of missing response information. 

2.1.2 Argument for additional DIF testing 
One of the main threats to test validity comes from systematic differences (bias) when the test is 
administered to different groups within the same country or context.  There are two ways that 
subgroup differences may occur.  First, the subgroups may differ in their overall mean ability, 
commonly referred to as differential impact.56  For example, children of highly educated mothers 
perform better on average on a test of intelligence than do children of uneducated mothers. 
Differential impact can be assessed with classical test methods and the subgroup can be treated 
as a confounder in impact evaluations (assuming the difference is not an effect of treatment).  
The difference may reflect a true difference in ability by subgroup and not necessarily a lack of 
fairness in the test.  
 
The second subgroup difference is more subtle and referred to as differential item functioning 
(DIF).  DIF is a measure of whether test takers from different groups (e.g., ethnic groups) with 
similar aptitudes give similar responses to items on a test.  DIF is a measure of item-level bias 
where some items are easier or harder for one group than another.  For example, suppose that 
more English language learners get a particular item wrong in an assessment of “speaking in 
English” than people who are native speakers, even when their overall ability is the same.  This 
favoritism would constitute item bias by native language.  The net effect of DIF may be that the 
groups differ in their overall mean ability if more items favor one group than the other.  But this 
is not a requirement: DIF may exist when the mean ability is the same by subgroup (e.g., if the 
direction of DIF varies by item and is canceled out when the items are summarized into a total 
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score).  As a result, DIF cannot be controlled like a confounder in a regression on the summary 
score. 
 
Therefore, it is important to identify the presence/absence of DIF by key factors.  The absence of 
differential item functioning (DIF) by group membership is an important property of a test and a 
key assumption in the item response model.56  An advantage of IRMs (over the classical 
approach) is that they can be augmented to investigate DIF statistically by incorporating group 
membership into the model.  The probability of a correct response becomes: 
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where G is an indicator for group membership, and γi is an index parameter for DIF by G for 
item i. 
 
The PPVT and DIF in the Madagascar Context  
The PPVT consists of asking a subject to point to the correct image (out of a panel of four 
images) in response to a stimulus word spoken by the examiner.  The images on a panel 
represent similar constructs or subject matter, for example, a panel might have an illustration of a 
candle, lantern, goose-neck lamp, and table lamp (four objects that provide light).  The stimulus 
word might be candle and the distractors are the other three images.  The distractor images are 
not intended to trick the respondent (e.g., they shouldn’t sound alike) and should have an equal 
probability of being selected if the stimulus word is unknown.42  Although originally developed 
in the U.S., the PPVT was chosen for Madagascar because a) it has been used throughout the 
world for intervention impact evaluations; 28, 52, 55 b) early language is predictive of later school 
achievement across differing cultural contexts; 44, 46 and c) assessments of children’s receptive 
vocabulary have been shown to be strongly correlated with poverty in other developing country 
settings.47  Although only available for purchase in American English or in Spanish (known as 
the TVIP), the instrument can be translated for use in non-U.S. cultural or linguistic settings 
upon permission of the publisher.  Validation of the instrument in these settings is left to the 
investigator.  However, the ability of investigators to address validity concerns may be limited by 
constraints imposed by the publisher. 
 
Language background, gender and ethnicity are three common factors used to study DIF in 
language assessments.72  The developers of the PPVT tested for item DIF by gender, 
race/ethnicity (i.e., White, African American, Hispanic, Native American, and other), and 
geographic region of the U.S., prior to finalizing the items included in the third version.50  
However, the PPVT has a history of controversy surrounding the performance of African 
American children on the test.73  Researchers disagree as to whether the differential impact seen 
among African Americans is a true difference in ability or a function of item unfairness.  It is 
likely that issues of poverty among African Americans are confounded with issues of ethnicity 
and culture.  A similar problem may exist in Madagascar, where the dialect spoken is mixed with 
geography, ethnicity and socio-economic status. 
 
The official languages of Madagascar are French and Malagasy.  Official Malagasy is related to 
the Malayo-Polynesian languages of Indonesia, Malaysia, and the Philippines and is derived 
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primarily from Merina, a local Malagasy dialect. 74  Merina is spoken in the capital city and 
surrounding central highlands and has an ancient written tradition from which the official 
language was drawn. There are numerous other dialects spoken around the country that are 
region-specific and vary by ethnic descent. This variation is characterized by how different 
ethnic groups settled the island: Malayo-Polynesian groups settled in the central highlands, 
Arabic in the east and south-east, and African on the west coast. The dialects are mutually 
intelligible and have the same base syntax.  For these reasons, Malagasy is considered a single 
language for translation purposes.  The dialects differ in the pronunciation and vocabulary of 
certain words, with about a 70% similarity in lexicon.75  
 
The extent to which the PPVT has been tested for language DIF in published results from other 
studies in non-English speaking countries is often unclear.  The Young Lives study is an 
exception, as the investigators published a fairly detailed evaluation of the PPVT (or TVIP) in 
two age cohorts and four countries: India, Ethiopia, Vietnam, and Peru.76  The authors of the 
Young Lives study report both classical test reliability information, as well as IRT reliability and 
validity results.  Importantly, the reliability and validity information was assessed after 
“problem” items for a given country or age cohort were excluded.  Problem items were items 
that failed to meet certain fit criteria and DIF by gender or language spoken (i.e., Spanish vs. 
Quechua in Peru).  Based on the summary tables in their online annex, as many as 32 items of 
the first 72 PPVT items were excluded from the Ethiopian Amarigna version for the younger 
cohort (age 4.5-5.5 years).77  A different set of items were deleted for the older Ethiopian cohort.  
Fewer items were deleted from the Indian and Vietnamese versions. 

2.1.3 Argument for Multidimensional model 
In a one-time administration of a test of intelligence or knowledge (such as the PPVT) 
participants are administered more than one item.  The use of a multi-item instrument is 
equivalent conceptually to making repeated, independent measurements of the same construct 
(e.g., vocabulary knowledge) across many “mini” experiments.   As the number of experiments 
(items) increases, the standard error of the estimate is reduced (assuming that the items actually 
represent the children’s ability).  Therefore, I gain precision in the ability estimates by analyzing 
responses to multiple items.  With IRT, the theory relies on conditional independence of the 
items: for a given person proficiency, the items are assumed to be statistically independent of 
each other.  Although it seems counter-intuitive for the items of a test to be uncorrelated, this 
assumption holds after conditioning on ability.78  The assumption will fail if some dimension of 
ability that influences performance is not taken into account by the model.  For example, if there 
is an unaccounted skill necessary for a correct response to an item, such as the ability to speak 
French, then the assumption fails. 
 
I can improve the precision of the estimated person ability by repeating the administration of the 
test at multiple time points.  However, I need to assume that the participants are not responding 
the second time by remembering their responses from the first time, in other words that their 
responses are independent between time points.  One approach to utilizing repeated measures is 
to calculate a weighted mean of the estimates obtained for each person at each separate time 
point, where the weight might be the inverse of the absolute difference in ability over time.  
However, this approach does not take advantage of the correlation of the latent ability of each 
person between time points.  An alternative approach is to use multidimensional IRT. 
 



15 
 

Multidimensional IRT models are an extension of unidimensional models, such as the Rasch 
model, and allow for subsets of items that measure different latent variables to be incorporated 
into a single model of a construct.  With two administrations of the test, items administered in 
both years “anchor” the two periods together (assumes that their inherent difficulty has not 
changed) and allows for an estimate of the baseline skill and gain in ability over time.   The 
theoretical framework that I use in this chapter is a latent growth item response model (LG-IRM) 
for two time points described by Wilson, Zheng, and McGuire. 79  Multidimensional item 
response models are considered more efficient than unidimensional models, providing better 
estimation accuracy of person abilities in one dimension (i.e., skill at time point 1) by using 
shared or collateral information from the correlated abilities in the other dimension (i.e., skill at 
time point 2). 80 
 
A Two-Dimensional Model in the Madagascar Context  
I use a multidimensional item response model for the evaluation of the PPVT in Madagascar for 
the cohort of children who were assessed in 2007 and 2011.  Although the experience of being 
tested in 2007 was certainly memorable for the children, I think that the first experience will not 
influence the responses in the second.   First, the time between surveys was long (4 years) and 
the children were very young at the first administration (3 to 6 years).  Second, the PPVT was 
one out of 9 tests administered over a 1 hour period in 2007, so it unlikely that the children 
remember the specifics of how they responded to any one test.  Finally, the children were not 
given the correct answers, so I would not expect them to have learned new words in the PPVT 
from their first exposure.  A direct comparison of the raw score totals between time points would 
not be informative since the test administration method differed by year.  There was a high level 
of censoring in 2007 because the test was administered as recommended by the publisher (i.e., 
with stopping rules; see methods section for detail).  In contrast, nearly all children were 
administered 72 items in 2011 (to avoid censoring) providing a much better estimate of 
vocabulary knowledge.  I expect that the standard errors of ability estimates in 2007 will be 
reduced on average by “borrowing” information from these uncensored responses in 2011, an 
advantage that operates via the improved item estimates from the two-dimensional model. 

2.1.4 Summary 
In summary, I will use item response models to evaluate the performance of the PPVT in 
Madagascar, including: obtaining overall reliability estimates of the instrument, testing for 
individual item fit, and testing for differential item functioning.  Based on this, I can recommend 
removing items with evidence of poor fit from the model, allowing items with differential item 
functioning to vary by subgroup, and using multidimensional IRM to gain shared information 
from the repeated measures. 

2.2 Methods 

2.2.1 Sample & Language Data 
Children from 150 communities in all six of Madagascar’s provinces were represented in the 
longitudinal cohort.   Many of the same interviewers were hired in 2007 and 2011 to administer 
the PPVT.  The test givers worked in pairs (one administering the test and one scoring), and 
received extensive classroom and field training prior to both surveys.  All the words in the 
PPVT-III booklet B were translated, but only the first 96 words were ever administered to the 
children.  In 20 of the items, no equivalent word exists in Malagasy.  Therefore, these words 
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were “malagachisé” from the French equivalent (e.g., the French word for walrus was said with a 
Malagasy intonation).   The Malagasy and French words were then back-translated into English 
by another party.  Words without a Malagasy equivalent that were administered to the children 
are: kangaroo (15), ambulance (33), panda (38), dentist (43), hyena (75), walrus (80), and 
tropical (86).  In addition, the French words for circle (10) and triangle (39) were used in 2007 
because geometry is taught in French in Madagascar, and the Malagasy word is unfamiliar to 
children.  However, these words were changed to the Malagasy equivalent in 2011.  Finally, a 
few images were modified that were culturally inappropriate or ambiguous in the local language 
(i.e., a depiction of US dollars and cents was replaced with a picture of ariary and iraimbilanja, 
the currency used in Madagascar). 
 
The PPVT is administered in sequential series of 12 items (panels of four images) and stopped if 
the respondent makes 8 or more mistakes in a series.  Stopping rules prevent test fatigue, but rely 
on the series being ordered with increasing difficulty.  In 2007, children were started at series 1 
and continued through to series 6 or until they hit the publisher’s recommended stopping rule.  
Therefore, children in 2007 had a minimum of 12 items (from the first series) and a maximum of 
72 items (all 6 series) administered.  In an initial analysis of the 2007 Madagascar data, I found 
that the ordering of the items by difficulty had been changed by translation.  Re-ordering of 
items is not allowed by the test developers and was not done.   The risk of both right and left 
censoring is high from the use of start or stopping rules, if the order of item difficulties is gone. 
To avoid censoring of easy items occurring in high numbered series, children in 2011 (7-10 years 
of age) were started at series 3 and continued to series 8 without stopping, for a total of 72 items 
administered.  A subset of 48 overlapping items was administered in both years.   
 
A total of 1372 children took the PPVT in at least one of the years, 1244 children completed the 
test in 2007, 1224 children in 2011, and 1096 children in both years.  Of these, 346 children had 
at least one common item administered both years.  Note that in order to be included in this 
subsample, the children needed to have completed at least the first three series of items from the 
PPVT in 2007.  This effectively restricted the subsample to a maximum of 388 children due to 
the use of stopping rules in 2007.   The actual subsample of 346 is used for calibrating the 
common items that are used as anchors in the multidimensional model.   How these children 
differ from the remainder of the sample is explored. 

2.2.2 Classical Test Methods 
Raw score totals were calculated from the items administered to each subject, with one point 
given for every correctly identified word.  Respondents starting later than the first series are 
usually credited for any earlier series not administered, but this assumes that a) the order of item 
difficulty is not lost and b) the basal set (or the set of items that respondents can answer all or 
nearly all items correctly) is found for each child.  In this analysis, the total raw score only 
includes items actually administered to a child.  The published norm-referenced scores for the 
PPVT are based on a U.S. sample and are not an acceptable standard for children in Madagascar 
(they are not used here).50 
 
Pair-wise Pearson or Spearman rank correlations were obtained between the scores and several 
demographic characteristics, including mother’s education and household wealth.81  The 
household wealth index had been previously generated using principal component analysis to 
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aggregate wealth-related variables (i.e., asset ownership and dwelling characteristics such as 
electricity, running water, composition of floor, walls, and roof) into a single measure.48 
 
Evidence of reliability, or evidence that the PPVT is yielding consistent results, was obtained in 
2011 with the Cronbach’s alpha indicator.82  This indicator is a measure of internal consistency 
that identifies how well the responses on different items of the test are correlated.  Excellent 
inter-rater reliability (>0.95) was obtained during the training session for the 2007 survey.  Test-
retest reliability data was not obtained. 

2.2.3 Unidimensional Models 
Separate unidimensional random coefficients multinomial logit (RCML) models were run on the 
data at both time points (n=1244 and n=1224 children in 2007 and 2011 respectively).83  The 
responses to the items were dichotomized into correct/incorrect (1/0) score and a Rasch rating 
scale was used for the model.  Item difficulty estimates were obtained based on the pattern of 
children’s responses to item numbers 1 to 72 in 2007 and items 25 to 96 in 2011.  Therefore, two 
sets of item difficulties were estimated for the 48 overlapping items 25 to 72, and estimates made 
for a total of 96 items.  In each unidimensional model, the mean of the item difficulty parameters 
was constrained to zero by constraining the value of the ‘last’ item parameter to the negative sum 
of the other items. 
 
In all IRT models discussed in this chapter, child ability estimates are constructed from their 
expected a-posteriori (EAP) distribution, where the latent ability distribution is assumed to be 
Gaussian (mean = 0, standard deviation = 1).  EAP relies heavily on the distribution of the data, 
and therefore is sensitive to the sample population.  For individuals with little data, the 
distribution is relied on more heavily, for those with a lot of data, less so.  In addition, EAP 
underestimates the variance so that the EAP estimates are “shrunken,” which would lead to bias 
in the item parameter estimates.83  Alternative estimation procedures are available, such as 
maximum likelihood estimation (MLE), which is not influenced by the population model.  
However, EAP is the preferred technique in situations where there is a substantial amount of 
missing data.83  Vocabulary items that were not administered to a given subject were treated as 
missing data.  Therefore, EAP was chosen to handle the censored data in 2007, as well as the 
inherent missing data in the multidimensional model (to be discussed in the next section). 
 
Wright maps are shown in the Appendix for the separate models.  A Wright map is a useful 
visual representation of the estimation results as it places the item difficulties and person abilities 
on the same logit scale.  On the left hand side there is a histogram of X’s, illustrating the 
distribution of person ability, where each X represents a subset of respondents (noted at the 
bottom of the map).  The item responses are located on the right side of the map at the point 
where a respondent has a 50% chance of responding correctly to the item (also known as the 
Thurstonian threshold).84  Persons with abilities above the threshold have a greater than 50% 
chance of getting the item right and persons below the threshold have less than a 50% chance.  A 
quick glance at the Wright map can tell me a) the approximate item ordering from easy to hard, 
b) whether the distribution of the person abilities is approximately normally distributed, and c) 
how well the item difficulties cover the full range of person ability. 
 
Standard errors of measurement (SEM) are obtained for both the item difficulty and person 
ability parameter estimates.  The SEMs for item difficulty are generally small in large samples, 
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since there are a large number of responses to any one item.  Similarly, the SEMs for person 
ability are a function of the number of items administered to the respondent.  When plotted 
against the ability estimates, the SEMs for ability will typically take on a U-shaped pattern if 
there is a good overlap between item difficulty and person ability.  Specifically, the errors are 
lowest for respondents who were administered a large number of items centered on their ability.  
The errors increase for respondents with ability estimates at the extremes where there are fewer 
items with difficulties close to their location.  
 
For evaluating the fit of the items to the model, I use a weighted mean square (MNSQ) fit 
statistic, or infit, which is a measure of how well the Rasch model fits the observed responses for 
an item.84  Specifically, the infit statistic is a ratio of the variances of the observed residuals over 
expected residuals.  Therefore, an infit equal to 1 indicates that the observed residuals vary as 
much as would be expected by chance.  Infit values above 1 denote positive misfit, or more 
variation than expected.  Infit values of less than 1 denote negative misfit, or less variation than 
expected.  Deviations from 1 are evidence of lack of fit, but some deviation is expected due to 
random measurement error.  The infit is considered by other researchers to be within an 
acceptable range if it falls between 0.75 and 1.33 (=3/4 and 4/3).84  Evidence of statistically 
significant misfit is obtained if a t-statistic is greater than +/- 2 (the t-statistic is based on a 
transformation of the infit into a standard normal distribution).84   Negative misfit is usually less 
of a concern than positive misfit, as negative misfit generally represents a highly discriminating 
item.  However, having multiple items that are highly discriminating is redundant and may 
extend the length of the test unnecessarily. Although it would not be surprising to find some 
significant misfit given my large sample size, I will look for patterns among the items that 
demonstrate significant misfit.  
 
Item characteristic curves provide a graphical representation of the fit of the item.   The 
probability of a correct response is plotted as a function of person ability and has an S-shape.  
Persons with low ability with respect to the item difficulty are expected to have a low probability 
of success on the item, whereas persons with high ability with respect to the item have a high 
probability of success.  The plots included in this chapter show both the empirical item 
characteristic curve (based on the observed data) and the modeled curve. 
 
Finally, a second measure of instrument reliability is available from the item response model, 
which should give comparable results to the Cronbach’s alpha indicator.  The person separation 
reliability indicator is calculated as the difference in the observed total variance of the estimated 
abilities and the residual variance not explained by the model, divided by the variance explained 
by the model. 
 
Differential Item Function by Subgroup (Unidimensional) 
Differential impact and differential item functioning was assessed for gender and language 
spoken in the home in the unidimensional models.  A dichotomous indicator variable was used 
for language based on the following survey question posed in 2011 to the primary caregiver for 
the child: “What language do you speak with your child at home: official Malagasy, French, or a 
local dialect?”  Missing data from children only observed in 2007 was imputed from the 
community median response.  Since French was selected only a couple of times, these 
observations were replaced with the community median as well.  Although, testing for 
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differences by province or geographic location would capture more detailed differences amongst 
the dialects, this analysis was not performed.   
 
Differential impact and DIF are tested by adding two terms into the unidimensional Rasch 
model: a term for group membership (e.g., gender) and an interaction term between the item and 
the group.  The parameter estimate obtained for the group membership is an estimate of the 
overall mean difference in abilities between the subgroups (e.g., the difference between boys and 
girls).  If this parameter estimate is more than 1.96 times its standard error, the difference is 
considered statistically significant. 
 
A single parameter is estimated per item*group for one of the subgroups (e.g., the girls).  The 
parameter for the other group is constrained as the negative of this estimate (centered on zero).  
The DIF effect size is then calculated as two times this item*group-specific parameter. The 
effect size is categorized as negligible (<0.426 logits), medium (≥0.426 and ≤ 0.638 logits), or 
large (>0.638 logits).  This classification scheme is based on a log transformation of the Mantel–
Haenszel (MH) common odds ratio and is consistent with the Educational Testing Service (ETS) 
DIF categories. 85  DIF of an item was considered statistically significant if the effect size was 
greater than 1.96 times the standard error of the item*group parameter estimate.  Items were 
examined if there was evidence that the DIF was both statistically significant and if the effect 
size of the DIF was larger than 0.638 logits.  
 
Throughout the chapter, a reference to an item exhibiting DIF implies that the DIF was large and 
statistically significant, unless otherwise specified.  Some items may have small to moderate DIF 
that is significant or large DIF that is not significant, but these items are not typically included in 
the DIF item counts discussed in this chapter. 

2.2.4 Multidimensional Model 
Many of the same methods discussed in the above two sections apply to the multidimensional 
model.  However, building a multidimensional model is more complex than implementing the 
unidimensional models.  Figure 2.1 depicts the relationship between the latent language abilities 
from the two time periods, the observed responses to individual vocabulary items, and the 
estimated difficulties of those items. The details of building the model are described next. 
 
Anchor Item Identification & Calibration 
The first part of the process involves identifying the set of items administered in both years that 
will act as anchors in the multidimensional model.  Anchored items are required to have 
constrained difficulties that do not differ from one year to the next.  In other words, the anchors 
cannot exhibit DIF by the year that they were administered.  In this way, children can be 
assessed on the same quantitative scale in both years.  The estimation of these anchored item 
difficulties are obtained from the restricted subset of children who were administered at least one 
item in both years from the 48 common items (n=346). 
 
First, separate unidimensional calibrations were repeated on the sub-sample to see if the overall 
item fit statistics differed from those obtained from running separate models on the full sample.  
For a simple evaluation of DIF, the item difficulty estimates in 2007 were plotted against the 
estimates from the 2011 data for the overlapping 48 items.  Items were flagged that differed by 



 
 

Figure 2.1: Theoretical IRT-Based Model for Measuring Language Acquisition 
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more than 0.638 logits between years, and compared with the concurrent differential item 
functioning analysis described in the next paragraph. 
 
The set of anchor items (out of the 48 common items) was identified in a more formal, iterative 
process.  Specifically, DIF by year was tested in a concurrent analysis of the responses to the 
common items in both years using a unidimensional model (one row per person per year).  An 
interaction term for the item times year was added to the model.  Items were removed as anchor 
candidates if there was evidence that the DIF was both statistically significant and if the effect 
size of the DIF was larger than 0.638 logits (see method for DIF testing by subgroup in section 
2.4).85  The process of testing for DIF was repeated with the remaining items, until no additional 
DIF was found in a final subset of common items. 
 
Once the anchor items were identified, a two-dimensional item response model was run on the 
responses to the anchor items in both years from the subset of 346 children.  This constitutes the 
calibration step that generates a set of item difficulty parameters that will be constrained in the 
full model (see next section).  The parameters generated in this calibration step were exported, 
with the parameter for the last item computed as the negative sum of other items.   
 
Complete Multidimensional Model 
The second part of the model building process involves constraining the parameters for the 
anchor items, obtaining item difficulty estimates for the remaining items, and estimating person 
ability in both years.  This is done by importing the anchor item parameters (as described above) 
into a new two-dimensional model that now includes all of the items and responses for all of the 
children.  The non-anchored item difficulties are estimated by this new model and allowed to 
vary in difficulty by year.  These items include items administered in only one year and common 
items that failed the DIF test by year.  In this way, the maximum number of items is retained and 
can contribute to the ability estimates of the subjects.  Because the anchored items have 
constrained difficulty parameters, no additional constraints were set. 
 
As with the unidimensional models, the Wright maps, standard errors of measurement and item 
fit are inspected.  The multidimensional Wright map shows the ability estimate by year with two 
histograms and the overall difference in the mean child ability by year is calculated.  Items 
administered in only one year and the items with DIF do not contribute to the “gain” estimate 
between years, but they are contributing to the accuracy of the subjects’ ability estimates.  
Correlations of the two dimensions are obtained directly from the software package and are dis-
attenuated for measurement error. 
 
Differential Item Function by Subgroups (Multidimensional) 
Differential item functioning by gender and language was repeated with the two-dimensional 
model.  The method differs from that described in section 2.2.3 in two ways.  First, all the item 
parameters from the complete two-dimensional model are exported for the 96 items (anchor and 
non-anchored items).  Next, separate unidimensional models are run for each year, importing and 
constraining the item parameters from the two-dimensional model (items 1-72 for 2007 and 25-
96 for 2011).  As before, an item*group interaction term is added to the model to test for DIF.  
Since the item difficulties are all constrained, no additional constraints are used.   
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Unlike previously, the item*group parameters are not constrained to be centered at zero in this 
model.  Therefore, two parameters are estimated for each subgroup. The DIF effect size is 
calculated as the difference between these two item*group parameters.  The same DIF effect size 
categorization and significance testing was performed as before.  Note that the standard error of 
the DIF effect size was roughly calculated by taking the square root of the average variance of 
the two estimates.   

2.2.5 Software 
ACER ConQuest version 2.0 was used for all of the IRT modeling.83  Stata/MP 10.1 for 
Windows was used for cleaning and generating the dataset, and for raw score statistics. 

2.3. Results 

2.3.1 Sample Characteristics 
Just over half of the children in the sample (assessed in either year) are female (51.4%).  The 
mean age was 54.6 months (SD 10.4, range 33-73) and 103.2 months (SD 10.5, range 81-126) in 
2007 and 2011, respectively (see table 2.1, last column).  Less than a fifth of the sample reside in 
urban areas (17.9%) and they are fairly evenly distributed across the six provinces in 
Madagascar.  The fewest reside in the remote northern province of Antsiranana (6.1%) and the 
largest percentage in the southern province of Toliary (27.4%).  Approximately 24% of the 
children’s mothers’ are uneducated, about half have some primary school education (55.6%), and 
fewer than 21% achieved secondary or above education.   
 
A dichotomous indicator for language was set equal to 0 if the primary caregiver reported that 
the language spoken at home with the child is official Malagasy, or equal to 1 if a local Malagasy 
dialect other than the official language is spoken.  Over three quarters of the children speak a 
local dialect in their home (76.4%).  Language spoken is almost entirely a function of province 
with approximately 61% of official Malagasy speakers living in the central province of 
Antananarivo (where the capital is) and another 23% in the neighboring province of 
Fianarantsoa.  Language spoken is also a function of household socio-economic factors.  Among 
the mothers with no education, the percentage of children who speak a local dialect at home goes 
up to nearly 92%.  And among the poorest households (the bottom wealth quintile in the sample), 
the percentage of children who speak a local dialect is 95% versus 58% in the wealthiest 
households (top wealth quintile).    
 
