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Abstract

Topics in Financial Math (Uncertain Volatility, Ross Recovery and Mean Field Games

on Random Graph)

by

Ning Ning

In this thesis, we discuss three new topics in Financial Mathematics using partial differ-

ential equation (PDE): uncertain volatility with stochastic bounds, Ross recovery with

multivariate driving states and mean field games under the Erdös Rényi random graph,

in three chapters respectively.

In Chapter 1, we study a class of uncertain volatility models with stochastic bounds,

over which volatility stays between two bounds, but instead of using two deterministic

bounds, the uncertain volatility fluctuates between two stochastic bounds generated by

its inherent stochastic volatility process. We then apply a regular perturbation analysis

upon the worst-case scenario price, and derive the first order approximation in the regime

of slowly varying stochastic bounds. The original problem which involves solving a fully

nonlinear PDE in dimension two for the worst-case scenario price, is reduced to solving a

nonlinear PDE in dimension one and a linear PDE with source, which gives a tremendous

computational advantage.

In Chapter 2, we address the problem of recovering the real world probability dis-

tribution from observed option prices by avoiding the intensively debated transition in-

dependence, through placing structure on the dynamics of the numeraire portfolio in a

preference-free manner. We firstly utilize the Itô and Feynman–Kac theorem to derive a

a uniformly elliptic operator, whose inverse is a compact linear operator, based on bound-

ary conditions, and then apply the Krein-Rutman theorem to guarantee the uniqueness of

x



the positive eigenfunction, which happens to generate the physical transition probability.

In Chapter 3, we analyze a model of inter-bank lending and borrowing, by means

of mean field games on the Erdös Rényi random graph. An open-loop Nash equilib-

rium is obtained using a system of fully coupled forward backward stochastic differential

equations (FBSDEs), whose unique solution leads to the master equation. We explore

the approximation to the finite player game equilibrium through a decoupled system of

diffusion equations generated by the master equation under frozen graph, and through a

weakly interacting particle system on random graph generated by the master equation

under random graph, respectively.
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Chapter 1

Topic in Uncertain Volatility

In this chapter, we study a class of uncertain volatility models with stochastic bounds.

Like in the regular uncertain volatility models, we know only that volatility stays between

two bounds, but instead of using two deterministic bounds, the uncertain volatility fluctu-

ates between two stochastic bounds generated by its inherent stochastic volatility process.

This brings better accuracy and is consistent with the observed volatility path such as

for the VIX as a proxy for instance. We apply a regular perturbation analysis upon the

worst-case scenario price, and derive the first order approximation in the regime of slowly

varying stochastic bounds. The original problem which involves solving a fully nonlinear

PDE in dimension two for the worst-case scenario price, is reduced to solving a nonlinear

PDE in dimension one and a linear PDE with source, which gives a tremendous com-

putational advantage. Numerical experiments show that this approximation procedure

performs very well, even in the regime of moderately slow varying stochastic bounds.

This chapter is based on the paper [1].
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Topic in Uncertain Volatility Chapter 1

1.1 Overview of Uncertain Volatility Models with

Deterministic Bounds

In the standard Black–Scholes model of option pricing ([2]), volatility is assumed

to be known and constant over time. Since then, it has been widely recognized and

well-documented that this assumption is not realistic. Extensions of the Black–Scholes

model to model ambiguity have been proposed, such as the stochastic volatility approach

([3], [4]), the jump diffusion model ([5], [6]), and the uncertain volatility model ([7], [8]).

Among these extensions, the uncertain volatility model has received intensive attention

in Mathematical Finance for risk management purpose.

In the uncertain volatility models (UVMs), volatility is not known precisely and is

assumed to lie between constant upper and lower bounds σ and σ. These bounds could

be inferred from extreme values of the implied volatilities of the liquid options, or from

high-low peaks in historical stock- or option-implied volatilities. Under the risk-neutral

measure, the price process of the risky asset satisfies the following stochastic differential

equation (SDE):

dXt = rXtdt+ αtXtdWt, (1.1)

where r is the constant risk-free rate, (Wt) is a Brownian motion and the volatility process

(αt) belongs to a family A of progressively measurable and [σ, σ]-valued processes.

When pricing a European derivative written on the risky asset with maturity T and

nonnegative payoff h(XT ), the seller of the contract is interested in the worst-case sce-

nario. By assuming the worst case, sellers are guaranteed coverage against adverse market

behavior, if the realized volatility belongs to the candidate set. [9] showed that the seller

of the derivative can superreplicate it with initial wealth ess supα∈A Et[h(XT )], whatever

2



Topic in Uncertain Volatility Chapter 1

the true volatility process is. The worst-case scenario price at time t < T is given by

P (t,Xt) := exp(−r(T − t)) ess supα∈A Et[h(XT )], (1.2)

where Et[·] is the conditional expectation given Ft with respect to the risk neutral mea-

sure.

Following the arguments in stochastic control theory, P (t, x) is the viscosity solu-

tion to the following Hamilton-Jacobi-Bellman (HJB) equation, which is the generalized

Black–Scholes–Barenblatt (BSB) nonlinear equation in Financial Mathematics,

∂tP + r(x∂xP − P ) + sup
α∈[σ,σ]

[
1

2
x2α2∂2

xxP

]
= 0,

P (T, x) = h(x).

(1.3)

It is well known that the worst-case scenario price is equal to its Black–Scholes price with

constant volatility σ (resp. σ) for convex (resp. concave) payoff function (see [10] for

instance).

For general terminal payoff functions, an asymptotic analysis of the worst-case sce-

nario option prices as the volatility interval degenerates to a single point is derived in

[11]. That is, in a small volatility interval [σ, σ+ε], the worst case scenario price P ε(t,Xt)

solves the following Black-Scholes-Barenblatt equation:

∂tP
ε + r(x∂xP

ε − P ε) + sup
α∈[σ,σ+ε]

{1

2
α2x2∂2

xxP
ε} = 0,

P ε(T ) = h.

Fouque and Ren showed that, in [11], assume that the payoff function h ∈ C4
p(R+), h

is Lipschitz, and its derivatives up to order 4 have polynomial growth, and the second

3



Topic in Uncertain Volatility Chapter 1

derivative of h has a finite number of zero points, then pointwise,

lim
ε↓0

P ε − (P0 + εP1)

ε
= 0,

where P0 is the solution of the following Black-Scholes equation:

∂tP0 + r(x∂xP0 − P0) +
1

2
σ2x2∂2

xxP0 = 0,

P0(T ) = h.

P1 is the solution of the following equation:

∂tP1 + r(x∂xP1 − P1) +
1

2
σ2x2∂2

xxP1 + sup
g∈[0,1]

gσx2∂2
xxP0 = 0,

P1(T ) = 0.

1.2 Uncertain Volatility Models with Stochastic Bounds

Looking at the VIX over years, which is a popular measure of the implied volatility of

SP500 index options, you will see that for longer time-horizons, it is no longer consistent

with observed volatility to assume that the bounds are constant. Therefore, instead of

modeling αt fluctuating between two deterministic bounds i.e. σ ≤ αt ≤ σ, it is rea-

sonable to consider the case that the uncertain volatility moves between two stochastic

bounds i.e. σt ≤ αt ≤ σt. [12] introduced the notion of random G-expectation, which

successfully extended the G-expectation (see [13]) by allowing the range of the volatility

uncertainty to be stochastic. Later [14] established the duality formula for the super-

replication price, in a setting of volatility uncertainty including random G-expectation.

[15] consolidated the foundation of this new area, by providing a general construction of

time-consistent sublinear expectations on the space of continuous paths, which yields the

4
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existence of the conditional G-expectation of a Borel-measurable random variable and

an optional sampling theorem. [16] further provided the PDE characterization of the su-

perreplication price in a jump diffusion setting, in which the link between the worst-case

scenario price under stochastic bounds and its associated BSB equation is established for

the first time.

In this chapter, we study a class of models where the bounds are stochastic and slowly

moving. The “center” of the bounds follows a stochastic process F (Zt), where F is a

positive increasing and differentiable function on the domain of a regular diffusion of the

form

dZt = δµ(Zt)dt+
√
δβ(Zt)dW

Z
t . (1.4)

Here, WZ is a Brownian motion possibly correlated to the Brownian motion W driving

the stock price, with d〈W,WZ〉t = ρdt for |ρ| ≤ 1. The parameter δ > 0 represents the

reciprocal of the time-scale of the process Z and will be small in the asymptotics that

we consider in the chapter. The volatility bound itself is given by

σt := dF (Zt) ≤ αt ≤ σt := uF (Zt), for 0 ≤ t ≤ T, (1.5)

with u and d two constants such that 0 < d < 1 < u. In the following, we will use the

popular CIR process for Z, that is µ(z) = κ(θ − z) and β(z) =
√
z in (1.4), under the

Feller condition 2κθ ≥ 1 to ensure that Zt stays positive:

dZt = δκ(θ − Zt)dt+
√
δ
√
ZtdW

Z
t , Z0 = z > 0. (1.6)

Our asymptotic analysis will reveal that, to the order
√
δ, only the vol-vol value β(z),

the volatility level F (z) and its slope F ′(z) are involved, but not the drift function µ.

In the spirit of the Heston model we will use F (z) =
√
z on (0,∞), and we will also

5
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give the corresponding formulas for our approximation in terms of a general function F .

We denote αt := qt
√
Zt so that the uncertainty in the volatility can be absorbed in the

uncertain adapted slope as follows

d ≤ qt ≤ u, for 0 ≤ t ≤ T.

One realization of the bounds is shown in Figure 1.1 with δ = .05.

0 1 2 3 4 5 6 7 8 9 10

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time

Stochastic bounds

squareroot Zt 
Lower bound 
Upper bound

Figure 1.1: Simulated stochastic bounds [0.75
√
Zt, 1.25

√
Zt] where Zt is the (slow)

mean-reverting CIR process (1.6).

In order to study the asymptotic behavior, we emphasize the importance of δ and

reparameterize the SDE of the risky asset price process as

dXδ
t = rXδ

t dt+ qt
√
ZtX

δ
t dWt. (1.7)

When δ = 0, note that the CIR process Zt is frozen at z, and then the risky asset price

6
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process follows the dynamic

dX0
t = rX0

t dt+ qt
√
zX0

t dWt, (1.8)

both Xδ
t and X0

t starting at the same point x.

We denote the smallest riskless selling price (worst-case scenario) at time t < T as

P δ(t, x, z) := exp(−r(T − t)) ess supq.∈[d,u] E(t,x,z)[h(Xδ
T )], (1.9)

where E(t,x,z)[·] is the conditional expectation given Ft with Xδ
t = x and Zt = z. When

δ = 0, we represent the smallest riskless selling price as

P0(t, x, z) = exp(−r(T − t)) ess supq.∈[d,u] E(t,x,z)[h(X0
T )], (1.10)

where the subscripts in E(t,x,z)[·] also means that X0
t = x and Zt = z given the same

filtration Ft. Notice that P0(t,Xt, z) corresponds to P (t,Xt) in (1.2) with constant

volatility bounds given by d
√
z and u

√
z.

Before displaying our result, it is worth mentioning some related new literatures. The

result of [17] can be used to derive a robust superhedging duality and the existence of

an optimal superhedging strategy for general contingent claims. [18] studied a robust

portfolio optimization problem under model uncertainty for an investor with logarithmic

or power utility, where uncertainty is specified by a set of possible Lévy triplets. [19]

analyzed the formation of derivative prices in equilibrium between risk neutral agents

with heterogeneous beliefs, in the spirit of uncertain volatility with stochastic bounds.

7
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1.3 Asymptotic Analysis by Perturbation Method

In this section, we first prove the Lipschitz continuity of the worst-case scenario price

P δ with respect to the parameter δ. Then, we derive the main BSB equation that the

worst-case scenario price should follow and further identify the first order approximation

when δ is small enough. We reduce the original problem of solving the fully nonlinear

PDE (1.11) in dimension two to solving the nonlinear PDE (1.13) in dimension one and a

linear PDE (1.18) with source. The accuracy of this approximation is given in Theorem

4, the main theorem of this chapter.

1.3.1 Convergence of P δ

It is established in Appendix A.1 that Xδ
t and Zt have finite moments for δ sufficiently

small, which leads to the following result:

Proposition 1. Let Xδ satisfies the SDE (1.7) and X0 satisfies the SDE (1.8), then,

uniformly in (q·),

E(t,x,z)(X
δ
T −X0

T )2 ≤ C0δ

where C0 is a positive constant independent of δ.

Proof. See Appendix A.2.

In order to carry out our asymptotic analysis, we need to impose some regularity of

the payoff function h. Note that our numerical example in Section 1.5, a “butterfly”

profile, does not satisfy these assumptions but we mention there a possible regularization

step.

Assumption 1. We assume that the terminal function h is four times differentiable,

with a bounded first derivative and polynomial growth of the fourth derivative:

8
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 |h
′(x)| ≤ K1,

|h(4)(x)| ≤ K4(1 + |x|l),

for constants K1 and K4, and an integer l.

Remark 1. The polynomial growth condition on h(4) implies polynomial growth of h′′

and h′′′, and the bounded first derivative assumption implies that h is Lipschitz.

Remark 2. Note that for convex or concave payoff functions, such as for vanilla Eu-

ropean Calls or Puts, if h(·) is convex (resp. concave), for the reason that supremum

and expectation preserves convexity (resp. concavity), one can see that the worst-case

scenario price

P δ(t, x, z) = exp(−r(T − t)) ess supq.∈[d,u] E(t,x,z)[h(XT )],

is convex (resp. concave) with ∂2
xxP

δ > 0 (resp. < 0), and thus q∗,δ = u (resp. = d).

