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ABSTRACT

Selfies have become commonplace. More and more people
take pictures of themselves, and enjoy enhancing these pic-
tures using a variety of image processing techniques. One
specific functionality of interest is automatic skin and hair
segmentation, as this allows for processing one’s skin and hair
separately. Traditional approaches require user input in the
form of fully specified trimaps, or at least of ”scribbles” in-
dicating foreground and background areas, with high-quality
masks then generated via matting. Manual input, however,
can be difficult or tedious, especially on a smartphone’s small
screen. In this paper, we propose the use of fully convolu-
tional networks (FCN) and fully-connected CRF to perform
pixel-level semantic segmentation into skin, hair and back-
ground. The trimap thus generated is given as input to a stan-
dard matting algorithm, resulting in accurate skin and hair al-
pha masks. Our method achieves state-of-the-art performance
on the LFW Parts dataset [1]. The effectiveness of our method
is also demonstrated with a specific application case.

Index Terms— Skin and hair segmentation, Convolu-
tional Neural Networks, Image Matting

1. INTRODUCTION

High quality skin and hair segmentation plays an important
role in portrait editing, face beatification, human identifica-
tion, hairstyle classification and many other computer vision
problems. To obtain accurate segmentation mask, there ex-
ist many interaction-based methods which require users to la-
bel some areas as foreground or background. Graph cut [2],
fully-connected CRF [3], and matting algorithms [4] are some
of the techniques used to produce accurate masks. Some au-
thors [5, 6, 7, 8, 9] have attempted to segment skin and hair
automatically; however, without user input, the quality of the
result is usually poor. Automatic robust and accurate skin/hair
segmentation is still an open problem, even state-of-the-art al-
gorithms have difficulties with different face and hair color,
hairstyle, head poses, and confounding background color.

In this work, we take advantage of the power of fully
convolutional networks (FCN). These architectures have been
used successfully in a wide range of computer vision prob-
lems, including semantic segmentation [10, 11, 12] and
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Fig. 1. (a) original image, (b) output of FCN-8s model (sec-
tion 3.1), (c) output of fully-connected CRF (section 3.2), (d)
and (e) are outputs of matting step (section 3.3), (f) edited
image with modified hair color.

boundary detection [13, 14]. We fine-tune the FCN-8s
model [10] using LFW Parts dataset [1] with three labels:
skin, hair, and background. The output of the network is a
pixel-wise prediction into one of these labels. The FCN is
trained in an end-to-end manner, and it can capture both lo-
cal and global context information. In FCN-8s (with two skip
layers) the final prediction map is downsampled by 8, which
leads to poor localization. This is a particularly serious prob-
lem for hair segmentation, as the hair mask often contains
very thin details. To overcome this issue, we follow the ap-
proach of Chen et al. [11], and feed the FCN output to a fully-
connected CRF [3] as a unary energy term, while spatial and
color information are used as pairwise terms. Our method
achieves state-of-the-art performance on LFW Parts dataset
with 97.32% accuracy.



Using FCN and fully-connected CRF we have been able
to obtain good segmentation masks, with state-of-the-art per-
formance on the LFW Parts dataset (97.32% accuracy). Yet,
these results are still not accurate enough for portrait editing.
This is due to two main reasons. First, the segmentation mask
fails to capture some fine details of the hair area. Second, the
mask produced by the algorithm is binary, and does not give
a natural, soft transition between the skin and hair region. To
solve both problems, we automatically generate trimaps based
on our binary segmentation masks using morphological oper-
ations, then employ standard image matting algorithm to ob-
tain an appropriate alpha masks for the hair and skin areas.
The accurate binary segmentation masks produced by FCN
and fully-connected CRF enable us to generate high-quality
trimaps, and the high-quality alpha matting.

In summary, our contributions are three-fold: (1) We ap-
ply FCN followed by fully-connected CRF to automatically
segment skin and hair, achieving state-of-the-art accuracy on
the LFW Parts dataset. (2) We produce soft and high qual-
ity alpha matte for hair and skin regions by combining image
matting and binary masks. (3) We demonstrate how high-
quality skin/hair masks can be employed for image enhance-
ment applications such as modifying the color of skin or hair
and smoothing one’s skin.

2. RELATED WORKS

In this section we briefly review previous work in automatic
skin and hair segmentation, as well as the main algorithms
used in our system.