Nearly 12% of children were reported by their mothers to have some type of developmental 
delay, or hearing or sight disability.  Note that these reports may not be based on a doctor’s 
diagnosis and are subject to inaccurate reporting.  Specifically, two questions were asked of the 
primary caregiver: 1) Does your child have hearing problems or difficulty in seeing, either 
during the day or at night; and 2) Compared with other children his/her age, do you think that 
your child has a serious delay in his/her mental development?  The reports of delay or disability 
did not differ significantly by household wealth or mother’s education. 
 
The subset of 346 children with at least one common item from both years were on average 4-5 
months older, more likely to speak official Malagasy at home, to live in an urban location or in 
the capital province, and to have a mother with secondary or above education.  These results are 
consistent with children who are more likely to have completed at least 3 series of items in 2007 
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before being censored.  Even so, all demographic groups are reasonably well represented by the 
subgroup (see table 2.1, third column).  These results, combined with the IRT assumption of 
specific objectivity (we do not need any particular set of persons to obtain the item difficulties), 
suggest that the subset group is adequate for obtaining item difficulty estimates on the anchor 
items for the two-dimensional model.  
 
Table 2.1: Summary demographics by inclusion in the anchor item estimation 
 No common items Had common item(s) All children 
N  1026 346 1372 
Female (%) 51.4 50.3 51.1 
Mean age in '07 (range) 53.2 (33-72) 58.6 (36-76) 54.6 (33-76) 
Mean age '11 (range) 101.6 (81-126) 107.1 (83-124) 103.1 (81-126) 
Speaks local dialect† (%) 80.8 63.3 76.4 
Urban location (%) 15.0 26.6 17.9 
Concern for developmental 
delay or impairment† (%) 

11.2 13.0 11.7 

Wealth Quintiles (%)    
1st 21.7 16.5 20.4 
2nd 22.0 12.7 19.7 
3rd 22.1 14.2 20.1 
4th 19.2 24.0 20.4 
5th 13.7 32.7 18.5 
missing 1.2 0.0 0.9 

Mother's education (%)    
none 26.1 16.2 23.6 
primary 56.5 52.9 55.6 
secondary or above 17.4 30.9 20.8 

Province(%)    
Antananarivo 13.1 21.7 15.2 
Fianarantsoa 21.9 21.4 21.8 
Toamasina 19.1 13.3 17.6 
Mahajanga 12.3 10.7 11.9 
Toliary 26.6 29.8 27.4 
Antsiranana 7.0 3.2 6.1 

† The variable for local dialect is a binary indicator that the child speaks a Malagasy dialect other 
than the official Malagasy language at home.  The variable for concern is a binary indicator for a 
yes response to either of two questions about hearing or sight impairment, or mental 
development as compared to other children of the same age. 
 
Classical Test Scores 
In 2007, the mean raw score for children is 13.6 words, but the distribution is right-skewed with 
a median of 11 words, and range of 1 to 57 words (SD 8.7 words) (see table 2.2).  Approximately 
10% of children were administered only 12 items, stopping after the first series, and another 54% 
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were stopped at the second series.  Less than 5% of children made it to series 6.  The raw score 
total distribution is bimodal, with a peak around 4 words for children who were censored at the 
first series, and a second peak at 10 for those who made it to the second series or beyond (see 
Appendix A1, figure 2.7 for histogram).  In 2011, nearly all children were administered 72 items 
since the stopping rule was ignored.  The mean raw score total in 2011 is 30.5 words, with a 
more normal distribution than in 2007 (median 29, range 11 - 60, and SD 9.5 words).  As 
expected, the raw score is strongly related to age, with an average gain of about 1 word for every 
4 months of increasing age in both periods.  The average gain in ability from 2007 to 2011 
cannot be directly estimated as the scores are on two different scales (and credit was not given 
for items that were not administered).  However, the raw scores in 2007 are positively correlated 
with those from 2011 with a Pearson correlation of 0.42 (table 2.2).  
 
Table 2.2: Comparison of Models 
 Raw Scores 2 Separate 

Unidimensional 
Multi-
dimensional 

Items used to estimate ability 12 – 72 items 72 items  96 items 
Model fit N/A 142845 142939 
Mean (SD) 2007 ability 13.6 (8.7) words -0.86 (0.49) logits -1.07 (0.47) logits 
Mean (SD) 2011 ability 30.5 (9.5) words -0.37 (0.57) logits -0.12 (0.57) logits 
Mean “gain” in ability N/A N/A 0.95 logits 
Correlation of ’07 and ’11 
scores† 

0.424 0.437 (dis-
attenuated: 0.598) 

0.588 

Median (range) 2007 SE  N/A 0.37 (0.21-0.49) 0.34 (0.15-0.44)‡ 
Median (range) 2011 SE  N/A 0.25 (0.24-0.30) 0.25 (0.14-0.28)‡ 
Separation Reliability 2007 N/A 0.641 0.636 
Separation Reliability 2011 N/A 0.832 0.777 
† Raw and unidimensional score correlations are Pearson correlations.   The raw score correlation 
is not corrected for measurement error.  Multidimensional score correlation is obtained directly 
from Conquest and are corrected for measurement error 
‡ Excludes standard error of estimates for children not administered the test in a given year 
 
The raw scores were significantly correlated with mother’s education (coded as none (0), 
primary (1), or secondary and above (2)) and household wealth index, with a larger positive 
correlation for the older cohort (see table 2.3). The Pearson correlation of the score and 
household wealth index is 0.35 and 0.53 in 2007 and 2011, respectively.  Speaking a Malagasy 
dialect at home other than official Malagasy (using the binary indicator described previously) is 
negatively correlated with the score (Spearman rank correlation of -0.23 and -0.41 in 2007 and 
2011, respectively).  Neither gender nor report of developmental delay/disability was 
significantly correlated with the scores in either year.   

2.3.2 Separate Unidimensional Models 
Separate unidimensional IRT models were run on all participating children in 2007 and 2011.  
 
Instrument Reliability 
The Cronbach’s alpha in 2007 is not reported here due to the high percentage of response data 
that is missing for the administered items (59%).  The person separation reliability is moderate at 
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0.64, which is in part due to the relatively small number of items administered to children who 
were stopped.  The low reliability can also be explained by the poor overlap between the item 
difficulties and the children’s estimated abilities (see Wright Map in Appendix A1 figure 2.9).   
In other words, the first 72 items of the PPVT were too hard for most of the children.   
 
In 2011, the alpha coefficient is very good at 0.85 and the person separation reliability is 
reassuringly comparable at 0.83.  Most of the children in 2011 were administered all 72 items, 
with less than 1% of the response data missing.  In addition, there is a good overlap between item 
difficulties and person abilities in 2011 (see Wright Map in Appendix A1 figure 2.10). 
 
Table 2.3: Correlations of test scores with demographics 
 2007 2011 
 Raw 

score 
1D IRT 
score 

2D IRT 
score 

Raw 
score 

1D IRT 
score 

2D IRT 
score 

1D IRT score 0.89 1  0.999 1  
2D IRT score 0.92 0.97 1 0.995 0.996 1 
Female -0.02 -0.02 0.00 -0.05 -0.05 -0.02 
Speaks local dialect† -0.23 -0.24 -0.32 -0.41 -0.41 -0.40 
Urban location 0.20 0.20 0.19 0.16 0.16 0.15 
Concern for 
developmental delay 
or impairment† 0.02 0.03 0.04 0.02 0.02 0.03 
Maternal education† 0.21 0.21 0.29 0.39 0.39 0.38 
Household wealth 
(index) 0.35 0.32 0.41 0.53 0.53 0.52 
† The variable for local dialect is a binary indicator that the child speaks a Malagasy dialect other 
than the official Malagasy language at home.  The variable for concern is a binary indicator for a 
yes response to either of two questions about hearing or sight impairment, or mental 
development as compared to other children of the same age.  Mother’s education was coded as 
ordinal categories: none (0), primary (1), or secondary and above (2). 
 
Respondent Measures 
The ability estimates obtained from the separate IRT models range from -2.2 to 1.1 logits in 2007 
to -1.7 to 1.4 logits in 2011.  The distribution of the IRT ability estimates in 2007 has a much 
more normal appearance than the raw scores.  However, the IRT estimates are highly correlated 
with the raw totals, as expected (see table 2.3).  As with the raw scores, the average gain in 
ability from 2007 to 2011 cannot be estimated as the estimates are on two different scales.  The 
ability estimates in 2007 are positively correlated with those from 2011 with a Pearson 
correlation of 0.44.  Correcting for attenuation by measurement error gives an estimated 
correlation of 0.60 (dis-attenuated by dividing the correlation by the square root of the product of 
the reliability coefficients of the two years).86, 87 
 
The standard errors of measurement as a function of ability estimates are shown in figure 2.2 for 
both 2007 and 2011.  The slightly U-shaped pattern obtained in 2011 is typical for item response 
models.  The error increases for respondents with ability estimates at the extremes where there 
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are fewer items with difficulties close to their location.  This also explains the distinct pattern in 
2007 for the number of series administered to the children, with increasing standard errors as the 
amount of censoring increases.  For the approximately 10% of the children administered a single 
series (5 series censored) the standard errors ranged from about 0.45 to 0.5 logits, and the 49% 
administered 2 series had standard errors approximately 3.5 to 0.4 logits.  Two children 
answered fewer than 12 items in 2007, had very high standard errors, and were dropped from the 
analysis.  The children administered all 6 series (72 items), in either year, have the lowest 
standard errors between 0.2 and 0.3 logits.   
 
Figure 2.2: Standard error of measurement for separate unidimensional models by year 

 
 
A respondent with a standard error of measurement of 0.25 logits has a 95% confidence interval 
(CI) of ± 1.96*0.25 logits (approximately1 logit) around their estimated ability (e.g., for an 
estimated ability of 0 logit, the CI is -0.49 to 0.49 logits).  This 95% CI is about a third of the full 
range of the respondent locations in 2007 and a fifth of the range in 2011.  Children who were 
censored after the first series have confidence intervals that are nearly double that at 2 logits 
wide. 
 
Internal Structure 
The internal structure of the instrument was checked at the instrument level and at the item level 
with the use of item fit statistics and Wright maps from the two separate unidimensional Rasch 
models. 
 
The table of item statistics and the Wright map for 2007 show that the item difficulty estimates 
are distributed from approximately -4 to 2 logits with most items clustered to the high end (see 
Appendix A1 table 2.4).  The respondents have a skewed distribution of abilities centered well 
below zero, near -0.9 logits.  A comparison of the distribution of item difficulties against the 
distribution of person abilities indicates that the items were more difficult overall for the 
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respondents than desired in 2007.  In 2011, the difficulty estimates are reasonably distributed 
from approximately -2.7 to 2.1 logits.  The respondents have a similar distribution of abilities 
centered near zero.  The item difficulties are dispersed fairly evenly across the full range of 
person abilities in 2011. 
 
The order of item difficulties is described by the publisher as a) within a series of 12 items, the 
easiest 3 items are given first and the hardest 3 items are given last, and b) items in a series 
increase in overall difficulty as the series number increases (i.e., all items in series 1 should be 
easier than all items in series 2).50  The item difficulty estimates obtained in Madagascar indicate 
that the ordering was lost in both years, as was expected.  For example, item 68 in series 7 
(tortoise) was easier than almost all of the other items, whereas item 29 from series 3 (coin) was 
harder than most. 
 
The item difficulty estimates were inspected for all items administered in both years.  In 2007, 
the standard error of measurement for the item difficulties ranged from 0.06 to 0.25 logits, with 
the exception of item 72 (SE 1.2 logits).  The estimate for item 72 was constrained to be the 
negative sum of the other difficulty estimates and was administered to 59 children in 2007 (<5% 
of the sample).  In 2011, the standard errors on the item estimates were much smaller on average, 
ranging from 0.05 to 0.06 logits, with the exception of the last constrained item 96 (SE 0.43 
logits).  These results are consistent with the larger number of responses obtained in 2011 for all 
of the items. 
 
Figure 2.3: Three item characteristic curves by scores in 2011 (items 52, 86 & 89) 

 
 
Overall, the fit of the item responses to the unidimensional Rasch model was reasonable.  The 
weighted mean square fit statistics (infit) for all of the items are within the acceptable boundaries 
of 1.33 and 0.75 (see figure 2.12 in Appendix A1).  Although the items were within the 
acceptable bounds, the infit differed significantly from 1 for a number of items (t-statistic for the 
infit less than -2 or greater than 2).  Given the large number of items tested for misfit and the 
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large sample size, I would expect to find some statistical evidence of misfit.  However, the t-
statistic for the infit was as large as -10 (item has less variation) and +8 (item has more 
variation).  In 2011, 18 items exhibited statistically significant negative infit and 13 items had 
statistically significant positive infit.  Examples of three item characteristic curves are shown in 
figure 2.3: items 52, 86, and 89.  Item 89 (river) is an example of an item with excellent fit (infit 
0.99, t-statistic -0.3).  Item 52 (huge) is an example of an item with negative infit (infit 0.85, t-
statistic -7.8).  And item 86 (tropical) is an example of an item with positive infit (infit 1.16, t-
statistic 8.2).  Notice that the observed probabilities are fairly flat across the range of person 
ability for item 86 (less discriminating), whereas item 52 has a steeper curve than expected by 
the model (more discriminating). 
 
I looked for patterns that might explain the evidence of statistical misfit. First, I checked for 
patterns by type or difficulty of the words.  Over a third of the items with significant negative 
misfit were action verbs, with item 30 (peeking) having the strongest evidence in both years.  
However, nearly a third of the items with significant negative misfit were also action verbs.  
Perhaps more interestingly, half of all of the French words administered to the children had 
significant positive infit in one or the other year of test administration. 
 
Next, I checked for patterns that might be associated with the length of the test and choice of 
distractor items.  The local Malagasy clinical psychologist had noted that children who were 
bored towards the end of the test tended to pick either the top right (#2) or bottom right (#4) 
image in the panel, sometimes even before the word was spoken by the test giver.  Her 
observation is supported by the data.  The distractors were clearly not chosen at random.  In 
exactly half of the items, the most common distractor image selected was #2 (upper right). The 
next most common distractor was image #4 (bottom right).  The bottom left image (#3) was the 
least likely distractor to be selected (only 8% of the time).  Therefore, I can assume that more 
children will get an item right than expected by chance alone if the correct response corresponds 
to image #2.  In fact, nearly half of the items with significant positive infit were items with image 
#2 as the correct response in 2011.  It appears that if the children are tired from the length of the 
test and don’t know the word, they are more likely to pick image #2.   This is reflected by the 
positive misfit items including more, higher numbered items (~60% were from the last 2 series in 
2011).  Test fatigue probably would have been alleviated if the items had been re-ordered 
according to the local difficulty (subject to obtaining permission by the publisher). 
 
DIF by gender and language 
Differential item functioning was tested for gender and language spoken in the home.   
 
Gender 
In 2007, the estimated difference in overall ability (impact difference) by gender is 0.11 logits 
(SE 0.012), with girls finding items harder on average than boys.  The actual parameter estimate 
for girls is 5 times larger than its standard error, so the difference by gender is significant.  In 
2011, the overall difference by gender is much smaller, 0.05 logits (SE 0.008), but still 
statistically significant and favoring boys.  
 
At the item level, 5 items demonstrated large and statistically significant DIF by gender in 2007, 
and none in 2011.  In 2007, two of the items favored girls (items 26 and 60) and three items 
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favored boys (51, 54, and 64).  Item 72 has a gender DIF effect that also favors boys of nearly 1 
logit, but was not statistically significant in this model, most likely due to the small number of 
children who completed the item.  There were no obvious patterns found that explained the 
evidence of gender DIF. 
 
Official Malagasy vs. Local Dialect 
In 2007, the estimated difference in overall ability (impact difference) by language is 0.27 logits 
(SE 0.012), with children who speak a local dialect other than official Malagasy scoring lower 
(on average) than those who speak official Malagasy.  The DIF effect estimate for speaking a 
local dialect is ten times larger than its standard error, so the difference by language is 
significant. In 2011, the overall difference by language is more than double, 0.68 logits (SE 
0.008), and also statistically significant.  Again, children who speak a local dialect scored lower 
on average.  These impact estimates are equivalent to about 10% in 2007 and 20% in 2011 of the 
full range of the ability estimates.    
 
Figure 2.4: Item characteristic curves for two items (32 & 51) with language DIF in 2011 

 
 
At the item level, 14 and 27 items demonstrated large and statistically significant DIF by 
language in 2007 and 2011, respectively.  Despite the direction of the overall impact, nearly half 
the items with language DIF favored those who speak official Malagasy and just over half favor 
a local dialect.  Among the items in common for both years, there is substantial variation in 
which items exhibited DIF.  Only 4 items had DIF by language in both years: items 32, 38, 61, 
and 68.  Item characteristic curves for items 32 and 51 by language spoken are shown in figure 
2.4.  Item 51 (jogging) is an example that favors children who speak official Malagasy (the 
probability of success is higher for this group as shown with the blue curve in figure 2.4, labeled 
“Item 51 Model: Malagasy”).  Item 32 (goat) is an example of an item that favors a local dialect.  
There are two words for goat in Madagascar: one used in the central highlands where the official 
language is spoken, and the other used in the remainder of the country.  The latter word was used 
in the translation and, as a consequence, children who speak official Malagasy found this word 
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harder (estimated DIF effect is 1.1 and 1.7 logits in 2007 and 2011, respectively).  Item 32 also 
had statistically significant positive infit and this is reflected in the flat red curve (labeled “Item 
32 Model: Dialect in figure 3.2”) for the children who speak official Malagasy.   
 
As with the mean square fit statistic, I looked for common patterns among the items with DIF.  I 
also consulted with the local Malagasy expert for her opinion.  Some interesting patterns 
emerged.  The items that favored children who speak a local dialect include 7 of the 8 French 
words with no Malagasy equivalent (e.g., panda).  The group of items favoring official Malagasy 
contained some relatively easy vocabulary words that are used commonly in everyday life (e.g. 
cat, baby, broom, and bottle).  However, it is possible that young children are more familiar with 
synonyms for these words that are used in their local dialect and not the official language.  
Finally, the group of items without language DIF is interesting in its own right.  Two thirds of 
the items in the last 2 series fell into this group, when children may have been tired by the test.  
Two of the three words for geometric shapes (i.e., circle, triangle), which were expected to be 
unfamiliar to all the children also fell into this group.  No additional patterns were discerned, 
although explanations for specific words were found (e.g., the item for “dressing” shows a child 
putting on socks, but in the coastal areas children walk barefoot or with sandals). 
 
Figure 2.5: Common Item Difficulty by Year - Separate Analyses for subset of 346 children  
 

 

2.3.3 Multidimensional Model 
Anchored Items 
Separate unidimensional calibrations of the 48 common items among the subset of 346 children 
were found to be acceptable in terms of item fit (not shown) and were much the same as the 

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3

20
11

 It
em

 D
iff

ic
ul

ty
 

2007 Item Difficulty 

Items

Unity

lower limit

upper limit



31 
 

results from the full dataset.  A plot of the unidimensional item difficulty estimates by year is 
shown in figure 2.5.  Sixteen of the items deviated from a unity line by more than 0.638 logits.   
These results were replicated with the concurrent analysis of DIF by year of test administration.  
Out of the 48 items that were administered in both years, 14 suffered from large significant DIF 
by year of test administration.  An additional 4 items had poor item fit statistics when the model 
was tested on all the children (capturing all 16 from the separate calibrations plus an additional 2 
items).  Thirty items were kept as anchors and their difficulty constrained for the two-
dimensional model. 
 
Reliability & Respondent Measures 
The person separation reliability from the two-dimensional model doesn’t change substantially 
from what was achieved with the separate calibrations.  The range of ability estimates is also 
comparable.  In 2007, the abilities range from -2.2 to 0.9 logits and in 2011, from -1.4 to 1.8 
logits.  Not surprisingly, the two-dimensional ability estimates are highly correlated with the raw 
total scores and uni-dimensional estimates (see table 2.3).  However, unlike the other two sets of 
scores, the average gain in ability from 2007 to 2011 can now be estimated as 0.95 logits (SE 
0.017), or about 30% of the full range of abilities in either year.  In addition, a dis-attenuated 
correlation of the two year ability estimates of 0.59 is obtained.  This result is comparable to the 
0.60 correlation (also corrected for measurement error) obtained from the unidimensional 
estimates. 
 
Figure 2.6: Standard error of measurement for two-dimensional calibration of ‘07 & ‘11 

 
 
The standard errors of measurement as a function of ability estimates are shown in figure 2.6 for 
both 2007 and 2011.  Estimates of children’s abilities in the year where their responses are 
missing can be obtained from the two-dimensional model, but the standard errors on these 
estimates are very high (~0.5 to 0.6 logits).  Excluding these missing score imputations, the 
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standard errors of ability estimates in 2007 are shifted downward and reduced on average in the 
two-dimensional over the unidimensional model (see table 2.2). 
 
Internal Structure 
As with the separate unidimensional models, the internal structure of the instrument was checked 
at the instrument level and at the item level with the use of item fit statistics and Wright maps for 
the two-dimensional model (see Appendix A1 table 2.5).  The distribution of item difficulty 
estimates is comparable to that of the combined unidimensional calibrations (-4.3 to 2.3).  The 
respondents also have similar distributions of ability estimates, with the 2007 data centered near 
-1 logits, and the 2011 data centered on the item difficulties at zero.  The order of item 
difficulties shifts somewhat, but still fails to follow the order from the English-language version 
of the PPVT. 
 
The item difficulty estimates were inspected for all items.  As with the separate calibrations, the 
infit for all of the items are within the acceptable boundaries of 1.33 and 0.75, with many of the 
same items having statistically significant infit.  Specifically, the item with the strongest 
evidence of negative misfit (t-statistic of -10) once again was item 30 (peeking).  The item with 
the strongest evidence of positive misfit (t-statistic of +8) was again item 86 (tropical). (A plot of 
the infit mean squares for the items by year is available in Appendix A1 figure 2.13). 
 
DIF by gender and language 
The item difficulty estimates obtained from the final multidimensional model were constrained 
in new unidimensional models and the tests of DIF were repeated separately for 2007 and 2011. 
 
Gender 
The estimated difference in overall ability (impact differential) by gender is 0.03 logits (SE 
0.017) in 2007 and 0.05 logits (SE 0.011) in 2011.  As before, these differences are significant, 
but small, and girls found the items harder on average than boys.  At the item level, 4 of the same 
5 items exhibited DIF in 2007 (item 62 DIF is still large, but no longer statistically significant).  
As with the unidimensional model, the DIF effect for item 72 is large (~1 logit), but it is now 
statistically significant in the multidimensional model.  None of the items had large significant 
DIF by gender in 2011. 
 
Official Malagasy vs. Local Dialect 
Once again, the MD calibrations give results that are very consistent with those obtained from 
the separate calibrations.  The estimated difference in overall ability (impact difference) by 
language is 0.35 logits (SE 0.019) and 0.65 logits (SE 0.013) in 2007 and 2011, respectively.  In 
2007, 15 items demonstrated large and statistically significant DIF by language: the same 14 
from the unidimensional model, plus one additional item that had moderate and significant DIF 
previously.  In 2011, 27 items demonstrated large and statistically significant DIF; 26 of these 
were the same as found with the unidimensional model. 
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2.4 Discussion 

2.4.1 Test Validity 
Evidence of external validity  
The evidence of external validity of the instrument as a whole is consistent with what I would 
expect from the literature.  The raw scores trend upwards with age and correlations with other 
household and child characteristics are as expected.  In both years, there were small but 
significant differences in mean scores by gender, with boys scoring higher on average (boys and 
girls have nearly equal enrollment in primary and secondary school in Madagascar).88  At most, 
the mean difference between genders was estimated to be 0.11 logits in 2007, or about 3% of the 
total range of scores in that year. This small differential impact is consistent with a lack of 
statistically significant differences by gender for the raw totals (all t-test p-values > 0.25). 
 
The mean differential impact by language was significant with approximately a third of a logit 
difference in ability in 2007, increasing to two thirds of a logit by 2011.  Children who speak a 
local dialect at home (not official Malagasy) scored 10 to 20% lower on average than those who 
speak official Malagasy.  I expected to find some overall difference by language given that 
children who speak a local dialect are also from poorer households and have less educated 
mothers.  The moderate positive correlation of the scores with mother’s education and household 
wealth support this expectation.  In addition, the increase in the differential impact from the 
younger to the older cohort is in keeping with reports of a socio-economic gradient for cognitive 
outcomes (including the PPVT) that widen as children age.48, 89   
 
Evidence of internal validity 
The evidence of internal validity of the instrument is less favorable.  Of the 96 items 
administered in either year, 53 (55%) demonstrated some evidence of poor fit, either from 
statistically significant mean square error (infit) or DIF (by gender or dialect) or both.  The lack 
of fit explains why such a large number of items (i.e., 72 items) were necessary to obtain a 
person separation reliability of over 0.8 in 2011, and to keep the standard error of person ability 
estimates low (under 0.3 logits).  The problem of items with positive infit from test fatigue can 
only be resolved by reducing the length of the test, which in turn can only be accomplished by 
re-ordering the items.  The problem of items with negative infit related to high discrimination 
can only be resolved by removing, replacing, or editing the items (see discussion on 
recommendations). 
 
