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This paper presents new techniques to analyze and under-
stand the sensorimotor characteristics of manual operations
such as grinding, and links their influence on process perfor-
mance. A grinding task, though simple, requires the practi-
tioner to combine elements from the large repertoire of his
or her skillset. Based on the joint gaze, force, and velocity
data collected from a series of manual grinding experiments,
we have compared operators with different levels of experi-
ence and quantitatively described characteristics of human
manual skill and their effects on manufacturing process pa-
rameters such as cutting energy, surface finish, and material
removal rate. For instance, we find that an experienced sub-
ject performs the task in a precise manner by moving the
tool in complex paths, with lower applied forces and veloc-
ities, and short fixations compared to a novice. A detailed
understanding of gaze-motor behavior broadens our knowl-
edge of how a manual task is executed. Our results help to
provide this extra insight, and impact future efforts in work-
force training as well as the digitalization of manual exper-
tise, thereby facilitating the transformation of raw data into
product-specific knowledge.

1 Introduction
In the age of cyber-manufacturing, research has increas-

ingly focused on establishing intelligent processes which
will enable the effective communication between humans,
machines, and products in complex production environ-
ments. Within this new infrastructure, an understanding of
human performance is critical if they are directly involved
in product generation. For example, the quality of man-
ual abrasive finishing operations such as grinding, polishing,
and engraving are heavily dependent upon the performance
of the individual operator. These manual sectors represent
a growing market, from foundry shops to the aerospace in-
dustry. The skills involved in these manual tasks are largely
procedural rather than declarative, meaning that they cannot
be easily articulated by the individuals [10]. Furthermore, a
lack of understanding of these manual skills may prolong the
transfer of this knowledge from one generation to the next. It
may also impede the development of efficient collaboration
between humans and smart machines [26] which can greatly
impact the product outcome [9, 16]. If we wish to integrate
humans into the manufacturing network and effectively train
them, we need to digitalize their behavior/performance. A
first step in this process is the development of a formal mod-



els which capture the process properties, behavioral charac-
teristics and techniques of the practitioners. Such models
would allow the optimization and integration between per-
son to person, person to machine, and person to tool within
the manufacturing network [25].

A crucial issue for manual grinding operation is a criti-
cal understanding of fundamental cutting mechanisms. Man-
ual grinding operations are effectively force controlled pro-
cesses rather than automated path controlled operations. The
applied forces are influenced by several factors, which in-
clude the gripping force of the user, personal skill level, and
cutting tool feed rate [4]. Extensive research has focused on
different automated grinding processes and has characterized
the influence of process control parameters such as mate-
rial removal rate, grinding force, wheel structure topography,
etc. [13, 18]. Unfortunately, very little work has been car-
ried out to investigate manual grinding operations and pro-
cess optimization, and to correlate the experience level of the
worker to asses process performance quality. Kyle et al. [21]
described the input-output streams of a manual grinding pro-
cess, reviewed sustainability aspects of the energy sources of
abrasive power and grinding tools, and discussed concerns
related to the safety and health aspects of manual operations.
Along with other process parameters such as feed rate, cut-
ting speed, and workpiece materials, the skill level of the
practitioner plays a critical role in product performance and
process optimization.

It has been stated that the resultant tangential and nor-
mal forces from manual grinding operations have an impact
on process parameters such as material removal rate (MRR),
surface integrity (e.g. average roughness), and control pro-
cess performance [5]. Thus the efficiency of manual grinding
operations are largely dependent on judicious control of ap-
plied forces and become a function of the experience level
of the practitioner, MRR, average roughness etc. However,
little work has been done to investigate the impact of man-
ual grinding forces on process performance (i.e. in terms of
MRR and surface roughness) based on experience level. We
shall explore the performance of manual grinding operations
by examining normal and tangential forces, the experience
of the user, material removal rate, and surface integrity in
addition to visual-attention-motor behavior.