In these two cases, we are back to perturbations around Black–Scholes prices which have

been treated in [20]. In this chapter, we work with general terminal payoff functions,

neither convex nor concave, therefore the signs of the second derivatives of the option

prices cannot be easily determined. In order to proceed we impose regularity conditions

on the payoff functions (Assumption 1) as in [11].

Theorem 1. Under Assumption 1, P δ(·, ·, ·), as a family of functions of (t, x, z) indexed

by δ, converges to P0(·, ·, ·) with rate
√
δ, uniformly in (t, x, z) ∈ [0, T ]× R× R+.

Proof. For P δ given by (1.9) and P0 given by (1.10), using the Lipschitz continuous of

9
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h(·) and by the Cauchy-Schwarz inequality, we have

|P δ − P0| = exp(−r(T − t))
∣∣ess supq.∈[d,u] E(t,x,z)[h(Xδ

T )]− ess supq.∈[d,u] E(t,x,z)[h(X0
T )]
∣∣

≤ exp(−r(T − t))
∣∣ess supq.∈[d,u] E(t,x,z)[h(Xδ

T )]− E(t,x,z)[h(X0
T )]
∣∣

≤ exp(−r(T − t)) ess supq.∈[d,u]

∣∣E(t,x,z)[h(Xδ
T )− h(X0

T )]
∣∣

≤K0 exp(−r(T − t)) ess supq.∈[d,u] E(t,x,z)

∣∣Xδ
T −X0

T

∣∣
≤K0 exp(−r(T − t)) ess supq.∈[d,u]

[
E(t,x,z)(X

δ
T −X0

T )2
]1/2

.

Therefore, by Proposition 1, we have

|P δ − P0| ≤ C1

√
δ

where C1 is a positive constant independent of δ, as desired.

1.3.2 Pricing Nonlinear PDEs

We now derive P0 and P1, the leading order term and the first correction for the

approximation of the worst-case scenario price P δ, which is the solution to the HJB

equation associated to the corresponding control problem given by the generalized BSB

nonlinear equation:

∂tP
δ + r(x∂xP

δ − P δ) + sup
q∈[d,u]

{1

2
q2zx2∂2

xxP
δ +
√
δ(qρzx∂2

xzP
δ)}

+δ(
1

2
z∂2

zzP
δ + κ(θ − z)∂zP

δ) = 0,

(1.11)

with terminal condition P δ(T, x, z) = h(x). For simplicity and without loss of generality,

r = 0 is assumed for the rest of chapter.

In this section, we use the regular perturbation approach to formally expand the value

10
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function P δ(t, x, z) as follows:

P δ = P0 +
√
δP1 + δP2 + · · · . (1.12)

Inserting this expansion into the main BSB equation (1.11), by Theorem 1, the leading

order term P0 is the solution to

∂tP0 + sup
q∈[d,u]

{1

2
q2zx2∂2

xxP0} = 0,

P0(T, x, z) = h(x).

(1.13)

In this case, z is just a positive parameter, and we have existence and uniqueness of a

smooth solution to (1.13) (we refer to [10]). Note that in the general model given by

(1.4) and (1.5), the equation for P0 would be

∂tP0 + sup
q∈[d,u]

{1

2
q2σ2x2∂2

xxP0} = 0, σ := F (z).

1.3.3 Convergence of ∂2
xxP

δ

In what follows, we will assume regularity of the solution P δ of the nonlinear PDE

(1.11).

Assumption 2. Throughout the chapter, we make the following assumptions on P δ:

(i) P δ(·, ·, ·) belongs to C1,2,2
p (p for polynomial growth), for δ fixed.

(ii) ∂xP
δ(·, ·, ·) and ∂2

xxP
δ(·, ·, ·) are uniformly bounded in δ.

Remark 3. In the present chapter, we are concerned with a practical approximation of

the superreplication problem viewed as a perturbation around the classical case of fixed

volatility bounds. Our starting point is a superreplication price given as the classical solu-

tion of a nonlinear PDE. Regarding the link between the worst-case scenario option price

11
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with its associated BSB equation, as well as regularity conditions and uniform bounded-

ness of derivatives, we refer to [14] and Lemma 3.2 in [19] in a different context.

Then, under Assumption 2, we have the following Proposition:

Proposition 2. Under Assumptions 1 and 2, the family ∂2
xxP

δ(·, ·, ·) of functions of

(t, x, z) indexed by δ, converges to ∂2
xxP0(·, ·, ·) as δ tends to 0 with rate

√
δ, uniformly

on compact sets in (x, z) and t ∈ [0, T ].

Proof. Under Assumptions 1 and 2, and by Theorem 1, the Proposition can be obtained

by following the arguments in Theorem 5.2.5 of [21].

Denote the zero sets of ∂2
xxP0 as

S0
t,z := {x = x(t, z) ∈ R+|∂2

xxP0(t, x, z) = 0}.

Define the set where ∂2
xxP

δ and ∂2
xxP0 take different signs as

Aδt,z :={x = x(t, z)|∂2
xxP

δ(t, x, z) > 0, ∂2
xxP0(t, x, z) < 0}

∪ {x = x(t, z)|∂2
xxP

δ(t, x, z) < 0, ∂2
xxP0(t, x, z) > 0}.

(1.14)

Assumption 3. We make the following assumptions:

(i) There is a finite number of zero points of ∂2
xxP0(t, x, z), for any t ∈ [0, T ] and z > 0,

that is, S0
t,z = {x1 < x2 < · · · < xm(t,z)}, where we assume that the number m(t, z) is

uniformly bounded in t ≤ T and z ∈ R.

(ii) There exists a constant C such that the set Aδt,z defined in (1.14) is included in

∪m(t,z)
i=1 Iδi , where

Iδi := [xi − C
√
δ, xi + C

√
δ], for xi ∈ S0

t,z and 1 ≤ i ≤ m(t, z).

12
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Furthermore, we assume that for every M > 0 there exists B > 0 such that |xi| ≤ B for

any xi ∈ S0
t,z, 1 ≤ i ≤ m(t, z), z ≤M .

Remark 4. Here we explain the rationale for Assumption 3 (ii).

Suppose P0 has a third derivative with respect to x, which does not vanish on the set

S0
t,z. By Proposition 2, ∂2

xxP
δ converges to ∂2

xxP0 with rate
√
δ, therefore we conclude that

there exists a constant C such that on the set (∪m(t,z)
i=1 Iδi )c, ∂2

xxP
δ(t, x, z) and ∂2

xxP0(t, x, z)

have the same sign, and Assumption 3 (ii) would follow. This is illustrated in Figure 1.5.3

by an example with two zero points for ∂2
xxP0(t, x, z).

Otherwise, Iδi would have a larger radius of order O(δα) for α ∈ (0, 1
2
), and then the

accuracy in the main Theorem 4 would be O(δα+1/2), but in any case of order o(
√
δ).

In the sequel, in order to simplify the expressions, we denote

P0 := P0(t, x, z) and P δ := P δ(t, x, z),

and similar notations apply to the corresponding derivatives.

1.3.4 Optimizers

The optimal control in the nonlinear PDE (1.13) for P0, denoted as

q∗,0(t, x, z) := arg max
q∈[d,u]

{1

2
q2zx2∂2

xxP0},

is given by

q∗,0(t, x, z) =

 u, ∂2
xxP0 ≥ 0

d, ∂2
xxP0 < 0

. (1.15)

The optimizer to the main BSB equation (1.11) is given in the following lemma:

13
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Lemma 1. Under Assumption 3, for δ sufficiently small and for x /∈ S0
t,z, the optimal

control in the nonlinear PDE (1.11) for P δ, denoted as

q∗,δ(t, x, z) := arg max
q∈[d,u]

{1

2
q2zx2∂2

xxP
δ +
√
δ(qρzx∂2

xzP
δ)},

is given by

q∗,δ(t, x, z) =

 u, ∂2
xxP

δ ≥ 0

d, ∂2
xxP

δ < 0
. (1.16)

Proof. To find the optimizer q∗,δ to

sup
q∈[d,u]

{1

2
q2zx2∂2

xxP
δ +
√
δ(qρzx∂2

xzP
δ)},

we firstly relax the restriction q ∈ [d, u] to q ∈ R.

Denote

f(q) :=
1

2
q2zx2∂2

xxP
δ +
√
δ(qρzx∂2

xzP
δ).

By the result of Proposition 2 that ∂2
xxP

δ uniformly converge to ∂2
xxP0 as δ goes to 0, for

x /∈ S0
t,z, the optimizer of f(q) is given by

q̂∗,δ = −ρ
√
δ∂2

xzP
δ

x∂2
xxP

δ
.

Since Xt and Zt are strictly positive, the sign of the coefficient of q2 in f(q) is deter-

mined by the sign of ∂2
xxP

δ. We have the following cases represented in Figure 1.2, from

which we can see that for δ sufficiently small such that |q̂∗,δ| ≤ d, the optimizer is given

by

q∗,δ = u1{∂2
xxP

δ≥0} + d1{∂2
xxP

δ<0}.

14
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Figure 1.2: Illustration of the derivation of q∗,δ: if ∂2
xxP

δ > 0, whether q̂∗,δ is positive
or negative, with the requirement q ∈ [d, u], q∗,δ = u; otherwise q∗,δ = d.

Plugging the optimizer q∗,δ given by Lemma 1, the BSB equation (1.11) can be rewrit-

ten as

∂tP
δ +

1

2
(q∗,δ)2zx2∂2

xxP
δ +
√
δ(q∗,δρzx∂2

xzP
δ) + δ(

1

2
z∂2

zzP
δ + κ(θ − z)∂zP

δ) = 0, (1.17)

with terminal condition P δ(T, x, z) = h(x).

1.3.5 Heuristic Expansion

We insert the expansion (1.12) into the main BSB equation (1.17) and collect terms

in successive powers of
√
δ. Under Assumption 3 that q∗,δ → q∗,0 as δ → 0, without

loss of accuracy, the first order correction term P1 is chosen as the solution to the linear

15
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equation:

∂tP1 +
1

2
(q∗,0)2zx2∂2

xxP1 + q∗,0ρzx∂2
xzP0 = 0,

P1(T, x, z) = 0,

(1.18)

where q∗,0 is given by (1.15).

Since (1.18) is linear, the existence and uniqueness result of a smooth solution P1 can

be achieved by firstly change the variable x → lnx, and then use the classical result of

[22] for the parabolic equation (1.18) with diffusion coefficient bounded below by d2z > 0.

Note that in the general model given by (1.4) and (1.5), using the chain rule, the

equation for P1 would be

∂tP1 +
1

2
(q∗,0)2σ2x2∂2

xxP1 + q∗,0ρσσ′βx∂2
xσP0 = 0, σ = F (z), σ′ := F ′(z), β := β(z).

We shall show in the following that under additional regularity conditions imposed

on the derivatives of P0 and P1, the approximation error |P δ − P0 −
√
δP1| is of order

O(δ).

Assumption 4. The following derivatives of P0 and P1 are of polynomial growth:



|∂2
xxP0(t, x, z)| ≤ a20(1 + xb20 + zc20)

|∂2
xzP0(t, x, z)| ≤ a11(1 + xb11 + zc11)

|∂zP0(t, x, z)| ≤ a01(1 + xb01 + zc01)

|∂2
xxP1(t, x, z)| ≤ ā20(1 + xb̄20 + zc̄20)

|∂zP1(t, x, z)| ≤ ā01(1 + xb̄01 + zc̄01)

|∂2
zzP1(t, x, z)| ≤ ā02(1 + xb̄02 + zc̄02)

(1.19)

where ai, bi, ci, āi, b̄i, c̄i are positive integers for i ∈ (20, 11, 01, 02).
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Remark 5. As explained at the beginning of Section 1.3.3, regularity of P0 and subse-

quently of P1 given by (1.18), can be obtained from the assumed regularity of the payoff h

(Assumption 1). The proof being outside the scope of this chapter, we list these properties

as assumptions and we introduce the notation for the constants needed later.

1.3.6 Formal Expansion

Define the following operator

Lδ(q) : = ∂t +
1

2
q2zx2∂2

xx +
√
δqρzx∂2

xz + δ(
1

2
z∂2

zz + κ(θ − z)∂z)

= L0(q) +
√
δL1(q) + δL2,

(1.20)

where L0(q) contains the time derivative and is the Black–Scholes operator LBS(q
√
z),

L1(q) contains the mixed derivative due to the covariation between X and Z, and δL2 is

the infinitesimal generator of the process Z, also denoted by δLCIR.

The main equation (1.17) can be rewritten as

Lδ(q∗,δ)P δ = 0,

P δ(t, x, z) = h(x).

(1.21)

Equation (1.13) becomes

L0(q∗,0)P0 = 0,

P0(T, x, z) = h(x).

(1.22)
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Equation (1.18) becomes

L0(q∗,0)P1 + L1(q∗,0)P0 = 0,

P1(T, x, z) = 0.

(1.23)

Applying the operator Lδ(q∗,δ) to the error term, it follows that

Lδ(q∗,δ)Eδ =Lδ(q∗,δ)(P δ − P0 −
√
δP1)

= Lδ(q∗,δ)P δ︸ ︷︷ ︸
=0, eq. (1.21).

−Lδ(q∗,δ)(P0 +
√
δP1)

=−
(
L0(q∗,δ) +

√
δL1(q∗,δ) + δLCIR

)
(P0 +

√
δP1)

=− L0(q∗,δ)P0 −
√
δ
[
L1(q∗,δ)P0 + L0(q∗,δ)P1

]
− δ

[
L1(q∗,δ)P1 + LCIRP0

]
− δ

3
2 [LCIRP1]

=− L0(q∗,0)P0︸ ︷︷ ︸
=0, eq. (1.22).

−(L0(q∗,δ)− L0(q∗,0))P0 −
√
δ

[
L1(q∗,0)P0 + L0(q∗,0)P1︸ ︷︷ ︸

=0, eq. (1.23).