Only six items exhibited gender DIF in 2007 (none in 2011), and four of these favored boys over 
girls.  Although I cannot conclude whether the differential impact seen is due to a true difference 
in abilities or item-level bias, the differences are small enough that I did not explore them 
further.  On the other hand, 37 (38%) of the 96 items exhibited DIF by language.  The items are 
split in terms of whom they favor, so again I cannot rule out the possibility that the mean impact 
may be partially due to item level bias.  The item DIF effect sizes are also quite large, with 9 
items in each year exceeding one logit (~30% of the full range of scores).  The item 
characteristic curves for item 32 (goat) are particularly telling (figure 2.4).  The observed 
responses from children who knew the word (from the lowlands) follow the modeled 
probabilities very well.  On the other hand, the observed responses from the children who didn’t 
know the word (from the highlands) have a flat curve indicating positive infit.  And in fact, the 
most commonly selected distractor for item 32 was the top right hand image #2. 
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At first the direction of DIF among the French words seemed counter-intuitive. I presumed that 
knowledge of French would be associated with wealth and living in the central highlands near 
the capital (where they speak the official Malagasy).  But there are some possible explanations 
that suggests otherwise.  The local expert with whom I consulted suggested that many of the 
coastal dialects incorporated French words or foreign-sounding words into their vocabulary 
when Madagascar was colonized.  In addition, I found a reference that states: “instruction in 
French is preferred by the coastal peoples, as it avoids connotations of Merina cultural 
dominance.”75   In my sample, nearly all the children on the coast were categorized as speaking a 
local dialect.  Future analysis will include a more detailed evaluation of the DIF by geographic 
region or ethnicity.   

2.4.2 Use of Multidimensional Model 
This chapter describes the use of a multidimensional item response model to estimate children’s 
vocabulary knowledge for repeated measures at two time points, 4 years apart.  The model is 
based on a latent growth item response model (LG-IRM) where the “gain” over the two time 
points is estimated.  The model allows for direct comparisons of abilities by creating a common 
scale from a set of 30 items with constrained item difficulties.  Unlike the standard approach of 
separate estimations to obtain ability estimates for each year, the multidimensional approach 
provides better estimation accuracy of abilities in both groups by using collateral information 
one from the other.  I was able to reduce the standard errors for abilities in 2007 by borrowing 
information from 2011, and obtain ability estimates for children with missing scores in one of the 
years.  Finally, having the two time points on the same scale, allows me to estimate the change in 
ability over time (0.95 logits or 30% of the full range of abilities in a given year). 
 
Both the unidimensional and multidimensional models identified almost exactly the same set of 
items with poor infit and DIF.  These results suggests that information on item fit is stable over 
time and not enhanced by combining the data from the two years into a concurrent analysis.  
Although the multidimensional model provides important advantages to the estimation of person 
ability, it does not appear to be necessary for identifying problem items in the test. The simpler 
unidimensional model may be sufficient during pilot testing to improve the performance of the 
instrument before full test administration. 

2.4.3 Recommendation 
The following recommendations are based on the main take home points that I have gained from 
the research described in this chapter.  The recommendations are specific to a situation where an 
existing instrument has been carefully translated and pre-tested, in collaboration with local 
experts, for use in a setting for which it was not originally designed.   I split my suggestions into 
pre-test (i.e., pilot phase) and post-test (i.e., analysis phase) administration.  Throughout this 
section, I recommend the use of IRT methods, but in some cases I am able to suggest alternatives 
using classical test approaches.  However, these alternatives lack the detailed statistics available 
from IRT for making decisions about keeping, dropping, or re-ordering items.  They also lack 
information about the standard error of person ability obtained with IRT that can inform whether 
any individuals should be dropped from the analysis or if enough items are being administered. 
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Pre-test administration 
If significant modifications to the instrument are allowed by the publisher, then a number of 
steps can be taken after piloting to minimize bias in the final test scores (note that the publisher 
for the PPVT currently does not allow these types of changes without permission).  First, 
problem items need to be identified by pre-testing many more items than are thought to be 
necessary, without the use of stopping rules.  Items with strong evidence of poor fit can either 
bias the overall score (from DIF) or contribute little to the estimation of person ability.  For 
example, if many items are too highly discriminating, then they are redundant and make the test 
longer than necessary.  Items with positive misfit suggest a non-random pattern of responses 
worth investigating.  In the absence of IRT methods, some item misfit can be roughly identified 
by ordering the items and persons by total correct number of responses in a simple Excel 
spreadsheet.  If multiple children with low total scores are getting certain hard items correct, then 
this may be evidence of positive misfit of the item (or interviewer bias).  Local experts may be 
able to accurately identify words that are likely to cause DIF (i.e., the two words for “goat” in 
Madagascar). 
 
Once problem items are identified, they can be removed, replaced or modified.  Replacement 
may only be feasible if not all the items were used in pre-test or the test has multiple forms (i.e., 
the PPVT is available as form A or form B). The simplest way to modify a problem item is to 
change the image to be more culturally relevant (e.g., this was done in Madagascar for the word 
“money”) or to try an alternate translation to the stimulus word.  Another possible modification 
is to switch the stimulus word to one of the distractor images that is not linguistically or 
otherwise thought to be biased (e.g., this was done for an adaptation into Greek).90     
 
Next the new set of items needs to be re-tested and the items re-ordered from easiest to hardest.  
If necessary, the spreadsheet method can be used to re-order the items.  This is likely to be an 
iterative process.  At the final stage, stopping rules can be implemented to avoid test fatigue.  I 
hesitate to recommend using different starting points for different ages for two reasons.   First, I 
have found that the rules for starting mid-test and finding the basal set are difficult to train and 
implement properly in large scale studies.  Second, the exact age of the respondent may not be 
known, and selecting the wrong starting point introduces problems for scoring.  However, in 
studies with a wide range of ages, different starting points may be necessary. 
 
If significant modifications to the instrument are not allowed by the publisher, then only a couple 
of steps can be taken to limit exposure to possible problems in the analysis phase from the test 
administration.  Again, I would start with pre-testing many more items than are thought to be 
necessary, without the use of stopping rules.  Identify the minimum set of consecutive items that 
will work with the age group being tested for the best person separation reliability.  Administer 
this same set of items to the full sample without start or stopping rules.  If a wide range of ages is 
being tested, then two sets of consecutive items can be identified, with some overlapping items 
between the groups.  For example, in 2011, 6 series of 12 items (72 items) was used for children 
7-10 years of age, and this series was extended by 2 additional series for adults. 
 
Analysis Phase 
There are at least four options for handling poor fit or DIF at the item-level in the analysis phase.  
First, the items can be ignored.  This is probably the most common option researchers choose 
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either because a) a detailed item-level analysis is beyond the scope or familiarity of the 
researchers (IRT methods are still fairly new), or b) it is unclear what option would be better.  If 
the DIF effect happens to balance out in the summary score, the consequences of choosing to do 
nothing may be nil.  On the other hand, if the DIF effect favors one group over another, then the 
ability estimates will be biased.  The consequences are then a biased program effect estimate and 
possibly drawing the wrong conclusion from the study. 
 
A second option is to drop the items that exhibit poor fit or DIF.  There is precedence for this 
approach.  For example, researchers from the Young Lives study reported finding items with 
gender DIF after data was collected for the study.  They excluded these from their analysis.76, 77  
Although this second option may seem reasonable because item-level bias is eliminated, there 
are trade-offs to consider before doing so.  In the Madagascar dataset, the person separation 
reliability in 2007 is only moderate (~0.64).  Dropping items might reduce the reliability to low 
levels.  In addition, some of the DIF that I found is likely due to chance alone, and items would 
be dropped unnecessarily.  Finally, although I would gain one form of validity (at the item level); 
I might lose another form of validity (at the instrument level).  Specifically, the underlying 
construct being measured may no longer be the same. This is also true if items are dropped or 
replaced pre-test administration.  The instrument will have shifted to measuring something new - 
something that reflects no DIF by group membership.   
 
A third option is to perform separate analyses by subgroup.  The investigators of the Young 
Lives used this option when one or more items were flagged with language DIF.  The loss of 
power is one obvious drawback.  But more importantly, this approach changes the research 
question. 
 
The final option is to incorporate an interaction term for the item and group membership into the 
item response model when estimating person ability.  This is probably the best option, although 
the interpretation of person ability becomes complicated as the number of subgroups increase.  In 
this chapter, I only investigate differences by gender and a dichotomous indicator for dialect.  
However, there are many dialects in Madagascar (with the same base syntax and about a 70% 
overlap in lexicon),75 and this information was not captured in the 2011 survey.  The dialect 
indicator is a catch-all that is just as likely to reflect geographic and ethnicity differences as it 
does language (the official Malagasy is closely related to the Merina dialect spoken in the central 
highlands among those of Malayo-Polynesian descent as opposed to those of African descent 
living on the coast). 

2.4.4 Conclusions 
Why use IRT  
The use of IRT is not common in the health field and I have found limited evidence of its use for 
evaluating the validity of language instruments that are used out of cultural context of their 
original design and in a different language.  However, I demonstrate the necessity of validating a 
translated, multi-item instrument when it is used in a context for which it was not developed.   
Importantly, I show how item response methods can uncover problem areas and patterns of 
responses that would not be apparent with the classical test theory approach, especially at the 
item level.  For example, I was able to identify sources of item-level bias by statistically testing 
for the presence of DIF by language subgroup.   Evidence of test fatigue observed in the field 
was confirmed by item infit statistics.  Infit statistics also provided evidence that was contrary to 



37 
 

my expectations about the direction of bias from using French words.  In addition, by placing 
both person ability and item difficulty on the same mathematical scale, I was able to visualize 
(with the Wright maps) how well the item difficulties cover the full range in person abilities 
(e.g., whether the items were too hard on average).  
 
A very important lesson was learned from the use of IRT analyses:  beware the use stopping 
rules when administering a test whose order of item difficulties may be lost in translation!  The 
loss of order, combined with the use of stopping rules, resulted in censoring and uncertain ability 
estimates for a large proportion of the children in 2007.   They were administered many fewer 
items and were prevented from taking easier items that appeared in later series.  Although 
incredibly useful, the 2011 work-around of not using stopping rules was less than ideal.  The 
longer test appears to have resulted in fatigue.  In future studies, the estimated difficulties from 
IRT can be used to re-order items, allowing for the re-introduction of stopping rules (with the 
publisher’s permission). 
 
The fact that IRT models do not rely on an automatic scoring rubric of non-administered items is 
a clear benefit over the classical approach of estimating abilities, especially in a situation with 
censoring as just described.  The IRT probability model relies on the responses to items by 
subjects to inform the ability of those who were not administered the items, even in a single 
year’s administration.  By borrowing information from 2011 in a multidimensional model, I 
obtain an even better estimate of ability (smaller standard error) for children who were censored 
in 2007.  This sharing of information across respondents and across surveys is not possible with 
the classical approach. 
 
Future research 
The next step in my research of the PPVT results in Madagascar is to obtain the least biased 
estimate of children’s abilities, addressing the evidence from problematic items.  Items with 
negative infit will be left in the estimation process – they do no harm.  A cut-point or specific 
criteria will be chosen for dropping the items with the strongest evidence of positive infit and the 
largest DIF effect size for language.  The criteria will be set so as to minimize the loss of items 
and the impact on reliability.  Any remaining DIF will be handled by incorporating interaction 
terms into the model.  Once I’ve obtained ability estimates that I am confident with, these will be 
used to evaluate whether the Madagascar nutrition program had an effect on children’s 
vocabulary knowledge.  Note that this requires the use of plausible values (or imputed values), as 
opposed to the IRT estimates, if the evaluation is run outside of Conquest.  I will be able to 
further evaluate the advantages of using the IRT methods discussed herein by comparing 
estimates of a program effect with and without its use. 
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Chapter 3: Identification of the Target Parameter – the Case of Pre/Post Data 

3.1 Introduction 
In the previous chapter, I presented the measurement challenges faced by researchers who want 
to evaluate program effects on measures of early cognition, specifically vocabulary knowledge.  
I discussed several sources of bias and offered suggestions of how to obtain a minimally biased 
estimate of language ability from the measure.  Presuming that I have an outcome assessed 
without bias, the next step is to evaluate whether the intervention had an effect on this outcome.  
In this chapter, I illustrate the application of the first part of an analytic framework, or road map, 
for evaluating the population average treatment effect (ATE) of a program.58  These steps 
include the process of defining the target causal parameter and stating the assumptions under 
which it is identified as a parameter of the distribution of the observed data (discussed in detail in 
the methods section).   
 
To demonstrate the use of the road map in the evaluation of an intervention, I again make use of 
the program in Madagascar as a backdrop for exploration.  As with the language measure, the 
Madagascar program presents some interesting challenges, all of which are common in impact 
evaluations of ECD interventions.  First, the program was implemented at the community rather 
than the individual level.  Community programs differ from individual treatment in that they are 
typically made available to all (or most) residents of a community.  When the point of treatment 
is shifted to the community, the research question shifts to what would happen to the community 
under a given treatment assignment.  In this context, I need to reframe the question, building up 
by analogy, from the individual to the group. I use the potential outcomes framework (also 
known as the counterfactual framework) popularized by the work of  Rubin to help in this 
regard.91  In a counterfactual framework, I consider the “ideal experiment” when posing my 
research question: for example, what would have happened to a given community (instead of an 
individual) had it received treatment (the counterfactual) when in fact it had not?   
 
Second, the program rollout was non-random: communities with the greatest perceived need 
were targeted first.  This non-random assignment of treatment to the poorest communities makes 
inferences about the programs’ effect susceptible to confounding, if the comparison group is not 
exchangeable with the treated group on key determinants of the outcome.  Therefore, it is 
imperative to define a causal model for the system that is hypothesized to have generated the 
data and to examine clearly the relations and dependencies of the factors in the model (measured 
and unmeasured).  I avoid imposing restrictions on the functional form of these relationships by 
using semi-parametric structural equations and directed acyclic graphs (DAGs).92, 93 
 
Third, cross-sectional surveys were administered in the same communities in Madagascar pre- 
and post-intervention, providing multiple options for identification of a causal effect.  In this 
chapter, I contrast the definition of the outcome as either: a) the post treatment value or b) the 
change from pre to post treatment.  I consider the long-standing controversy over the advantages 
and disadvantages of each.60, 94  Using these two outcomes, I identify three statistical parameters 
(commonly used for interventions with pre-post data) that under different assumptions are 
equivalent to my causal target parameter of interest, the ATE.  These parameters include a post 
treatment estimand (adjusting for the lagged outcome) and two difference-in-differences models: 
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a change score estimand and a pooled outcome estimand (popular in the social sciences and 
econometrics). 60-63  I highlight the assumptions imposed by each of these models.  Using data 
simulations, I show how the causal effect estimate is biased when these assumptions fail to hold.   

3.2 Methods 

3.2.1 Setting 
In Madagascar, treatment assignment was made in such a way that communities with the greatest 
perceived need were to receive the program first based on outcome(s) measured pre-
implementation and other logistical factors.  The outcome of interest is a measure of nutritional 
status in children that can be measured with minimal error given adequate training (e.g., weight-
for-age).  Data are obtained with repeated cross-sectional surveys, pre and post implementation 
of the program, from both program participating and non-participating communities.  Each 
sample includes different children, but the same communities.  The type of data collected is 
described in general terms in table 3.1. 

3.2.2 Notation 
I use the notation shown in table 3.1 throughout this chapter and the next (based on the book on 
Targeted Learning by van der Laan and Rose).58  The notation has been modified to indicate 
how I aggregate individual level measures up to the community level (e.g., mean maternal 
education), and that these are different from community variables that are measured once for the 
entire group (e.g., geographic location). 
 
Table 3.1: Notation 
V Vector of time invariant community level covariates (e.g., urban 

location) 

Wc(t) Vector of community level covariates that summarize individual 
level factors, Wi(t), (i=1,…,N), for each of the N individuals 
sampled in the community at time t=0,1 (e.g., proportion of mothers 
sampled in the community who are uneducated) 

A Treatment, assigned at the community level 

Yc(t) =  
Community mean of individual level outcomes Yi(t) (i=1,…,N) for 
each of the N individuals sampled in the community at time t=0,1 
(e.g., weight-for-age of children under 5 years) 

Oj = (Vj, Wc
j(t), Aj, 

Yc
j(t)) 

Observed data structure, Oj, for a given community j.  The observed 
data are J independently and identically distributed copies of O. 

UV,…UY(t) Random variation for each variable 
P0 True data-generating distribution; Oj ~ P0 
Yc

a, Yθ
a Counterfactual outcomes; I focus on 2 outcomes: post treatment 

outcome, Yc(t=1), and the change in outcome pre and post treatment, 
Yθ = Yc(t=1) - Yc(t=0). For each, I define their counterfactual value 
under treatment level A=a (Yc

a  and Yθ
a, respectively). 

Ψ(P0) True value of the target statistical parameter (or estimand), 
consisting of parameter mapping Ψ applied to the true data 
generating distribution P0.  I present 3 estimands labeled ΨI, ΨII, and 
ΨIII. 

∑
=

N

1i
i (t)Y

N
1
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3.2.3 Causal Inference Road Map 
The road map I follow links the research question to inferences from the results, making the 
underlying assumptions explicit along the path between the two (see van der Laan and Rose, 
chapters 1 and 2 for more detail).58  First, I define precisely the research question.  This may 
seem obvious, but is often not made clear at the outset.  Second, I turn the research question and 
relevant background knowledge into a structural causal model (SCM), which encodes 
information about the relationships between the variables.   Importantly, I assume that the SCM 
accurately represents the data generating processes that gave rise to my observed data.  This is 
the key link from counterfactual to observed data.  I use a semi-parametric variant of a structural 
equation model to avoid making assumptions about the underlying functional form of the data 
distribution.93  
 
Given the SCM, I specify the causal parameter of interest in the third step.  The causal parameter 
is the parameter I would obtain under an ideal experiment and is defined using counterfactual 
notation.  A clear specification of the causal parameter requires an understanding of a) the 
outcome (i.e., a post treatment value or a pre-post change score); b) the variable or variables on 
which I want to intervene (i.e., program availability or program participation) and the unit (or 
level) on which I am intervening (i.e., the individual or the community); and c) which 
counterfactual outcome distributions (or parameters of these distributions) I want to compare.  In 
this chapter, I use phrasing such as “intervening to set the treatment” or “setting A=a” to refer to 
the hypothetical treatment condition that I want to apply to the system when making causal 
contrasts.   For example, I might be interested in estimating the difference in the expectation (or 
mean) of counterfactual outcomes “intervening to set the treatment” to 1 (to receive treatment) 
versus “intervening to set the treatment” to 0 (to not receive treatment) for all communities.  This 
contrast is known as the average treatment effect, or the ATE.  Alternatively, I might want to 
evaluate the average treatment effect among the treated, or the ATT.  The ATT contrasts the 
expectation of counterfactual outcomes under treatment and no treatment, but only among the 
treated communities.  Importantly for both causal parameters, the contrast is made between the 
means of the counterfactual outcomes under each treatment regime.  This is a simpler causal 
comparison than between the two potential outcomes for any given community, where one 
outcome is always unobserved. 
 
In the fourth step, I assess identifiability, or whether the observed data, in combination with my 
assumptions about the data generating system, are sufficient to express the target casual 
parameter of interest as a parameter of the distribution of the observed data alone.  This second 
parameter is the statistical target parameter (also referred to as the estimand; I use the terms 
interchangeably in the text).  In contrast to the causal parameter, the estimand is the parameter 
that I am actually able to estimate given the observed data.  In this step, I make use of the SCM 
to carefully evaluate the assumptions for each of three estimands.  In the first estimand, the 
outcome is defined as the outcome post treatment (Yc(t=1)); in the second, the outcome is 
defined as the change in outcome pre- vs. post-intervention (Yθ); and in the third, the outcome is 
pooled over time (Yc(t)).  In addition to encoding the causal model as a series of equations, I 
depict the same information as a directed acyclic graph (DAG).  The advantages of using DAGs 
are discussed in more detail (and become apparent) in the identifiability section. 
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In the last steps, I can commit to an estimand and statistical model and proceed with the 
estimation.  However, in this chapter, I use simulations to illustrate the different assumptions 
required for the three statistical parameters to be equivalent to my target parameter of interest, 
and the consequences when the assumptions do not hold.  In chapter 4, I will present estimation 
and inference results for the observed data from Madagascar.  I present detailed steps 1 through 4 
of the road map next. 
 
Steps 1-3: The Research Question, Target Causal Parameter & SCM 
The causal question that I want to answer is: Does the intervention increase the average 
nutritional status of children living in the community?  I am interested in estimating a population 
average effect at the community level, for all communities in the target population. 
 
The structural causal model (SCM) is characterized by a set of endogenous variables at two time 
points (see notation table 3.1).  Community variables that are not aggregates of individual factors 
are denoted by V, and are assumed to be time-invariant for the period of the study.  Individual 
level factors aggregated up to community-level factors are denoted by a vector, Wc(t), at time t.  
The community-level mean outcome for children at time t is denoted as Yc(t).  The community 
level exposure, A is assigned to zero or one at t=1 as a function of V, Wc(t=0) and Yc(t=0).  In 
addition, there are unmeasured exogenous variables, U, that may cause random variation in each 
of the observed variables.  Restrictions on the joint distribution of these unmeasured errors will 
be required for identifiability, which I discuss below. 
 
I pose the following structural causal model (SCM) to explain the relationships between the 
variables:  
 
V = fV(UV) 
Wc(t=0) = fW(t=0)(V, UW(t=0))  
Yc(t=0) = fY(t=0)(V, Wc(t=0), UY(t=0)) 
A = fA(V, Wc(t=0), Yc(t=0), UA) 
Wc(t=1) = fW(t=1)(V, Wc(t=0), Yc(t=0), UW(t=1)) 
Yc (t=1) = fY(t=1)(V, Wc(t=0), Yc(t=0), A, W(t=1), UY(t=1)), 
 
where no assumptions are made about the shape or form of the functions.  I start with a model 
with a minimal set of exclusion restriction assumptions about the data-generating system in order 
to avoid imposing restrictions that may, or may not be, supported by the data.  I make a single 
exclusion restriction in this model: that the covariates Wc(t=1) occurring post intervention are not 
affected by the intervention.  I impose this deliberate exclusion restriction for three reasons.  
First, it is a reasonable assumption in the context of the Madagascar study.  Second, it is required 
for the estimand with the outcome pooled over time (see identifiability section for estimand III).  
I apply this restriction to the other two estimands in this chapter to facilitate my comparison 
among them (although it is not required).  Finally, it allows me to condition on Wc(t=1) in the 
models to better predict Yc(t=1) (also not required for the first two estimands). 
 
In the ideal experiment, I would want to know what would happen to the population mean 
outcome, if every community had the program, versus none of the communities had the program.   
I translate this into my target causal parameter as the average treatment effect (ATE) given by: 
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E(Yc
1(t=1) - Yc

0(t=1)), where Yc
a(t) denotes the counterfactual community level outcome under 

an intervention on the SCM setting A=a.  In the next step, I describe three identifiability results 
(and corresponding estimands) where I link this causal parameter to my observed data 
distribution. 
 
Step 4: Assess Identifiability 
Causal effect estimation relies on assumptions, some of which cannot be tested.  These 
assumptions must be made explicit when using observational data for causal inference.  
Specifically, the identifiability of my causal target parameter requires some form of the 
following two assumptions to hold: the randomization assumption (RA) and the experimental 
treatment assignment (ETA) assumption.   
 
The RA (also known as the assumption of no unmeasured confounders, or of exchangeability), 
states that treatment, A, is independent of counterfactual outcome, Ya, given some subset of the 
data.  The RA is a causal assumption, and as such is not testable.  However, I can draw a 
graphical representation of my SCM (i.e., a DAG) to check the independence assumptions given 
my knowledge of the underlying data generating system.92  By using a graphical procedure, I am 
able to solve the identification problem without resorting to an algebraic analysis of whether a 
statistical model parameter has a unique solution in terms of the parameters of the distribution of 
the observed variables. 93  Detailed guidelines for reading causal diagrams are available in An 
Introduction to Causal Inference by Judea Pearl,93 or in Causal Diagrams for Epidemiological 
Research by Sander Greenland et. al.95  Very breifly, the graph is drawn based on the 
relationships defined in the SCM, where the parents of a variable (variables on the right hand 
side of the equation) are connected to the child variable (variable on the left hand side of the 
equation) with an arrow directed towards it.  A path is any sequence of lines connecting two 
variables. The arrow between two variables can only go in one direction, such that the paths are 
acyclic (i.e., the graph cannot have A→ B → C →A).  Paths can either be open or blocked, 
depending on the direction of the arrows and whether or not a variable is conditioned on.  
Conditioning on a variable is represented by placing a box around it.  Open paths can give rise to 
dependency between variables, and the absence of any open paths implies mariginal 
indepenence. 
 
The specific randomization assumption (RA) and necessary additional assumptions for three 
different estimands are discussed in detail below.  To minimize confusion from too many arrows, 
I represent DAGs for each estimand using a simplified data structure that omits the observed, 
time-invariant, village factors, V.  I can justify this simplification because V are exogenous to the 
data generating system (no arrows go into V) and if I condition on V, I do not have worry about 
unblocked paths from unmeasured variables through V.  In most cases, I also omit the exogenous 
variables, U, such that Oj = (Wc(t), A, Yc(t)).  The omission of the U’s implies that these 
exogenous variables are independent (discussed further with figure 3.1).  Paths depicted in red in 
the figures represent unblocked paths between the treatment and outcome variables. 
 
The ETA assumption (also known as the positivity assumption) states that for the target 
statistical parameter to be identified there must be sufficient variation in treatment (i.e., some 
positive probability of both being treated and not being treated) within strata of confounders.  
The form of the ETA assumption depends on knowledge of the data-generating system encoded 
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in the SCM and on the target parameter.  For the average treatment effect, the strong positivity 
assumption states that each possible treatment level occurs with some positive probability within 
each stratum of the confounders.96  But this can be weakened under additional parametric 
assumptions.  For example, urban versus rural location is a confounder in my study in 
Madagascar.  The strong version of the ETA assumption requires that I have both treated and 
untreated, urban and rural communities in my observed data.  If, in fact, there were no observed 
treated urban communities, then I could weaken the ETA assumption by assuming (if plausible) 
that the treatment effect is the same among urban and rural communities.  However, imposing 
this type of parametric assumption is risky as it requires extrapolating from an area supported by 
the observed data (the treatment effect among rural communities) to an area that is not (the 
treatment effect among urban communities).96  The ETA assumption will be discussed in more 
detail in chapter 4 in the context of the actual data from Madagascar.  For the purposes of this 
chapter, I accept that the ETA assumption is not violated in my study. 
 