Visual attention is a remarkable human capability of re-
ducing the huge amount of visual data entering our eyes into
a manageable level. It can be roughly divided into two cat-
egories, bottom-up attention and top-down attention [2, 22].
Top-down or voluntary attention is our ability to intention-
ally attend to an external stimulus. It is a goal-driven process
based on aspects such as tasks, knowledge, expectations, and
memory. In a manual grinding scenario, for instance, it may
involve finding a sample. Bottom-up or reflexive attention
is a stimulus-driven process in which a salient sensory event
captures our attention. Such an event might be a crack ap-
pearing on the surface of the grinding sample. It is widely
accepted that visual attention is not decoupled from motor
system in natural behavior [8, 15, 24, 27]. In the majority of
studies concerned with visual attention and the motor sys-
tem, actions are discrete, e.g., “remove the lid of the kettle”

and “select a peanut butter jar” [15, 27], and manually la-
beled by humans. Such a representation fails to capture the
complex nature of gaze-motor behavior. Data on motor dy-
namics, such as the changes in forces, were not collected and
subsequently studied. A analysis that captures the dynamic
nature of motor behavior is needed, similar to those devel-
oped in [14, 17].

This paper studies the visual-attention-motor behavioral
characteristics involved in a manual grinding task and exam-
ines their effect on performance and surface integrity. The
primary goal of our effort is to gain knowledge that would
aid in the development of a smart, analytic system for man-
ual grinding operations that can transform experienced-based
knowledge into quantitative data. This system will aid in
improving human-machine interactions and can be used to
collect and transform raw data into product-specific knowl-
edge to develop a globally modeled platform. Our study, on
the one hand, improves our understanding of complex man-
ual skills that are beyond our everyday activities and, on the
other hand, enables models of human skills which are cru-
cial for building future industrial robots that can understand
human intentions.

The contribution of the paper is two fold. First, we quan-
titatively characterize manual behaviors by comparing joint
gaze-motor data. To our knowledge, this paper is one of the
first instances in which visual attention has been studied in
manufacturing scenarios. Second, we examine the relation-
ships between applied grinding forces and surface integrity
with respect to these behaviors, and the experience level of
the practitioner. We are able to show that there are distinct
behavioral and performance differences between subjects of
different experience levels. Adept hand eye coordination is
key to the performance of a number of manufacturing pro-
cesses. Due to the importance of gaze-motor behavior, our
results can be generalized to gain insight into a wide range
of industrial activities such as welding, repairing machinery,
grinding and polishing during abrasive finishing process, or
everyday activities like driving.

The paper is organized as follows: in Section 2, we dis-
cuss the details of the experiment, including the setup and
procedure. In Section 3, we discuss our data processing
methods. Section 4 presents our results along with a dis-
cussion. We conclude the paper in Section 5.

2 Experiment
In this section, we describe the setup and procedure of

our manual grinding experiment.

2.1 Setup
For the purpose of studying manual skills involved in

grinding tasks, we recruited four students from the Depart-
ment of Mechanical and Aerospace Engineering at the Uni-
versity of California, Davis. All subjects were between 20
to 25 years of age. The subjects were chosen based on their
differing levels of experience. For this study we have subjec-
tively defined experience as the amount of time each subject



has spent with grinding tools. In the subsequent sections, the
“experienced” subject shall be referred to as Subject 1, the
“intermediate” subjects as Subject 2 and Subject 3, and the
“novice” subject as Subject 4. Each subject performed ten
trials in which they were asked to use an abrasive wheel to
grind a metal sample. As shown in Figure 1, three streams of
data were collected. First, we measured the direction of gaze
with a head mounted eye tracking system. Second, the grind-
ing forces were measured with a triaxial load cell mounted
beneath the grinding sample. Lastly, the 6 DOF kinematic
state of the grinding tool and the eye tracking glasses were
recorded using an optical motion tracking system.

We measured gaze using a wearable eye tracking sys-
tem manufactured by SensoMotoric Instruments (SMI). The
SMI ETG 2w system is integrated into a set of glasses which
can extract binocular gaze, while simultaneously recording a
video of the visual point of view. Pupil images and corneal
reflection points are used to determine the vertical and hor-
izontal angular orientation of each individual eye, which in
turn are used to calculate the gaze. True gaze direction re-
quires a vector to describe its full nature. In our analysis, the
gaze data were represented as a binocular points of regard
(BPOR). These points describe where the binocular gaze
vector pierces the gaze plane, a hypothetical projection plane
located 1450 mm in front of the glasses. The BPOR were
sampled at 60 Hz, and the gaze was presented as their pixel
positions within the video image. Videos were recorded at 60
frames per second at a resolution of 1280 pixels horizontally
and 960 pixels vertically.