+ (L1(q∗,δ)− L1(q∗,0))P0 + (L0(q∗,δ)− L0(q∗,0))P1

]

− δ
[
L1(q∗,δ)P1 + LCIRP0

]
− δ

3
2 (LCIRP1)

=− (L0(q∗,δ)− L0(q∗,0))P0 −
√
δ

[
(L1(q∗,δ)− L1(q∗,0))P0

+ (L0(q∗,δ)− L0(q∗,0))P1

]
− δ

[
L1(q∗,δ)P1 + LCIRP0

]
− δ

3
2 (LCIRP1)

=− 1

2
[(q∗,δ)2 − (q∗,0)2]zx2∂2

xxP0

−
√
δ

[
ρ(q∗,δ − q∗,0)zx∂2

xzP0 +
1

2

(
(q∗,δ)2 − (q∗,0)2

)
zx2∂2

xxP1

]
− δ

[
ρ(q∗,δ)zx∂2

xzP1 +
1

2
z∂2

zzP0 + κ(θ − z)∂zP0

]
− δ

3
2

[
1

2
z∂2

zzP1 + κ(θ − z)∂zP1

]
,
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where q∗,0 and q∗,δ are given in (1.15) and (1.16) respectively.

The terminal condition of Eδ is given by

Eδ(T, x, z) = P δ(T, x, z)− P0(T, x, z)−
√
δP1(T, x, z) = 0.

1.4 Accuracy of the Approximation

1.4.1 Feynman–Kac representation of the error term

For δ sufficiently small, the optimal choice q∗,δ to the main BSB equation (1.11) is

given explicitly in Lemma 1. Correspondingly, the asset price in the worst-case scenario

is a stochastic process which satisfies the SDE (1.1) with (qt) = (q∗,δ) and r = 0, i.e.,

dX∗,δt = q∗,δ
√
ZtX

∗,δ
t dWt. (1.24)

Given the existence and uniqueness result of X∗,δt proved in Appendix A.3, we have the

following probabilistic representation of Eδ(t, x, z) by Feynman–Kac formula:

Eδ(t, x, z) = I0 + δ
1
2 I1 + δI2 + δ

3
2 I3,

where
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I0 := E(t,x,z)

[∫ T

t

1

2

(
(q∗,δ)2 − (q∗,0)2

)
Zs(X

∗,δ
s )2∂2

xxP0(s,X∗,δs , Zs)ds

]
,

I1 := E(t,x,z)

[∫ T

t

(
(q∗,δ − q∗,0)ρZsX

∗,δ
s ∂2

xzP0(s,X∗,δs , Zs)

+
1

2

(
(q∗,δ)2 − (q∗,0)2

)
Zs(X

∗,δ
s )2∂2

xxP1(s,X∗,δs , Zs)

)
ds

]
,

I2 := E(t,x,z)

[∫ T

t

(
q∗,δρZsX

∗,δ
s ∂2

xzP1(s,X∗,δs , Zs) +
1

2
Zs∂

2
zzP0(s,X∗,δs , Zs)

+ κ(θ − Zs)∂zP0(s,X∗,δs , Zs)

)
ds

]
,

I3 := E(t,x,z)

[∫ T

t

(
1

2
Zs∂

2
zzP1(s,X∗,δs , Zs) + κ(θ − Zs)∂zP1(s,X∗,δs , Zs)

)
ds

]
.

Note that for q∗,0 given in (1.15) and q∗,δ given in (1.16) , we have

q∗,δ − q∗,0 = (u− d)(1{∂2
xxP

δ≥0} − 1{∂2
xxP0≥0}), (1.25)

and

(q∗,δ)2 − (q∗,0)2 = (u2 − d2)(1{∂2
xxP

δ≥0} − 1{∂2
xxP0≥0}). (1.26)

Also note that {q∗,δ 6= q∗,0} = Aδt,z defined in (1.14).

In order to show that Eδ is of order O(δ), it suffices to show that I0 is of order O(δ),

I1 is of order O(
√
δ), and I2 and I3 are uniformly bounded in δ. Clearly, I0 is the main

term that directly determines the order of the error term Eδ.
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1.4.2 Control of the term I0

In this section, we are going to handle the dependence in δ of the process X∗,δ by a

time-change argument.

Theorem 2. Under Assumptions 1, 2 and 3, there exists a positive constant M0, such

that

|I0| ≤M0δ

where M0 may depend on (t, x, z) but not on δ. That is, I0 is of order O(δ).

Proof. Since 0 < d ≤ q∗,δ, q∗,0 ≤ u, we have

I0 =E(t,x,z)

[∫ T

t

1

2

(
(q∗,δ)2 − (q∗,0)2

)
Zs(X

∗,δ
s )2∂2

xxP0(s,X∗,δs , Zs)ds

]

≤ u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2|∂2

xxP0(s,X∗,δs , Zs)|ds
]

=
u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2|∂2

xxP0(s,X∗,δs , Zs)|1{supt≤s′≤T Zs′≤M}ds

]
+

u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2|∂2

xxP0(s,X∗,δs , Zs)|1{supt≤s′≤T Zs′>M}ds

]
:=M1 +M2.

In the following, we are going to show that both terms M1 and M2 are of order O(δ).

Step 1. Control of term M1

Recall that, under Assumption 3, the set Aδt,z defined in (1.14) is included in ∪m(t,z)
i=1 Iδi ,

which is included in a compact set for z ≤M . From Proposition 2, there exists a constant

C0 such that

|∂2
xxP0(s,X∗,δs , Zs)| ≤ C0

√
δ, for t ≤ s ≤ T, X∗,δs ∈ Aδs,Zs and sup

t≤s≤T
Zs ≤M,
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which yields

M1 ≤
u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2C0

√
δ1{supt≤s′≤T Zs′≤M}ds

]
≤ u2

2d2
C0

√
δ E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2

1{supt≤s′≤T Zs′≤M}ds

]
.

(1.27)

In order to show that M1 is of order O(δ), it suffices to show that there exists a

constant C1 such that

E(t,x,z)

[∫ T

t

1{supt≤s′≤T Zs′≤M}1{X∗,δs ∈Aδs,Zs}
σ2(X∗,δs )ds

]
≤ C1

√
δ, (1.28)

where σ(X∗,δs ) := q∗,δ
√
ZsX

∗,δ
s and dX∗,δs = σ(X∗,δs )dWs by (1.24). Define the stopping

time

τ(v) := inf{s > t; 〈X∗,δ〉s > v},

where 〈X∗,δ〉s =
∫ s
t
σ2(X∗,δu )du. Then according to Theorem 4.6 (time-change for martin-

gales) in [23], we know that Bv := X∗,δτ(v) is a standard one-dimensional Brownian motion.

In particular, the filtration FBv := Fτ(v) satisfies the usual condition and we have Q-a.s.

X∗,δt = B〈X∗,δ〉t .

From the definition of τ(v) given above, we have

∫ τ(v)

t

σ2(X∗,δs )ds = v,

which tells us that the inverse function of τ(·) is

τ−1(T ) =

∫ T

t

σ2(X∗,δs )ds. (1.29)

Next use the substitution s = τ(v) and for any i ∈ [1,m(v, z)], we have

22



Topic in Uncertain Volatility Chapter 1

∫ T

t

1{supt≤s′≤T Zs′≤M}1{|X∗,δs −xi|<C
√
δ}σ

2(X∗,δs )ds

=

∫ τ−1(T )

0

1{supt≤s′≤T Zs′≤M}1{|X∗,δτ(v)
−xi|<C

√
δ}σ

2(X∗,δτ(v))
1

σ2(X∗,δτ(v))
dv

=

∫ τ−1(T )

0

1{supt≤s′≤T Zs′≤M}1{|X∗,δτ(v)
−xi|<C

√
δ}dv

=

∫ τ−1(T )

0

1{supt≤s′≤T Zs′≤M}1{|Bv+x−xi|<C
√
δ}dv.

(1.30)

Note that on the set {|Bv + x − xi| < C
√
δ} ∩ {supt≤s′≤T Zs′ ≤ M}, we have (X∗,δs )2 ≤

(xi + C
√
δ)2 ≤ D, where D is a positive constant, and then by (1.29) we have

τ−1(T ) =

∫ T

t

(q∗,δ
√
ZsX

∗,δ
s )2ds ≤ Du2TM. (1.31)

From (1.30) and (1.31), we have

E(t,x,z)

[∫ T

t

1{supt≤s′≤T Zs′≤M}1{|X∗,δs −xi|<C
√
δ}σ

2(X∗,δs )ds

]
≤
∫ Du2TM

0

QB{|Bv + x− xi| < C
√
δ}dv

≤
∫ Du2TM

0

2C
√
δ√

2πv
dv

≤
√
δ(

4C√
2π

√
Du2TM).

By finite union over the xi’s we deduce (1.28) and M1 = O(
√
δ) follows.

Step 2. Control of term M2

23



Topic in Uncertain Volatility Chapter 1

By the polynomial growth condition imposed in Assumption 4, one has

M2 =
u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2|∂2

xxP0(s,X∗,δs , Zs)|1{supt≤s′≤T Zs′>M}ds

]
≤ u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2|a20(1 + (X∗,δs )b20 + Zc20

s )|1{supt≤s′≤T Zs′>M}ds

]
.

(1.32)

In order to show M2 = O(δ), it suffices to show that, for any power m,n ∈ N,

E(t,x,z)

[∫ T

t

1{supt≤s′≤T Zs′>M}(X
∗,δ
s )mZn

s ds

]
= O(δ). (1.33)

By Cauchy-Schwarz inequality and the result established in Appendix A.1 that Xδ
t and

Zt have finite moments for δ sufficiently small, we know that

E(t,x,z)

[∫ T

t

1{supt≤s′≤T Zs′>M}(X
∗,δ
s )mZn

s ds

]
≤
∫ T

t

E1/2
(t,x,z)

(
(X∗,δs )2mZ2n

s

)
·Q1/2

(
sup

t≤s′≤T
Zs′ > M

)
ds

≤CQ1/2

(
sup

t≤s′≤T
Zs′ > M

)
,

(1.34)

where C may depend on (t, x, z) and (m,n) but not on δ and we allow C to vary from

line to line in the sequel. Integrating the SDE of the process Z over [t, s] for s ∈ [t, T ],

yields

Zs = z +

∫ s

t

δκ(θ − Zv)dv + Γs,

with Γs =
∫ s
t

√
δ
√
ZvdW

Z
v . Since Zt ≥ 0 and 0 ≤ δ ≤ 1, we have

sup
t≤s≤T

Zs ≤ (z + κθT ) + sup
t≤s≤T

Γs, (1.35)
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and then let M = z + κθT + 1, we have

1{supt≤s≤T Zs>M} ≤ 1{supt≤s≤T Γs>1}. (1.36)

Therefore, from (1.35) and (1.36), by Chebyshev inequality, we obtain

Q1/2

(
sup
t≤s≤T

Zs > M

)
≤ Q1/2

(
sup
t≤s≤T

Γs > 1

)
≤ E1/2

(
sup
t≤s≤T

Γ4
s

)
. (1.37)

Note that Γs is a martingale and then Γ4
s is a nonnegative submartingale, thus by Doob’s

maximal inequality ([23], page 14) and the result that the process Z has finite moments

uniformly in δ, we have

E1/2

(
sup
t≤s≤T

Γ4
s

)
≤CE1/2

(
Γ4
T

)
=CδE1/2

(∫ T

t

√
ZvdW

Z
v

)4

≤Cδ
(

6TE
∫ T

t

Zv
2dv

)1/2

≤Cδ,

(1.38)

where the second inequality established by the Martingale Moment Inequalities ([23],

page 163).

Now, we have (1.33) as desired, which completes the proof.

1.4.3 Control of the term I1

Theorem 3. Under Assumptions 1, 2, 3 and 4, there exists a constant M1, such that

|I1| ≤M1

√
δ
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where M1 may depend on (t, x, z) but not on δ. That is, I1 is of order O(
√
δ).

Proof. Under Assumption 4 and 0 < d ≤ q∗,δ, q∗,0 ≤ u, we have

|I1| =
∣∣∣∣E(t,x,z)

[∫ T

t

(
(q∗,δ − q∗,0)ρZsX

∗,δ
s ∂2

xzP0(s,X∗,δs , Zs)

+
1

2

(
(q∗,δ)2 − (q∗,0)2

)
Zs(X

∗,δ
s )2∂2

xxP1(s,X∗,δs , Zs)

)
ds

]∣∣∣∣
≤ E(t,x,z)

[∫ T

t

(
|q∗,δ − q∗,0|ZsX∗,δs |∂2

xzP0(s,X∗,δs , Zs)|

+
1

2
|(q∗,δ)2 − (q∗,0)2|Zs(X∗,δs )2|∂2

xxP1(s,X∗,δs , Zs)|

)
ds

]

≤ u

d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2ZsX

∗,δ
s a11(1 + (X∗,δs )b11 + Zc11

s )ds

]

+
u2

2d2
E(t,x,z)

[∫ T

t

1{X∗,δs ∈Aδs,Zs}
(q∗,δ)2Zs(X

∗,δ
s )2ā20(1 + (X∗,δs )b̄20 + Z c̄20

s )ds

]
.

Using the same techniques in proving Theorem 2, the result that X∗,δs and Zs have finite

moments for δ sufficiently small, and X∗,δs ≤ C(X∗,δs )2 on {X∗,δs ∈ Aδs,Zs}, we can deduce

that I1 is of order O(
√
δ).

1.4.4 Approximation Accuracy Result

Theorem 4. Under Assumptions 1, 3 and 4, the residual function Eδ(t, x, z) defined by

Eδ(t, x, z) := P δ(t, x, z)− P0(t, x, z)−
√
δP1(t, x, z) (1.39)

is of order O(δ). In other words, ∀(t, x, z) ∈ [0, T ] × R+ × R+, there exists a positive

constant C, such that |Eδ(t, x, z)| ≤ Cδ, where C may depend on (t, x, z) but not on δ.