There are two additional assumptions that are typically invoked when investigators start from the 
Rubin framework of potential outcomes for causal inference: the consistency assumption and the 
stable unit treatment value assumption (SUTVA).64  Both assumptions are subsumed in my SCM 
and the implied knowledge it encodes about the underlying data generating distribution.  The 
consistency assumption states that an individual’s (or community’s) potential outcome under the 
treatment actually received is precisely the observed outcome.64  This assumption is used to 
convert probabilities written in terms of counterfactuals into ordinary probabilities in terms of 
observed values.  However, my SCM already implies the counterfactual and provides the 
necessary link to the observed data.  In addition, the absence of hierarchical relationships 
between communities in my SCM implies that one community’s (or individual’s) outcome is 
unaffected by another’s treatment assignment (i.e., SUTVA holds). 
 
Estimand I: Outcome Yc( t=1) 
For the first estimand, I define the outcome as the community specific mean post-treatment 
outcome, Yc(t=1). Identifiability is based on conditioning on all baseline covariates, including 
the pre-treatment (or lagged) outcome (as well as the post treatment covariates Wc(t=1) assumed 
not to be affected by A, as discussed above).  This is a common approach in the epidemiology 
literature.  The RA for this estimand is: 
 
Yc

a
 (t=1) A | V, Wc(t=0), Yc(t=0), Wc(t=1)       (1) 

 
For the randomization assumption (1) to hold, it is sufficient that the exogenous variables for the 
exposure, UA, be independent of the exogenous variables for the outcome, UY(t=1), given V, 
Wc(t=0), Yc(t=0), Wc(t=1).  This additional independence assumption is reasonable, if I have no 
unmeasured common causes of A and Yc(t=1) (i.e., no confounders).   
 
The DAG in figure 3.1 encodes the information from the series of equations from the SCM in the 
previous section.  The graphical model is particularly useful in that I can visually check that 
Yc(t=1) is independent of A given Wc(t=0), Yc(t=0), and Wc(t=1).  Specifically,  I check that my 
conditioning variables block any unblocked path from A to Yc(t=1) (i.e., paths with arrows 
pointing into A), while not opening any new paths.  This is referred to as the backdoor 
criterion.95  In figure 3.1, the variables Wc(t=0), Yc(t=0), and V (not shown) are conditioned on, 

⊥
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block the paths from A to Yc(t=1), and satisfy the 
backdoor criterion.  Writing the graph in this way 
implies the independence assumptions among the 
exogenous variables, U, described previously.  The 
RA(1) holds under this model.   
 
I now have the following identifiability result: 
 
E[Yc

a(t = 1) | V, Wc(t=0), Yc(t=0), Wc(t=1)] = 
E[Yc

a(t = 1) | A=a, V, Wc(t=0), Yc(t=0), Wc(t=1)] = 
E[Yc(t = 1) | A=a, V, Wc(t=0), Yc(t=0), Wc(t=1)] 
 
where the first equality holds under the RA(1), and 
the second holds under my definition of the counterfactual outcomes.  Note that for these 
conditional expectations of the outcome to be well-defined in my SCM, I need some 
communities with and without the treatment for each level of the conditioning variables V and 
Wc(t) (i.e., I need for the positivity assumption to hold).   
 
A first estimand (or statistical parameter) for the average treatment effect, ΨI, follows: 
 

  (2) 

 
I refer to this estimand as the post treatment estimand. 
 
Estimand II: Outcome Yθ 
Next, I consider the outcome as the change in the community specific means, Yθ, before and 
after treatment.  I define Yθ as: 
 
Yθ = Yc(t=1) – Yc(t=0)   (3) 
 
By definition of the structural equations for Yc(t=1) 
and Yc(t=0), I have the following structural equation 
for Yθ: 
 
Yθ = fY(t=1)(V, Wc(t=0), Yc(t=0), A, Wc(t=1), UY(t=1))  
- fY(t=0)(V, Wc(t=0), UY(t=0)) 
 
The DAG in figure 3.2 reflects this same 
information.  Note that UY(t=0) now affects both 
Yc(t=0) and Yθ, so I have included it in the graph.  
Under this model, I have a new RA for outcome, Yθ: 
 
Yθ

a A | V, Wc(t=0), Yc(t=0), Wc(t=1) (4) 
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and I can identify a statistical target parameter based on Yθ that is equivalent to ΨI.97  
Specifically, if I define the counterfactual mean of Yθ

a under an intervention on the SCM setting 
A=a as: 
 
 E[Yθ

a] = E[Yc
a(t=1) - Yc

a(t=0))]= E[Yc
a(t=1)] - E[Yc

a(t=0)]     (5) 
 
then I can rewrite my target causal parameter in terms of Yθ

a, and show that it is identical to the 
ATE as previously defined as E[Yc

1(t=1) - Yc
0(t=1)].  First, the parameter is expressed as a 

difference in the differences of means: 
 
E[Yθ

1 - Yθ
0] = (E[Yc

1(t=1)] – E[Yc
1(t=0)]) - (E[Yc

0(t=1)] – E[Yc
0(t=0)])    (6) 

 
However, since intervening to set the treatment cannot affect the pre-treatment outcome 
(Yc

a(t=0)= Yc(t=0)), the above can be rewritten such that the mean of Yc(t=0) cancels out to give 
the ATE: 
 
 (E[Yc

1(t=1)] – E[Yc(t=0)]) - (E[Yc
0(t=1)] – E[Yc(t=0)]) = E[Yc

1(t=1) – Yc
0(t=1)]   (7) 

 
Under the RA (4), I can identify my statistical target parameter  
 
E(Yθ

a | E, Wc(t=0), Yc(t=0), Wc(t=1)) = 
E(Yθ

a | A=a, E, Wc(t=0), Yc(t=0), Wc(t=1)) = 
E(Yθ | A=a, E, Wc(t=0), Yc(t=0), Wc(t=1)) 
 
and have an alternative, but equivalent, formulation of estimand ΨI: 
 

   (8) 

 
So what is the advantage of using Yθ over Yc(t=1) for estimating the ATE?  The main 
justification in the causal inference literature is that a difference method allows for both the 
treatment, A, and outcome, Yc(t), to depend on unobserved community fixed effects that are time 
invariant.60, 98  To explore this advantage, I add an unmeasured confounder, C = fC(UC), to my 
SCM and DAG, such that C is a common cause for A, Yc(t=0), and Yc(t=1) (see figure 3.3).  The 
allowed functional forms of fY(t=0) and fY(t=1) in the SCM are restricted such that C has a linear 
additive effect on Yc(t), specifically that: 
 
Yc(t=0) = fY(t=0)(V, Wc(t=0), UY(t=0)) + C 
Yc(t=1) = fY(t=1)(V, Wc(t=0), Yc(t=0), A, Wc(t=1), UY(t=1)) + C 
 
The introduction of an unmeasured confounder, C, opens up a backdoor path from A to Yc(t=1) 
(see path A ← C → Yc(t=1) labeled (i) and colored red in figure 3.3).  The RA(1) for estimand I 
no longer holds.  At first, it appears that RA(4) might hold for Yθ.  If I assume C has a constant 
additive effect on both Yc(t=0) and Yc(t=1), then Yθ is not a function of C when taking the 
difference of Yc at the two time points.  The structural equation for Yθ remains as: 
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Yθ = Yc(t=1)-Yc(t=0) = fY(t=1)(V,Wc(t=0), Yc(t=0), A, Wc(t=1), UY(t=1)) - fY(t=0)(V,Wc(t=0), UY(t=0)) 
 

 
 
The DAG for Yθ in figure 3.4 reflects this same information in that there is no arrow from C into 
Yθ (only variables on the right hand side of the equation have arrows into Yθ).  Thus using Yθ 
instead of Yc(t=1) as outcome has the potential (under this specific parametric assumption) to 
close one backdoor pathway from A to Yθ via unmeasured confounder C.   
 
However, on closer inspection, RA(4) does not hold under this model.  Under the causal model 
where C affects Yc(t=0), Yc(t=1), and A, conditioning on Yc(t=0) induces new dependence 
between Yθ and A, and opens a backdoor path through exogenous variable UY(t=0) and 
confounder C.  This occurs because Yc(t=0) is a collider (two arrows go into the same variable).  
Conditioning on a collider opens a path that would otherwise be blocked.92  This unblocked path, 
A ←C − UY(t=0) → Yθ, is represented by the line between UY(t=0) and C (labeled (ii) in figure 3.4).  
The path would be blocked if Yc(t=0) is not conditioned on. 
 
Thus, to benefit from the potential to remove unmeasured confounding from the use of Yθ as 
outcome, I need a new RA (9), which is not conditional on Yc(t=0): 
 
Yθ

a A | Wc(t=0), Wc(t=1)         (9) 
 
It is important to note that I have arrived at the same conclusion with DAGs that others have 
reached using parametric equations and analysis of covariance.  In the econometrics literature, 
the problem is recognized as the fact that the residual on Yθ (in a parametric equation) is 
necessarily correlated with the lagged outcome, Yc(t=0), because both are a function of the 
random error on Yc(t=0) (i.e., a function of UY(t=0) in my SCM).99  Conditioning on Yc(t=0) has 
been demonstrated to bias the treatment effect estimate under this model where the errors on Yc 
are serially correlated.99  The method of differencing can still be applied if this correlation is 
thought to be negligible (i.e., possibly when the data are from a series of cross-sections of 
different individuals and/or the time between cross-sections is long).100  However, RA(9) still 
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Figure 3.3: Outcome Y(1), unmeasured C 
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does not hold under this model without additional assumptions.  I make these assumptions 
apparent with the use of the DAG shown in figure 3.5. 
 
By not conditioning on Yc(t=0), I open up 
multiple new pathways from A to Yθ: directly 
through Yc(t=0) (A←Yc(t=0)→Yθ,  labeled (iii) in 
figure 3.5);  through C (A←C→Yc(t=0)→Yθ, 
labeled (iv)); and through UY(t=0) 
(A←Yc(t=0)←UY(t=0)→Yθ, labeled (v)).  
Additionally, Wc(t=1) is a descendant of collider 
Yc(t=0), and conditioning on Wc(t=1) opens up 
the same pathway as conditioning on Yc(t=0) (i.e., 
A ←C − UY(t=0)→ Yθ).  However, if I do not 
condition on Wc(t=1), then I would open up new 
backdoor pathways through Wc(t=1) (i.e., 
A←C→Yc(t=0)→Wc(t=1)→Yθ and 
A←Yc(t=0)→Wc(t=1)→Yθ  labeled (vi)). 
 
Therefore, I must be willing to make three 
additional exclusion restrictions for my casual 
parameter to be identifiable in a difference model:  that Yc(t=0) must not affect A, Wc(t=1) and 
Yc(t=1).  The semi-parametric equation for Yθ becomes: 
 
Yθ = Yc(t=1)-Yc(t=0) = fY(t=1)(V,Wc(t=0), A, Wc(t=1), UY(t=1)) - fY(t=0)(V,Wc(t=0), UY(t=0)) 
 
where Yθ is no longer a function of Yc(t=0) but is still a function of UY(t=0) (see figure 3.6).   
Under this model, I can choose to either 
adjust for Wc(t=1) or not (conditioning on 
Wc(t=0) is sufficient and Wc(t=1) is no 
longer a descendant of a collider). 
 
In summary, RA(9) holds in the presence of 
unmeasured confounding from non-time 
varying factors, C, with a constant additive 
effect on Yc(t), only if Yc(t=0) does not 
affect A, Yc(t=1) and Wc(t=1). The target 
causal parameter can now be identified as a 
new target parameter of the observed data 
distribution. The identifiability result applied 
to Yθ becomes: 
 
E[Yθ

a | V, Wc(t=0), Wc(t=1)] = 
E[Yθ

a | A=a, V, Wc(t=0), Wc(t=1)] = 
E[Yθ | A=a, V, Wc(t=0), Wc(t=1)] 
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where the first equality holds under the RA(9) and the second from the definition of the 
counterfactual outcome Yθ  under my new SCM (figure 3.6), giving me a new estimand for the 
ATE, ΨII: 
 

    (10) 

 
which I refer to as the change score estimand. 
 
Estimand III: Outcome Yc( t) 
Finally, there is an alternate difference-in-differences estimand that pools the outcome data from 
both time periods together.  For this approach, I need to evaluate a third causal model for 
identifiability.  Specifically, if I am willing to make additional assumptions on the underlying 
causal model such that: 
 
EV,W(t=1),W(t=0)[Yc(t) | A=a, V, Wc(t=0),Wc(t=1)] = EV,W(t)[Yc(t) | A=a, V, Wc(t)], for t = 0, 1  (11) 
 
then I have the following identifiability result under the new SCM: 
 
E[Yθ

a | V, Wc(t=0), Wc(t=1)] = 
E[Yθ

a | A=a, V, Wc(t=0), Wc(t=1)] = 
E[Yc(t=1) | A=a, V, Wc(t=0), Wc(t=1)] – E[Yc(t=0) | A=a, V, Wc(t=0), Wc t=1)] = 
E[Yc(t=1) | A=a, V, Wc(t=1)] – E[Yc(t=0) | A=a, V, Wc(t=0)] 
 
As with estimand II, the first equality in the identifiability result holds under the RA(9).  The last 
equality holds under assumption (11) (i.e., by substituting t=1 and t=0 for t), giving me a third 
estimand for the ATE: 
 

 (12) 

 
I refer to this final estimand as the pooled outcome estimand.  However, there may be additional 
restrictions on the allowed data distribution for this identifiability result to hold.  Starting with 
the SCM established for the change score estimand (ΨII), I work through the model separately at 
each time point.  At time t=1, assumption (11) becomes: 
 
EV,W(t=1),W(t=0)[Yc(t=1) | A=a, V, Wc(t=0),Wc(t=1)] = EV,W(1)[Yc(t=1) | A=a, V, Wc(t=1)], 
 
which will hold if Yc(t=1) is independent of Wc(t=0) given V, A, and Wc(t=1).  I can use the 
DAG shown in figure 3.7 to check whether my SCM implies this conditional independence.  
Under my current model, assumption (11) fails at t=1 because of two unblocked paths: the direct 
path from Wc(t=0) to Yc(t=1) (label (vii) in figure 3.7); and the paths through collider A (i.e., 
Wc(t=0) – C→Yc(t=1) label (viii) in figure 3.7).  Therefore, for assumption (11) to hold at t=1, I 
need to add two new exclusion restrictions: that Wc(t=0) does not affect Yc(t=1) and does not 
affect A (see figure 3.8).  

1)]]=(tW0),=(tWV,0,=A | E[Y-                                    

1)]=(tW0),=(tWV,1,=A|[E[YE=)(P
ccθ

ccθ
1)W(t0),W(tV,0

II
==Ψ

0)])]=(t WV, 0,=A | 0)=(tE[Y -1)]=(t WV, 0,=A | 1)=(t(E[Y-                         

0)])=(t WV, 1,=A | 0)=(tE[Y -1)]=(t WV, 1,=A | 1)=(t[(E[YE = )(PΨ
cccc

cccc
W(t)V,0

III



 

49 
 

 

  
 

Similarly, at time t=0, assumption (11) becomes: 
 
EV,W(t=1),W(t=0)[Yc(t=0) | A=a, V, Wc(t=0),Wc(t=1)] = EV,W(0)[Yc(t=0) | A=a, V, Wc(t=0)] 
 

and I verify with a DAG that my SCM implies 
Yc(t=0) is independent of Wc(t=1) given V, A, and 
Wc(t=0) (figure 3.9).  No additional exclusion 
restrictions are required. 
 
Note that I cannot add any arrows back that were 
removed for estimand II (i.e., Yc(t=0) cannot affect 
A, Wc(t=1) or Yc(t=1).  Under the additional 
restriction assumptions that Wc(t=0) does not affect 
A and Yc(t=1), my causal target parameter, the 
ATE, is equivalent to estimand III.   In settings 
where background knowledge makes it plausible to 
assume this more restrictive causal model, 
alternative estimation approaches offer some 
important advantages over traditional approaches, 
which will be discussed in chapter 4. 

 

3.2.4 Illustration of Results Using Simulated Data  
In this section, I present a series of simulations to demonstrate the need for the additional 
exclusion restrictions for the difference-in-differences estimands (ΨII and ΨIII).  The 
programming language R, version 2.13.1, was used for the simulations (the code is available in 
Appendix A2).  As with the DAGs, I exclude the observed village factors, V, from the 
simulations.  I present eight scenarios based on different SCMs represented by the DAGs in the 
previous section.  In all cases, Yc(t), Wc(t) and C are continuous, normally distributed and a 

A 

Yc(1) 
 

Yc(0) 
 

W
c
(0) 

  
W

c
(1) 

  

Figure 3.8: Exclusion restrictions on W(0) 

C 

Figure 3.7: Test of independence at t=1 

(viii) 

(vii) 
 

A
A 

Yc(1) Yc(0) 

W
c
(0) 

  
W

c
(1) 

  

C 

A 

Yc(1) 
 

Yc(0) 
 

W
c
(0) 

  
W

c
(1) 

  

Figure 3.9: Test of independence at t=0 

C 



 

50 
 

function of additive linear terms.  Treatment variable, A, is dichotomous and the true parameter 
of interest, the ATE, has a value of 1.  For each scenario and estimand, linear regression with 
main terms was used to estimate the relevant conditional expectation from a sample of 100,000 
observations.  These estimates are reported in table 3.2.     
 
The first simulation is based on the starting SCM for the post treatment estimand (ΨI) 
represented in figure 3.1.  Under this model, RA(1) holds.  I obtain identical estimates of the 
target parameter whether the outcome is defined as Yc(t=1) or Yθ (figure 3.2 and RA(4)).  The 
estimate is nearly equal to the target parameter value of 1 (simulation #1, table 3.2).  However, 
when I introduce an unmeasured confounder, C, in the second simulation, RA(1) and RA(4)  no 
longer hold and the estimate diverges from the truth (simulation #2).  This result is in keeping 
with a backdoor pathway being open from A to outcome Yc(t=1) through C (path (i) in figure 
3.3) or with dependence between Yθ and A through UY(t=0) and confounder C (path (ii) in figure 
3.4).  
 
Table 3.2: Estimates for the ATE under various models and sample size (true value =1) 
Sim. 
# 

Figure Assumptions Conditional 
on Yc(t=0) 

Estimate 

1 3.1 & 
3.2 

RA(1) or (4), no unmeasured confounders,  
A does not affect Wc(t=1) 

Yes ΨI 

0.99 
2 3.3 & 

3.4 
RA(1) or (4) with unmeasured confounder C, 
A does not affect Wc(t=1) 

Yes ΨI 

3.43 
3 3.5 RA(9) with unmeasured confounder C,  

A does not affect Wc(t=1),  
Yc(t=0) affects A, Wc(t=1), and Yc(t=1) 

No ΨII 

4.78 
4 3.6 RA(9) with unmeasured confounder C,  

A does not affect Wc(t=1), and 
Yc(t=0) does not affect A, Wc(t=1), or Yc(t=1)  

No ΨII 

0.98 
5 N/A Same as simulation 4 but Yc(t=0) affects A No ΨII -1.78 
6 3.7 RA(9) with unmeasured confounder C,  

A does not affect Wc(t=1), 
Yc(t=0) does not affect A, Wc(t=1), or Yc(t=1) 
Assumption (11) but 
Wc(t=0) affects A and Yc(t=1) 

No ΨIII 

6.64 
7 3.8 & 

3.9 
RA(9) with unmeasured confounder C,  
A does not affect Wc(t=1),  
Yc(t=0) does not affect Wc(t=1), A, or Yc(t=1) 
Assumption (11), and 
Wc(t=0) does not affect A or Yc(t=1) 

No ΨIII 

1.02 
8 N/A Same as simulation 7 but Yc(t=0) affects A No ΨIII -0.99 
 
Switching to my change score estimand (ΨII), I demonstrate that the estimate for the ATE 
diverges from 1 when not conditioning on Yc(t=0) (simulation #3) because it opens up new 
pathways from A to Yθ (paths (iii) to (vi) in figure 3.5).  By adding the necessary exclusion 
restrictions for estimand II in the fourth simulation (i.e., figure 3.6), the estimate once again 
nearly equals the target value (simulation #4).  These results are comparable to those for the post 
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treatment estimand with no unmeasured confounding (simulation #1).  However, in simulation 
#5, I add that Yc(t=0) affects A into the previous scenario for estimand II.  In this fifth scenario, 
estimand II will diverge from the truth.   
 
The sixth simulation represents the model for my pooled outcome estimand (ΨIII), where at time 
t=1, Yc(t=1) is not independent of Wc(t=0) given V, A, and Wc(t=1) (figure 3.7).  As expected, 
the estimate for estimand III diverges from 1 (simulation #6).   However, when the paths from 
Wc(t=0) to A and Yc(t=1) are removed (figure 3.8), estimand III is equal to the ATE (simulation 
#7).  Finally, in simulation #8, I add that Yc(t=0) affects A into the previous scenario for 
estimand III, and the estimate once again diverges from the truth.  As with simulation #5, this 
last simulation demonstrates that even if we can accept all the other exclusion restrictions for 
estimand III, we still must be willing to accept that Yc(t=0) does not affect A for the difference-
in-differences estimands to equal the target parameter.  
 
In summary, the above simulations show that when there is an unmeasured confounder, the post 
treatment estimand is not equal to the ATE whereas the change score and pooled outcome 
estimands might be, but only under additional assumptions.  I demonstrate that even with an 
additive constant confounder C, I can get into trouble by using these latter two estimands (ΨII 
and ΨIII) if Yc(t=0) affects A (i.e., Yc(t=0) is a confounder).   

3.3 Discussion 
Pre-post program evaluations (with data from treatment and control groups) present investigators 
with multiple causal models to choose from for identifying a causal effect of the program.  
Causal assumptions are necessary to obtain a valid estimate of a casual effect (e.g., the ATE), 
and each of these models relies on a different set of assumptions.   However, the causal model 
(or SCM) needs to be defined before committing to a statistical model (as opposed to selecting 
an estimand based on the estimation procedure it allows).  Specifically, the SCM incorporates 
expert knowledge about the data generating process that gave rise to the observed data.  Any 
assumptions necessary to obtain a valid estimate of the desired causal effect should be reflected 
in the SCM and supported by this knowledge. The step of evaluating the assumptions for a given 
study should not be overlooked.  It is up to the investigator to check these assumptions prior to 
selecting a model and proceeding with estimation.  Failure to do so can result in choosing an 
estimand that is not equivalent to the target casual parameter.  In this chapter, I use the structure 
of an existing program evaluation with pre-post data as the basis for defining several commonly 
used causal models.  Through a series of graphical models (DAGs) and simulations, I explore the 
associated assumptions and identifiability result for three separate estimands.  Most importantly, 
I demonstrate that the popular difference-in-differences model requires a considerable number of 
exclusion restrictions to express the target casual parameter as a parameter of the distribution of 
the observed data. 
 
First I define the outcome as the post treatment value, Yc(t=1), and present a causal model that 
requires a minimal set of exclusion restriction assumptions for identification of the ATE 
(estimand I).  Under the key assumption of no unmeasured confounding, the simple post 
treatment estimand (ΨI) equals my target parameter (the ATE) (simulation #1 in table 1).  As 
expected, ΨI and the ATE diverge (i.e., are no longer equal) if an unmeasured factor, C, is 
introduced that confounds the relationship between treatment and outcome (simulation #2). 
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Since unmeasured cofounding is a realistic scenario in observational studies, it is not surprising 
that a difference-in-differences approach is often favored to try to address this issue.  A 
differencing model is advantageous in that it “subtracts out” the effect of unmeasured 
confounders with a constant additive effect on the outcome at the two time points.  The 
commonly accepted identifying assumption for the difference-in-differences estimand is a 
randomization assumption (RA(9)) typically referred to in the econometrics literature as the 
parallel trend assumption.  However, through a step-by-step process of checking graphical 
models, I show that several exclusion restrictions are necessary for the difference-in-differences 
estimand to equal the ATE.  In order to take advantage of this approach, I must be willing to 
assume that the lagged outcome, Yc(t=0), does not affect treatment, A, the post-treatment 
covariates, Wc(t=1), or the post-treatment outcome, Yc(t=1).  These are very strong assumptions 
about the lagged outcome!  Under conditions where these restrictions do not hold, ΨII and ΨIII 
will generally not be equivalent to the ATE (as illustrated with simulations #3, 5, 6, and 8).  In 
fact, a difference-in-differences estimand has the potential to diverge further from the wished for 
causal effect than the post treatment estimand adjusting for all baseline covariates, even in the 
presence of an unmeasured confounder with a constant additive effect. 
 
The exclusion restrictions become more numerous for the model that pools the outcome from 
both time periods (ΨIII).  In order for the pooled outcome estimand to be equal to the causal 
parameter of interest, I must add to the list of assumptions for the change score estimand (ΨII) 
that Wc(t=0) does not affect A or Yc(t=1).   
 
Although the exclusion restriction assumptions for  difference-in –differences models may seem 
unrealistic, it is important to note that they are often applied to data from serial cross-sections of 
different persons from the same communities separated in time by many years.100  It is possible 
under certain conditions that the pre-intervention outcome and covariates do not directly affect 
the post-intervention outcome and covariates, and are associated with post intervention outcome 
and covariates due only to fixed community level factors that affect both.  In other words, 
Yc(t=0) may be predictive of Yc(t=1), but only due to shared common causes C or V.  The 
advantage of controlling for unmeasured fixed effects with a difference-in-differences estimand 
must be weighed against what is known about the underlying data generating system and the 
associated model assumptions.  
 