The material used in this study was 6061 aluminum in
the form of test coupons with dimensions of 5.0 cm in length,
by 2.5 cm in width, by 2.5 cm in height. Each grinding exper-
iment was conducted with a Dremel 4000 hand held power
tool using alumina sanding bands of 60 grit sizes (mesh num-
ber). The power tool was running at a constant speed of
5000 rpm. All grinding operations were performed under dry
cutting conditions. The grinding force was varied manually
which produced force variations in the tangential, normal,
and axial directions as shown in Figure 2. A piezo-electric
transducer based load cell (Kistler 9252A) was mounted un-
der the workpiece to measure these grinding forces during
machining. A vise was used to fasten the workpiece to the
sensor. Force data were sampled at 1000 Hz using a National
Instruments DAQ and Labview software.

Finally, we obtained the kinematic data using a motion
capture system by Optitrack. This system consists of twelve
cameras mounted circumferentially along the walls of our
lab. These camera modules each contain a ring of infrared
light emitting diodes which project a cone of IR light into
the lab space. The eye tracking glasses, and the grinding tool
were each defined as a rigid body by marking them with a
series of reflective spheres as shown in Figure 2. The over-
lap of the IR cones establish a tracking volume in which the
position of these markers are determined at <1mm accuracy.
From these marker positions, the Optitrack software can ex-
tract the 6 DOF pose estimation of each rigid body. Data was
sampled at 120Hz.

2.2 Procedure
The experiment proceeded in the following manner:

1. Before each grinding trial, a calibration step was carried
out in order to collect the particular ocular behaviors of
the subject using a method is described in [1].

2. Light touched crosshatched marks were made on top of
workpiece surfaces. The subjects were asked to grind
the surfaces until the marks were no longer visible.

3. The gaze, force, and kinematic data were collected and
saved separately for each trial, and each subject.

4. Both the grinding wheel and the grinding sample were
replaced after each trial.

5. The mass of the sample was recorded before and after
each grinding trial to determine the amount of the mass
removed.

6. Average surface roughness was measured and recorded.
7. Each subject performed ten trials.

3 Data Processing Methods
In this section we describe our basic data processing

methods.

3.1 Time Alignment and Filtering
All data from the three individual streams had to be tem-

porally aligned, buffered, and filtered for a comparative anal-
ysis. The data analysis was performed in Matlab.

The force and kinematic data were post-processed with a
8th order Butterworth low pass filter at a corner frequency of
20Hz. Normal and axial force data were particularly noisy
necessitating the use of such an aggressive filter to extract
characteristics at the lower frequencies. Filtering was ac-
complished using a bidirectional, zero lag implementation of
digital filters.

3.2 Scanpath
Gaze can be characterized macroscopically by two

unique states: fixation, and saccade [12]. Visual information
is extracted during fixations, which are periods of relatively
small angular movement of the eye. Transitions between fix-
ations take place through the rapid eye movements known
as a saccades. A scanpath is the trace of eye movements in
space and time [3, 6, 7, 11, 19]. It is a locus of fixation points
(x,y, t) which describe when and where the subject attends
to a particular visual stimulus. Each scanpath is a distilla-
tion of true eye movement, which is complex and continu-
ous. The particular choice of presentation of this data varies
by the type of analysis. Among these presentations, the most
common consists of plotting the x and y coordinates of each
fixation point onto an image of the visual stimulus [11]. The
duration of the fixation is illustrated using a circle with a
diameter proportional to the amount of time. An example
scanpath of one subject and one trial is shown in Figure 3.

There are several techniques used to generate the scan-
path, each of which depend on the particular method to iden-
tify and label fixations and saccades. Many popular methods



are outlined in [23]. The methods can generally be broken
down into two main types; area/dispersion based methods
which rely on the spatial distribution of the BPOR onto an
image of the visual stimulus, and velocity based methods
which utilize the angular velocity of the eye. Area/dispersion
based methods are widely used in print based studies to com-
pare regions of visual interest, especially in test scenarios in
which the subject’s head is fixed, or nearly fixed. Velocity
based methods analyze the distribution of the angular mo-
tion of the eye itself. It is generally accepted that the eyes
cannot move faster than a given speed; usually 900◦ per sec-
ond. It is also generally accepted that saccades are defined by
shifts that occur above certain speeds. Furthermore, the hu-
man attention system cannot interpret complex visual stim-
uli lasting for a duration of less than 100-200ms [11]. This
makes the velocity based methods more attractive as they can
be made to adhere to such physiological constraints. In addi-
tion, our subjects are free to move their heads as they chose,
making a velocity based method the only viable option.