The work of Yacoob et al. [5] relies on a simple color
model to recognize hair pixels. However, this method cannot
deal with large hair color variation and confounding back-
ground color. Lee’s algorithm [6] adds location information
for increased robustness, and reformulates the segmentation
task in terms of a Markov network inference problem, which
is solved via Loopy Belief Propagation. Huang et al. [15]
trained a standard CRF on images from the LFW dataset to
build a skin, hair and background classifier. Each node in the
network is a superpixel; information from color, texture and
location is used. For adjacent superpixels, the sum of PB [16]
values along the boundary, color and texture histogram resid-
ual are used to compute pairwise potential.

Wang et al. [17, 18] incorporated a part-based model
for hair and face segmentation. A measurable statistic,
called Subspace Clustering Dependency (SC-Dependency),
was used to capture the co-occurrence probabilities between
local shapes. This algorithm produces reasonable results but
suffers from poor localization, which makes it unsuitable for
face and hair editing tasks. Recently, Kae et al. [8] proposed a
model using CRF to capture local appearance features and re-
stricted Botlzmann machines to model global shapes. The re-
sult is evaluated on the LFW Parts dataset [1], which contains
2927 images (2000 for training, 927 for testing) with ground

truth labels for each superpixel. The work of Liu et al. [9]
introduced a multi-objective learning method for deep convo-
lutional networks that jointly models pixel-wise likelihoods
and label dependencies. A nonparametric prior was used for
additional regularization, resulting in better performance.

In recent years, fully convolutional networks (FCN) [10]
have been used in a variety of contexts in computer vision. In
our work, we adopt the FCN-8s model [10] as it performs
reasonably well and it is easy to train. Although FCN-8s
produces robust results, it suffers from poor localization. To
overcome this limitation, fully-connected CRF [3] model are
often used. Chen et al. [11] feed the label assignment proba-
bilities produced by FCN to a fully-connected CRF, where the
two modules are trained separately. Zheng et al. [12] reformu-
late mean-field approximate inference for the fully-connected
CRF as a Recurrent Neural Network (RNN), which enables
an end-to-end training process.

3. OUR APPROACH

Our proposed framework is shown in Figure 2. The input
image is fed to the FCN-8s [10] network to produce a pixel-
wise prediction map. This is followed by a fully-connected
CRF, used for improved localization. Finally, an image mat-
ting algorithm is applied to obtain accurate and soft skin and
hair alpha mattes, from trimaps automatically generated using
morphological operations on the fully-connected CRF output.
The different system components are described in detail in the
following.

3.1. Fully Convolutional Network

In order to robustly segment skin and hair from cluttered
background, both local and global context information need
to be taken into consideration. For this purpose, we use the
widely successful FCN algorithm, which has the ability to
leverage different scales for feature computation. Specifi-
cally, we use the FCN-8s [10] model, which achieves ex-
cellent performance in semantic segmentation tasks, and has
also been used to solve other dense prediction problems.
The FCN-8s model is derived from the VGG 16-layer net-
work [19] by discarding the final classifier layer and con-
verting all fully connected layers to convolution layers. We
attach an additional final 1×1 convolution layer with chan-
nel dimension 3 to obtain prediction scores for skin, hair and
background. We use score32 to represent the prediction score
produced by the last convolution layer since the stride is of
32 pixels. In order to increase spatial accuracy, two skip
layers are added to combine high level semantic informa-
tion (score32) with shallow, fine appearance features (pool3,
pool4). A 1×1 convolution layer is added on top of pool4
to produce a fine-scale prediction score-pool4. Since score-
pool4 has twice the size of score32, to add two prediction
scores, score32 is upsampled by factor 2 using a deconvolu-
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Fig. 2. Our framework. In the trimaps from (d), white pixels represent foreground (skin/hair), black pixels are background
constrains, gray stands for unknown region.

tion layer. The parameters of the deconvolution layer is ini-
tialized by a bilinear interpolation kernel, but allowed to be
learnt during training. The prediction score of pool3 is fused
in similar fashion. The final output prediction score of FCN-
8s has stride 8; this is then upsampled using bilinear interpo-
lation to ensure that the prediction has the same size as the
input image. Softmax loss layer is used in training.

3.2. Fully-Connected Conditional Random Field

The output segmentation of FCN-8s network is robust in the
face of variable skin and hair colors, hairstyles, and head
poses. However, the achievable localization is relatively poor,
see figure 2 (b). There are two main reasons for this. First , the
output segmentation map from FCN-8s has stride 8, and thus
the prediction resolution is much lower than that of the input
image. Second, FCN takes a large range of context informa-
tion into consideration, which produce homogeneous predic-
tions. This is particularly vexing problem for hair segmenta-
tion, since hair usually contains very thin structures.