In this chapter, I demonstrate the power (and importance) of using graphical models (DAGs) to 
make the assumptions underlying a causal model transparent.  The graphs prove to be invaluable 
tools for locating sources of dependencies among variables from confounders or colliders that 
may result in bias.   Ideally, researchers should spend the time working with DAGs prior to 
conducting a study in order to collect the necessary data for a valid analysis.  In an ex-post facto 
evaluation, it falls to the analyst to make use of DAGs, expert opinion, and other tools at their 
disposal, before proceeding with estimation.  For example, given that the statistical model is 
semi-parametric, some of the exclusion restrictions are testable (i.e., that Yc(t=1) is independent 
of Wc(t=0) given A, Wc(t=1) and V). 
 
In summary, my results reveal an important issue of identifiability that is not clearly articulated 
in the published literature.  In the context of evaluating a community level intervention with pre-
post data, I am confronted with a trade-off between statistical models that require expert 
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knowledge about the observed data before choosing one over the other.  If my knowledge is 
sufficient to accurately represent the underlying data generating distribution, then my casual 
model may help me choose between estimands (e.g., whether the post treatment estimand is 
closer to the ATE than the pooled outcome estimand).  In many cases, however, my knowledge 
will be insufficient and I won’t know that the SCM holds for either estimand (or know which 
estimand is closer to my target parameter).  Importantly, if I have strong evidence that a) there is 
important unmeasured confounding, and that b) the data do not support any other assumptions on 
which my identifiability results rely, then the target parameter is not identifiable.  I cannot 
disregard this evidence; I risk getting a biased estimate.  Instead, it is at this juncture that I must 
consider redefining my research question and target parameter before proceeding.  The threat to 
validity from selecting a statistical model without understanding the underlying assumptions 
transcends my work and is applicable to any evaluation of an intervention. 
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Chapter 4: Effect Estimation – a Comparison of Methods 

4.1 Introduction 
In chapter 3, I illustrate the importance of using structural causal models and directed acyclic 
graphs (DAGs) for assessing identifiability prior to committing to a statistical model and 
estimand to target for estimation.  Using a program evaluation from Madagascar with pre-post 
data, I identify three common statistical parameters which, under different assumptions, are 
equivalent to my causal target parameter of interest, the average treatment effect (ATE).  I 
describe a trade-off between choosing a difference-in-differences estimand that remains 
equivalent to the ATE in the presence of a certain type of unmeasured confounder (i.e., the 
change score estimand or the pooled outcome estimand), and a model that assumes no such 
confounding exists (i.e., the post treatment estimand).  The focus of this chapter is to compare 
estimates of the ATE of the Madagascar program on children’s nutritional status using the 
observed data.   Specifically, I apply three different estimation methods to each of the three 
estimands from chapter 3, and compare the resulting estimates and their confidence intervals.  
The first method, traditional parametric regression, is common across all disciplines. The second, 
inverse probability of treatment weights (IPTW or propensity score weighting), 64-66  has become 
popular in epidemiology but is also used by economists.  And the third, a new method, has only 
recently been applied in epidemiology: targeted maximum likelihood estimation (TMLE).58, 67  I 
briefly present each of the methods here and discuss them in more detail in the methods section. 
 
Different estimators require estimators of different components (or parameters) of the observed 
data distribution.  In my study, these components include the Q parameter, the treatment 
mechanism, and the empirical distribution of the covariates.  The Q parameter (denoted as 0Q ) is 
the conditional mean of the outcome given treatment and covariates and is the basis of traditional 
parametric regression.  The treatment mechanism (denoted as g0) is the conditional distribution 
of treatment under the observed data distribution and is the key component for the IPTW 
estimator.  TMLE makes use of both 0Q  and g0.    
 
Estimation can be accomplished in a single step with parametric regression if the statistical 
model for the ATE is a linear equation without interaction (see section on parametric regression 
under estimation procedures).   Covariate imbalance across treatment groups is addressed by 
conditioning on a set of measured confounders in the regression.  A major limitation of 
traditional regression is that it relies on correctly specifying the full parametric model for 0Q in 
order to consistently estimate the target parameter of interest.  However, I am unable to defend 
most of the parametric model assumptions imposed in traditional regression.  For example, the 
inclusion of a continuous poverty index in a linear regression model for the effect of an 
intervention on nutritional status assumes that the relationship between nutritional status and 
poverty is linear and not quadratic or of some other functional form.   The addition of higher-
ordered terms or interaction terms with other variables, such as gender, may improve the model 
fit.  But I don’t know a priori what form these relationships should take, and the true relationship 
between nutritional status and poverty may be of a more complicated functional form than what I 
can approximate by these simple terms.  Finally, as terms are added or removed from the model, 
the interpretation of the coefficient on the exposure changes.  Traditional parametric regression 
provides an estimate of the ATE that will be biased if the model is incorrectly specified. 
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IPTW, on the other hand, is a two-step process that aims to address covariate imbalance by re-
weighting the sample population into a balanced hypothetical population, or pseudo-population, 
in which the exposure is independent of the measured confounders (under my randomization and 
ETA assumptions).65, 101  In the first step, the treatment mechanism, g0, is estimated and used to   
calculate inverse probability of treatment weights (see section on IPTW under estimation 
procedures).  In the second step, a weighted regression of the outcome is fit on treatment using a 
model that no longer includes the confounders.  In this way, IPTW avoids specifying a 
parametric model for the expectation of the outcome given treatment and confounders, and by 
doing so, avoids the potential for introducing bias due to the model misspecification implied by 
this approach.  However, IPTW relies on consistent estimation of the treatment mechanism, g0, 
to obtain an unbiased estimate of the target parameter. 
 
TMLE is multi-step process that involves estimation of both the Q parameter and the treatment 
mechanism in estimating the causal effect (see section on TMLE under estimation procedures).  
Importantly, TMLE implements a final bias reduction step to estimate the target parameter of 
interest with minimal bias. While the consistency of parametric regression relies wholly on 
consistent estimation of the conditional mean of Y given treatment and covariates, and the 
consistency of IPTW relies wholly on consistent estimation of the treatment mechanism, the 
consistency of TMLE relies on either consistent estimation of 0Q or consistent estimation of g0.  
In this way, TMLE is considered a doubly robust estimator. 
 
In addition, TMLE incorporates some of the best features of the other two estimation methods 
and avoids some of their problem areas.  For example, TMLE shares an advantage with 
parametric regression in that they both belong to a class of estimators known as substitution 
estimators.  As discussed in the introductory chapter, an estimator is a mapping function that 
takes as input an estimate of the distribution (where the estimated distribution is not necessarily 
an element of the statistical model) and returns as output an estimate of the true target parameter 
value (e.g., the ATE).  A substitution estimator is a type of estimator that applies the same 
mapping (or function) that defines the target parameter to an estimate of the distribution of the 
data (where the estimated distribution is an element of the statistical model).  Substitution 
estimators have the important advantage that they respect the constraints, or knowledge, 
incorporated in the statistical model. 
 
Both parametric regression and TMLE are substitution estimators in that they apply the target 
parameter mapping, Ψ (e.g., estimands I to III), to an estimate of 0Q  that respects the statistical 
model, in order to estimate the parameter of interest.  Put more simply, but less precisely: these 
two substitution estimators plug an estimate of 0Q  into the same function that defines Ψ.  By 
comparison, IPTW is not a substitution estimator.  The IPTW estimator applies a different 
mapping that is based on estimating a different part of the data distribution (i.e., g0 that is not 
part of the parameter definition) and plugging this estimate into a different function (see section 
on IPTW under estimation procedures). 
 
In addition, both parametric regression and TMLE are able to extrapolate to areas beyond the 
support of the data (i.e., to levels of high or low poverty that were not actually observed for a 
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given treatment assignment) when estimating the ATE.  This can be an advantage in sparse data 
situations, but only to the extent that I am willing to assume a weak positivity assumption (i.e., 
that it is reasonable to extrapolate to these areas, see discussion of the ETA in chapter 3) and the 
statistical model is correctly specified. 
 
Finally, both IPTW and TMLE are semi-parametric estimators. Their implementation requires 
specifying estimators for 0Q and/or g0.  Although parametric regression can be used to estimate g 
or Q, doing so would introduce parametric model specifications into methods that are otherwise 
non- or semi-parametric.  Therefore, in order to minimize model misspecification, I incorporate a 
non-parametric, machine-learning tool, or SuperLearner (SL),102 for the prediction steps in IPTW 
and TMLE.  Briefly, SuperLearner is a data-adaptive tool that “learns” from the observed data by 
using a candidate set of algorithms (or estimators) and a pre-specified loss function that assigns a 
measure of performance to each of the algorithms.  I provide a short description of SuperLearner 
in the Appendix (A3), but for more detail, I refer the interested reader to the Super Learning 
chapter of the van der Laan and Rose book on Targeted Learning.58, 102 
 
The non-random assignment of treatment in Madagascar (or in any observational study) makes 
inferences about the program’s effect susceptible to confounding bias if the comparison group is 
not exchangeable with the treated group on key predictors of the outcome.  Therefore, it is 
critical to observe the key confounders and to optimally control for them in the estimation 
process.  Each of the three methods discussed above offers a different approach to obtaining an 
estimate (that may or may not be biased) of the target causal parameter, given measured 
confounders.  On the other hand, the exclusion of strong, unmeasured confounders from the 
statistical model will result in the divergence of the estimand (i.e., the statistical parameter) from 
the target causal parameter, regardless of the method of estimation.  For example, using 
simulations in chapter 3, I demonstrate that the estimate of the ATE diverges from the true value 
when the necessary assumptions fail to hold for an estimand.  However, the magnitude and 
direction of this divergence for the observed data from Madagascar is unknowable.  For the sake 
of exploring the different identifiability solutions with the Madagascar data, I proceed with 
estimation of each of the three estimands defined previously in chapter 3. 

4.2 Methods 

4.2.1 Data 
In 1999, the Government of Madagascar rolled out a national, community-based growth 
monitoring and nutrition education program (SEECALINE).43  A nationally representative 
anthropometrics survey was performed in 420 communities in 1997/98, prior to the 
implementation of the program.  The survey was administered to a random sample of 14,148 
households, 12,814 of which had children five years of age and under.  Both weight and 
length/height were obtained for the children, but only the weight data are used in my analysis.   
 
An initial treatment assignment in 1999 was made at the community-level based on district-level 
prevalence of moderate underweight among children under five (moderate underweight is 
defined as weight-for-age z-score 2 standard deviations below the median of a reference 
population).  The program was phased in through 2002, and expanded to include new 
communities impacted by severe weather conditions in 2000 or impacted by political instability 
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in 2002.  In total, 3,600 project sites were reached.  In 2004 a second nationally representative 
anthropometric survey was administered to 10,704 households, 9,296 with children under 5 years 
of age, in 446 program participating and non-participating communities (420 communities from 
the 1997/98 survey plus 26 new communities). 
 
Table 4.1: Variable Description 
Abbreviation Description 
V Vector of time invariant community level covariates: † 

• Rural vs. urban location 
• Province 
• Population size  
• Presence of health facility 
• Road access (paved, unpaved, or none in wet season) 
• Water access (in any season) 
• Indicators for weather shocks in commune between ‘99 and ‘01 

Wc(t) Vector of individual level covariates, Wi(t), (i=1,…,N), for each of 
the N individuals sampled in the community at time t=0,1, 
aggregated to the community level as a mean or proportion: 
• Maternal education (proportion with no education, proportion 

with primary only education) 
• Child age (mean age and proportion older than 1 year) 
• Child gender (proportion female) 
• Child birth order (mean rank) 

A SEECALINE administered at the community level 
Yc(t) Community mean of individual level outcomes Yi(t) (i=1,…,N) for 

each of the N individuals sampled in the community at time t=0,1: 
• Weight-for-age z-score‡ of children 6-59 months 

UV,…UY(t) Random variation for each endogenous variable that might include: 
• Characteristics of leadership in accepting the program (UA) 
• Dispersion of the community across large distances (UV) 
• Lack of a secondary school in the community (UW) 
• Sampling procedure problems (UY(t)) 

†Population size, presence of a health facility, and access by road or water information is only 
available at the community level in 2004. For the purposes of this paper, I assume that these 
factors did not change significantly from 1997. 
‡A weight-for-age z-score value of +1 (-1) is equivalent to 1 standard deviation (SD) above 
(below) the median weight of the WHO reference population of well- nourished and healthy 
children of the same age and gender.103 
 
I restricted the analytic sample to 410 out of the 446 communities.  Twenty-six communities 
were excluded that were not part of the baseline survey in 1997, but were added later in 2004.  I 
excluded another 10 communities (including the provincial capitals) from 6 urban districts 
because sites in these districts were opened in 2002 in response to a political crisis, such that the 
nature and the socio-economic context of the intervention differed substantially from the 
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remainder of the country. Descriptions of the observed variables are shown in table 4.1.  The U’s 
are unmeasured, exogenous variables. 

4.2.2 Identifiability in the Madagascar Context  
Prior to proceeding with estimation, I review whether the randomization assumption (RA) and 
experimental treatment assignment (ETA) assumption are likely to hold in the context of the 
observed data from Madagascar.  Given that the statistical models for estimands I, II, and III are 
semi-parametric, some of the exclusion restrictions are testable and findings for these are 
presented in the results section (i.e., the independence assumptions for estimand III). 
 
Randomization Assumption  
Treatment assignment of the nutrition program was not random.  Therefore, it is essential that I 
identify the factors that may differ systematically between treated and untreated communities.  
These factors (if observed) can then be included in the subset of conditioning variables necessary 
for the randomization assumption to hold.  Forty-six out of 111 districts in Madagascar were 
targeted for intervention based on having a district-level prevalence of moderate underweight 
above the national average (43%) in 1997/98.  Another 11 districts were included in the initial 
roll out because they had experienced drought or cyclones in 2000.   Lack of district participation 
in 2004 is nearly perfectly predicted by these two indicators: most (92%) of communities in the 
non-targeted districts did not take up the program.  However, there is more heterogeneity in 
participation status in the targeted districts: about 66% of communities in these districts in my 
sample took up the program by 2004.  Other factors that influenced the actual roll out and 
implementation program implementation included the goal of achieving a coverage rate of 50% 
of children under 3 years of age by 2002 (i.e., targeting larger communities), and the requirement 
that the community be accessible by local transportation for most of the year for field 
supervision (i.e., by auto/motorbike, horse cart, or canoe).  The presence of local non-
governmental organizations was necessary to manage the field supervision.  Inclusion of these 
factors in the conditioning set of variables (for the RA assumption to hold) may result in ETA 
assumption violations, which I explore in more detail later. 
 
Observed variables that encompass the district and other selection criteria, and that are also 
expected to predict the final community-level outcome, include the mean community weight-for-
age z-score (WAZ) in 1997 (or Yc(t=0)), the population size of the community, indicators for 
road and water access in both the wet and dry seasons, and an indicator at the commune level of 
the occurrence of a drought or cyclone prior to 2002.  I use the community mean WAZ at 
baseline (the lagged outcome) instead of the prevalence of moderate underweight in the 
community because the prevalence is simply a re-categorization of the outcome, and the two are 
very highly correlated (Pearson’s ρ = -0.91).  Additional variables included in V and Wc(t=0) 
represent other factors that are generally considered associated with poor nutritional outcomes 
(i.e., low maternal education and lack of a hospital) and may be associated with treatment (see 
table 4.1).   
 
Examples of unmeasured, exogenous factors that may cause random variation among the 
observed variables are listed in table 4.1.  Of these, it is plausible that dispersion of the 
community across large distances (UV) may act as an unmeasured confounder.  Wide dispersion 
could influence the sample selection (UY(t)), and thus the nutritional status of the children 
included in the sample, as well as community cohesion, and thus the leadership choice to accept 
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the program into the community (UA).  In addition, very remote communities may have lacked a 
local non-governmental organization (i.e., could not receive treatment) and this remoteness 
might be reflected in nutritional outcomes. 
 
Experimental Treatment Assignment 
In addition to the RA, for the target statistical parameter to be defined in the structural causal 
model (SCM), each community must have some positive probability of both being treated and 
not being treated (experimental treatment assignment or ETA assumption).   The ETA 
assumption (also known as the positivity assumption) states that for a binary treatment, A, the 
conditional probability of treatment given covariates, is bounded away from 0 and 1. (Note that 
in a true randomized control trial, the probability of treatment is independent of covariates and 
bounded away from 0 and 1 by design).  If the ETA assumption is theoretically violated (i.e., the 
treatment is not possible or inevitable for certain values of the covariates), then the causal 
parameter is not identifiable without additional assumptions.  Practical violations of the ETA 
may also occur if the true probability distribution is greater than zero, but, by chance, the 
probability equals or approaches zero in the available sample.  In this case, while the causal 
parameter is formally identifiable, it may be poorly supported by the available data.  Positivity 
violations can result in a biased estimate of the causal effect, regardless of the estimator, so it is 
important to assess the evidence in the context of my study.96  
 
In the Madagascar example, the ETA assumption was not theoretically violated.  Communities in 
non-targeted districts participated and communities in targeted districts did not.  In addition, 
many non-participating communities received the program after 2004 as the program expanded.  
However, due to the fact that treatment was targeted to districts with the highest prevalence of 
malnutrition, that the sample is finite, and that the covariate data are high dimensional (some are 
continuous or multilevel), it is possible that the ETA assumption is practically violated.  A 
formal diagnostic based on the parametric bootstrap is available for estimating the presence and 
magnitude of bias from positivity violations and near-violations.104  However, in this chapter, I 
pursue several informal methods for investigating practical positivity violations.96, 101 
 
Based on a priori knowledge of how the program was rolled out, I verify that both treated and 
untreated communities are represented in specific subsets of the data with low and high expected 
probability of treatment (i.e., in villages with low and high levels of malnutrition and in villages 
with and without road access).  Due to the impossibility of checking every level of the 
covariates, I also examine the distribution of estimated probabilities of treatment given my 
covariates (also known as the propensity score).  With respect to positivity violations, I verify 
that the estimated probabilities of treatment are bounded between 0.025 and 0.975 in my sample 
for each of the estimands (these bounds are the default for truncation in the TMLE package, see 
TMLE section for more detail).  Unfortunately, neither of these checks quantifies the degree to 
which violations or near-violations threaten the validity of my causal effect estimate.  However, 
evidence of heterogeneity in treatment within strata of the confounders can give me some 
confidence that the ETA assumption is reasonably held.  Additional informal checks for 
positivity violations are discussed in the estimation section. 
 
ETA violations may be addressed in a number of ways.  Methods used prior to estimation 
include: 1) restricting the sample by trimming (or dropping) communities that have positivity 



 

60 
 

violations; 2) redefining the causal effect of interest to one that does not result in positivity 
violations (e.g., an average treatment effect among the treated (ATT) may meet this criterion); 
and 3) restricting the covariate adjustment set such that covariates responsible for positivity 
violations are excluded (must assume that these covariates are not strong confounders, although 
if they are weak confounders, I lose identifiability).96   All three approaches change the 
parameter being estimated and are not implemented here.  Methods that are applied in the 
estimation process include extrapolation based on subgroups with sufficient experimentation 
(which changes the semi-parametric statistical model by imposing additional assumptions), or 
truncation of extreme probabilities to some fixed values (which changes the target causal 
parameter).  These latter two methods are discussed in the section on estimation procedures. 
 
Regression to the Mean Bias 
It is important to note that Yc(t) at both time points is estimated with sampling error and the 
inclusion of Yc(t=0) to control for confounding in estimands II and III can introduce a separate 
source of bias (i.e., distinct from bias due to conditioning on a collider).  Specifically, if the 
outcome is measured with error, then inclusion of the lagged outcome, Yc(t=0), in a change score 
estimator leads to regression to the mean (RTM) bias.105, 106  A common example of RTM is 
found in the clinical trials literature when a change in outcome pre and post treatment is of 
interest (i.e., for blood pressure or serum HDL cholesterol).106, 107  Methods have been developed 
to correct for RTM.106, 107 However, a good estimate of the reliability of the outcome measure is 
needed, either from repeated measures (within a short time frame) or a subset analysis using a 
gold standard instrument.  Since I do not condition on Yc(t=0) in estimands II and III, corrections 
for the RTM are not implemented. 

4.2.3 Estimation Procedures 
In this section, I describe three estimation methods for each of the statistical target parameters: 
traditional parametric regression, inverse probability of treatment weights (IPTW),64 and targeted 
maximum likelihood estimation (TMLE).58, 67 As discussed, the different estimators require 
estimators of different components of the observed data distribution (i.e., g0 and/or 0Q ), which 
vary for my three estimands.    
 
I define the Q parameter for estimands I, II, and III, respectively, as: 
 
For ΨI:  0Q  = E0 [Yc(t=1) | A=a, V, Wc(t=0), Yc(t=0), Wc(t=1)], 

For ΨII:  0Q  = E0 [Yθ | A=a, V, Wc(t=0), Wc(t=1)], and 
For ΨIII:  0Q  = E0 [Yc(t) | A=a, V, Wc(t), t] 
 
where 0Q represents the conditional mean of Y given treatment and covariates.  The three 
variations on g are:  
 
For ΨI:  g0(a | V,Wc(t=0),Yc(t=0),Wc(t=1)) = P0(A=a | V,Wc(t=0),Yc(t=0),Wc(t=1))  
For ΨII:  g0(a | V,Wc(t=0),Wc(t=1)) =  P0(A=a | V, Wc(t=0), Wc(t=1)) 
For ΨIII:  g0(a | V,Wc(t),t) = P0(A=a | V, Wc(t), t) 
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where g0 represents the treatment mechanism applied to the true data generating distribution, P0. 
 
For ease of comparison, the community is the unit of analysis for all three estimators.  The data 
are from two cross-sectional surveys with different individuals included in each year (i.e., Y(t) 
and W(t)) were measured on one set of subjects at time t = 0 and on another set of subjects at 
time t = 1).  Selecting the community as the unit of analysis would be a limitation for repeated 
cross-sectional studies with few sites, but is feasible in my study of 410 communities. 
 
A) Parametric Regression: 
For the traditional parametric regression estimator, I impose the following generalized linear 
forms to the estimators for the post treatment and change score estimands (ΨI and ΨII), 
respectively:  
 
E(Yc(t=1) | V, A, Wc(t=0), Yc(t=0), Wc(t=1)) = β0 + β 1A + β 2V  + β 3Wc(t=0) + β 4Yc(t=0)  

+ β 5Wc(t=1)     (4.1) 
 

and 
 

E(Yθ | V, A, Wc(t=0), Wc(t=1)) = β0 + β 1A + β 2V  + β 3Wc(t=0) + β 4Wc(t=1)  (4.2) 
 
If these parametric statistical models are correctly specified (i.e., I was confident that the true 
data generating distribution fell in the family of distributions described by the models) then the 
coefficient β1 on A is equivalent to my target parameter (the ATE). The ATE can then be 
estimated efficiently using maximum likelihood estimation (MLE).  However, since my 
knowledge is inadequate to support such a model (i.e., I don’t know the underlying functional 
form that describes how the mean outcome varies as a function of the covariates and the 
treatment), the coefficient β1 is no longer necessarily equivalent to my target statistical 
parameter.  In this case, an estimate of β1 will generally give a biased estimate of my causal 
effect of interest.  I include the post intervention covariates, Wc(t =1), that I assume are not 
affected by A. Their inclusion may improve the precision in the estimator, and I test that the 
exclusion of Wc(t=1) does not change my findings.   
 
Note that although the coefficient β1 describes a conditional association, it is equivalent to a 
marginal association in models (4.1) and (4.2) because these models assume that the conditional 
mean of Y given treatment and covariates is a linear function of A, and A does not interact with 
the covariates.  A common misconception of traditional parametric regression estimators is that 
they confine us to a conditional association.  For example, under a statistical model where A 
interacts with covariates, the conditional association is not equivalent to an average treatment 
effect (ATE).  However, a marginal association can be obtained by adding a second stage to the 
estimation process.  Specifically, the differences in mean outcome under treatment and no 
treatment are averaged over the empirical distribution of the covariates (e.g., Wc(t) and V).  This 
two-stage approach to estimating the ATE is comparable to standardization, where the marginal 
distribution of the covariates is used as the standard.  It is also referred to as the g-computation 
estimator or the ML-based substitution estimator.58 
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For the third estimand (ΨIII), I can choose to estimate EV,W(t)(E(Yc(t) | A=a, V, Wc(t)) separately 
for each time point, t, or alternatively, I can choose to implement a single estimator for E(Yc(t) | 
t, V, A, Wc(t))), pooling over time.   I choose the latter.  In addition, I have the option of 
implementing an individual-level analysis despite the serial cross-sectional nature of the data 
(i.e., different individuals are sampled at the two time points).  This would take advantage of the 
knowledge that W(t) and Y(t) are drawn from the same individual for a given time t and possibly 
improve precision (i.e., if the paired data is more predictive of Y(t)).  However, for comparability 
with the other estimands, I perform a community-level analysis for estimand III. 
 
I impose the following functional form to the estimator of ΨIII: 
 
E(Yc(t) | t, V, A, Wc(t)) = β 0 + β 1A +  β 2t + β 3(A*t)  + β 4V  + β 5Wc(t)   (4.3) 
 
Once again, if I modify my semi-parametric statistical model for estimand III to assume that this 
parametric form is true, then the coefficient β 3 on the interaction term is equivalent to the target 
statistical parameter, ΨIII, for the average treatment effect (ATE).  Again, however, in the semi-
parametric statistical model implied by the SCM, this is not necessarily true, and β 3 will be an 
unbiased estimate of ΨIII only if the parametric model is correctly specified.  The term 
“difference-in-differences”  stems from the fact that the ATE estimate in this approach is the 
mathematical equivalent of the difference in the control arm over time (β 2) subtracted from the 
difference in the treatment group over time (β 2+ β 3), or the difference-in-differences of the 
treatment vs. control group over time (β 3).  In keeping with the methods used for the first two 
estimands, I implement a generalized linear model with MLE for this estimator. 
 
B) IPTW 
As mentioned in the introduction, IPTW re-weights the sample population into a balanced 
pseudo-population.  Each community is given a weight that is inversely proportional to an 
estimate of the community’s probability of having received its observed treatment status, 
conditional on its measured confounders (obtained by estimating g0 and then generating 
predicted values for the communities’ observed treatment status).  In other words, an IPTW 
estimator maps the empirical data distribution to a parameter estimate, beta (β), based on an 
estimator of the treatment mechanism. 
 