In order to generate our scanpaths, we extracted fixa-
tions from the time history of the BPOR using a method-
ology outlined in [20]. We have found this method to be
flexible enough to work well at our sampling rate of 60 Hz,
yet robust enough to extract saccades even in the presence of
noise. It estimates a saccade as a peak in the angular velocity
of the eye which occurs above a threshold determined from
the statistics of the data. These data may have measurement
noise from periodic occlusions of the pupil, or more often,
may represent eye movements that are naturally more jittery.

Before calculating our scanpaths, we first condition the
raw gaze data using a Savitzky-Golay filter to calculate the
angular velocities eye θ̇, and remove points with unusually
high velocity (>900◦/sec). These points are most likely due
to the inability of the eye tracking system to properly image
the pupil. Next, we remove any remaining points located at
the origin (as a result of blinks or loss of pupil tracking) and
those points located outside the data window. Approximately
1-5% of the BPOR data must be removed for these reasons.
Finally, we interpolate between the removed points.

We prime the estimation algorithm by choosing some
initial peak velocity threshold θ̇PT

init that is greater than the
maximum velocity in the data, and define the set used in the
first estimation as ω1 = {ω∈ θ̇ |ω < θ̇PT

init}. Next, the estima-
tion process iterates until the exit threshold is reached (Step
4). The ith iteration is described below.

1. Calculate the mean and standard deviation of ωi, as µωi

and σωi .
2. Define a new peak velocity threshold θ̇PT

i+1 = µωi +6σωi

3. Define the new set ωi+1 = {ω ∈ θ̇ | ω < θ̇PT
i+1}.

4. If | θ̇PT
i+1 − θ̇PT

i |< 1◦/sec, then the final threshold is
θ̇PT

F = θ̇PT
i+1 and the angular velocity of the onset and off-

set as θ̇o = µωi+1 +3σωi+1 , else return to step 1.

Once we have determined the velocity threshold, we extract
the peaks in angular velocity data, which is essentially the
set that satisfies ωpeak = {ω ∈ θ̇ | θ̈ = 0}. Saccades are de-
fined in the angular velocity data as θ̇sac = {ω ∈ θ̇ | ωpeak >

θ̇PT
F ,ωpeak − θ̇o ≤ ω ≤ ωpeak + θ̇o}. Any part of the signal

that is not a saccade is categorized as a fixation. Depending
upon the subject, approximately 5-8% of fixations are less
than 100 ms, and must be discarded. Finally, we calculate
the mean value of the position of the eye (in pixels) for each
fixation. The resulting vector tuple is the (x,y, t) elements of
the fixation.

The objective comparison of scanpaths depends heavily
on both the task, and the visual stimulus. A detailed review
of many of these comparison methods are outlined in [11]. In
our particular study however, the comparison is vastly sim-
plified. We included the vertical marks on the test sample to
force a visual engagement with the workpiece. As a result,
the scanpaths evolve in a manner analogous to a reading task
in which the visual stimuli, the words, are generally exam-
ined serially from left to right. We know that a subject is
likely to attend to the words on the page and in a specific
order. Similarly, since our grinding task is limited to the sur-
face of the small test coupon, we can assume that the subjects
are likely to spend the majority of time searching vertically
and horizontally. Therefore, the difference in gaze behavior
becomes how often, and at what magnitude does their gaze
shift across the test sample.

3.3 Process Parameters
In order to determine process parameters for direct com-

parison of product performance, material removal and aver-
age surface roughness were measured. A white light interfer-
ometer confocal microscope CSM 700 from Zeiss was used
to measure all 2D and 3D surface roughness parameters with
a cut-off length of 0.8 mm and an evaluation length of 4 mm
(in accordance with ISO 4287:1997). A weighing scale was
used to measure mass of workpieces before and after each
grinding for each subject.

4 Results and Discussion
In this section, we compare the behavioral character-

istics between subjects. We examine the duration of fixa-
tions, the variance of fixation positions, the characteristics
of the applied forces, and identify general relationships be-
tween the eye movement, grinding forces, and tool veloc-
ity. We then compare process performance variables (MMR)
and part quality (average surface roughness) resulting from
the grinding operation. Finally, we discuss how the differ-
ences in gaze-sensorimotor behavior, are related to process
performance and part quality via technique, which is a cru-
cial element of the experience level of the subject.