To overcome this drawback, we feed the label assignment
probability map to a fully-connected CRF with the purpose of
obtaining a finer segmentation result, as suggested by Chen et
al. [11]. The model use the following energy function:

E(x) =
∑
i

− logP (xi) +
∑
ij

w1 exp(−
|pi − pj |2

2θ2α

− |Ii − Ij |
2

2θ2β
) + w2 exp(−

|pi − pj |2

2θ2γ
).

(1)

where P (xi) is the label assignment probability for the i-th
pixel; the first kernel of pairwise energy depends on both pixel
position p and pixel color value I; and the second kernel only
depends on pixel positions. The hyper parameters θα, θβ ,

θγ , w1 and w2 control the scale and weights of the Gaussian
kernels, respectively. Pixels i and j are connected regardless
of their distance, which makes the graph fully connected.

3.3. Image Matting

Although use of a fully-connected CRF significantly im-
proves the localization of raw FCN output, the result is still
not good enough for portrait editing. The first reason is that
the fully-connected CRF still fails to recover very thin struc-
tures, especially for hair. Secondly, using the binary segmen-
tation mask in editing can result in visible boundary effects.
To overcome this issue, we use an image matting algorithm
in order to obtain an accurate hair and skin alpha masks, with
input trimaps automatically generated from the segmentation
label map.

We apply morphological operators on the binary segmen-
tation mask for hair and skin, obtaining a trimap that indicates
foreground (hair/skin), background and unknown pixels. In
order to deal with segmentation inaccuracies, and to best cap-
ture the appearance variance of both foreground and back-
ground, we first erode the binary mask with a small kernel,
then extract the skeleton pixels as part of foreground constrain
pixels. We also erode the binary mask with a larger kernel to
get more foreground constrain pixels. The final foreground
constrain pixels is the union of the two parts. If we only keep
the second part then some thin hair regions will be gone after
erosion with a large kernel. If a pixel is outside the dilated
mask then we take it as background constrain pixel. All other
pixels as marked as unknown, see figure 2 (d).

Finally, the automatically generated trimap is fed to an
image matting algorithm to calculate an alpha mask. In our
experiment, we use the matting algorithm from [20].



3.4. Application

Our algorithm for automatic generation of high quality skin
and hair masks may be used in applications such as face skin
manipulation [21, 22, 23], hair manipulation [24], or for creat-
ing facial and hairstyle databases for further processing [25].

As an example of application, we implemented a simple
tool to manipulate hair, skin, and background using the masks
produced by our algorithm. If only the skin or hair is to be
processed, then one could just use the output alpha matte as
described in Section 3.3. When both regions need to be pro-
cessed, better rendition is obtained if pixels near skin and hair
boundary are included in both masks. We propose to use a
simple weighted average as follows:

wkp =
mk
p∑

k∈{s,h,b}m
k
p

(2)

wheremk
p is the value of the mask for label k at pixel p, and k

could be skin (s), hair (h) or background (b). ms and mh are
the output alpha masks. The background mask mb is defined
as mb = 255 − min(255,ms + mh). With the soft masks,
we can apply Bilateral Filtering [26] for skin smoothing and
color manipulation on hair and skin regions. Two examples of
processed images are shown in Figure 3. The results appear
natural, without noticeable boundary effects.

Fig. 3. We change the hair color using the soft masks gener-
ated by our algorithm.

4. EXPERIMENTS

4.1. Implementation Details

The images used to train our networks come from the LFW
Parts dataset training portion, which contains 2000 images

with superpixel-level labels. Each image in the training set
has size of 250×250 pixels, which is small compared to the
receptive field size of FCN-8s. For this reason, we resize each
training image to 500×500 pixels, and also add a copy of each
image flipped horizontally for data augmentation.

Following the fine-tuning mechanism proposed in [10],
we first fine-tune the FCN-32s (no skip layers) model using
4000 training images. The minibatch size is 1, learning rate
is 10−9, momentum is 0.99, weight decay is 0.0005. We then
add one skip layer a time with reduced learning rate (10−12

and 10−13 respectively). The training process takes around
20 hours to complete. The inference time is around 90 ms for
500×500 input image.