Proof. With the result of theorem 2 that I0 is of order O(δ), the result of theorem 3 that
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I1 is of order O(
√
δ), and the result that I2 and I3 are uniformly bounded in δ where

derivation of these bounds are given in the appendix A.4, we can see that

Eδ(t, x, z) = I0 + δ
1
2 I1 + δI2 + δ

3
2 I3,

is of order O(δ), which completes the proof..

1.5 Numerical Illustration

In this section, we use the nontrivial example in [11], and consider a symmetric

European butterfly spread with the payoff function

h(x) = (x− 90)+ − 2(x− 100)+ + (x− 110)+. (1.40)

Although this payoff function does not satisfy the conditions imposed in this chapter,

we could consider a regularization of it, that is to introduce a small parameter for the

regularization and then remove this small parameter asymptotically without changing the

accuracy estimate. This can be achieved by considering P0(T − ε, x) as the regularized

payoff (see [24] for details on this regularization procedure in the context of the Black–

Scholes equation).

The original problem is to solve the fully nonlinear PDE (1.11) in dimension two

for the worst-case scenario price, which is not analytically solvable in practice. In the

following, we use the Crank–Nicolson version of the weighted finite difference method in

[25], which corresponds to the case of solving P0 in one dimension. To extend the original

algorithm to our two dimensional case, we apply discretization grids on time and two

state variables. Denote uni,j := P0(tn, xi, zj), v
n
i,j := P1(tn, xi, zj) and wni,j := P δ(tn, xi, zj),
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.

Figure 1.3: The payoff function of a symmetric European butterfly spread.

where n = 0, 1, · · · , N stands for the index of time, i = 0, 1, · · · , I stands for the index of

the asset price process, and j = 0, 1, · · · , J stands for the index of the volatility process.

In the following, we build a uniform grid of size 100× 100 and use 20 time steps.

We use the classical discrete approximations to the continuous derivatives:

∂x(w
n
i,j) =

wni+1,j − wni−1,j

2∆x
∂2
zz(w

n
i,j) =

wni,j+1 + wni,j−1 − 2wni,j
∆z2

∂2
xx(w

n
i,j) =

wni+1,j + wni−1,j − 2wni,j
∆x2

∂z(w
n
i,j) =

wni,j+1 − wni,j−1

2∆z

∂2
xz(w

n
i,j) =

wni+1,j+1 + wni−1,j−1 − wni−1,j+1 − wni+1,j−1

4∆x∆z
∂t(w

n
i,j) =

un+1
i,j − uni,j

∆t

To simplify our algorithms and facilitate the implementation by matrix operations,
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we denote the following operators without any parameters:

Lxx = zx2∂2
xx Lzz = z∂2

zz Lxz = xz∂2
xz

Lx = x∂x Lz1 = ∂z Lz2 = z∂z

1.5.1 Simulation of P0 and P1

Note that in the PDE (1.18) for P1 , q∗,0 must be solved in the PDE (1.13) for P0 .

Therefore, we solve P0 and P1 together in each 100×100 space grids and iteratively back

to the starting time.

1: Set uNi,j = h(xI) and vNi,j = 0.

2: Solve uni,j (predictor)

un+1
i,j − uni,j

∆t
+ [

1

2
(qn+1
i,j )2Lxx](

un+1
i,j + uni,j

2
) = 0

with

qn+1
i,j =u1{u2Lxx(un+1

i,j )≥d2Lxx(un+1
i,j )} + d1{u2Lxx(un+1

i,j )<d2Lxx(un+1
i,j )}

3: Solve uni,j (corrector)

un+1
i,j − uni,j

∆t
+ [

1

2
(qni,j)

2Lxx](
un+1
i,j + uni,j

2
) = 0
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with

qni,j =u1
{u2Lxx(

un+1
i,j

+un
i,j

2
)≥d2Lxx(

un+1
i,j

+un
i,j

2
)}

+ d1
{u2Lxx(

un+1
i,j

+un
i,j

2
)<d2Lxx(

un+1
i,j

+un
i,j

2
)}

4: Solve vni,j

vn+1
i,j − vni,j

∆t
+

1

2
(qni,j)

2Lxx(
vn+1
i,j + vni,j

2
) + ρ(qni,j)Lxz(

un+1
i,j + uni,j

2
) = 0

Throughout all the experiments, we set X0 = 100, Z0 = 0.04, T = 0.25, r = 0, d = 0.75,

and u = 1.25. Therefore, the two deterministic bounds for P0 are given by σ = d
√
Z0 =

0.15 and σ = u
√
Z0 = 0.25, which are standard Uncertain Volatility model bounds setup.

From Figure 1.5.1, we can see that P0 is above the Black–Scholes prices with constant

volatility 0.15 and 0.25 all the time, which corresponds to the fact that we need extra

cash to superreplicate the option when facing the model ambiguity. As expected, the

Black–Scholes prices with constant volatility 0.25 (resp. 0.15) is a good approximation

when P0 is convex (resp. concave).

1.5.2 Simulation of Pδ

Considering the main BSB equation given by (1.11), if we relax the restriction q ∈

[d, u] to q ∈ R, the optimizer of

f(q) :=
1

2
q2zx2∂2

xxP
δ + qρzx

√
δ∂2

xzP
δ
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.

Figure 1.4: The blue curve represents the usual uncertain volatility model price P0

with two deterministic bounds 0.15 and 0.25, the red curve marked with “- -” rep-
resents the Black–Scholes prices with σ = 0.25, the green curve marked with “-.”
represents the Black–Scholes prices with σ = 0.15.
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is given by q̂∗,δ = −ρ
√
δ∂2
xzP

δ

x∂2
xxP

δ , and the maximum value of f(q) is given by f(q̂∗,δ) =

−ρ2δz(∂2
xzP

δ)2

2∂2
xxP

δ . Therefore,

sup
q∈[d,u]

f(q) = f(u) ∨ f(d) ∨ f(q̂∗,δ).

To simplify the algorithm, we denote

LA =
1

2
u2Lxx + uρ

√
δLxz, LB =

1

2
d2Lxx + dρ

√
δLxz, LC = −ρ

2δ(Lxz)
2

2Lxx
.

1: Set wNi,j = h(xI).

2: Predictor:

wn+1
i,j − wni,j

∆t
+ [

1

2
(qn+1
i,j )2Lxx + (qn+1

i,j )ρ
√
δLxz + δ(

1

2
Lzz + κθLz1 − κLz2)](

wn+1
i,j + wni,j

2
) = 0

with

qn+1
i,j =u1{LA(wn+1

i,j )=max{LA,LB ,LC}(wn+1
i,j )} + d1{LB(wn+1

i,j )=max{LA,LB ,LC}(wn+1
i,j )}

− ρ
√
δLxz
Lxx

(wn+1
i,j )1{LC(wn+1

i,j )=max{LA,LB ,LC}(wn+1
i,j )}

3: Corrector:

wn+1
i,j − wni,j

∆t
+ [

1

2
(qni,j)

2Lxx + (qni,j)ρ
√
δLxz + δ(

1

2
Lzz + κθLz1 − κLz2)](

wn+1
i,j + wni,j

2
) = 0
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with

qni,j =u1
{LA(

wn+1
i,j

+wn
i,j

2
)=max{LA,LB ,LC}(

wn+1
i,j

+wn
i,j

2
)}

+ d1
{LB(

wn+1
i,j

+wn
i,j

2
)=max{LA,LB ,LC}(

wn+1
i,j

+wn
i,j

2
)}

− ρ
√
δLxz
Lxx

(
wn+1
i,j + wni,j

2
)1
{LC(

wn+1
i,j

+wn
i,j

2
)=max{LA,LB ,LC}(

wn+1
i,j

+wn
i,j

2
)}

We set κ = 15 and θ = 0.04, which satisfies the Feller condition required in this chapter.

1.5.3 Error analysis

To visualize the approximation as δ vanishes, we plot P δ, P0 and P0 +
√
δP1 with

ten equally spaced values of δ from 0.05 to 0, and consider a typical case of correlation

ρ = −0.9 (see [26]). In Figure 1.5.3, we see that the first order prices capture the main

feature of the worst-case scenario prices for different values of δ. As can be seen, for δ

very small, the approximation performs very well and it worth noting that, even for δ

not very small such as 0.1, it still performs well.

To investigate the convergence of the error of our approximation as δ decrease, we

compute the error of the approximation for each δ as following

error(δ) = sup
x,z
|P δ(0, x, z)− P0(0, x, z)−

√
δP1(0, x, z)|.

As shown in Figure 1.5.3, the error decreases linearly as δ decreases (at least for δ small

enough), as predicted by our Main Theorem 4.

Remark 6. In Remark 4, for the case that P0 has a third derivative with respect to x,

which does not vanish on the set S0
t,z, we have Assumption 3 (ii) as a direct result. In

Figure 1.5.3, we can see that the slopes at the zero points of ∂2
xxP

δ and ∂2
xxP0 are not 0,

hence for this symmetric butterfly spread, Assumption 3 (ii) is satisfied.
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.

Figure 1.5: The red curve marked with “- -” represents the worst-case scenario prices
P δ; the blue curve represents the leading term P0; the black curve marked with “-.”
represents the approximation P0 +

√
δP1.
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.

Figure 1.6: Error for different values of δ
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1.6 Concluding Remarks

In this chapter, we discussed the uncertain volatility models with stochastic bounds

driven by a CIR process. Our method is not limited to the CIR process and can be used

with any other positive stochastic processes such as positive functions of an OU process.

We further studied the asymptotic behavior of the worst-case scenario option prices in

the regime of slowly varying stochastic bounds. This study not only helps understanding

that uncertain volatility models with stochastic bounds are more flexible than uncer-

tain volatility models with constant bounds for option pricing and risk management,

but also provides an approximation procedure for worst-case scenario option prices when

the bounds are slowly varying. From the numerical results, we see that the approxi-

mation procedure works really well even when the payoff function does not satisfy the

requirements enforced in this chapter, and even when δ is not so small such as δ = 0.1.

Note that as risk evaluation in a financial institution requires more accuracy and effi-

ciency nowadays, our approximation procedure highly improves the estimation and still

maintains the same efficiency level as the regular uncertain volatility models. Moreover,

the worst-case scenario price P δ (1.11) has to be recomputed for any change in its pa-

rameters κ, θ and δ. However, the PDEs (1.13) and (1.18) for P0 and P1 are independent

of these parameters, so the approximation requires only to compute P0 and P1 once for

all values of κ, θ and δ.
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Chapter 2

Topic in Ross Recovery

The real-world probability distribution is of wide interest in many aspects, including

policy decisions making, market surveillance of central banks, risk management, and

portfolio optimization, and then is highly valuable to investors, policy makers and society

in general. It is widely acknowledged that the risk-neutral transition probabilities can be

determined from option prices. Also, in financial economics, it is widely agreed that the

risk-neutral pricing distribution blends the real-world distribution and the pricing kernel,

which conveys risk preferences. In this chapter, we are going to show that the real world

transition probabilities of a multidimensional Markovian and bounded diffusion can be

recovered by its risk-neutral transition probabilities, by placing the structure on the

dynamics of the numeraire portfolio. In a direct application to the European call option

pricing on private equity under multiple economy uncertainties, although the theoretical

price of the numeraire portfolio is unique up to positive scaling, the associated theoretical

option price is unique without scaling. This chapter is based on the paper [27].
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2.1 Overview of Ross Recovery

Decoding the dynamics of the physical density and the pricing kernel using historical

option or equity market data, has been extensively conducted, see [28, 29, 30, 31, 32, 33,

34] for references. Recently, [35] contributed a revolutionary breakthrough against the

conventional wisdom, by showing that enforcing a restriction on preferences and applying

the Perron-Frobenius theorem, option prices forecast not only the average return, but

also the entire distribution. Precisely, conditioning on the time homogeneity of the risk-

neutral process of a Markovian state variableX which determines aggregate consumption,

one can uniquely determine a positive matrix whose elements are Arrow–Debreu security

prices, from the option prices on X. Then by placing sufficient structure on preferences,

i.e. existence of a representative agent when utilities are state independent and additively

separable, the real-world transition probabilities of X can be uniquely determined.

Let us firstly summarize the recovery theory in the continuous setting exactly as in

[35], and still keep in mind that the setup is a discrete-time model with a finite number

of states: under the budget constraint

c(θi) +

∫
c(θ)p(θi, θ)dθ = w,

the agent seeks

max
c(θi),c(θ)θ∈Ω

{
U(c(θi)) + δ

∫
U(c(θ))f(θi, θ)dθ

}
,

where θi denotes the current state, θ is the state of nature in the next period, c(θ) is the

consumption as a function of the state and U(c(θ)) is the utility of this consumption.

According to [35], the first order condition for the optimum allows one to interpret the

kernel φ(·, ·), which is the agent’s marginal rate of substitution as a function of aggregate
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consumption (see [36]), as

φ(θi, θj) =
p(θi, θj)

f(θi, θj)
=
δU ′(c(θj))

U ′(c(θi))
. (2.1)

Assume the kernel to be transition independent (see, Definition 1 in [35]), namely, a

function of the ending state and depends on the beginning state only through dividing

to normalize it, as (2.1). The Perron-Frobenius theorem implies that there exists exactly

one positive eigenvector, which is unique up to positive scaling, and its corresponding

principal eigenvalue is positive. Therefore, by setting the representative agent’s discount

factor δ equal to this principal root, and the vector of U ′(c(θ)) equal to any positive

multiple of the principal eigenvector, the real world transition probabilities φ(·, ·) can be

uniquely determined.