As noted earlier, we shall refer to the experienced sub-
ject as Subject 1, the intermediates as Subject 2 and Subject
3, and the novice as Subject 4. Furthermore, for the purpose
of direction consistency, we will refer to the x direction of
the gaze as tangential and the y direction as axial.

4.1 Tool Velocity
For this particular study, the addition of the motion

tracking system allowed us to directly measure the position



and orientation of the tool. Figure 2 provides a detail of the
Dremel tool with the tracking spheres attached. Velocities
were calculated by a simple numeric differentiation of the
filtered position measurements. The velocity vector was de-
composed into the relevant axes: tangential (x), normal (z),
and axial (y) as shown in Figure 2.

In order to directly compare the velocity characteristics
of each subject, the absolute value of the signals were binned
and normalized. These results are shown in Figure 4. Despite
the fact that this grinding task was primarily tangential in na-
ture, several of the subjects displayed interesting variations
in their axial motion. A close examination of the curves in
Figure 4 shows that Subject 2 and Subject 4 show a large tan-
gential response between .06 to .1 m/s, as we might expect.
However, Subjects 1 and 3 have low variance in both the
axial and tangential directions indicating that their hand mo-
tions contained a fair amount of axial motion. In fact, both
of these subjects tended to utilize a swirling motion over the
workpiece rather than a standard back and forth sweeping of
the tool. These differences in technique are embodied in the
remainder of the behavior data.

4.2 Gaze Analysis
Fixation duration is simply measured as the time lapse,

in seconds, between two saccades. A two sample t-test and a
chi-squared test were performed on the fixation data. These
tests both indicate that trials between subjects are statistically
different (p < 0.03), while the data within each subject are
not. This is plausible as we may guess that the fixational
characteristics are an inherent property of the individual sub-
jects. As a result, we pooled the data for each subject across
all ten trials.

The pooled distributions as illustrated in Figure 5 are
highly skewed. A direct comparison between the subjects
shows that Subject 1 and Subject 3 have much shorter du-
rations than Subject 2 and Subject 4, which indicates that
their eyes are moving about the workpiece more frequently.
Furthermore, Subject 1 shows the smallest variance, with
few durations lasting longer than 2 seconds. By compari-
son, Subject 4 has the largest variance of the all subjects with
some fixations lasting as long as 4 seconds, more than twice
that of Subject 1.

We can invert these fixation duration data in order to ob-
tain a distribution of fixation frequency as shown in Figure
9. This method to effectively display the data for compari-
son with the spectral distribution of the tangential forces and
velocities.

Figure 7 shows the distribution of the gaze variations.
A typical set of fixations for a single grinding trial are illus-
trated in Figure 6. We determine the variations as follows:
First, the mean for each trial is calculated. The variation is
defined as the square root of the squared difference of the
gaze position from the mean for each fixation. Thus it is not
the variance of a distribution, but the absolute value of the
distance of each fixational point of regard from the mean of
each particular trial. These data are presented as pixels in
the image frame (1280 horizontal by 960 vertical). These

data are binned and the distribution of each subject for each
trial is plotted in Figure 7. Since this particular task is per-
formed by moving the tool from side to side, we would ex-
pect that the fixational shifts would be larger in the horizon-
tal (x) direction than the vertical (y). This appears to be true
with Subjects 2 and 4, with the novice subject exhibiting the
largest horizontal shifts. Interestingly, Subject 1 and Subject
3 both have tendencies to look vertically more than horizon-
tally corresponding to a shifts in attention in that direction.
This corresponds to the more complex motions that were ex-
hibited by these subjects.

4.3 Grinding Forces
Figure 8(a) illustrates the normal versus the tangential

forces for a single trial of each of the four subjects. While
the normal forces might be considered those that are directly
applied by the subject, we can see that there is a strong cor-
relation between the tangential and normal forces (r2 be-
tween .65 and 0.85 for all subjects). However, the tangen-
tial force is also an indication of the grinding power as the
greater the magnitude, the more energy involved in the ma-
terial removal [21] and therefore more relevant to process
performance. Finally, the variability in the distributions of
the tangential forces between subjects were large enough to
analyze statistically. Therefore, we chose to include the tan-
gential rather than normal forces in our comparative analysis.