For the first estimand, ΨI, I implement an IPTW estimator for β in the following saturated model: 
 
E(V,W

c
(t=0),Y

c
(t=0),W

c
(t=1) |A) E[Yc(t=1)| A, V, Wc(t=0), Yc(t=0),Wc(t=1)] = β0 + β1A  (4.4) 

 
The estimate for the treatment effect, or the coefficient β1, is obtained by fitting a weighted 
regression of Yc(t=1) on A according to the model (4.4).  The weights are community specific 
and equal to the inverse of the predicted probability of treatment received, conditional on the 
covariates.  Specifically for ΨI: 
 
weightI = 1 / gn(A=a | V, Wc(t=0), Yc(t=0),Wc(t=1))      (4.5) 
 
where gn is the estimate of g0.  A numerator of one in equation (4.5) implies the use of 
unstabilized weights.  In the presence of sparse data and extreme weights, the numerator can be 
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changed in such a way as to stabilize the weights (i.e., give greater weight to areas where the 
joint distribution of treatment and covariate(s) are well supported), but this approach applies 
when the model is unsaturated.64, 96  In a fully saturated model (e.g., 4.4), changing the numerator 
won’t make a difference, and so I employ a numerator of one.  As with the parametric regression 
based estimator, I include the post intervention covariates, Wc(t=1), in the denominator to 
potentially improve the precision of the estimator. 
 
Similarly, for ΨII, I implement an IPTW estimator for β in the following model: 
 
E(V,W

c
(t=0),W

c
(t=1) |A) E[Yθ| A, V, Wc(t=0), Wc(t=1)] = β0 + β1A    (4.6) 

 
and estimate the coefficient β1 by fitting a weighted regression of  Yθ according to model (4.6).  
The weights are equal to the inverse of the predicted probability of treatment received, 
conditional on the covariates V, Wc(t=0) and Wc(t=1), excluding Yc(t=0): 
 
weightII = 1 / gn(A=a | V, Wc(t=0), Wc(t=1))       (4.7) 
 
Finally for ΨIII, I implement an IPTW estimator for β, pooling over time points, for the following 
saturated model:  
 
E(V,W

c
(t) |A, t) E[Yc(t)| t, A, V, Wc(t)] = β 0 + β 1A + β 2t + β 3(A*t)    (4.8) 

 
The estimate for the treatment effect is now the coefficient β3 on the interaction term, which I 
obtain by fitting a weighted regression of Yc(t) according to model (4.8).  Note that the weights 
for estimand III vary for Wc(t) at the two time points, and exclude Yc(t=0): 
 
weightIII = 1 / gn(A=a | V, Wc(t),t).        (4.9) 
 
The consistency of the IPTW estimator relies on consistent estimation of the treatment 
mechanism (g0) used to calculate the weights in 4.5, 4.7, and 4.9 above.  It is common practice to 
revert to a parametric statistical model for estimating g0, but this approach introduces the 
potential for model misspecification (and consequently bias) that I am trying to avoid.  
Therefore, I use SuperLearner for the estimation of g0, which respects my non-parametric 
statistical models. 
  
In addition, the IPTW estimator is particularly susceptible to bias arising from violations of the 
ETA assumption.  As discussed previously, IPTW is not a substitution estimator, and as such 
cannot extrapolate to areas with zero experimentation within certain levels of the covariates (true 
ETA violation).   Under these conditions, the IPTW estimator is biased.  In areas with minimal 
experimentation (near violation) a few communities may receive extremely large weights.  
Extreme weights can lead to finite sample bias and increased variance, although these weights 
can be truncated to some fixed minimum and maximum values.101  Truncation can reduce the 
estimator variance, but the process introduces a new form of bias (i.e., the estimator of g is no 
longer consistent), and depending on the setting, it may or may not increase the mean square 
error (MSE)96, 104  Extreme weights were not generated for any of the three estimands in my 
original sample.  However, highly improbable observations occurred in the bootstrap samples 
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used for inference (see inference section), such that estimates of g0 were bounded between 0.025 
and 0.975 for the bootstrap estimates. 
 
C) TMLE 
TMLE is a doubly robust estimator that is designed to reduce bias in the estimator of the causal 
parameter of interest.  The following description of the method applies to all 3 estimands. 
 
TMLE is a multi-step process.  The first step is to obtain an initial estimate of 0Q , which can be 
performed with a parametric regression estimator as described previously.  However, as with my 
implementation of IPTW, I avoid imposing unnecessary (and unrealistic) parametric model 
assumptions with TMLE.  Specifically, I implement SuperLearner for estimating the Q 
parameter and average the differences in mean outcomes under treatment and no treatment over 
the empirical distribution of covariates (as I would do to apply the g-computation estimator). 
 
TMLE takes the estimation process one step further.  The SuperLearner estimator is designed to 
obtain the best predictive fit for the full conditional distribution of the outcome, 0Q , based on an 
optimal bias-variance tradeoff procedure.   However, I am not interested in the full conditional 
distribution of the outcome (or even its conditional mean), but rather in the mean difference in 
potential outcomes under treatment and no treatment.  In other words, the optimization in 
SuperLearner does not give me the optimal bias-variance tradeoff for my actual parameter of 
interest.  Therefore, an estimate of my target parameter from the initial fit of 0Q  will be overly 
biased.  In order to resolve this discrepancy, TMLE implements a targeting step to reduce the 
bias for the statistical parameter of interest (equal under assumptions to my causal parameter).  
The initial estimator of 0Q  is updated in a fluctuation procedure using a “clever covariate,” 
which is a function of the treatment mechanism, g0.58  Once again, I implement SuperLearner to 
obtain a consistent estimator of the treatment mechanism.  The updated estimates of the 
predicted values of the outcome under each treatment condition are then used to obtain the target 
parameter of interest, the ATE.  In this way, TMLE removes all asymptotic residual bias of the 
initial estimator for the target parameter, as long as I have a consistent estimator for g0 or 0Q .58  
As with IPTW, estimates of g0 are bounded between 0.025 and 0.975 for the bootstrap samples 
used for inference. 
 
In summary, TMLE has multiple advantages.  As with IPTW, I am able to retain the semi-
parametric nature of TMLE by the inclusion of SuperLearner in the prediction steps.  As with 
parametric regression, TMLE is a substitution estimator, and as such, can extrapolate into areas 
not supported by the data within the bounds of the statistical model.  Both parametric regression 
and TMLE are less sensitive to outliers and sparse data than IPTW in this regard, if extrapolating 
is justified and the statistical model is correctly specified.  Finally, TMLE is advantageous over 
both of the other methods in that it is targeted to the parameter of interest and is “doubly robust.”  
In estimating the causal effect of interest, TMLE is consistent if either the estimate of 0Q or the 
estimate of g0 is consistent.  If both are consistent, then the TMLE estimator of the target 
parameter is efficient.  However, if the positivity assumption fails to hold, then TMLE relies 
entirely on consistent estimation of 0Q . 
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4.2.4 Statistical Inference 
Standard errors were estimated using a non-parametric bootstrap with 200 replications.  For each 
bootstrap sample, 410 communities were sampled with replacement and all nine estimates 
obtained before drawing the next sample.  The confidence intervals were calculated both 
parametrically (assumes a normal distribution for the estimator) and non-parametrically by 
ordering the bootstrap estimates and taking the 2.5th and 97.5th percentile values.  I also present 
robust influence curve based confidence intervals using standard packages in R and the TMLE 
package.  

4.2.5 Software Packages 
Software package Stata/MP 10.1 was used for building the datasets and the programming 
language R, version 2.13.1, was used for all of the analyses. Analyses used the following 
publically available R packages: Super Learner Prediction version 1.1-18 and TMLE: Targeted 
Maximum Likelihood Estimation of Point Treatment Effects, version 1.1.1.  Both packages are 
available on the Comprehensive R Archive Network (CRAN). Candidate SuperLearner 
algorithms that were included for predicting g were generalized linear models, Bayesian linear 
models, elastic nets, generalized additive models, step-wise regression, k-nearest neighbors, and 
neural networks.  Candidate algorithms that were included for predicting Q were generalized 
linear models, Bayesian linear models, elastic nets, generalized additive models, step-wise 
regression, and polynomial spline regression.  An extension of the publically available TMLE 
package, obtained directly from its author, Dr. Susan Gruber, was used to implement the TMLE 
estimator for estimand III (now available as an updated TMLE package, version 1.2, on CRAN). 

4.3 Results 

4.3.1 Exclusion restriction assumptions  
All Estimands: A does not affect Wc(t=1) 
For all estimands, I make the assumption that A does not affect Wc(t=1).  This is a causal 
assumption in that it expresses what would happen to Wc(t=1) under changing conditions of 
treatment (e.g., setting A equal to 0 or 1).  Although I cannot test a causal assumption directly 
with a statistical test, there are implications of causal assumptions that are testable. 93  For 
example, I find that A is not significantly associated with any of the variables in Wc(t=1), when 
controlling for the corresponding variable in Wc(t=0) using a series of parametric regressions.  In 
addition, I discuss the sensitivity to removing Wc(t=1) form the set of conditioning variables for 
estimands I and II in the estimation results section. 
 
Estimands II & III: Yc(t=0) does not affect A 
For the change score and pooled outcome estimands (ΨII and ΨIII), I need to make the 
assumption that Yc(t=0) does not affect A.  Selection into the treatment group was based (at least 
in part) on prevalence of moderate underweight in the community (aggregated up to the district 
level), making it difficult to accept this assumption.  In a traditional logistic regression to predict 
A, the model that includes only Yc(t=0) explains approximately 7% of the variance in A.  A 
model that includes only V, Wc(t=0) and Wc(t=1) explains about 15% of the variance.  However, 
this increases to 22% with the addition of Yc(t=0) (likelihood ratio test is statistically significant, 
p-value < 0.001).  I explore the implications of adding that Yc(t=0) affects A back into the 
models for estimands II and III in the discussion section. 
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Estimand III: Tests of independence  
The additional assumptions required for the pooled outcome estimand (ΨIII) can be tested.  Based 
on parametric regression, none of the variables in Wc(t=1) were found to be significantly 
associated with Yc(t=0) given V, A, and Wc(t=0) at the 5% level.  However, one of the six 
variables in Wc(t=0) has a statistically significant association with Yc(t=1) given V, A, and 
Wc(t=1).  Specifically, mean infant birth rank in 1997 is negatively associated with mean weight-
for-age in 2004 (p-value of 0.03).  The magnitude and significance of assocation do not change 
substantially with the inclusion of Yc(t=0) and/or the exclusion of A from the regression.  In very 
low income settings, children born first (rank = 1) often have worse nutritional outcomes than 
their later born siblings (the older children stop receiving breast milk when their younger siblings 
are born).  However, at the community level, the mean birth rank in the sample is more likely to 
be reflective of family size, in which case I would expect a negative correlation of increasing 
family size with worse nutritional outcomes.  In fact, there is a statistically significant negative 
correlation of mean infant rank and mean WAZ in both of the survey years in Madagascar (as 
well as in a recent 2011 survey).  Therefore, it is possible that family size in 1997 is predictive of 
mean WAZ in 2004, and that this association is not blocked by V, A, or Wc(t=1).  It is also 
possible that the association is due to chance. 

4.3.2 Checks for Positivity Violations 
The treated communities have on average higher prevalence of underweight, as expected (39% 
vs. 30%).  The minimum prevalence of underweight among the treated communities was about 
5%, and the maximum, 95% (median 38%).  The minimum prevalence of underweight among 
the untreated communities was 0%, and the maximum, 70% (median 29%).  Approximately 40% 
of the treated villages had a prevalence of underweight greater than 43% in 1997. 
 
Since provincial capitals were excluded from the sample and urban communities are generally 
better off economically than rural ones, I tabulated province and urban location among villages 
with high prevalence of underweight (above 43%).  There are only 12 communities in the sample 
that are urban with a high prevalence of underweight, and there are only 1-3 of these in each of 
the 6 provinces.  As a result, 4 of the provinces have empty cells for urban communities with 
high prevalence of underweight when cross-tabulated by treatment.   In addition, of the 8 urban 
communities from the capital province of Antananarivo, none had received treatment in 2004, 
regardless of underweight prevalence (although 4 later received treatment).  Therefore, there is 
evidence that the ETA assumption is violated for certain types of communities.  This violation 
will lead to bias in the IPTW estimator and require the parametric regression and TMLE to 
extrapolate to these areas lacking in experimentation. 
 
Finally, I checked for variability in treatment status by province and history of cyclone, as well 
as by road or water access to the communities.  The villages in the northern-most province of 
Antsiranana are nearly dichotomized into treatment groups by whether or not they experienced a 
cyclone pre-2002.  However, there were no empty cells (one treated community without 
cyclones and 2 non-treated communities that did experience a cyclone).  There is reasonable 
heterogeneity by treatment status by transportation access in all provinces. 
 
Despite the evidence of possible positivity violations in the above descriptive statistics, the 
predicted probability of treatment given covariates falls within the bounds of 0.025 and 0.975 for 
all communities and all three estimands (see min/max values in table 4.2).  As a consequence, 
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there are no extreme weights.  However, the absence of extreme weights is not definitive proof 
of positivity (as is evidenced by the ETA violation found with the cross-tabulated data).   The 
range of probabilities in the untreated group is comparable to that of the treated group (table 4.2). 
 
Table 4.2: Predicted probability of treatment given covariates by estimand 
 Probability (min/max) Weights 

(min/max)  Treated Untreated 
Estimand I 0.095 / 0.870 0.082 / 0.840 1.09 / 10.5 
Estimand II 0.138 / 0.744 0.128 / 0.682 1.15 / 7.25 
Estimand III (t=0) 0.148 / 0.790 0.083 / 0.730 1.09 / 6.74 
Estimand III (t=1) 0.122 / 0.754 0.113 / 0.714 1.13 / 8.21 

4.3.3 Estimation Results 
Estimates for the point treatment effects and their corresponding confidence intervals are shown 
in table 4.3.  The point estimates represent a difference in mean weight-for-age z-score.  
Therefore, a unit change of one is equivalent to one standard deviation above the mean weight 
for the reference standard (i.e., a population of well- nourished and healthy children of the same 
age and gender).  In this section, I report the non-parametric confidence intervals (CI) based on 
the 2.5th and 97.5th percentiles of the bootstrap point estimates.  The parametric CI from the 
bootstrap estimates (based on a normal distribution) and the influence curve-based CI from the 
original sample are shown in table 4.3.  The distributions of the bootstrap estimates by estimand 
and estimation method are shown in the Appendix (A3).  In all cases, the point estimate from the 
full sample falls within the range of the bootstrap estimates. 
 
Estimand I: Post Treatment Outcome Yc( t=1) 
For estimand I, the parametric regression estimate of the average treatment effect (ATE) is small 
and not statistically significant at the 5% level (β = 0.046, CI: -0.031, 0.111).  The effect estimate 
is reduced further with the use of IPTW, and the variance is comparable (β = 0.038, CI: -0.045, 
0.086).  The largest effect estimate is obtained with TMLE (β = 0.066, CI: 0.001, 0.146), which 
is consistent with TMLE adjusting more completely for negative confounding. Although the 
non-parametric CI is wider from TMLE than IPTW, the effect estimate from TMLE is 
statistically significant.  The narrowest CI for ΨI, regardless of estimation method, is obtained 
from the TMLE influence curve (CI width = 0.116).  Note that the differences in CI mentioned 
here and below, are very small. 
 
Removing Wc(t=1) from the estimation reduces the point effect estimate by 13-20% for ΨI (i.e., 
from 0.066 down to 0.053 with TMLE) (see table 4.4).   The width of the influence curve-based 
CI’s for the estimates without Wc(t=1) remain essentially unchanged. 
 
Estimand II: Change Score Outcome Yθ 

The point estimate for estimand II from traditional regression is much larger than estimand I and 
statistically significant (β = 0.276, CI: 0.163, 0.376).  The point estimates obtained from IPTW 
and TMLE are somewhat increased, although nearly identical, to those obtained from parametric 
regression.  The estimates for ΨII remain statistically significant regardless of estimation method.  
The narrowest CI’s for ΨII are the IPTW non-parametric CI and the TMLE influence curve (CI 
width = 0.181 and 0.180, respectively). 
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Table 4.3: Point treatment effect estimates and confidence intervals (includes Wc(t=1)) 
Outcome Target 

Parameter 
Estimation 
Procedure 

Point 
Estimate 

Confidence 
Intervals 
(LCI, UCI)  

Confidence 
Interval 
Method 

Y(t=1) ΨI 

Parametric 
0.046 

-0.026, 0.118 
-0.031, 0.111 
-0.022, 0.114 

Normal distr. 
Percentiles 
Influence curve 

IPTW 
0.038 

-0.028, 0.103 
-0.045, 0.086 
-0.040, 0.115 

Normal distr. 
Percentiles 
Influence curve 

TMLE 
0.066 

-0.008, 0.142 
 0.001, 0.146 
 0.008, 0.124 

Normal distr. 
Percentiles 
Influence curve 

      

Yθ ΨII 

Parametric 
0.276 

 0.163, 0.390 
 0.163, 0.376 
 0.177, 0.375 

Normal distr. 
Percentiles 
Influence curve 

IPTW 
0.279 

 0.180, 0.378 
 0.167, 0.347 
 0.177, 0.381 

Normal distr. 
Percentiles 
Influence curve 

TMLE 
0.278 

 0.170, 0.387 
 0.137, 0.365 
0.188, 0.369 

Normal distr. 
Percentiles 
Influence curve 

      

Y(t) ΨIII 

Parametric 
0.244 

 0.138, 0.351 
 0.146, 0.351 
 0.142, 0.346 

Normal distr. 
Percentiles 
Influence curve 

IPTW 
0.271 

 0.172, 0.369 
 0.166, 0.361 
 0.166, 0.375 

Normal distr. 
Percentiles 
Influence curve 

TMLE 0.282 
 

 0.148, 0.416 
 0.196, 0.458 
 0.186, 0.378 

Normal distr. 
Percentiles 
Influence curve 

 
Table 4.4: Point treatment effect estimates and confidence intervals (excludes Wc(t=1)) 
Outcome Target 

Parameter 
Estimation 
Procedure 

Point 
Estimate 

LCI, UCI † 

Y(t=1) ΨI 
Parametric 0.037 -0.031, 0.104 
IPTW 0.033 -0.040, 0.107 
TMLE 0.053 -0.006, 0.114 

     

Yθ ΨII 
Parametric 0.249  0.149, 0.349 
IPTW 0.276  0.169, 0.384 
TMLE 0.277  0.166, 0.388 

†Influence curve-based lower and upper confidence intervals (LCI, UCI) 
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Removing Wc(t=1) from the estimation reduces the point effect estimates by 1-10% for ΨII (i.e., 
from 0.276 down to 0.249 with parametric regression).  The width of the influence curve-based 
CI for TMLE increased from 0.181 to 0.222 (with no change in the point estimate).  
 
Estimand III: Pooled Outcome Yc( t) 
As with estimand II, the point estimate for estimand III from traditional regression is relatively 
large and statistically significant (β = 0.244, CI: 0.146, 0.351).  The effect estimate increases 
with the use of IPTW (β = 0.271, CI: 0.166, 0.361), and again with the use of TMLE (β = 0.282, 
CI: 0.196, 0.458).  The estimates for ΨIII remain statistically significant for all estimation 
methods.  The narrowest CI for ΨIII is obtained from the TMLE influence curve (CI width = 
0.192).  Note that it is not possible to test removing Wc(t=1) from the estimation of ΨIII. 

4.4 Discussion 

4.4.1 Estimation Results 
Estimand I: Post Treatment Outcome Yc( t=1) 
For estimand I to be equal to the ATE, it is sufficient that there are no unmeasured confounders, 
C (as discussed in chapter 3).  Although this assumption is un-testable, it is possible that some 
unmeasured factors (such as community dispersion) are biasing the point estimate in either 
direction (i.e., the point estimate may be too small or too large).  In order to accept that ΨI is 
equal to my parameter of interest, I must assume that such unmeasured confounders are weak 
and/or blocked by factors that I condition on. 
 
All of the point estimates for ΨI are quite small: less than one tenth of a standard deviation in 
mean weight-for-age z-score.  Only the TMLE estimate is statistically significant.  The IPTW 
estimate is smaller than those obtained from traditional regression and TMLE, suggesting that 
IPTW may be biased downwards due to some practical violations of the ETA assumption.  The 
traditional estimate is less sensitive to positivity violations, and is unbiased assuming no 
unmeasured confounding and correct parametric model specification for ΨI.  However, given 
that this model is almost certainly mis-specified, the larger TMLE estimate for ΨI is the most 
reliable of the three estimators (does not rely on parametric models and is less sensitive to 
positivity violations). 
 
The exclusion of Wc(t=1) in the estimation did not increase the variance of any of the estimators 
(and inclusion of Wc(t=1) does not improve the efficiency of the estimators).  However, the 13 to 
20% drop in the point estimates is worth considering in more depth.  It is possible that there is an 
unmeasured factor that affects both A and Wc(t=1) and opens a backdoor pathway to Yc(t=1) 
when I do not condition on Wc(t=1) (i.e., a confounder, C, as shown in figure 4.1a).  If this is the 
case, then it is best to condition on Wc(t=1) to block this pathway.  Alternatively, if A affects 
Wc(t=1), then by conditioning on Wc(t=1), I block the indirect effect of A on Yc(t=1) through 
Wc(t=1), and I may be conditioning on a collider that opens up a pathway through some 
unmeasured common cause, U, of Wc(t=1) and Yc(t=1) (see figure 4.1b).  In this alternative 
scenario of A affects Wc(t=1), it is best to not condition on Wc(t=1).  However, this alternative is 
less likely as it is contrary to background knowledge and the simple checks previously discussed.     
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Estimand II: Change Score Outcome Yθ 
The change score estimand (ΨII) is potentially advantageous over the post treatment estimand 
(ΨI) in that it differences out unmeasured confounders, C, with a constant additive effect on Yc(t) 
at t=0,1.  For example, if unmeasured community dispersion were a confounder, then its effect is 
eliminated in estimand II, if community dispersion is constant over time, and has a constant 
additive effect on WAZ.  This cancelling effect is a compelling reason to consider estimand II 
and may explain the much larger effect estimate obtained for ΨII. 
 
However, I demonstrate in chapter 3 that estimand II is equivalent to the ATE only under the RA 

that does not condition on Yc(t=0) and with the 
additional exclusion restrictions that Yc(t=0) does 
not affect A, Yc(t=1) and Wc(t=1).  As discussed 
previously, it is implausible that Yc(t=0) does not 
affect A.  However, it is possible that Yc(t=0) does 
not affect Yc(t=1) and Wc(t=1) except through 
Wc(t=0) or V, given that the surveys were 
administered 7 years apart and were cross-sectional 
(i.e., different households and children were 
sampled in each period).  Figure 4.2 represents a 
SCM where these two exclusion restrictions hold, 
but Yc(t=0) does, in fact, affect A.  Under this 
model, confounding by Yc(t=0) occurs through 
exogenous UY(t=0) (i.e., A←Yc(t=0)←UY(t=0)→Yθ ).   
Therefore, in order to accept that ΨII is equal to my 
parameter of interest, I must assume that the residual 
variation in Yc(t=0) not explained by Wc(t=0) and V 
has only a minimal influence on Yθ. 

 
The point estimates for ΨII with all 3 estimators are nearly identical.  In addition, ΨII is much less 
sensitive to removing Wc(t=1) from the estimation than ΨI (impact is negligible with TMLE).  
This lack of differences in effect estimates suggests that ΨII is insensitive to the advantages of 
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using one estimator over another, and less sensitive to conditioning on Wc(t=1).  However, the 
wider influence curve-based CI for TMLE without Wc(t=1) suggests that the inclusion of 
Wc(t=1) improves the efficiency of the TMLE estimate for estimand II, most likely due to better 
prediction of Yθ given covariates ( 0Q ) using SuperLearner.  In summary, I cannot be certain if 
the larger effect estimate for ΨII (in comparison to ΨI) represents an estimate of the ATE that is 
less biased by some unmeasured confounder or an estimate that is more biased due to not 
conditioning on Yc(t=0) (or possibly due to one of the other exclusion restrictions not holding).   
 
Estimand III: Pooled Outcome Yc( t) 
The pooled outcome estimand (ΨIII) has the same advantage as estimand II in that it differences 

out unmeasured confounders, C, with a constant 
additive effect on Yc(t) at t=0,1.  However, for 
estimand III to be equal to the ATE, I must be willing 
to accept that Wc(t=0) does not affect A and does not 
affect Yc(t=1), in addition to accepting the exclusion 
restrictions discussed above for estimand II.  The 
characteristics in Wc(t=0) are not known to have 
influenced treatment assignment, such that Wc(t=0) 
does not affect A may be a reasonable assumption.  It 
may also be plausible that Wc(t=0) does not affect 
Yc(t=1) if, once again, I apply the logic that two 
cross-sectional samples separated by 7 years are only 
associated through fixed village characteristics, V.  
However, I found that mean infant birth rank in 1997 
is negatively associated with mean weight-for-age in 
2004 after conditioning on V, so empirically, there is 

a dependency.  In addition, if I add that Yc(t=0) affects A in the SCM for estimand III at time 
t=1, then figure 4.3 demonstrates that Yc(t=1) is no longer independent of Wc(t=0) given V, A, 
and Wc(t=1)  (a necessary condition).  There is an unblocked pathway through collider A (i.e., 
Wc(t=0) – C→Yc(t=1)).  To accept that ΨIII is equal to my parameter of interest, I must be 
willing to accept that this dependency is negligible.   
 
The point estimate from parametric regression for ΨIII is smaller than that obtained for ΨII (0.244 
vs. 0.276).  However, the effect estimate of ΨIII with TMLE is the largest of all the estimates 
(0.282).  Once again, I cannot be certain if the differences between the estimands is due to a less 
biased estimate of the ATE or due to bias from the additional assumptions for estimand III not 
holding.  The CI for TMLE is wider for ΨIII than for ΨII, suggesting that there was no efficiency 
gain with the pairing of Wc(t) and Yc(t) at time t in estimand III. 
 