However, this transition independence assumption has been intensively debated. [37]

pointed out the relation between Ross’ recovery result and the pricing kernel factoriza-

tion in [38], which used Perron–Frobenius Theory to identify a probability measure that

reflects the long-term implications for risk pricing. [37] showed that the pricing kernel

can be decomposed into a transition independent component which absorbs long-term

risk prices, and a martingale component which must be constant to recover the real-world

distribution. The resulting misspecification of Ross’ recovery as theoretically proved in

[37], is confirmed in [39], which showed that transition independence and degeneracy of

the martingale component are implausible assumptions in the bond market, and further

verified in [40], whose empirical results undermine the implications of the recovery theo-

rem. Another drawback is that, in the representative agent framework, under transition

independence, the asset considered must be able to serve as a proxy for the wealth of a

representative agent, which rules out many assets, for example futures as assets in zero

net supply.
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To tackle this potential misspecified recovery, several generalizations have been pro-

posed. [41] firstly proposed the idea to price future payoffs condtioned on the current

time instead of enforcing the independent dynamical probability transition, in a continu-

ous setting. [42] tackled the recovery problem in a discrete setting, similarly by starting

directly with the state prices for all future times given only the current state (see their

Figure 1 in Appendix D for a clear understanding), which is followed with successful

empirical tests. [43] proposed to incorporate recursive preferences of Epstein-Zin type,

which do not necessarily produce transition independent pricing kernels.

Next, we follow [41] in recovering the real-world transition probabilities in a preference-

free manner, by placing structure on the dynamics of the numeraire portfolio rather than

enforcing restrictions on the form of the pricing kernel, where the numeraire portfolio

is a self-financing portfolio with positive price (see [44] for reference). In a multivariate

setting and under arbitrage free markets assumption, Long showed that the numeraire

portfolio always exists, and deflating each asset’s price by the value of the numeraire

portfolio yields a martingale under the real-world probability measure. Therefore, the

more concrete and economically grounded notion of the numeraire portfolio could be used

to take the role of the rather abstract probabilistic notion of an equivalent martingale

measure. To be more specific, the risk neutral probability measure Q equivalent to the

real world probability measure P can be generated by

dQ
dP

∣∣∣∣
FT

= MT ,

where M is a positive P local martingale whose existence is implied by the first funda-

mental theorem of asset pricing. Equivalently, the real world probability density function

can be obtained via:

dP|FT =
1

MT

dQ|FT . (2.2)
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Given the the risk neutral probability measure Q, [41] achieved dP|FT by restricting the

form and dynamics of the numeraire portfolio through

1

MT

= e−
∫ T
0 rtdtLT ,

where rt is the interest rate process.

As pioneers in Recovery theory, [41] followed [35] in assuming that there is a single

Markov process X driving all asset prices, and showed the uniqueness of the positive

eigenfunction by virtue of the Sturm–Liouille theory. Since one usually assumes that

multiple Markovian processes drive some curve or surface, therefore it is meaningful to

explore the multiple drivers case. However the S-L theory only applicable in the case of a

single variable, not in the multidimensional case. In this chapter, with the assistance of

a refined spectrum analysis of the elliptic operator, we extend the single driver recovery

problem to the general n ∈ N driving state variables case. To be specific, our purpose is

to show that with the multivariate driver diffusion process, it is still possible to uniquely

determine, the volatility vector process of Long’s numeraire portfolio and then the real

world probability measure.

Before displaying our result, it is worth mentioning some excellent related literatures.

The unbounded domain extension as suggested in [41] was firstly attempted by [45] given

transition independence, which explored the recovery problem in a representative agent

economy where the state evolves in continuous time according to a time homogeneous

diffusion process on an unbounded domain. Also under the debatable transition inde-

pendence, [46] generalized the recovery theorem to unbounded continuous state spaces

using Perron-Frobenius operator theory, with the help of the Jentzsch’s theorem of inte-

gral operators, and they showed recovery misspecification at the end. [47] extended the

Recovery Theorem from discrete time, finite state irreducible Markov chains to recur-
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rent Borel right processes. [48] later dropped the Markovian structure in the continuous

state space. [49] discussed several conditions under which the recovery of the objective

measure from the risk-neutral measure is possible in a continuous-time model. A partial

list of wonderful empirical studies applying Ross’ recovery result and its generalizations

includes, [50, 51, 52, 53, 54].

2.2 The Basic Framework

2.2.1 Assumptions of the model

Consider a probability space (Ω,F ,P) with the probability measure P unknown ex

ante. We make the following assumptions, whose one dimensional counterparts are jus-

tified in [41]:

Assumption 5. The market is free of arbitrage and complete, with d ∈ N random

sources. There exists an empirically observable time-homogeneous and bounded multi-

variate diffusion X = (X1, X2, . . . , Xn)∗, where the notation ∗ denotes the transpose of

the matrix. The process X evolves according to the following Q-dynamic

dX(t) = µ(X(t))dt+ A(X(t))dW (t), (2.3)

where W = (W1, . . . ,Wd)
∗ is a standard d-dimensional Q-Wiener process. The drift

vector µ(·) = (µ1(·), · · · , µn(·))∗ and the n× d-dimensional diffusion matrix

A(·) =



a11(·) a12(·) · · · a1d(·)

a21(·) a22(·) · · · a2d(·)
...

...
. . .

...

an1(·) an2(·) · · · and(·)
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are both known ex ante. The support region of X denoted as Ω ⊂ Rn is bounded and ∂Ω

is C2,α for some α ∈ (0, 1].

Following [41], the multi–dimensional process X is referred as the drivers rather than

the state variables, for the reason that the state of entire economy is not required to be

determined by X.

With d sources of randomness, by means of the Meta Theorem ([55]), we can gener-

ically specify the price processes of d different “benchmark” claims, conditioning on the

market being arbitrage free and complete. The price processes of all other claims will

then be uniquely determined by the prices of the benchmarks. Therefore, we assume that

there are d risky assets and their prices depend on the drivers and time t.

Assumption 6. There exists a money market account (MMA) with balance

S0t = exp

{∫ t

0

rsds

}
,

with the interest rate process rt = r(Xt) ∈ R+ known ex ante; there exists d different

risky securities whose spot prices Sit = Si(t,Xt) evolve as continuous real-valued semi-

martingales. For each risky asset, its initial spot price is observed, there is no dividends

or holding costs for simplicity, and the local martingale part is non-trivial.

Under the complete market assumption, the risk–neutral probability measure Q is

unique, and each r-discounted security price e−
∫ t
0 rsdsSit evolves as a Q-martingale, i.e.

EQ
{
SiT
S0T

∣∣∣ Ft} =
Sit
S0t

, t ∈ [0, T ], i = 0, 1, . . . , d. (2.4)

Assumption 7. Under Q, the price process of the numeraire portfolio Lt = L(t,X(t))
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satisfies the following stochastic differential equation

dLt
Lt

= r(X(t))dt+ σ(X(t))dW (t). (2.5)

Note that the above diffusion assumption is a traditional setting of option pricing.

The goal of this analysis is mainly to find σ(·) by knowledge of the risk–neutral dynamics

of X, and then uniquely determine the P-dynamics of X and the real–world probability

measure P itself.

2.2.2 Preliminary Analysis

Let us follow [41] to impose structure on the price process of Long’s numeraire port-

folio:

Lt = L(t,X(t)) =
S0t

Mt

, (2.6)

where M is the positive martingale used to create the martingale measure Q in (2.2).

We know that L(t, x) solves the following linear parabolic partial differential equation:



GL(t, x) + ∂L
∂t

= r(x)L(t, x)

L(t, x) ∈ C1([0, T ])× (C2(Ω) ∩ C(Ω))

L(t, x) > 0 on [0, T ]× Ω

(2.7)

where G is the infinitesimal generator given by

GL(t, x) =
n∑
i=1

µi(x)
∂L

∂xi
(t, x) +

1

2

n∑
i,j=1

Cij(x)
∂2L

∂xi∂xj
(t, x),
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with

C(x) := (Cij(x))n×n = A(x)A∗(x).

Let us firstly apply the separation of variables and write

L(t, x) = u(x)p(t). (2.8)

Note that L(t, x) is always positive, therefore we are able to suppose u(x), p(t) ∈ R

without loss of generality. Hence, we have

p′(t)u(x) + p(t)
n∑
i=1

µi(x)
∂u

∂xi
(x) + p(t)

1

2

n∑
i,j=1

Cij
∂2u

∂xi∂xj
(x) = r(x)u(x)p(t).

Dividing by u(x)p(t) on both sides implies:

1

u

{
1

2

n∑
i,j=1

Cij
∂2u

∂xi∂xj
+

n∑
i=1

µi(x)
∂u

∂xi
− r(x)u(x)

}
= −p

′(t)

p(t)

The two sides can only be equal if they are constants, say −λ ∈ R. Then the original

PDE becomes two separate ones:

p′(t)

p(t)
= λ (2.9)

and

1

2

n∑
i,j=1

Cij
∂2u

∂xi∂xj
+

n∑
i=1

µi(x)
∂u

∂xi
− r(x)u(x) = −λu(x)

Without loss of generality, set p(0) = 1 and then (2.9) has a unique solution

p(t) = eλt.

Then the parabolic equation (2.7) becomes a second-order elliptic partial differential
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equation with the general boundary condition as following:



L(u) = λu, λ ∈ R

u ∈ C2(Ω) ∩ C(Ω)

u > 0 in Ω and Bu ≡ 0 on ∂Ω

(2.10)

where B is a Dirichlet, Neumann or Robin boundary operator, and

L(u) = −1

2

n∑
i,j=1

Cij
∂2u

∂xi∂xj
−

n∑
i=1

µi(x)
∂u

∂xi
+ r(x)u(x) (2.11)

is a uniformly elliptic operator defined on Ω, since C = AA∗ is a positive-definite matrix.

In the following context, we attempt to establish the uniqueness of the solution to (2.7)

by exploring the spectrum theory of the elliptic operator (2.11), and then carve out a

way to recover of the real world probability measure.

2.3 Spectrum Analysis of the Elliptic Operator

Note that r(x) > 0 in Ω. Therefore, the theory of the boundedness of inverse ([56],

Theorem 6.14, 6.31) implies that the inverse operator of L does exist on Cα(Ω) based on

boundary conditions, say, L−1 : Cα(Ω) → C2,α(Ω). For any f ∈ Cα(Ω), then L−1(f) ∈

C2,α(Ω), BL−1(f) = 0 on ∂Ω, and

‖L−1(f)‖2,α ≤ C‖f‖α ≤ C1‖f‖1,α
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where C1 > 0 is independent of f . It follows that L−1 is a compact linear operator.

Define a cone K consisting all nonnegative functions of C1,α(Ω). It follows from the

weak maximum principle ([56], Theorem 3.1) that L−1(K) ⊂ K.

Before displaying Theorem 6, we need a preliminary lemma which will be used inten-

sively in the current framework.

Lemma 2. Assume that u ∈ C2,α(Ω) satisfies Lu ≥ 0.

1. If it satisfies Neumann or Robin boundary condition, Bu|∂Ω = 0, where Bu =

γ(x)u+Dνu = 0 with γ(x) ≥ 0, γ(x) ∈ C1,α(∂Ω), then u > 0 on Ω unless u ≡ 0.

2. If it has Dirichlet boundary condition, u = 0 on Ω, then u > 0 in Ω. Furthermore,

for any v ∈ C2(Ω) with v|∂Ω = 0, there exists an ε > 0 such that w ≥ εv. If u is

not identically 0, then ∂u
∂ν
< 0 on ∂Ω, where ν is the exterior unit normal of ∂Ω.

Proof. See Appendix.

For any nonzero f ∈ C1,α(Ω), there exists a small constant r > 0 such that w =

u + r f
‖f‖1,α > 0 on ∂Ω, that is, w ∈ K. It follows f = (‖f‖1,α/r)(w − u) ∈ K − K.

Hence K − K = C1,α(Ω), i.e. K is a total cone (actually it is reproducing). Then the

Krein-Rutman theorem [57] yields

Theorem 5. Let X be a Banach space, and let K ⊂ X be a convex cone such that K−K

is dense in X. Let T : X → X be a non-zero compact operator which is positive, meaning

that T (K) ⊂ K, and assume that its spectral radius %(T ) is strictly positive. Then %(T )

is an eigenvalue of T with positive eigenvector, meaning that there exists u ∈ K \ {0}

such that T (u) = %(T )u.

The following spectrum result of the elliptic operator is the footstone of our multi-

dimensional case, playing the similarly crucial role as Perron–Frobenius theorem in [35]

and Sturm–Liouville theorem in [41], much more complicated though.
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Theorem 6. There is a unique positive eigenfunction φ(x) > 0 in Ω, up to positive

scaling, of the operator L with the boundary condition Bφ|∂Ω = 0. The eigenvalue ρ

corresponding to φ(x) is positive and simple. Furthermore, for any other eigenvalues of

L, say, λ 6= ρ, it must satisfy

<(λ) > ρ.

Proof. We will display our proof in following 4 steps:

(a) Choose v ∈ K, v > 0 on Ω and any w ∈ C1,α(Ω). The preceding discussion gives

L−1v > 0 on Ω. It is easy to see that there exists ε > 0, independent of w, and η > 0

such that w ≤ ‖w‖v/ε and ηL−1v ≥ v on Ω. Therefore, for any integer n ≥ 1,

v ≤ ηL−1v ≤ · · · ≤
(
ηL−1

)n
v ≤ ε−1

∥∥(ηL−1
)n
v
∥∥ v ≤ ε−1

∥∥(ηL−1
)n∥∥ ‖v‖v

It implies
∥∥(ηL−1)

n∥∥ ≥ ε/‖v‖, and hence Gelfand’s Formula yields the spectral radius of

ηL−1, % (ηL−1) = limn→∞
∥∥(ηL−1)

n∥∥1/n
> 0. Therefore Theorem 5 asserts that % (ηL−1)

is an eigenvalue of ηL−1, and there exists its positive eigenvector φ ∈ K, that is

ηL−1φ = %
(
ηL−1

)
φ⇐⇒ Lφ = ρφ

where ρ = η/% (ηL−1) > 0.