While the different subjects operated in different force
regimes, it is clear from Figure 8 that the mean value of the
forces produced by Subject 2 were the highest, while those
from Subject 1 were the lowest. More importantly how-
ever, the mean and variance in both the normal and tangential
forces for both Subject 2 and Subject 4 are very large com-
pared to the others, indicated a general tendency to push the
tool harder into the workpiece.

4.4 Relationship Between Gaze, Tool Velocity, and Ap-
plied Forces

In this section, we examine the relationships between a
subject’s shifts in gaze and the corresponding changes in ap-
plied force and tool velocity. Our experimental setup can-
not measure where in space a force was applied, only its
components along the principle axes of the triaxial load cell.
However, we can track how the tangential forces change, and
correspondingly, how the eye movements and tool positions
change in the same direction.

As a means of comparing the frequency characteristics
of the gaze, tangential force, and the axial and tangential ve-
locity properties of each subject, we have overlaid the fre-
quency distributions of the fixations and power spectral den-
sities onto a single plot. These plots are shown in Figure
9. We see that collective responses of each of the subjects
exhibits a modal shape. These modes arise through the pro-
prioceptive interaction of the human subjects with the natu-
ral dynamics of the mechanical system. We cannot say for
certain which regime may predominate in this particular fre-
quency band. However, the clamped test article is extremely
stiff, and the grinding wheel was rotating at 5000 rpm. Me-



chanical resonances are most likely absent at such frequen-
cies. Therefore it is likely that the force response in the 0
to 10Hz bandwidth is dominated by the characteristics of the
gaze-motor system. The modes in these spectra are located
at: Subject 1: 3Hz; Subject 2: 2.1Hz; Subject 3: 3.1Hz; Sub-
ject 4: 2.5Hz.

These modes encapsulate the behavioral characteristics
of the subject as they perform the manual grinding task. It is
clear that the peaks tool velocities similarly occur with peaks
in tangential forces. These are the applied hand motions and
the applied tool forces respectively. Likewise, Subjects 1,
3, and 4 all display a rolloff in their fixational response at
frequencies corresponding to the force and velocity peaks.
Hand motion and applied force occur together indicating pur-
poseful movement, and similar changes in gaze behavior in-
dicate a shift in attention corresponding to this movement.
The coexistence of these modes show that, for this manual
grinding task, visual attention is coupled to the motor system
in a sensory feedback loop, and that we observe this to be so.
The impact of this observation will be discussed in Section
4.6.

Going further, if we refer back to Figures 4-9, the dif-
ference in the behavior of each of the subjects becomes more
clear. Subject 1 and Subject 3 perform the task in a precise
manner by moving the tool in complex paths, both axially
and tangentially, with lower applied forces and velocities,
and short fixations. By contrast, Subject 2 and Subject 4
move the tool primarily tangentially, with higher tangential
forces and longer fixations. There is a clear contrast in the
behaviors between these two groups of subjects.

4.5 Relationship Between Applied Force and Surface
Integrity

Material removal rate (MMR) or mass removed during
a machining operation is a useful parameter to understand
cutting mechanisms. Overall, cutting mechanisms can be di-
vided into three phases: rubbing, plowing, and cutting. For
low MMR, rubbing and plowing dominates over the chip for-
mation process. Conversely, at high MMR, chip formation
dominates. Since energy is lost to heat conversion in the
plowing and rubbing phases, higher proportions of chip for-
mation lead to a more effective grinding process. For man-
ual operations, cutting forces applied to the workpiece come
from both the cutting tool rotation and worker’s manual feed
and normal pressure onto the workpiece. Depending on the
experience of the user, applied forces can vary over a wide
range and affect the consistency of machining process.

Grinding forces are important quantitative process indi-
cators to characterize MRR and specific grinding energy, and
are strongly tied to surface damage. Grinding power (Pc) is a
function of tangential forces (Ft) and the circumferential tool
speed (vs) and is represented as: Pc = Ftvs. Figure 10 shows
the tangential force variation versus mass removed for the
different subjects. For an approximately equivalent amount
of material removed, the novice subject requires 2.5 times
more tangential force than the experienced subject. For the
intermediate subjects, Subject 2 and Subject 3, with the ex-

ception of a single outlier for each, the material removed are
in ranges similar to that of Subject 1. However, Subject 2 re-
quires a 1.3 and 2 times greater grinding force per equivalent
amount of material removed compared to that of Subject 3
and Subject 1 respectively.