In a prior analysis of this same dataset, the authors reported a mean effect on weight-for-age of 
approximately 0.218 using a traditional parametric regression at the individual level (as opposed 
to the community level).43  Since the data represent different children at the two time points, only 
a re-formulation of estimand III at the individual level can support this type of analysis.  The 
difference in point estimates obtained between the prior analysis at the individual level and my 
community level parametric estimate is small (β = 0.218 vs. 0.244).  This difference may be 
explained by differences in the sample of communities used in the analysis and exact covariates 

Figure 4.3: Confounding at t=1 
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included in the regressions.  Alternatively, an individual level analysis may gain precision, if the 
pairing of W(t) and Y(t) from the same individual at time t improves the prediction of the 
outcome. 
 
The authors of the prior analysis recognize that the traditional difference-in-differences approach 
may be biased due to targeting of the poorest communities for receipt of the intervention.  To 
address this concern, the authors used trimming to improve the exchangeability of the treated and 
untreated groups and aimed for an estimate of the average treatment effect among the treated 
(ATT).  Specifically, they present an IPTW estimate (β = 0.149) where communities with 
propensity scores below the 5th and above the 95th percentiles were dropped from the analytic 
sample.43  I cannot compare this estimate directly with my IPTW estimate because it represents a 
different target parameter, causal model, estimand, and identifiability result than I present here. 

4.4.2 Conclusions 
In summary, I am faced with a serious bias trade-off when choosing a final estimand for the ATE 
of the Madagascar nutrition program.  The post treatment estimand (ΨI)  controls for 
confounding due to the lagged outcome, Yc(t=0), but not from possible unmeasured confounder 
C.  The change score and pooled outcome estimands (ΨII and ΨIII) do not control for 
confounding by Yc(t=0), but have the potential to adjust for some types of unmeasured 
confounding.  The extent to which unmeasured confounding is controlled depends on the 
specifics of the unmeasured confounder C (i.e., how C affects Yc(t=0) and Yc(t=1), and whether 
the effect of C changes over time).   In addition, both estimands II and III have the potential for 
introducing bias if the additional assumptions they require (beyond estimand I) are not met.  I am 
unable to estimate either the magnitude or direction of possible confounding from C, or the 
magnitude or direction of bias from the failure of the exclusion restriction assumptions to hold.  
Therefore, I conclude that my best choice is the post treatment estimand because it adjusts 
optimally for the known measured confounders and is equal to the ATE under the fewest 
assumptions. 
 
Once the estimand is chosen, the choice of estimator can still make a difference.  For ΨI, the 
largest effect estimate with the smallest variance was obtained with TMLE (β = 0.066, CI: 0.001, 
0.146).  I report the TMLE estimate, given the desirable properties of the method. TMLE has 
advantages over parametric regression in that it does not rely on correct model specification of 

0Q , but instead makes use of a non-parametric data-adaptive approach (SuperLearner) for 
prediction.  TMLE has advantages over IPTW in that it is a substitution estimator that 
extrapolates into areas that lack support for experimentation (i.e., urban communities with high 
prevalence of underweight).  TMLE improves on both of the other two methods by 
implementing a bias reduction step to estimate the target parameter of interest.  Finally, TMLE is 
doubly robust to misspecification of either 0Q or g0 and is maximally efficient if both are 
correctly specified.   
 
In conclusion, I use my knowledge of the data generating system for the observed data and a 
detailed process of assumption checking to select a simple post treatment estimand for the 
average treatment effect of the Madagascar program on community mean weight-for-age.  I 
follow this with a comparison of estimation methods and select the method for estimation that 
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provides the least biased estimate of the ATE.  Combined, these choices result in a small, but 
statistically significant, estimate of benefit that can be attributed to the Madagascar program.  

4.4.3 Future Work 
Although I settle on a best estimate of the ATE given the observed data, I cannot rule out the 
possibility that the estimate is biased due to an unmeasured confounder, C.  The reality of 
observational studies of large-scale programs is that there are tradeoffs that can lead to bias.  The 
decision becomes one of choosing between approaches that lead to the most tolerable bias.  
Making this decision requires a full understanding of the choices.  In this section, I consider 
alternate target parameters and alternate estimation approaches that might help to resolve the 
current uncertainty in the evaluation of the Madagascar program.  In table 4.5, I summarize 
several possibilities for future work.  I provide a brief comment for each about whether the 
alternative is likely to influence the trade-off (or the “Yc(t=0) dilemma”) described here and in 
chapter 3.  I consider several target parameters including extending the current analysis to the 
2011 weight-for-age (WAZ) data, and the average treatment effect among the treated (ATT). 
 
Table 4.5: Future evaluations of Madagascar’s SEECALINE program 
Alternate target parameters Comment 
ATE for mean WAZ in ‘11 An extension of the current analysis, no change to 

assumptions 
Delayed ATE in ’04 on WAZ 
in ‘11 

An extension of the current analysis, no change to 
assumptions 

ATT for mean WAZ in ‘04 Useful for addressing ETA violations, but does not resolve 
the Yc(t=0) dilemma and is unlikely to change the exclusion 
restrictions of the DiD estimators 

Restrict dataset (i.e., drop 
communities) 
ATE for mean WAZ in ’04 
using individual as unit of 
analysis 

Requires new SCM that takes into account the hierarchical 
nature of the data.  Based on previously published results, it 
is not likely to meaningfully change the results 

ATE for mean height-for-age 
(HAZ) in ‘04 

Mean height as outcome may reduce the effect of the Yc(t=0) 
dilemma as HAZ is less predictive of treatment 

Alternate estimation methods  
Propensity score matching Typically applied to an ATT and to reduce the effect of 

measured confounding, but does not resolve the Yc(t=0) 
dilemma and has unknown effect on unmeasured 
confounding 

Exact matching  on Yc(t=0) The definition of an exact match is problematic and may  
have the same problem as conditioning on Yc(t=0)  in a 
difference-in-differences estimator  

 
The average treatment effect among the treated (ATT) is a conventional target parameter in the 
field of econometrics and impact evaluations of observational studies.59  The ATT is of interest 
in the public health field as well, because it is a measure of effect among those who are most 
likely to need or seek treatment.   A common approach to estimating the ATT is to select 
untreated communities that are comparable to those that are treated in terms of their conditional 
probability of treatment based on measured confounders.66, 91  Communities are either trimmed 
from the analytic sample based on some fixed probability cut-points, or may be dropped in a 
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propensity score-matched analysis if no matches are found (although this depends on the method 
for matching).   
 
Importantly, redefining the target causal parameter (as the ATT or other) does not resolve the 
problem of what to do with the lagged outcome, Yc(t=0), when it affects treatment assignment.  
And it is unlikely to change the other exclusion restrictions necessary for the popular difference-
in-differences estimator to be equal to the target parameter (although this would need to be 
verified with steps 1 to 4 of the road map).  Therefore, in order to pursue a change score or 
pooled outcome estimator, I will need a method that can avoid confounding bias due to the 
exclusion of the lagged outcome, Yc(t=0), from the conditioning subset.  One possible method of 
interest is to match communities exactly on Yc(t=0).60  However, the definition of an exact match 
may be problematic and prone to error from the village estimate.  In addition, I may have the 
same problem with conditioning on Yc(t=0) as I do with a difference-in-differences estimator. 
 
In summary, it is not clear that a methodological approach will resolve the bias trade-off.  A final 
alternative may be to accumulate a consistent set of results that tell the same story.  For example, 
a small but significant benefit to height-for-age in 2004 and a delayed benefit of treatment in 
2004 on community nutritional outcomes in 2011 would provide supporting evidence of a causal 
benefit of the SEECALINE program. 
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Chapter 5: Conclusions 

5.1 Overview 
This dissertation focuses on several methodological issues in evaluating large-scale early child 
development (ECD) interventions that threaten the validity of estimating a program benefit.  In 
chapter 2, I discuss the challenge of obtaining an unbiased measure of cognitive development in 
an ethnically diverse, low-income country setting.   Using data from a study in Madagascar, I 
apply item response theory (IRT) models to assess the performance of a test of vocabulary 
knowledge, the Peabody Picture Vocabulary Test (PPVT).  The IRT analysis uncovers problem 
areas and patterns of responses that can be used to identify items that need to be dropped before 
estimating the program effect (e.g., items with strong, significant DIF by local dialect), and to 
identify items that should be replaced, modified, or re-ordered in future work.  I present lessons 
learned from working with the PPVT in Madagascar and make recommendations for how these 
lessons can be applied in other developing country settings.  Specifically, when changing or 
dropping items are not allowed by the publisher, I recommend the following: a) pre-test many 
more items than are thought to be necessary; b) identify a minimum set of consecutive items with 
the best person separation reliability for a given age group; and c) administer this set of items 
without the use of start or stopping rules. 
 
In chapters 3 and 4, I address the analytic challenges of determining whether an ECD 
intervention has a benefit that actually is the result of the intervention.  I work my way through a 
roadmap for estimating the average treatment effect of Madagascar’s national nutrition program 
on children’s weight-for-age.  I deliberately keep the process of definition and identification 
separate from the process of estimation in order to avoid confusion of the two.  Throughout both 
chapters, I make the assumptions explicit and demonstrate the consequences of alternate choices, 
from the choice of the definition of the outcome to the method of estimation.  These choices 
result in very different estimates of effect in the Madagascar study, where selection into the 
program was non-random and strongly associated with the pre-program outcome.  The 
presentation style of the chapters is didactic, in the hopes that other investigators will be 
encouraged to follow the same basic steps when making analytic choices for their evaluations. 
 
In this concluding chapter I reflect on some additional steps we (i.e., the community of ECD 
investigators) might take to improve our evaluations going forward.  For example, in section 5.2, 
I speculate about the possibility of an open source model for sharing of information, test items 
and instruments for assessing cognition and language.  In section 5.3, I urge investigators from 
separate disciplines to learn from, and incorporate, other disciplinary approaches to the 
identification of a causal parameter.  And finally, in section 5.4, I encourage analysts to make use 
of the available estimation tools that meet the needs of their analytic goals.  

5.2 Measurement – the case of language 
Just in the last decade, the WHO reshaped how we think about children’s growth potential 
around the world.  The 2006 standards for height and weight set the bar for “how all children 
should grow rather than merely describing how children grew at a specified time and place.”108 
Instead of being limited to comparisons within a population, we now compare growth across 
populations and advocate for change.  Obtaining a similar set of international standards for 
cognition and language could like-wise be a powerful tool for change.  Given my results on the 
performance of the PPVT in Madagascar, the reader might conclude that I think such a goal is 
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impossible to achieve.  On the contrary, although it would be incredibly challenging, I think it is 
a necessary goal.  Research in early child development is occurring across languages, cultures 
and countries (e.g., the Young Lives Study),76 and the need already exists for making valid 
international comparisons.109  I think it is possible with the right combination of tools, 
organization, and collective will.   
 
Within the context of ECD research in developing countries today, I would categorize 
investigators into one of three (overly simplified) groups: 1) those who develop and validate their 
own tests; 2) those who translate/adapt an existing measure and validate it in some way; and 3) 
those who translate/adapt an existing measure and do not validate it.  The first approach has 
important advantages in that the tests are culturally and linguistically relevant to the population 
being tested.  However, developing new tests is resource intensive, both in terms of time and 
money, and will only occur where these resources are available.  In addition, if the goal is to 
develop international standards, then country-specific tests will not get us there.  For example, a 
group in Kilifi, Kenya110 and another group in Hong Kong111 have developed their own receptive 
vocabulary tests.  Conceptually, these vocabulary tests are similar, but not identical to, the 
Peabody Picture Vocabulary Test (PPVT).  Instead of using one target image with three 
distractors from the same category of word (e.g., running and three other play activities), the 
Kenyan and Cantonese instruments use one target picture, a phonological distractor, a visual or 
semantic distractor, and an unrelated distractor.111  The inclusion of a phonological distractor 
increases the difficulty of transferring the test to another country: it is unlikely that one of the 
distractor images will sound the same as the stimulus word after translation. 
 
The second approach of adapting and internally validating an existing measure may offer a way 
forward.  Validation information for a given test gathered from different countries and languages 
could be made available to other interested parties (e.g., the Young Lives study has some 
publically available information).76, 77  This sharing of information could be managed either 
through the publishers (e.g., Pearson for the PPVT) or through an open source model.  The 
ultimate success of optimizing an instrument for a given context will depend on being able to 
modify, drop, add, and re-arrange the items as necessary.  However, this may not be acceptable 
to the publisher of the test (depending on the test and the publisher’s legal requirements).  
Currently, an open source model exists for early math and literacy assessment tools.  
Specifically, USAID has an organization, Education for Decision Making (EdData II), which has 
developed instruments (e.g., the EGMA and EGRA) that have been applied in 44 countries and 
in 80 languages.112  Interested parties can download complete instruments and manuals in several 
languages, along with guidance for adaptations, final reports and presentations from studies 
conducted around the world.  An alternate open source model that I envision would be one where 
for any given measure (e.g., vocabulary knowledge or matrix reasoning) an extensive library of 
items would be made available.  In this model, investigators would choose culturally and age-
appropriate items for their study, with the inclusion of a subset of items that would anchor the 
test for international comparisons and comparisons across age groups.  Recommended methods 
of selecting, translating, testing and ordering items would need to be made available for first time 
use in a new language or country.  Previously optimized collections of items would also be made 
available, as in the USAID model. Newly developed items, translations, and complete instrument 
assessments would be shared. 
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The results and discussion in chapter 2 make clear the scientific risk to inference from the third 
approach.  Unfortunately, due to the lack of local gold standards for validation and/or the lack of 
familiarity with methods to internally validate the measures, the third approach is not 
uncommon.  Although my work focuses on a test of vocabulary, many of the issues apply to any 
multi-item instrument intended to capture a latent construct.   Such multi-item measures are 
commonly used in intervention research and include other tests of language and memory, as well 
as non-verbal tests of cognition and socio-emotional behavior scales.  Two regional efforts (one 
in Latin America and one in East Asia-Pacific) are well underway to establishing comparative 
measures of children’s early development across a broad cross-section of domains.113, 114  
Specifically, the Programa Regional de Indicadores de Desarrollo Infantil (PRIDI) is currently 
being tested in five Latin American countries115 and the East Asia-Pacific Early Child 
Development (EAP-ECD) scales were scheduled for piloting in six Asian countries in 2011.116  
The stated tasks of the EAP-ECD research team include: “(i) creating a database of items and 
indicators by domain and age level across countries; (ii) analyzing and selecting a sub-group of 
items that are consistent across countries and represent a variety of domains; (iii) creating a final 
recommended list of items and domains between the 3 and 5 year old age groups; and (iv) 
preparing guidelines for the validation process.”114  In addition, there are international indicators 
for factors that influence early child development including UNICEF’s Multiple Indicator 
Cluster Surveys (MICS),117 which focuses on caregiving in the home, and FANTA’s indicators 
for assessing infant and young child feeding practices.118  Finally, UNESCO has a mandate to 
develop the holistic early childhood development index (HECDI), which will consider existing 
measures that assess factors influencing child development (such as the FANTA indicators and 
MICS), as well as indicators of achieving early developmental milestones (such as the PRIDI).119  
Acquiring a set of international standards for cognition and language may be an ambitious goal, 
but perhaps a necessary one given the needs of international research programs.113-116, 119 

5.3 Identification of the target parameter – the case of pre/post data 
Chapter 3 of my dissertation might be more accurately titled: “To ignore or not to ignore the 
unobservables? That is the question.”  Although different disciplines control for observed 
confounders in different ways, we all agree that we should control for them in the best way 
possible (the topic of chapter 4).  However, disagreement runs deep with respect to those factors 
that we do not observe.  In the Madagascar evaluation, I am faced with a bias trade-off between a 
single post-treatment estimand that conditions on the pre-treatment outcome (a measured 
confounder) but assumes no unmeasured confounders, and two difference-in-differences 
estimands that address certain types of unmeasured confounders but do not condition on the pre-
treatment outcome.  The following is a re-phrasing of text from an article that compares two 
methods (one from epidemiology, one from econometrics) in such a way that it speaks to this 
bias trade-off.120  An economist will view the single post-treatment estimand with suspicion 
because the assumption of no unmeasured confounders seems unrealistic.  On the other hand, an 
epidemiologist or biostatistician will be wary of the difference-in-differences estimands that 
purport to “subtract out” a variable that has not been (and possibly cannot be) observed.  In 
reality, both rely on assumptions that cannot be empirically verified. 
 
Given that the unobservables may also be unknown, how should I decide whether to ignore them 
or not?  The authors of this same article have a take on the disciplinary differences that I find 
helpful: 
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“… Many epidemiologic studies differ from those in social sciences in that the collection 
of candidate confounders is an integral part of study design. By contrast, important 
research questions in economics and the social sciences are usually addressed by 
analysing data that have been collected or are maintained by government agencies or 
survey organizations (e.g., Current Population Survey, Medicaid data, etc.). The 
databases serve as important resources for investigating a wide variety of issues, but the 
variables are not typically selected for a specific research agenda. Consequently, 
econometric methods for causal inference are predicated on the existence of at least one 
and possibly several unmeasured confounding variables; therefore, confounding is 
essentially viewed as an omitted variables problem that leads to correlation between 
errors and covariates (endogeneity)...”120 

 
In the absence of a third alternative (to ignore, not to ignore, other?), I conclude that the answer 
to the question lies in part with the source of the data, and in part with what is known about the 
data generating system.  I am convinced that the answer is inter-disciplinary and not specific to a 
given discipline.  Consider the situation where information is collected on known confounders, 
for a well-defined research question, based on expert knowledge and the use of directed acyclic 
graphs (DAGs) or structural causal models (SCMs, which encode the same information).  In this 
case, ignoring unobserved variables may be the best choice because the measurement of 
confounders was integral to the study and we can do a good job of controlling for them.  We also 
avoid imposing additional untestable restrictions on the data.  In the alternate situation where the 
research question is defined after the data were collected (e.g., from a national government 
survey), using a model that averages away the unobservables may be the better choice (again 
based on the research question, expert knowledge and DAGs).   
 
Epidemiologists who use survey data collected for another purpose than their own can learn an 
important lesson from economists in choosing a statistical model for evaluation.  For example, 
suppose an analyst wants to evaluate the effect of the national school lunch program on obesity 
among children in the U.S. using publically available data.  The methods used by economists to 
evaluate labor or other policies may be necessary to account for unmeasured factors that may 
have influenced selection into the school lunch program.  Similarly, economists who plan 
detailed measurement into their survey design a priori can learn an important lesson from 
epidemiologists.   By incorporating DAGs into the planning process, researchers can identify a 
sufficient set of observables that should be measured to control for confounding.  In this way, 
models that only hold under assumptions that may be implausible might be avoided. 

5.4 Effect estimation – a comparison of methods 
In chapter 4, I present three methods for estimation, and conclude that targeted maximum 
likelihood (TMLE) is a better choice over traditional parametric regression and inverse 
probability of treatment weighting (IPTW).  Should the reader conclude that TMLE is the best 
choice for every research question?  No; the answer depends on the question and what the 
investigator is trying to accomplish with their analysis.  In my research, the answer is predicated 
on my goal of estimating a causal benefit of a nutrition intervention.  In this section, I would like 
to discuss what the best choice of method might look like in other research contexts. 
 
Most readers of this dissertation will know how to implement traditional parametric regression.  
In introductory statistics classes, we are taught how to interpret the coefficients on regression 
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terms.  We know how to test for statistically significant associations between the covariates and 
the outcome, and we compare the relative strength and direction of these associations.  The 
various relationships may help us to gain insight into the data generating system, to identify new 
confounders or effect modifiers or mediators, or to generate hypotheses for future research.  If 
these are our stated goals, then estimation with parametric regression may be a good choice.  
Typically in this scenario, however, we report that the results are interpretable only as 
association, not causation.  
 
In a second scenario, the coefficients from a parametric regression equation may be used for 
prediction.  For example, I might want to create an algorithm to predict the probability of iron 
deficiency anemia given a child’s age, gender, diet, etc.  In this second scenario, I do not need to 
interpret any of the coefficients in a regression equation, instead I want to plug in values for each 
of the covariates (e.g., age = 5 months and breastfed = no) and get the best possible prediction of 
the outcome.   Although it is possible to build a parametric algorithm for prediction, it is not 
necessarily the best choice.  First, assuming that I have only one available sample, the data need 
to be split, with one part used for building the algorithm and the other for validating it.  In other 
words, I need to test if the equation I just built actually does a good job of prediction, and I 
cannot use the same data to both build and validate it (referred to as over-fitting).  Ideally, 
multiple splits and cross-validations would be performed, or multiple, separate samples would be 
used.  Second, my goal is prediction and not interpretation of coefficients, so I can incorporate 
the predictor variables into my equation in any number of ways (e.g., as quadratic or interaction 
terms).  I am also not limited to a linear regression algorithm: perhaps a non-parametric decision 
tree model would perform better for predicting my outcome.  Very quickly, the process of 
building the best algorithm for prediction can become so onerous, that it is best to turn it over to 
a machine.  This is exactly what the SuperLearner application is designed to do (see the appendix 
in chapter 4 for more detail), and in a prediction scenario, would be a much better choice than 
parametric regression.102  This is also one of the reasons I use SuperLearner in the prediction 
steps for IPTW (to predict treatment given the covariates) and in TMLE (which has two 
prediction steps).  The other reason is that the data-adaptive approach is non-parametric and 
avoids imposing unnecessary parametric assumptions on my model of the program effect. 
 
In a third scenario, a single coefficient (or maybe 2) in a parametric regression may, in fact, be 
the solution to my research question.  The rest of the covariates are parameters that are included 
in the regression only to control for confounding.  For example, in a regression on the incidence 
of malaria (i.e., the outcome), the coefficient on the use of bed nets (i.e., treatment) may be the 
estimate I want to report, with age, gender, household size, socio-economic status and 
geographic location included as confounders. This one coefficient on treatment in a parametric 
equation may be equal to my causal parameter of interest (if I’m lucky), but there are a number 
of reasons why it may not be, which I discuss in detail in chapter 4.  Importantly, parametric 
regression imposes assumptions about the functional form of the covariates and their relationship 
with the exposure and outcome (e.g., linear and additive) that may not hold.   If the equation is 
incorrectly specified, then my causal effect estimate will be biased.  In addition, parametric 
regression is designed to obtain the best fit for the full conditional distribution of the outcome 
given the exposure and covariates (as is SuperLearner).  However, I am not interested in this full 
distribution (or all the coefficients on the covariate terms).  Instead, I want the best possible 
estimate of the mean difference in the outcome under treatment and no treatment (for the ATE).  
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Since parametric regression does not give me the optimal fit for my actual parameter of interest, 
the estimate will be biased.58  TMLE resolves both of these shortcomings by using SuperLearner 
for two prediction steps and implementing a bias reduction step that targets my parameter of 
interest.  TMLE has additional advantages (such as double robustness) that make it a better 
choice over parametric regression and IPTW for my research.    
 
In conclusion, I would like to tie this choice of estimation method discussion back to the 
question of ignorability.  Any of the three estimation methods I present (and more) can be used 
with any number of statistical models, regardless of whether the answer is to ignore or not to 
ignore the unobservables.  The choice of estimator, such as a difference-in-differences estimator, 
should not be confused with the choice of method of estimation.  Both choices are important for 
obtaining an unbiased causal effect estimate, which is an ambitious goal with which to begin.  I 
strongly recommend that investigators work through the road map (or something comparable) 
and use DAGs or SCMs (or both) before choosing the estimator.  I also recommend 
implementing TMLE for the method of estimation of causal effects, despite its seeming 
complexity.  Development of applications for TMLE is on-going, and the method has been 
successfully applied to a broad cross-section of health related research.58  Both SuperLearner and 
TMLE packages are available to download for free from CRAN (the comprehensive R archive 
network) and TMLE can be run with little effort using the package default settings (see R 
Package tmleLite version 1.0-2).  The evaluation of a causal benefit of an intervention (or a 
policy) on an outcome from observational data is a bold goal, but one for which an increasing 
number of methods are available to help us achieve. 