(b) Next show that ρ is simple. Set µ = 1/ρ, and part (a) claims L−1φ = µφ.

Suppose L−1w = µw with w 6= 0. If w is complex, we could discuss its real part <w

and imaginary part =w respectively, and hence suppose w is real. Replacing w by −w if

needs be, suppose also w > 0 somewhere in Ω.

Then L−1(φ− sw) = µ(φ− sw) for all s > 0. Denote by

S = {η > 0 | φ− ηw ≥ 0}.
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and hence, S is nonempty and bounded. Next let ξ = supS and we claim that φ−ξw ≡ 0.

Otherwise, we can conclude from the fact φ − ξw ≥ 0 and Lemma 5 that there exists

ε > 0 such that

L−1(φ− ξw) ≥ εw (2.12)

On the other side

L−1(φ− ξw) = µφ− ξµw = µ(φ− ξw). (2.13)

Combining (2.20) and (2.21) yields

φ−
(
ξ +

ε

µ

)
w ≥ 0,

contradicting ξ = supS. This proves w ∈ span{φ}.

Secondly let (µ− L−1)
2
w = 0. The preceding discussion yields (µ− L−1)w = cφ for

some constant c ∈ R. We want to show c = 0. Apply reductio ad absurdum and assume

c > 0 (otherwise change w to −w). Then for all s > 0,

L−1(φ+ sw) = µ(φ+ sw)− scφ < µ(φ+ sw) on Ω (2.14)

Note that for sufficiently small s ≥ 0, φ + sw > 0 on Ω, so we could deduce that it is

true for all s ≥ 0. Otherwise assume ζ = sup{s > 0 | φ + sw > 0 on Ω} < ∞, that

is, φ + ζw must be nonnegative and attain zero somewhere on Ω. Hence, (2.14) gives

φ + ζw > 1/µL−1(φ + ζw) ≥ 0 on Ω, a contradiction. This implies w ≥ 0, and thus

w = 1/µ (L−1w + cφ) > 0. Next repeat the same trick above by setting κ = sup{s > 0 |

w − sφ ≥ 0}, and the previous discussion implies

0 < κ <∞; w − κφ achieves zero somewhere on Ω. (2.15)
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But then

µw − cφ− κµφ = L−1(w − κφ) ≥ 0

that is, w−κφ ≥ cφ/µ > 0, contadicting (2.15). Therefore, c = 0 and hence w ∈ span{φ}.

In sum, µ is a simple eigenvalue, so is ρ.

(c) In this context we will show that <(λ) > ρ for any other eigenvalue λ 6= ρ.

Suppose that the corresponding eigenfunction to λ is u, i.e. L(u) = λu. Next we will

discuss boundary condition respectively. If B is Neumann or Robin, then set v = u/φ.

Thus

λv =
1

λ
L(vφ) = Lv − rv − 1

φ

n∑
i,j=1

Cij
∂φ

∂xj

∂v

∂xi
+
v

φ
Lφ (2.16)

Define a new operator

K = L − r − 1

φ

n∑
i,j=1

Cij
∂φ

∂xj

∂

∂xi
= −1

2

n∑
i,j=1

Cij
∂2

∂xi∂xj
−

n∑
i=1

(
µi +

1

φ

n∑
j=1

Cij
∂φ

∂xj

)
∂

∂xi

Then (2.16) becomes

Kv + (ρ− λ)v = 0, Kv + (ρ− λ)v = 0 (2.17)

Moreover, note that (Cij)n×n is positive definite, and hence

n∑
i,j=1

Cij
∂v

∂xi

∂v̄

∂xj
=

n∑
i,j=1

Cij

(
<
(
∂v

∂xi

)
<
(
∂v

∂xj

)
+ =

(
∂v

∂xi

)
=
(
∂v

∂xj

))
≥ 0.

Consequenly, this implies

K
(
|v|2
)

= vKv + vKv −
n∑

i,j=1

Cij
∂v

∂xi

∂v

∂xj
≤ vKv + vKv = 2(<(λ)− ρ)|v|2
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Since both φ and u satisfy Neumann or Robin boundary condition,

Dνφ+ γφ = 0, Dνu+ γu = 0 on ∂Ω

it leads to

Dνv =
1

φ2
(φDνu− uDνφ) = 0

and hence Dν |v|2 = 0. Next assume <(λ) ≤ ρ, then

K
(
|v|2
)
≤ 0, Dν |v|2 = 0

Thus the strong maximum principle and Hopf boundary lemma imply that |v|2 is con-

stant. Thus v = ceif(x) where c is a real constant and f(x) is a real function on Ω, and

then (2.17) implies

1

2

n∑
i,j=1

Cijfxifxj + (ρ−<(λ)) = 0

By virtue of the assumption <(λ) ≤ ρ and the positive definiteness of C(x) = (Cij(x))n×n,

it follows ρ = <(λ) and fxi = 0 for all i, that is, f is a constant. As a consequence,

u ∈ spanφ, and hence λ = ρ, a contradiction. Therefore we must have <(λ) > ρ.

To prove the Dirichlet case, apply the same trick in Lemma 5 to choose local coordi-

nates {x1, x2, . . . , xn} on a sufficiently small open set U such that U ∩∂Ω = U ∩{xn = 0}

and U ∩ Ω = {xn > 0}. Then Lemma 5 admits ∂φ
∂xn

∣∣∣
∂Ω
< 0. Thus the Malgrange prepa-

ration theorem ([58]) indicates that φ = f · xn and u = g · xn hold locally, where f, g 6= 0

on U ∩ ∂Ω. Therefore,

v =
g · xn
f · xn

=
g

f

is well defined on U ∩ Ω. Despite of the singularity of 1
φ
∂φ
∂xi

on ∂Ω, the regularity of |v|2
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in (2.17) implies that

1

φ

n∑
i,j=1

Cij
∂φ

∂xi

∂|v|2

∂xj
<∞. (2.18)

Therefore a new operator K is well defined on Ω and also an elliptic operator. Apply the

same trick as reductio ad absurdum and assume <(λ) ≤ ρ, which leads to K(|v|2) ≤ 0.

Then by the strong maximum principle, we know that |v|2 can only attain its maximum

at some point x0 ∈ ∂Ω, and thus Hopf’s lemma ([59], Theorem 2.5) asserts that

∂|v|2

∂N
> 0 at x0, (2.19)

where ∂|v|2
∂N

=
∑n

i,j=1Cij
∂|v|2
∂xi

νj, and νj = 〈ν, ∂
∂xj
〉 with ν being the exterior unit normal of

∂Ω. On the other side, we can conclude from (2.18) and the fact of ν∗ν = 1 that

1

φ

∂φ

∂ν

∂|v|2

∂N
=

1

φ

n∑
i,j=1

Cij
∂φ

∂xi

∂|v|2

∂xj
<∞.

Considering Lφ = ρφ ≥ 0 on Ω and φ = 0 on the boundary, Lemma 5 asserts ∂φ
∂ν

∣∣
∂Ω
< 0,

and hence ∂|v|2
∂N

∣∣∣
∂Ω

= 0, a contradiction to (2.19). This means that <(λ) > ρ.

(d) Last show the uniqueness of the positive eigenfunction. Assume there is a positive

eigenfunction u > 0 in Ω and Bu|∂Ω = 0 such that L−1(u) = µu. Part (b) asserts

0 < µ ≤ 1/ρ. Define

T = {η > 0 | u− ηφ ≥ 0}.

We can see that T is nonempty and bounded. Next let χ = sup T and we claim that

u − χφ ≡ 0. Otherwise, we can conclude from the fact u − χφ ≥ 0 and Lemma 5 that

there exists ε > 0 such that

L−1(u− χφ) ≥ εφ (2.20)
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On the other side

L−1(u− χφ) = µu− χ

ρ
φ ≤ 1

ρ
(u− χφ). (2.21)

Combining (2.20) and (2.21) yields

u ≥ (χ+ ερ)φ,

contradicting χ = sup T . Therefore the positive eigenfunction is unique up to a positive

scalar constant.

Note that, although L(t, x) = u(x)p(t) can be easily established in one-dimensional

case (see equation (40) in Section Analysis in [41]), it is not easy when it comes to

multidimension, which can be seen from equation (2.26) following. But with the help of

Theorem 6, we can still validate that and further uniquely determine the solution to (2.7)

by obtaining ρ and φ(x) in Theorem 6.

Corollary 1. The value function of the numeraire portfolio, i.e. the solution to (2.7), is

in the form

L(t, x) = ceρtφ(x), for x ∈ Ω, t ∈ [0, T ], (2.22)

with c a positive scalar.

Proof. Apply reductio ad absurdum. By means of the separation of variables, the general

solution to (2.7) can be written in the form

L(t, x) = ceρtφ(x) +
∞∑
k=1

eλktuk(x) (2.23)

where ρ, λk are eigenvalues, c is a positive constant and φ(x), uk(x) are corresponding

eigenfunctions.
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Firstly assume that L(t, x) is in the form other than (2.22), i.e. there exists at least

one eigenvalue different to ρ, and hence the eigenfunction associated to it is not straightly

positive by Theorem 6.

Considering L(t, x) > 0 in [0, T ] × Ω and eigenfunctions uk(x) for k ≥ 1 are linearly

independent, we know that all eigenvalues involved in (2.23) must be real. Without loss

of generality, we can assume that

0 < ρ < λ1 < λ2 < · · · < λk < · · · .

Note that L(t, x) > 0 in [0, T ]×Ω, thus there exists a positive integer m ∈ Z+, such that

Lm(t, x) = ceρtφ(x) +
m∑
k=1

eλktuk(x)

is also a solution to (2.7). Next according to Theorem 6, um(x) is supposed to switch

signs inside Ω. Therefore, suppose that um(x) < 0 in some region D ⊂ Ω, by choosing

some point x0 ∈ D and taking t large enough, we can achieve that

Lm(t, x0) = eλmt

{
ce(ρ−λm)tφ(x0) +

m−1∑
k=1

e(λk−λm)tuk(x0) + um(x0)

}
< 0,

for the reason that ρ− λm < 0 and λk − λm < 0 for any 1 ≤ k < m. However, this is a

contradiction to the assumption that L(t, x) > 0 in [0, T ] × Ω. As a result, the unique

solution to (2.7) can only be expressed in the form of (2.22).
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2.4 Recovery and Application

2.4.1 Recovery

Now, let us back to the real probability measure P. By (2.4), we know that for any

fixed time T > 0, it follows that

EP
(
MT

Mt

SiT
S0T

∣∣∣ Ft) =
Sit
S0t

, t ∈ [0, T ], i = 0, 1, . . . , d,

which implies that

EP
(
SiT
LT

∣∣∣ Ft) =
Sit
Lt
. (2.24)

In other words, (2.24) asserts that the real-world probability measure P becomes the

martingale measure, if Long’s portfolio is taken as numeraire. Specially (2.24) includes

EP
{
S0T

LT

∣∣∣ Ft} =
S0t

Lt
,

and then the martingale condition implies that

d(S0t/Lt)

S0t/Lt
= −σ(X(t))dB(t),

where B(t) is a standard Brownian motion vector under P and σ(X(t)) is the lognormal

volatility vector of Lt.

Noting (2.6) and the fact that M is a martingale, it follows from the Itô’s formula

that

d(Lt/S0t)

Lt/S0t

= σ(X(t))σ∗(X(t))dt+ σ(X(t))dB(t)
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and the dynamics of Lt under P is

dLt
Lt

=

(
r(X(t)) + σ(X(t))σ∗(X(t))

)
dt+ σ(X(t))dB(t). (2.25)

With the explicit representation of the numeraire portfolio together with (2.5), we are

able to determine the conditional volatility vector function, that is

σ(x) =
n∑
i=1

∂ logL

∂xi
ai =

n∑
i=1

∂ log φ

∂xi
ai, (2.26)

where the row vector ai is the i-th row of the matrix A, i.e. ai = (ai1, . . . , aid). Fur-

thermore, (2.25) and the preceding result assert that the risk premium of the numeraire

portfolio is

σ(x)σ∗(x) =

(
n∑
i=1

∂ log φ

∂xi
ai

)(
n∑
i=1

∂ log φ

∂xi
ai

)∗
and the market price of risk vector process, as well as, the Girsanov kernel is uniquely

determined.

At last, let us turn to determine the real world transition density of X. The change

of numeraire theorem ([60]) asserts that the Radon–Nikodym derivative is:

dP
dQ

=
S00

S0T

LT
L0

= e−
∫ T
0 r(X(t))dtL(T,X(T ))

L(0, X(0))
= e−

∫ T
0 r(X(t))dtφ(X(T ))

φ(X(0))
eρT .

Therefore, the real world density function is given by

dP = e−
∫ T
0 r(X(t))dteρT

φ(X(T ))

φ(X(0))
dQ.
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2.4.2 Application to Option Pricing on Private Equity

In finance, private equity is the type of equity that consists of equity securities and

debt in operating companies, which are not publicly traded on a stock exchange, hence

there is no market price associated with it. Since there is no time series of the underlying

stock prices, it is impossible to calculate a historical volatility. Even worse, there is

no cross section of related derivatives prices, and then one cannot calculate an implied

volatility neither.

Considering the missing underlying stock price being the present value of its future

payouts, one can still project future payouts and obtain the stock price by the dis-

counted cash flow (DCF) technique. [61] explored option pricing on private equity in

an unbounded domain by placing structure on the dynamics of the numeraire portfolio

rather than on the preferences of the representative agent, using the similar techniques

as [62]. They showed that the volatility of the private equity can be uniquely determined

by the specification of a risk–neutral diffusion process for dividend yields, using the so-

lution of a Sturm Liouville problem. In this section, we explore the case that there are n

underlying uncertainties in the economy, with one of these uncertainties can be treated

as the dividend yield.