The variation of the normal forces shown in Figure 11
are similar to the tangential forces shown in Figure 10. With
the exception of the novice subject (Subject 4), all other sub-
jects applied forces in defined force regimes, whereas the
novice subject displays inconsistent behavior which might
result in unreliable product quality. Similar to Figure 10,
for the same amount of material removed, Subject 2 applied
higher normal forces compared to the other two subjects.
Higher grinding forces create higher temperatures that lead
to greater surface wear under dry cutting conditions. Both
forces and temperatures influence workpiece quality and ac-
curacy such as surface roughness, force ratio, grinding en-
ergy etc. Higher grinding forces also increase the wear rate
of the abrasive tool. Therefore, it is desirable to reduce the
grinding force during the machining process.

In addition to grinding force, surface roughness is as-
sumed to be another indicator used to characterize the ma-
terial removal mode associated with the grinding process.
The quality of surface generation depends on the material
removed during the grinding operation. The average sur-
face roughness produced by the different subjects with re-
spect to material removed is shown in Figure 12. In order to
achieve the same amount of average surface roughness, Sub-
ject 2 removed less material, with a lower average roughness
compared to other users. However, Subject 1 showed higher
consistency in terms of material removed, whereas Subject 4
exhibited a wide range over the different trials. Overall, we
can conclude that the increase in material removed did not
directly affect surface morphology.

Figure 13 shows the relationship between tangential
forces and average surface roughness. Figure 13 shows that
average values of roughness vary from subject to subject,
but display a negative association with tangential force ex-
cept for Subject 4. Subject 1 applied lower tangential forces
compared to the other subjects, but average roughness for
10 trials are higher than others, whereas for Subject 2 ap-
plied higher forces which lead to lower roughness generation
on the workpiece. Overall, the average surface roughness of
Subject 2, 3, and 4 were lower compare to Subject 1. How-
ever, in terms of producing reliable product quality, Subject
1 is consistent compared to other users.

These facts led to the conclusion that manual grinding
operations are critically dependent on manual feed, and nor-
mal forces applied on workpieces to produce reliable product
quality and to maintain performance consistency. Unlike au-
tomated conventional grinding operations, in manual opera-
tions both normal and tangential forces are affected by user’s
experience rather than material removed.

4.6 Practical Implications and Impact
In our analysis of the individual behaviors, we see that

there is a contrast between Subjects 1 and Subject 3 com-



pared to those of Subject 2 and Subject 4. As we discussed
in Section 4.4, Subject 1 and Subject 3 utilized more com-
plex tool paths than Subject 2 and Subject 4. We will refer
to the class of these behaviors as the exhibition of a tech-
nique. For ease of syntax, we will refer to Subject 1 and
Subject 3 as using Technique A, and Subject 2 and Subject 4
as using Technique B. The behaviors corresponding to these
techniques have been summarized in Table 1 for clarity.

We also examined process parameters and discovered
that Subject 1 and Subject 3 are able to remove more mass
while utilizing lower tangential, and lower normal forces,
indicating a more efficient grinding process. Furthermore,
both Subject 1 and Subject 3 have low variation in applied
forces and material removed implying a much more consis-
tent process output. While Subject 1 shows larger average
surface roughness than the other three subjects, the variation
in this from trial to trial is extremely low, again indicating
consistency. Of all the subjects, Subject 1 produced a prod-
uct consistently and efficiently, followed closely by Subject
3. While Subject 2 was both less consistent and efficient, the
subject does display characteristics of one who has experi-
ence with the grinding tool. By contrast, the performance of
Subject 4 is highly random. This subject is able to perform
the task, but shows little ability to produce in a repeatable
fashion.

We can now summarize the relationships that we have
discovered. Technique A was comprised of complex tool
paths and low forces. This technique was exhibited by Sub-
ject 1 and Subject 3. These subjects also produced a more
consistent product, more efficiently. Technique B, which
included simple tangential tool paths and higher grinding
forces was exhibited by Subject 2 and Subject 4. It resulted
in a less consistent and less efficient output. Therefore, we
have observed a relationship between manual grinding tech-
niques which are displayed by practitioners of different lev-
els of experience. The sensorimotor behaviors embedded in
these techniques are observable and distinguishable. Finally,
the techniques result in in different product outputs observed
in the process parameters.