Our system is implemented with Caffe and Matlab, and
runs on a workstation (3.3Ghz 6-core CPU, 32G RAM,
Nvidia GTX Titan X GPU and Ubuntu 14.04 64-bit OS).

4.2. LFW Parts Dataset

In this section, we evaluate the quality of the segmentation re-
sults on the LFW Parts dataset using fully convolutional net-
works and fully-connected CRF, as compared with previous
methods. The use of the LFW Parts dataset, a subset of the
widely used LFW dataset, was originally proposed by Kae
et al. [8]. The dataset contains 2927 face images with size
of 250×250 pixels, with large variance in background, hair
and skin color, head poses and hairstyles. The training por-
tion contains 1500 images, the validation portion contains 500
images, and the test portion contains 927 images. All images
are manually labelled as skin, hair and background at the su-
perpixel level.

In Table 1, we compare our results with those from pre-
vious work, including [8], [9] and other baselines proposed
in [8]. The CRF model is implemented by Kae et al. [8]
based on [15], Spatial CRF and CRBM are two more base-
lines used in [8]. For more details about these methods, the
reader is referred to [8].

The results of [8] and all the baselines are evaluate in
superpixel level, while Liu et al. [9] report performance at
the pixel level. In order to allow for a full comparison, we
report performance at both the pixel and the superpixel levels.
Since our system produces only pixel-level classification, we
label each superpixel with the most frequent label across the
pixels in the superpixel.

Table 1 shows that our method outperforms the other con-
sidered algorithms by a noticeable margin. Comparing with
[9] using the same pixel-level evaluation mechanism, our raw
FCN output acieves about 1% accuracy improvement, while
the additional CRF processing gives a 0.42% boost. At super-
pixel level, our method produces results with accuracy that
is more than 2.3% than the algorithm by Kae et al. [8]. The
absolute accuracy value increase may not seems so signifi-
cant when the baseline accuracy is already pretty high, the
error reduction rate is much more convincing. It is interest-



Fig. 4. Sample segmentation results on the LFW Parts dataset. From top to bottom: a) Input image, b) Raw FCN output, c)
FCN+CRF, d) Superpixel level ground truth labeling. The results shows that our proposed method is robust against challenging
situations such as occlusion, complex hairstyle, no hair, beard as well as variance head poses. For several samples like the 5th,
7th, 8th and 11th image, our result appears to be more accurate than the ground truth. This is due to the fact that the ground
truth is provided at the superpixel level (which may not accurately represent all fine details), while our algorithm works at the
pixel level.

ing to note, that, while the fully-connected CRF allowed for
a small boost in accuracy at pixel level, no significant differ-
ence could be registered at the superpixel level. This should
not come as a surprise, as the increase in localization accuracy
at pixel level may simply be lost when considering whole su-
perpixels. Some examples of results are shown in Figure 4.

Table 1. Overall accuracy on LFW Parts dataset compared
to [8], [9] and other baselines. Note that [8] and [9] are
evaluated at the superpixel (SP) and pixel level, respectively.
We provide results of our system at both the superpixel and
pixel level.

Method Accuracy Error Reduction
CRF 93.23% -

Spatial CRF 93.95% 10.64%
CRBM 94.10% 12.85%

GLOC [8] 94.95% 25.41%
MO-GC [9] 95.24% 29.69%

Ours Pixel (FCN) 96.34% 45.94%
Ours Pixel (FCN+CRF) 96.76% 52.14%

Ours SP (FCN) 97.30% 60.12%
Ours SP (FCN+CRF) 97.32% 60.41%

The image matting step, producing a soft and more accu-
rate mask, is crucial for skin and hair editing. We show this
in Figure 5, which compares editing results with and without
image matting step. Use of image matting allows for more
natural results, thanks to the soft transition between different
areas and more accurate masks, especially for hair area.

Inputs Without Matting With Matting

Fig. 5. Comparison of editing results with and without image
matting step. Note how, by softening the transition between
skin and hair, image matting produces more natural results.

5. CONCLUSION

We presented a system for accurate pixel-level segmentation
of hair and skin for photo editing applications. We achieved
state-of-the-art results on the LFW Parts data set using a fully
convolutional networks, followed by a fully-connected condi-
tional random field. In addition, we showed how this segmen-
tation can be used to generate trimaps automatically. These
trimaps can then be used as input to an image matting algo-



rithm for ”soft” image rendering. Our system can find appli-
cation in image enhancement and beautification and in por-
trait editing.
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