We consider the problem of valuing an European call option written on private equity,

with payoff

CT =

(
ST
S0

−K
)+

,

where St denotes the unknown spot price of one share of private equity at time t ∈ [0, T ],

K is defined as the strike ratio and T is the maturity date. Suppose the interest rate r

is constant and there is a money market account as the numeraire whose balance is ert
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at time t. In this case, the arbitrage-free option price is given by

C0 = e−rTEQ
(
ST
S0

−K
)+

. (2.27)

We assume there are n uncertainties X(t) := (Xi(t))i=1,...,n in the economy, evolving

according to

dX(t) = µ(X(t))dt+ A(X(t))dW (t), (2.28)

where W = (W1, . . . ,Wd)
∗ is a standard d-dimensional Q-Wiener process. The drift

vector µ(·) = (µ1(·), . . . , µn(·))∗ and the n× d-dimensional diffusion matrix A(·), as well

as the initial condition X(0) are all known ex ante. The price of the private equity solely

depends on the uncertainties (Xi)i=1,...,n and the time t, i.e. St = S(t,X1(t), · · · , Xn(t)).

Suppose S evolves as the following under the risk–neutral measure Q:

dSt
St

= r(X(t))dt+ σ(X(t))dW (t), (2.29)

where the function r(·) is assumed to be known ex ante, and the lognormal volatility

function σ(·) is not.

Theorem 6 and Corollary 1 imply that S(t, x) can be represented as

S(t, x) = eρtφ(x),

with φ(x) the unique positive eigenfunction up to positive scaling and ρ the corresponding

positive eigenvalue. Therefore, the call option on $1 of the notional can be priced as

C0 = e−rTEQ
(
S(T,X(T ))

S(0, X(0))
−K

)+

= e−rTEQ
(
φ(X(T ))

φ(X(0))
eρt −K

)+

.

(2.30)
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Note that, the unknown scale factor dropped out of the ratio φ(X(T ))
φ(X(0))

, hence the call

option value can be uniquely determined.
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Chapter 3

Topic in Mean Field Games on

Random Graph

The Mean Field Games theory fall in the category of large population stochastic control,

which analyzes the asymptotic equilibrium among a large population of controlled players

with mean field interaction and subject to minimization constraints, while distinguish

itself by tackling the Nash equilibrium which describe consensus among the players that

each of them make the best decision by taking into account the current states of others.

In this chapter, we introduce a random graph based inter-bank borrowing and lending

model of Mean Field Games type, analyze the forward backward stochastic differential

equation (FBSDE) of the McKean-Vlasov type at Mean Field Equilibrium, derive the

corresponding master equation, and then address the convergence problem by means of

a weakly interacting particle system on random graph generated by the master equation.

This chapter is based on the paper [63].
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3.1 Overview of Mean Field Games

The theory of Mean Field Games (MFGs) was introduced and further developed in

the seminal work independently by [64, 65, 66] and by [67, 68]. The term “mean field”

was borrowed from statistical physics, in the sense that individual players have statis-

tically similar behaviors, and their mutual interactions are through average quantities

in such a way that each player has a very small impact on the outcome. This sub-

ject is widely recognized as an important methodology to analyze large systems such as

financial markets, crowd dynamics, social networks, etc. Two approaches are used in

the formulation and analysis of Mean Field Games. One is based on the solution of a

fully-coupled forward-backward system of nonlinear partial differential equations(PDEs)

which include a forward Fokker-Planck equation describing the dynamics of the popu-

lation and a backward Hamilton-Jacobi-Bellman equation describing the optimization

constraints. The other relies on the solution of a forward-backward stochastic differential

system of equations of McKean-Vlasov type, see [69, 70, 71]. Mean field game system has

been widely studied and new applications of Mean Field Games include but not limited

to, major and minor players [72], optimal investment under relative performance criteria

[73], robust mean field games [74], rare Nash equilibrium and the price of anarchy in

large static games [75], and etc.

An amazing new tool in Mean Field Games credit to the development of the so-

called “master equation”. Lions introduced this infinite dimensional nonlinear Partial

Differential Equation in his lectures at Collège de France, whose characteristic trajectories

interpret the flow of measures solving the forward Fokker-Planck equation, and whose

solution contains all the necessary information to entirely describe the equilibrium of

the game. [76] discussed the well-posedness of the master equation, and established

the convergence of the value functions and empirical measure of the finite players to
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the value function and the distribution of the state of the MFG by the means of the

master equation. The solution of the master equation as a function with time, state, and

measure as arguments, approximates the value function of an arbitrary player from the

n-player game at a given time when one takes the arguments as the players’ state and the

empirical distribution including other players. [77] derived the master equation for Mean

Field Games and the control of McKean-Vlasov SDEs, and discussed the similarities and

differences between the corresponding two sets of results.

Our model is based on the Carmona-Fouque-Sun model proposed in [78] which models

inter-bank borrowing and lending, where the evolution of the log-monetary reserves of

N banks is described by a system of diffusion processes coupled through their drifts in

such a way that stability of the system depends on the rate of inter-bank borrowing and

lending. That model incorporates a game feature where each bank controls its rate of

borrowing/lending to a central bank, which acts as a clearing house, adding liquidity

to the system without affecting its systemic risk. The optimization reflects the desire

of each bank to borrow from the central bank when its monetary reserve falls below a

critical level or lend if it rises above this critical level which is chosen as the average

monetary reserve. The difference is that, we model that bank i minimizes its finite

horizon objective function, taking into account a quadratic cost for lending or borrowing

and a linear incentive to borrow if the reserve is low or lend if the reserve is high, relative

to the average capitalization of bank i’s neighborhood modeled through the Erdös Rényi

random graph.

An open-loop mean field equilibrium of Nash type is obtained using a system of fully

coupled forward backward stochastic differential equation (FBSDE), whose unique solu-

tion leads to the master equation. Using master equation to approximate the equilibrium

states of the finite player game is a very new direction in Mean Field Games, especially

with random graph involved in. A pioneer and beautiful work in this field credit to
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[79], which studies the quenched convergence of the equilibrium towards the solution of

a Mean Field Game when the graph connection between players is of the Erdös Rényi

type, by the means of the strong solution of the master equation. In contrast to [79], our

running cost function and terminal cost function are not bounded, and it cannot be split

into two terms: one term with control solely and the other with empirical distribution

of the population only, in the sense that there is a cross term with control and empirical

distribution of the population. Also without the specific form enforced (cf = cg = 1 in

[79]), our McKean Vlasov FBSDE in Mean Field Equilibrium is impossible to be trans-

ferred to a deterministic system, also it is impossible to show the convergence of the

Zij
t process and the corresponding one generated using the master equation by means of

taking differential as in [79]. We finished this “impossible” mission by firstly writing the

FBSDEs of the finite player games in equilibrium to its associated quasilinear parabolic

system of PDEs, and then by using the uniqueness and wellposedness of its solution,

we give the precise bound of the convergence of the state processes of the finite player

game to a decoupled system of diffusion equations generated by the master equation. We

achieved the same result as [79] under frozen graph, and we also achieved a functional

central limit theorem of a coupled diffusion processes system with unbounded drift func-

tions generated by the master equation with random graph, which is the same result as

[80] under boundedness imposed on the drift function and positive self loop.

A very new and beautiful paper [81] establishes a functional central limit theorem

that characterizes the limiting fluctuations around the law of large numbers limit, whose

proof of convergence relies on the master equation for the value function of the MFG. In

this paper, our model involves the Erdös Rényi random graph, with this mixed discrete

and continuous probability nature in the probability space setup, and then the difficulties

in all the analyses are significantly increased. The open loop control the same as in [79]

is used, instead of closed loop in [81], and the master equation corresponding to the first
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derivative of the value function with respect to the states then. Furthermore, we built

up the equivalence between the the FBSDEs of the finite player games in equilibrium

and its associated quasilinear parabolic system of PDEs, and analyzed the convergence

by means of the uniqueness of its solutions to another quasilinear parabolic system of

PDEs generated by the master equation; to the authors’ best knowledge, this technique

is the first time used in Mean Field Games with open loop controls. At last, [81] used the

basic Carmona-Fouque-Sun model without graph as an example to show that the strong

boundedness conditions imposed, can be relaxed with the help of the explicit solution of

the Carmona-Fouque-Sun model; However, in this paper, when random graph is involved

in, there is no explicit solution for the finite player game in equilibrium.

As the first few papers in this new direction, there are multiple extensions worth

exploring. For simplicity, we model the state process of each player X i
t with independent

standard Brownian motions W i
t , namely individual noises. In fact, the state process X i

t

induced by an infinite sequence of Brownian motions (W̃ i)i≥1 can be defined as W̃ i
t =

ρW 0
t +

√
1− ρ2W i

t , for 0 ≤ t ≤ T , with |ρ| ≤ 1 and W 0
t the same for all the equations,

namely the common noise. Further reading on common noise, we refer to [76], [82], [83],

especially [81] and [84]. In [84], the master equation is used to construct an associated

McKean-Vlasov interacting n-particle system that is exponentially close to the Nash

equilibrium dynamics of the n-player game for large n, and then a weak large deviation

principle for McKean-Vlasov systems is established in the presence of common noise and

a full large deviation principle is established in the absence of common noise. At the

end of this Chapter, we provide the connection between the CLT and LDP analysis in

this setting, which obviously requires more delicate analysis and better concentration

estimates, and we leave the extension to both the common noise and LDP for future

research.

64



Topic in Mean Field Games on Random Graph Chapter 3

3.2 Mean Field Games on Random Graph

In this section, we propose a random graph based model of inter-bank borrowing and

lending, where the evolutions of the log-monetary reserves of N banks are described by

a system of diffusion processes coupled through their drift terms. We model through the

Erdös Rényi [85] G(N, p) model and we consider the nontrivial case that p ∈ (0, 1). For

the trivial cases that p ∈ {0, 1}, see Section 2 of [78] for reference and simulation result.

Each edge is included in the graph with probability p independent of every other edge.

We define the relation as edge gij between the vertex bank i and the vertex bank j, on

the probability space (Ωg,Fg,Pg). We consider the undirected graph, that is gij = gji;

we assume gii = 0 for all i, since self-links or loops do not have real meaning in this

framework. The real-valued matrix g := (gij)N×N is often referred as the adjacency

matrix, as it lists which nodes (banks) are adjacent to one another. In this section, we

only consider the standard case gij ∈ {0, 1}, and leave the case in which the entries of g

take on more than two values and can track the intensity level of relationships to future

research.

Denote the degree Ni of a node i as the number of links that involves node i, which

is the cardinality of its neighborhood:

Ni := #{j : gij = 1} =
N∑
j=1

gij. (3.1)

The distribution of the degree of any particular vertex is binomial:

Pg(Ni = k) =

(
N − 1

k

)
pk(1− p)N−1−k. (3.2)

The log-monetary reserves of N banks lending to and borrowing from each other are

represented through the diffusion processes (X i
t)0≤t≤T for i = 1, · · · , N . We model X i
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on another stochastic basis (Ωx,Fx,Px), where the corresponding filtration supports an

infinite sequence of independent standard Brownian motions (W i)i≥1 corresponding to

individual noises. With each index i ∈ 1, · · · , N , we associate a particle (player), whose

dynamic satisfies the following form:

dX i
t = αitdt+ σdW i

t , (3.3)

where the diffusion coefficient is assumed as constant and identical, and the control

process (αit)0≤t≤T is assumed to be progressively-measurable with respect to the filtration

generated by all the noises and satisfy the square-integrability condition

Ex

∫ T

0

(αit)
2dt <∞.

The system starts at time t = 0 from i.i.d. F0 measurable and square-integrable random

variables X i
0 = ξi0 independent of the Brownian motions, such that Ex(ξ

i
0) = 0. Note that

all the Xi for i ∈ {1, 2, · · · , N} are statistically identical, in which each player’s influence

on the whole system vanishes as the number of players grows unboundedly.

Denote by F = Fx ⊗ Fg, the sigma algebra on the Cartesian product Ω = Ωx ⊗

Ωg, which is called the tensor product σ-algebra product space. Therefore, the Hahn-

Kolmogorov theorem can guarantee the existence and uniqueness of the product measure

P = Pg ×Px,

such that for all A1 ∈ Fg and A2 ∈ Fx,

P(A1 × A2) = Pg(A1) ·Px(A2).
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For any random variable G ∈ Fg, X ∈ Fx, induce its extension on F , say Ḡ ∈ F and

X̄ ∈ F , by

Ḡ(ωg, ωx) = G(ωg), X̄(ωg, ωx) = X(ωx).

Under this definition, for any Borel set B, we have

{Ḡ ∈ B} = {G ∈ B} × Ωx, {X̄ ∈ B} = Ωg × {X ∈ B}.

Therefore,

P{Ḡ ∈ B} = Pg{G ∈ B}, P{X̄ ∈ B} = Px{X ∈ B}.

Then for any measurable function f , one has

Ef(Ḡ) =

∫
f(Ḡ)dP =

∫
f(G)dPg = Egf(G),

Ef(X̄) =

∫
f(X̄)dP =

∫
f(X)dPx = Exf(X).

In sum, on this filtered probability space (Ω,F ,P, {Ft}), the edge random variables gij

and random variable for the initial value of the state processes X i
0 are given, as well

as an infinite collection of standard Brownian motions W i, such that {W i, X i
0, gij} are

mutually independent.