In order to digitalized human performance, we would
like to be able to join the behavioral and process parameter
properties together in a formal model. The findings from this
pilot study show that this may be viable. Certainly an ex-
periment with a larger cohort of subjects representing each
experience level would be required in future work. A recog-
nition of sensorimotor behaviors and their effects on the pro-
cess outputs can be used to interrogate the manner in which
each subject performs the task beyond their own internal per-
ception. This in turn can be used to inform a personalized
teaching regime. Furthermore, the design of a more thorough
experiment could examine the eye and hand movements for
a wider range of tasks (possibly two dimensional grinding)
and how the forces and velocities change between “impor-
tant” saccades. The possible rule for quantifying the impor-
tance of a saccade can be a function of the experience of the
practitioner.

5 Conclusion
Our long term goal is to develop a principled and data-

driven way of analyzing human manual skills. Since the
skills involved in complex manual tasks need the close in-
tegration of multiple processes, a difficulty in the analysis
lies in how to deal with data collected from processes of a
different nature. Yet this is critical if we wish to join behav-
ioral and process parameter properties together in a formal
model. Finding the right balance between process param-
eters and product performance is important for maximizing
process efficiency.

In this paper, we have examined the visual-attention-
motor behavioral characteristics involved in a manual grind-
ing task. Four subjects of various experience levels were
used in this pilot study. We were able to show that there
were observable and distinguishable sensorimotor behaviors
associated with two distinct techniques utilized by the in-
dividual subjects, and that task performance is effected by
these techniques. Different cutting forces, and tool velocity
are some of the very critical factors among a vast amount
of other considerations, which have a direct impact on ma-
chined surface quality and material removal. Unlike auto-
mated processes, we see that in manual operations a user’s
skillset influences the process performance and consistency.
Moreover, we can distinguish between the behavioral charac-
teristics associated with observed techniques which can aid
in digitalization of manual performance and inform person-
alized training regimes. In our future work, we will continue
to analyze product performance associated with processing
parameters and the unique behaviors of the operators.
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Table 1. Summary of behaviors exhibited between techniques

Technique A Technique B

Tool Velocity greater axial less axial

Gaze Frequency more often less often

Gaze Shifts more axial more tangential

Tangential Grinding Force lower higher

Technique
A B

Tool Velocity sdf sdf
Gaze Frequency sfd fds

Gaze Shifts fds fds
Tangential Grinding Force fsd fds
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Fig. 1. Setup of our grinding experiment. While the subject was
grinding the metal sample, data were collected from three modules:
1) a gaze tracking module, consisting a pair of SMI eye-tracking
glasses and a computer running BeGaze data recording software, 2)
a force measuring module, consisting of a force sensor and a com-
puter running LabVIEW, 3) an Optitrack motion capture system run-
ning Motive, which can determine the position and orientation of se-
lected objects. The data collected from the three modules were syn-
chronized and then analyzed using the methods described in Section
3.
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Fig. 2. An image of a grinding sample (left) and a figure showing
the force data collection module. Forces in three directions were
measured, tangential (x-axis), normal (z-axis) and axial (y-axis). The
reflective spheres are used by the motion tracking system.



Fig. 3. An example scanpath. The centers of fixations are denoted
by points. The durations of fixations are represented by the diameters
of the circles. The fixation centers are connected by straight lines
according to their temporal order. Each straight line corresponds to
a saccade.

Fig. 4. Normalized histogram of the tangential and axial tool veloci-
ties for all subjects



Fig. 5. Comparison of skewed fixation distributions between sub-
jects. Data from all trials for each subject is pooled. Red lines indi-
cate the median of the distribution. Whiskers extend out to the 90th
percentiles. Outliers beyond the 90th percentile labeled with a red
cross.

Fig. 6. Sample of fixation points for a single subject. Positions are
reported in pixels on the original 1280 by 960 pixel field of view. No-
tice the asymmetric dispersion of shifts.



Fig. 7. Distributions of the fixational variations for all the trials. The
whiskers extend to the 90th percentile of the distribution. Outliers are
represented as red crosses.

(a)

(b)

Fig. 8. (a) Plot of normal and tangential forces for all subjects. (b)
Tangential and normal force distributions between subjects. The
height of the bars represent the mean force for each trial with the
standard deviations indicated.



Fig. 9. Comparison of modal responses in the gaze-motor behavior
of all subjects

Fig. 10. Tangential force variation for mass removal during grinding



Fig. 11. Normal force variation for mass removal during grinding
Fig. 12. Mean roughness variation over material removal rate dur-
ing grinding



Fig. 13. Mean surface roughness variation with tangential force