5.5 Final Remarks 
In my dissertation, I present several challenges associated with estimating a causal benefit of a 
large-scale ECD intervention.  I present how these challenges can be tackled and urge 
investigators to update and/or reconsider their analytic approaches to evaluations.  I recommend 
using the methods that are at our disposal, to learn new methods from other disciplines, and to 
not hold on too tightly to our own disciplinary methods.  Otherwise, we run the risk of estimating 
a program effect that is misleading, which may negatively affect those whom the program is 
intended to benefit.  Finally, in this last chapter, I suggest setting ambitious goals for moving 
forward.  These include creating a set of international standards for testing and applying a 
common set of methods for causal inference. 
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Appendices 

A1: Additional Figures and Statistics for IRT Study  
 
Figure 2.7: Raw score distributions at 2 time points 

  
 
Figure 2.8: Separate, unidimensional IRT score distributions at 2 time points 
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Figure 2.9: 2007 Wright Map – All children, all items, unidimensional IRT model 
                                                               +item 
--------------------------------------------------------------------------------------- 
                                              |29 38 63 67 72                         | 
                                              |54                                     | 
                                              |                                       | 
                                              |57                                     | 
                                              |                                       | 
                                             X|18 35 46 53                            | 
                                              |                                       | 
   1                                          |40 64 66                               | 
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                                             X|12 39 50                               | 
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                                            XX|42                                     | 
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   0                                       XXX|15                                     | 
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                             XXXXXXXXXXXXXXXXX|11 71                                  | 
                                      XXXXXXXX|                                       | 
                         XXXXXXXXXXXXXXXXXXXXX|5 36                                   | 
                                            XX|47                                     | 
             XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                       | 
                                     XXXXXXXXX|37                                     | 
      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                       | 
  -1       XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                       | 
                                            XX|                                       | 
         XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|17                                     | 
                                             X|                                       | 
                      XXXXXXXXXXXXXXXXXXXXXXXX|6 21 34                                | 
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                                              |4                                      | 
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                                              |                                       | 
                                              |                                       | 
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                                              |1                                      | 
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                                              |                                       | 
  -3                                          |                                       | 
                                              |                                       | 
                                              |                                       | 
                                              |2                                      | 
======================================================================================= 
Each 'X' represents   3.9 cases 
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Figure 2.10: 2011 Wright Map – All children, all items, unidimensional IRT model 
                                                               +item 
--------------------------------------------------------------------------------------- 
                                              |83                                     | 
   2                                          |                                       | 
                                              |                                       | 
                                              |                                       | 
                                              |                                       | 
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                              XXXXXXXXXXXXXXXX|65 81                                  | 
                             XXXXXXXXXXXXXXXXX|61 64 91                               | 
           XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|39 56                                  | 
                      XXXXXXXXXXXXXXXXXXXXXXXX|93                                     | 
      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|42 59 60                               | 
                          XXXXXXXXXXXXXXXXXXXX|28                                     | 
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======================================================================================= 
Each 'X' represents   2.6 cases 
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Figure 2.11: ‘07/’11 Wright Map – All children, all items, multidimensional IRT model 
 
          Dimension 1         Dimension 2                      +item 
--------------------------------------------------------------------------------------- 
                          |                   |83                                     | 
                          |                   |                                       | 
                          |                   |                                       | 
                          |                   |                                       | 
   2                      |                   |29                                     | 
                          |                   |80                                     | 
                          |                  X|38(t1)                                 | 
                          |                   |72(t2) 94                              | 
                          |                   |53(t2) 82 96                           | 
                          |                  X|63 76                                  | 
                          |                  X|38(t2) 58(t2)                          | 
                          |                  X|67(t1) 72(t1) 90                       | 
                          |               XXXX|57 46(t2) 75                           | 
                          |                XXX|54 45(t2) 70(t2)                       | 
   1                      |                XXX|35 73                                  | 
                          |              XXXXX|18 32 46(t1)                           | 
                          |             XXXXXX|53(t1) 43(t2) 77 89                    | 
                          |           XXXXXXXX|33 62(t2)                              | 
                          |              XXXXX|31 45(t1) 74(t2)                       | 
                         X|         XXXXXXXXXX|13 67(t2) 79 87                        | 
                         X|          XXXXXXXXX|20 25(t1) 28(t1) 49 66 85              | 
                         X|        XXXXXXXXXXX|12 40 44 62(t1)                        | 
                        XX|        XXXXXXXXXXX|70(t1) 86 92                           | 
                       XXX|     XXXXXXXXXXXXXX|43(t1) 50 58(t1) 64 78                 | 
   0                    XX|    XXXXXXXXXXXXXXX|39 95                                  | 
                     XXXXX| XXXXXXXXXXXXXXXXXX|16 24 26 52(t1) 61 65 81               | 
                     XXXXX|    XXXXXXXXXXXXXXX|14 48(t1) 91                           | 
                    XXXXXX|  XXXXXXXXXXXXXXXXX|9 15 30 93                             | 
                 XXXXXXXXX|    XXXXXXXXXXXXXXX|19 23 41(t1) 56                        | 
              XXXXXXXXXXXX| XXXXXXXXXXXXXXXXXX|22 42 28(t2)                           | 
              XXXXXXXXXXXX|    XXXXXXXXXXXXXXX|3 11 60 88                             | 
               XXXXXXXXXXX|   XXXXXXXXXXXXXXXX|59(t1) 71(t1) 52(t2) 59(t2)            | 
           XXXXXXXXXXXXXXX|       XXXXXXXXXXXX|36(t1) 25(t2) 84                       | 
             XXXXXXXXXXXXX|       XXXXXXXXXXXX|5 41(t2)                               | 
       XXXXXXXXXXXXXXXXXXX|          XXXXXXXXX|55 69                                  | 
  -1  XXXXXXXXXXXXXXXXXXXX|            XXXXXXX|                                       | 
      XXXXXXXXXXXXXXXXXXXX|              XXXXX|37 48(t2)                              | 
        XXXXXXXXXXXXXXXXXX|               XXXX|47                                     | 
           XXXXXXXXXXXXXXX|                  X|17                                     | 
         XXXXXXXXXXXXXXXXX|                  X|                                       | 
           XXXXXXXXXXXXXXX|                  X|6 21 34(t1) 71(t2)                     | 
            XXXXXXXXXXXXXX|                   |51                                     | 
               XXXXXXXXXXX|                   |                                       | 
                 XXXXXXXXX|                   |27(t1)                                 | 
                    XXXXXX|                   |34(t2)                                 | 
  -2                   XXX|                   |68                                     | 
                      XXXX|                   |10                                     | 
                        XX|                   |7                                      | 
                        XX|                   |4                                      | 
                         X|                   |8 27(t2)                               | 
                         X|                   |                                       | 
                          |                   |                                       | 
                          |                   |                                       | 
                          |                   |                                       | 
                          |                   |                                       | 
  -3                      |                   |1                                      | 
                          |                   |                                       | 
                          |                   |                                       | 
                          |                   |                                       | 
                          |                   |2                                      | 
======================================================================================= 
Each 'X' represents   5.0 cases 
(t1) and (t2) are used to distinguish items with difficulty estimates that varied by year  
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Figure 2.12: Item infit statistics by year - All children, all items, separate unidimensional 
IRT models 

 
 
Figure 2.13: Item infit statistics by year - All children, all items, 2-dimenstional IRT model 
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Table 2.4: Item statistics from 2007 for the unidimensional and multidimensional models 
  2007: Unidimensional 2007: Multidimensional       

item 
# 

Estimate SEM infit t-
stat 

Estimate SEM infit t-
stat 

Anchor? Gender 
DIF 

Lang 
DIF 

1 -2.765 0.08 0.97 -0.5 -2.954 0.082 0.98 -0.4 no no yes 

2 -4.14 0.129 0.97 -0.2 -4.326 0.141 0.98 -0.1 no no no 

3 -0.335 0.06 0.96 -2 -0.532 0.061 0.95 -2.7 no no no 

4 -2.132 0.067 0.96 -1.1 -2.324 0.069 0.95 -1.5 no no no 

5 -0.606 0.058 1.02 1.4 -0.802 0.059 1.02 1.4 no no no 

6 -1.28 0.059 0.97 -1.5 -1.477 0.06 0.98 -1 no no no 

7 -2.057 0.066 0.94 -1.8 -2.249 0.068 0.94 -1.8 no no yes 

8 -2.214 0.069 0.97 -0.9 -2.405 0.07 0.99 -0.3 no no no 

9 -0.056 0.062 1.1 4.1 -0.255 0.063 1.09 3.7 no no no 

10 -1.924 0.064 1.03 0.9 -2.115 0.066 1.03 0.9 no no no 

11 -0.397 0.059 0.96 -2.2 -0.595 0.06 0.95 -2.5 no no yes 

12 0.543 0.07 0.96 -0.9 0.342 0.071 0.96 -1.1 no no no 

13 0.717 0.075 0.96 -1 0.513 0.077 0.95 -1.1 no no no 

14 0.095 0.066 0.96 -1.5 -0.108 0.067 0.96 -1.4 no no no 

15 -0.037 0.064 1.13 5.2 -0.24 0.066 1.13 5.1 no no no 

16 0.108 0.066 0.96 -1.6 -0.095 0.067 0.95 -1.7 no no no 

17 -1.136 0.062 1.03 1.8 -1.336 0.063 1.04 2 no no no 

18 1.104 0.084 1.06 1 0.899 0.087 1.05 0.9 no no no 

19 -0.101 0.064 1.05 2.1 -0.304 0.065 1.04 1.7 no no no 

20 0.671 0.074 1.01 0.4 0.466 0.076 1.02 0.5 no no no 

21 -1.302 0.062 0.97 -1.3 -1.502 0.064 0.97 -1.7 no no no 

22 -0.295 0.062 1 0.1 -0.497 0.063 1 0.1 no no no 

23 -0.172 0.063 1.01 0.3 -0.375 0.064 1 0.1 no no no 

24 0.162 0.066 0.99 -0.2 -0.041 0.068 0.99 -0.4 no no no 

25 0.651 0.11 0.98 -0.3 0.453 0.117 1.01 0.1 no no no 

26 -0.165 0.1 0.98 -1 -0.047   1.07 2.1 yes yes no 

27 -1.617 0.114 1.02 0.3 -1.808 0.122 1.01 0.2 no no no 

28 0.624 0.109 0.95 -1.1 0.426 0.116 0.96 -0.8 no no no 

29 1.998 0.155 1.03 0.2 2.033   1.27 1.6 yes no no 

30 -0.22 0.1 0.92 -3.5 -0.218   0.96 -1.6 yes no no 

31 0.89 0.115 1.02 0.3 0.643   1 0 yes no no 

32 0.714 0.111 1.02 0.4 0.904   1.29 3.4 yes no yes 

33 0.686 0.111 1.02 0.4 0.687   1.14 2.1 yes no no 

34 -1.284 0.107 0.97 -0.5 -1.475 0.114 0.96 -0.9 no no no 

35 1.083 0.12 1.01 0.2 1.016   1.11 1.3 yes no no 

36 -0.546 0.1 1.01 0.3 -0.761   1.01 0.5 yes no no 

37 -0.788 0.144 1 0.1 -1.178   1.05 0.7 yes no yes 

38 2.044 0.192 1.08 0.5 1.813 0.24 1.09 0.5 no no yes 
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39 0.578 0.144 1.01 0.2 0.037   0.95 -1.2 yes no no 

40 0.968 0.152 1.03 0.4 0.314   0.92 -1.5 yes no no 

41 -0.153 0.138 0.98 -0.7 -0.381 0.153 0.99 -0.4 no no no 

42 0.252 0.14 0.97 -0.9 -0.402   0.98 -0.7 yes no no 

43 0.399 0.142 1.01 0.3 0.17 0.158 1.03 0.7 no no yes 

44 0.325 0.141 1.03 0.7 0.323   1.12 2.1 yes no yes 

45 0.845 0.15 0.99 -0.1 0.616 0.169 1 0 no no no 

46 1.12 0.157 1.03 0.3 0.889 0.18 1.03 0.3 no no no 

47 -0.698 0.143 0.99 -0.2 -1.223   1.1 1.5 yes no no 

48 0.052 0.139 0.99 -0.4 -0.176 0.154 0.98 -0.7 no no no 

49 0.882 0.187 1.04 0.5 0.432   0.98 -0.2 yes no no 

50 0.579 0.181 1.03 0.4 0.165   0.97 -0.6 yes no no 

51 -1.601 0.213 0.93 -0.3 -1.598   0.79 -1.5 yes yes no 

52 0.156 0.178 0.99 -0.3 -0.101 0.215 0.98 -0.5 no no no 

53 1.103 0.192 1.03 0.3 0.846 0.24 1.02 0.2 no no no 

54 1.478 0.203 1.07 0.5 1.163   1.01 0.1 yes yes no 

55 -0.309 0.18 0.98 -0.4 -0.909   1.1 1.2 yes no yes 

56 0.389 0.179 0.97 -0.7 -0.363   0.99 -0.2 yes no no 

57 1.283 0.197 1.12 0.9 1.211   1.22 1.4 yes no no 

58 0.436 0.18 1 -0.1 0.179 0.218 0.99 -0.2 no no no 

59 0.065 0.178 0.97 -0.8 -0.663   1.07 1.2 yes no yes 

60 -0.261 0.18 0.95 -1 -0.564   0.97 -0.7 yes yes no 

61 -0.162 0.206 0.98 -0.3 -0.068   1.01 0.3 yes no yes 

62 0.626 0.207 1.04 0.6 0.373 0.271 1.04 0.6 no no no 

63 1.885 0.237 1.13 0.6 1.459   0.99 0 yes no yes 

64 0.93 0.211 1.05 0.5 0.11   0.95 -1.1 yes yes yes 

65 0.339 0.205 0.97 -0.5 -0.009   0.97 -0.7 yes no no 

66 0.93 0.211 1.02 0.2 0.453   0.94 -0.8 yes no yes 

67 1.549 0.226 1.13 0.7 1.293 0.319 1.12 0.7 no no no 

68 -1.839 0.251 0.93 -0.2 -1.996   0.88 -0.4 yes no yes 

69 -0.311 0.208 0.95 -0.7 -0.952   1.08 0.7 yes no no 

70 0.481 0.205 1.02 0.4 0.228 0.268 1.01 0.2 no no no 

71 -0.387 0.209 0.98 -0.2 -0.638 0.277 0.98 -0.2 no no no 

72 1.546 1.216 1.12 0.7 1.293 0.319 1.11 0.6 no no no 
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Table 2.5: Item statistics from 2011 for the unidimensional and multidimensional models 
  2011: Unidimensional  

 
2011: Multidimensional  
 

      

item 
# 

Estimate SEM infit t-stat Estimate SEM infit t-
stat 

Anchor? Gender 
DIF 

Lang 
DIF 

25 -1.005 0.049 0.88 -5.8 -0.749 0.062 0.88 -5.8 no no no 

26 0.054 0.048 0.94 -2.9 -0.047   0.94 -3.9 yes no no 

27 -2.687 0.061 0.98 -0.2 -2.433 0.096 0.98 -0.3 no no yes 

28 -0.744 0.048 0.93 -3.9 -0.488 0.06 0.92 -4.5 no no yes 

29 1.529 0.058 1.02 0.4 2.033   1.22 3.2 yes no no 

30 -0.19 0.048 0.84 -10.3 -0.218   0.85 -10 yes no yes 

31 0.41 0.05 0.95 -1.9 0.643   0.95 -1.9 yes no no 

32 0.44 0.05 1.08 2.9 0.904   1.17 5.3 yes no yes 

33 0.354 0.049 1.11 4.5 0.687   1.14 5.2 yes no yes 

34 -2.178 0.057 0.95 -0.9 -1.924 0.08 0.95 -1.1 no no yes 

35 0.871 0.052 0.97 -0.9 1.016   0.92 -2.6 yes no no 

36 -1.088 0.049 0.92 -3.5 -0.761   0.91 -4.5 yes no yes 

37 -1.579 0.052 0.97 -0.9 -1.178   0.91 -3.3 yes no no 

38 1.18 0.055 1.08 1.8 1.44 0.075 1.09 2 no no yes 

39 -0.468 0.048 0.98 -1.2 0.037   1 0.1 yes no no 

40 -0.236 0.048 0.99 -0.6 0.314   1.05 2.4 yes no no 

41 -1.092 0.049 0.96 -1.6 -0.836 0.063 0.96 -1.8 no no no 

42 -0.705 0.048 0.92 -4.6 -0.402   0.92 -4.8 yes no no 

43 0.526 0.05 0.96 -1.5 0.784 0.065 0.96 -1.4 no no no 

44 0.018 0.048 0.98 -1.2 0.323   1 -0.2 yes no no 

45 0.809 0.052 0.96 -1.3 1.068 0.069 0.96 -1.2 no no yes 

46 0.937 0.053 1.1 2.5 1.196 0.071 1.1 2.6 no no no 

47 -1.323 0.05 0.91 -3.3 -1.223   0.98 -0.8 yes no yes 

48 -1.348 0.05 0.94 -2 -1.093 0.065 0.94 -2.2 no no no 

49 0.131 0.049 0.97 -1.3 0.432   0.98 -0.9 yes no yes 

50 -0.167 0.048 0.96 -2.2 0.165   0.98 -1.2 yes no no 

51 -1.612 0.052 0.91 -2.6 -1.598   1.04 1 yes no yes 

52 -0.9 0.049 0.85 -7.8 -0.645 0.061 0.86 -7.8 no no yes 

53 1.31 0.056 1.08 1.7 1.569 0.078 1.1 2 no no yes 

54 0.751 0.052 1.05 1.5 1.163   1.13 3.5 yes no no 

55 -1.096 0.049 0.97 -1.5 -0.909   0.99 -0.6 yes no no 

56 -0.493 0.048 1.01 0.8 -0.363   1.02 1.2 yes no no 

57 0.945 0.053 1.05 1.3 1.211   1.06 1.4 yes no yes 

58 1.117 0.054 1.06 1.5 1.376 0.074 1.07 1.6 no no no 

59 -0.669 0.048 0.96 -2.6 -0.663   1.01 0.5 yes no no 

60 -0.687 0.048 0.95 -2.9 -0.564   0.97 -1.5 yes no yes 

61 -0.389 0.048 1.06 3.8 -0.068   1.06 3.8 yes no yes 

62 0.473 0.05 0.99 -0.3 0.731 0.064 1 -0.1 no no no 
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63 0.995 0.053 0.95 -1.2 1.459   1.07 1.6 yes no no 

64 -0.406 0.048 1 -0.3 0.11   1.03 1.6 yes no no 

65 -0.318 0.048 0.98 -1.5 -0.009   0.98 -1.3 yes no no 

66 0.141 0.049 0.94 -2.9 0.453   0.96 -2.1 yes no no 

67 0.281 0.049 1.14 6 0.538 0.063 1.15 6.3 no no yes 

68 -2.073 0.056 0.94 -1.3 -1.996   1.06 1.1 yes no yes 

69 -0.916 0.049 0.86 -7.5 -0.952   0.95 -2.1 yes no no 

70 0.859 0.052 1.01 0.3 1.118 0.069 1.03 0.8 no no no 

71 -1.81 0.053 0.93 -1.9 -1.555 0.072 0.92 -1.9 no no yes 

72 1.478 0.057 1.1 1.8 1.738 0.082 1.12 2.2 no no yes 

73 0.732 0.051 1.02 0.7 0.991 0.068 1.03 0.9 no no no 

74 0.326 0.049 1.13 5.2 0.584 0.063 1.13 5.3 no no no 

75 0.927 0.053 1.1 2.6 1.186 0.07 1.11 2.8 no no yes 

76 1.229 0.055 1.01 0.2 1.489 0.076 1.02 0.5 no no no 

77 0.59 0.051 1.02 0.8 0.848 0.066 1.02 0.8 no no no 

78 -0.142 0.048 1.05 3 0.115 0.06 1.06 3.3 no no no 

79 0.302 0.049 1.05 2.3 0.56 0.063 1.06 2.6 no no no 

80 1.682 0.059 1.05 0.8 1.943 0.088 1.06 1 no no no 

81 -0.327 0.048 0.98 -1.1 -0.071 0.06 0.99 -0.8 no no no 

82 1.37 0.056 1.07 1.3 1.63 0.079 1.07 1.4 no no no 

83 2.079 0.063 1.08 1 2.341 0.101 1.09 1.1 no no yes 

84 -0.986 0.049 0.98 -0.8 -0.731 0.062 0.98 -0.9 no no no 

85 0.22 0.049 1.01 0.6 0.477 0.062 1.02 0.7 no no no 

86 -0.006 0.048 1.16 8.2 0.252 0.061 1.17 8.3 no no yes 

87 0.233 0.049 1.13 5.8 0.49 0.062 1.14 6 no no yes 

88 -0.832 0.048 0.9 -5.7 -0.576 0.061 0.9 -5.6 no no no 

89 0.587 0.051 0.99 -0.3 0.845 0.066 1 -0.1 no no no 

90 1.012 0.053 1.11 2.6 1.271 0.072 1.12 3 no no yes 

91 -0.377 0.048 0.95 -2.8 -0.12 0.06 0.96 -2.2 no no no 

92 -0.053 0.048 0.94 -3.2 0.204 0.061 0.95 -2.9 no no no 

93 -0.549 0.048 1.05 2.8 -0.293 0.06 1.05 3 no no yes 

94 1.424 0.057 1.01 0.1 1.684 0.081 1.01 0.3 no no no 

95 -0.259 0.048 0.93 -4.3 -0.002 0.06 0.93 -4.1 no no no 

96 1.386 0.43 1.07 1.4 1.645 0.08 1.09 1.7 no no no 
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A2: R Code for Simulations 
 
R Code for simulations 1-6: 
#------------------------ 
# In all, I assume W1 is not affected by A, and exclude observed exogenous variables, V 
#------------------------ 
set.seed(100) 
n <- 100000 
C<-rnorm(n,0,4) 
W0<-rnorm(n,0,4) 
#------------------------ 
# Run 1: Example for figure 3.1: estimand I, controlling for Y0 
# No unmeasured confounding C  
Y0<-rnorm(n,0.5*W0,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*Y0))) 
W1<-rnorm(n,W0+Y0,4) 
Y1<-rnorm(n,W0+2*Y0+A+W1,4) 
est1 <- glm(Y1~A+W0+W1+Y0) 
#------------------------------------------- 
# Run 2: Example for figure 3.3: estimand I 
# Introduce unmeasured confounder C that affects Y(0), Y(1) and A 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*Y0-0.5*C))) 
W1<-rnorm(n,W0+Y0,4) 
Y1<-rnorm(n,W0+Y0+A+W1+C,4) 
est2 <- glm(Y1~A+W0+W1+Y0) 
#------------------------------------------- 
# Run 3: Example for figure 3.5: estimand II, not controlling for Y(0) 
# Unmeasured confounder C 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*Y0-0.5*C))) 
W1<-rnorm(n,W0+Y0,4) 
Y1<-rnorm(n,W0+Y0+A+W1+C,4) 
Yd<-Y1-Y0 
est3 <- glm(Yd~A+W0+W1) 
#------------------------------------------- 
# Run 4: Example for figure 3.6: estimand II, not controlling for Y(0) 
# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0) 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*C))) 
W1<-rnorm(n,W0,4) 
Y1<-rnorm(n,W0+A+W1+C,4) 
Yd<-Y1-Y0 
est4 <- glm(Yd~A+W0+W1) 
#------------------------------------------- 
# Run 5: Example for figure 3.7: estimand III 
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# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0) 
# Assumption (11) but W(0) affects A and Y(1) 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*C))) 
W1<-rnorm(n,W0,4) 
Y1<-rnorm(n,W0+A+W1+C,4) 
# Reshape wide to long 
id <- paste("id", 1:n, sep="") 
data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1) 
data_long <- reshape(data_wide, 
  varying = 4:7, 
 idvar = "id", 
 direction = "long", 
 timevar = "T", 
 new.row.names = NULL, 
 sep = "") 
est5 <- glm(Y~A+W+T+A*T,data=data_long) 
#------------------------------------------- 
# Run 6: Example for figure 3.8: estimand III 
# Confounder C, assume Y(0) does not affect A, W(1), or Y(1); i.e., no confounding by Y(0) 
# Assumption (11) and W(0) does not affect A or Y(1) 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*C))) 
W1<-rnorm(n,W0,4) 
Y1<-rnorm(n,A+W1+C,4) 
# Reshape wide to long 
id <- paste("id", 1:n, sep="") 
data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1) 
data_long <- reshape(data_wide, 
  varying = 4:7, 
 idvar = "id", 
 direction = "long", 
 timevar = "T", 
 new.row.names = NULL, 
 sep = "") 
est6 <- glm(Y~A+W+T+A*T,data=data_long) 
#------------------------------------------- 
# Run 7: Example adding Y(0) affects A into run 4 
Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*W0-0.5*Y0-0.5*C))) 
W1<-rnorm(n,W0,4) 
Y1<-rnorm(n,W0+A+W1+C,4) 
Yd<-Y1-Y0 
est7 <- glm(Yd~A+W0+W1) 
#------------------------------------------- 
# Run 8: Example adding Y(0) affects A into run 6 
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Y0<-rnorm(n,0.5*W0+C,4) 
A<-rbinom(n,1,1/(1+exp(-0.5*Y0-0.5*C))) 
W1<-rnorm(n,W0,4) 
Y1<-rnorm(n,A+W1+C,4) 
# Reshape wide to long 
id <- paste("id", 1:n, sep="") 
data_wide <- data.frame(id,C,A,W0,Y0,W1,Y1) 
data_long <- reshape(data_wide, 
  varying = 4:7, 
 idvar = "id", 
 direction = "long", 
 timevar = "T", 
 new.row.names = NULL, 
 sep = "") 
est8 <- glm(Y~A+W+T+A*T,data=data_long) 
#------ 
est_all <-rbind(est1$coeff["A"],est2$coeff["A"],est3$coeff["A"],est4$coeff["A"], 
est5$coeff["A:T"],est6$coeff["A:T"],est7$coeff["A"],est8$coeff["A:T"]) 
est_all 
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A3: Supplementary Information for Estimation 
 
SuperLearner 
SuperLearner (SL)102 is a non-parametric, machine-learning tool that “learns” from the observed 
data by using a candidate set of algorithms (or estimators) and a pre-specified loss function that 
assigns a measure of performance to each of the algorithms.  Briefly, there are three key 
components to SL:  
 
1) SL uses a library of algorithms for prediction.  The algorithms can be diverse, simple (i.e., 
logistic regression), complex (i.e., neural nets), numerous, and can include user defined 
algorithms. 
 
2) The predictive performance of each algorithm is assessed using V-fold cross-validation. 
Cross-validation involves partitioning the sample into a user-specified number of training and 
validation sets.  A training set is used to construct the candidate estimators (i.e., fit the 
regression) and the corresponding validation set is then used to assess the performance (i.e., 
estimate the risk) of the candidate algorithms.  The validation set rotates by the number of 
partitions such that each set is used as the validation set once.  Risk is defined using a loss 
function, for example, if we use the squared error loss function then our estimate of the risk 
corresponds to the estimated mean squared error loss on the validation sets.  The “best” 
algorithms typically have the smallest empirical risk averaged over all the validation sets. 
 
3) The library of algorithms is augmented with new algorithms, which are weighted averages of 
the algorithms from the previous step.  The weighted algorithm with the smallest cross-validated 
risk is the “super learner” estimator and is expected to outperform any single algorithm.  If the 
true model is included in the library of algorithms, then SL will do as well as the true model.   
(Note that we can include a parametric model in the SuperLearner library.) 
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Bootstrap Estimates 
Figures 4.4a-c: Distributions of coefficients for Estimands I, II, & III on 200 bootstrap samples 
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