Note that on this Erdös Rényi graph framework, for each player i, other players

are indistinguishable. In this manner, we model bank i controls its rate of lending and

borrowing at time t by choosing the control αit in order to minimize the following cost

function in quadratic form:

J i(α1, · · · , αN) = E

[ ∫ T

0

fi(Xt, α
i)dt+ gi(XT )

]
(3.4)
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with running cost function fi defined as

fi(Xt, α
i) =

1

2
(αit)

2 − qαit(X̄ i
t −X i

t) +
ε

2
(X̄ i

t −X i
t)

2,

terminal cost function gi defined as

gi(Xt) =
c

2
(X̄ i

T −X i
T )2,

and interaction modeled through realization of the random graph

X̄ i
t =

1

Ni

N∑
j=1

gijX
j
t =

∫
R
xdµ̄N,it ,

where µ̄N,it is the empirical distributions of the particles connected to i, in the Wasserstein

space of probability measures on R with a finite second-order moment, say P2(R):

µ̄N,it =
1

Ni

N∑
j=1

gijδXj
t
.

Whenever Ni = 0, we let µ̄N,it be the null measure.

Here, the effect of the parameter q > 0 is to control the incentive to borrowing or

lending: the bank i will want to borrow (αit > 0) if X i
t is smaller than the empirical mean

(X̄t) and lend (αit < 0) if X i
t is larger than X̄t, with q large meaning low fees. The effect

of the parameter ε > 0 with the quadratic term (X̄ i
t−X i

t)
2 and c > 0 in the terminal cost

are both to penalize the departure from the average. The condition q2 ≤ ε is imposed,

such that fi(x, α
i) is convex in (x, αi).
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3.3 Mean Field Equilibrium and the Master Equa-

tion

In this section, we firstly introduce the concept of Mean Field Equilibrium and derive

its associated forward backward stochastic differential equation (FBSDE) of the McKean-

Vlasov type. The construction of the decoupling field is based on the existence and

uniqueness of the solution to this FBSDE of McKean-Vlasov type. By means of a chain

rule for functions defined on the space P2(R), we derive the master equation. At the end,

we show that the explicit form of the decoupling field is the unique classical solution of

the master equation.

3.3.1 Mean Field Equilibrium and its associated FBSDE

We introduce the notion of optimality by the concept of Nash equilibrium.

Definition 1 (Definition 5.2 in [86]). A set of admissible strategies

α∗ = (α∗1, · · · , α∗N) ∈ A

is said to be a Nash equilibrium for the game if for any i ∈ {1, · · · , N} and for any

αi ∈ Ai,

J i(α∗) ≤ J i(α∗−i, βi),

where (α∗−i, βi) is the collective set of strategies such that just player i switches from

action α∗i to βi while others stay the same.

The optimal strategy and the existence and uniqueness of the equilibrium, strongly

depend upon the information available to the players, and the way that they are able

to react. Open loop Nash equilibrium (OLNE), deterministic Nash equilibrium (DNE),
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closed loop Nash equilibrium (CLNE), closed loop Nash equilibrium in feedback form

(CLFFNE) are the most popular notions of admissibility for strategy profiles, with defi-

nitions given in [86] (see, Definition 5.3 - 5.6).

In the sequel, we focus on the open loop Nash equilibrium, where the controls are

of the form αit = φi(t,X0,W[0,t]), where φi is a deterministic function and W[0,t] is the

paths of Brownian motions between time 0 and t. In contrast to the closed loop Nash

equilibrium (CLNE), where the controls are of the form αit = φi(t,X[0,t]), that is at

each time all past plays are common knowledges, we note that in the open loop model,

players cannot observe the actions of their opponents. Note that although the Mean

Field Equilibrium (MFE), which will be defined next, is the same no matter open loop

strategies or closed loop strategies, its associated Master equation is different in these

two cases.

Definition 2. A deterministic measure flow (µt)t∈[0,T ] ∈ C([0, T ];P2(R)) is a Mean Field

Equilibrium, if there exists an optimal strategy α∗ such that

J((α∗t )0≤t≤T ) = inf
(αt)0≤t≤T

J((αt)0≤t≤T ),

where J((αt)0≤t≤T ) is the cost function with the flow of marginal laws of the optimal

process

J((αt)0≤t≤T ) = E

[ ∫ T

0

(
1

2
(αt)

2−qαt(
∫
R
xdµt−Xt)+

ε

2
(

∫
R
xdµt−Xt)

2

)
dt+

c

2
(

∫
R
xdµT−XT )2

]
,

Xt solves the SDE

dXt = αtdt+ σdWt.

70



Topic in Mean Field Games on Random Graph Chapter 3

and the marginal law of the optimal process which evolves according to

dXt = α∗tdt+ σdWt

is exactly (µt)t∈[0,T ] itself.

The associated reduced Hamiltonian (when the control α only appear in the drift

term of the state process), is given by

H(Xt, Yt, αt) = αtYt +
1

2
(αt)

2 − qαt(
∫
R
xdµt −Xt) +

ε

2
(

∫
R
xdµt −Xt)

2.

By the necessary condition of the Pontryagin stochastic maximum principle, the optimal

choice can be obtained by minimizing H over αt:

α∗t = −Yt + q(E[Xt]−Xt). (3.5)

By the probabilistic approach in [69], solutions of the Mean Field Game may be

characterized through the forward backward stochastic differential equation (FBSDE) of

the McKean-Vlasov type. Plugging in the optimal choice α∗, the dynamic of the state of

the system is given by

dXt =

[
− Yt + q(E[Xt]−Xt)

]
dt+ σdWt,

dYt =

[
qYt − (ε− q2)(Xt − E[Xt])

]
dt+ ZtdWt,

X0 = ξ0, YT = c(XT − E[XT ]),

(3.6)

with derivation details given in Appendix C.1. One explicit solution of the above FBSDE

(3.6) with common noise can be found in [78]. In this research, the corresponding explicit
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solution is given by

Yt = ηt(Xt − E[Xt]) and Zt = σηt,

where ηt is given by

ηt =
−(ε− q2)(e(δ+−δ−)(T−t) − 1)− c(δ+e(δ+−δ−)(T−t) − δ−)

(δ−e(δ+−δ−)(T−t) − δ+)− c(e(δ+−δ−)(T−t) − 1)
, (3.7)

with

δ± = −q ±
√
ε.

The readers just interested in this simpler case can find the detailed derivation in the

Appendix C.2.

Plugging in the explicit solution of Yt to the dynamics of X, we have

dXt =

[
− ηt(Xt − E[Xt]) + q(E[Xt]−Xt)

]
dt+ σdWt. (3.8)

Noting that E[Xt] = 0, the above dynamic can be rewritten as

dXt = −(ηt + q)Xtdt+ σdWt. (3.9)

The explicit solution of this time-dependent Ornstein–Uhlenbeck process is given by

Xt = φ0(t)

{∫ t

0

σ

φ0(s)
dWs

}
, (3.10)

and the law of Xt denoted as µt is N(0,Var(Xt)), where

Var(Xt) = φ2
0(t)

{∫ t

0

σ2

φ2
0(s)

ds

}
(3.11)
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with

φ0(t) = exp

(∫ t

0

(ηs + q) ds

)
.

3.3.2 Derivation of the master equation

With the Lipschitz continuity of coefficients, by the classical results of [70] and [87],

the desired wellposedness of the solution follows.

Proposition 3. There exists a unique solution (Xs, Ys, Zs)s∈[0,T ] to the system (3.6),

such that

sup
s∈[0,T ]

|Xs|2, sup
s∈[0,T ]

|Ys|2,
∫ T

0

|Zs|2ds

are integrable.

With the help of the above Proposition, the decoupling field U can be defined, follow-

ing the classical probabilistic approach used in [88]. The decoupling field of the forward-

backward system (3.6) can be expressed as the function U : [0, T ]×R×P2(R)→ R, such

that

U(t,Xt, µ) = Yt,

where µ is the law of Xt.

One of the amazing features of the master equation which contains all the necessary

information of the FBSDE in Mean Field Equilibrium in both forward and backward

directions, is that, it involves derivatives with respect to measure. In the following, we

firstly introduce the definitions of these derivatives and give brief explanations.

Definition 3 ([76]). 1. We say that V : P2(R)→ R is C1 if there exists a continuous

mapping δV
δµ

: P2(R)× R→ R, such that, for any µ, µ′ ∈ P2(R),

lim
s→0+

V ((1− s)µ+ sµ′)− V (µ)

s
=

∫
R

δV

δµ
(µ, v)d(µ′ − µ)(v).
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2. If δV
δµ

is of class C1 with respective to the second variable, the intrinsic derivative

DµV : P2(R)× R→ R is defined by

DµV (µ, v) := Dv
δV

δµ
(µ, v)

3. If, for a fixed v ∈ R, the map µ → δV
δµ

(µ, v) is C1, we denote δ2V
δµ2 as its derivative

and say that V is C2. If δ2V
δµ2 = δ2V

δµ2 (µ, v, v′) is C2 in the variables v and v′, then

we set

D2
µV (µ, v, v′) := D2

v,v′
δ2V

δµ2
V (µ, v, v′).

As [79], in this literature, we use ∂µV (v, µ)(v) to denote the first order Wasserstein

derivative with respective to measure DµV (µ, v), and use ∂2
µV (t, v, µ)(v, v′) to denote the

second order Wasserstein derivative with respective to measure D2
µV (µ, v, v′). Note that

v′ accounts for the second order derivative in the direction v′. Differentiating in v when

µ is fixed in ∂µV (v, µ)(v) gives the cross derivative ∂v∂µV (v, µ)(v).

In the following, we are going to show that these Wasserstein derivatives in our model

have the very desired properties.

Proposition 4. The function U(t, v, µ) : [0, T ]×R×P2(R)→ R has bounded and contin-

uous first and second order derivatives with respect to v. The function U is differentiable

with respect to the measure argument µ and the function

[0, T ]× R× P2(R) 3 (t, v, µ)→ ∂µU(t, v, µ)(v)

is bounded and continuous, which is further differentiable with respect to µ and v sepa-

rately, and the functions

[0, T ]× R× P2(R) 3 (t, v, µ)→ ∂v∂µU(t, v, µ)(v),
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[0, T ]× R× P2(R)× R 3 (t, v, µ, v′)→ ∂2
µU(t, v, µ)(v, v′),

are bounded and continuous as well.

Proof. Recalling that Yt = ηt(Xt −
∫
R vdµ(v)) = U(t,Xt, µ), we have

∂xU(t, x, µ) = ηt, ∂2
xU(t, x, µ) = 0,

and we have

U(t, v, (1− s)µ+ sµ′)− U(t, v, µ) = −sηt
∫
R
vd(µ′(v)− µ(v)),

δU

δµ
(t, v, µ) = −ηtv

and

∂µU(t, v, µ)(v) = −ηt,

where ηt is given in (3.7) and is bounded and continuous.

Next, fixing v and differentiating further with respect to µ gives,

∂v∂µU(t, v, µ)(v) = 0.

fixing µ and differentiating further with respect to v in the direction v′ yields,

∂2
µU(t, v, µ)(v, v′) = 0.

The following lemma is one result taken from [88]:
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Lemma 3. Let (Xt)t∈[0,T ] be a real-valued Itô process evolving according to

dXt = αtdt+ σdWt,

where αt is a real-valued adapted process satisfying

E

∫ T

0

α2
tdt <∞.

Let U : [0, T ] × R × P2(R) → R be twice differentiable with respect to the state variable

and the measure, and the derivatives be bounded and continuous, then one has

d(U(t,Xt,L(Xt)))

=

(
∂tU(t,Xt,L(Xt)) + ∂xU(t,Xt,L(Xt))αt +

σ2

2
∂2
xU(t,Xt,L(Xt))

+ E (∂µU(t, x,L(Xt))(Xt)αt)x=Xt
+
σ2

2
E (∂v∂µU(t, x,L(Xt))(Xt))x=Xt

)
dt

+ ∂xU(t,Xt,L(Xt))σdWt,

(3.12)

where L(Xt) is the law of Xt.

Proposition 5. The decoupling field function U : [0, T ] × R × P2(R) → R satisfies the

PDE

∂tU(t, x, µ) +

[
− U(t, x, µ) + q

(∫
R
vdµ(v)− x

)]
∂xU(t, x, µ) +

σ2

2
∂2
xU(t, x, µ)

+

∫
R

[
− U(t, v, µ) + q

(∫
R
vdµ(v)− v

)]
∂µU(t, x, µ)(v)dµ(v)

+
σ2

2

∫
R
∂v∂µU(t, x, µ)(v)dµ(v)− qU(t, x, µ) + (ε− q2)

(
x−

∫
R
vdµ(v)

)
= 0,

(3.13)

with U(T, x, µ) = c
(
x−

∫
R vdµ(v)

)
as terminal condition.

Remark 7. Equation (3.13) is the so-called master equation of the system (3.6).
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Proof. By Lemma 3, Proposition 4 and the forward SDE of Xt in the FBSDE (3.6)

dXt =

[
−Yt + q

(∫
R
vdµ(v)− x

)]
dt+ σdWt,

the master equation can be derived in the form of (3.13), where the term

−qU(t, x, µ) + (ε− q2)(x−
∫
R
vdµ(v))

is achieved by plugging in the optimal value of the control

α∗ = −Yt + q(

∫
R
vdµ(v)−Xt)

to the corresponding running cost term, i.e. qα∗ + ε(x−
∫
R vdµ(v)).

By the results of Proposition 4 and considering the constant volatility term, a direct

application of Theorem 2.8 in [88] gives the following Proposition.

Proposition 6. The function U(t, x, µ) = ηt(x −
∫
R vdµ(v)), is the unique classical

solution to the master equation (3.13).

Remark 8. Let us take a look at the master equation (32) in [77], which is achieved by

passing to infinity of the explicit solution of the finite player game. With a = 0 and ρ = 0

corresponding to the case in this chapter, their master equation is given by

∂tV (t, x,m) + q(m− x)∂xV (t, x,m) +
1

2
(ε− q2)(m− x)2

− 1

2
[∂xV (t, x,m)]2 +

σ2

2
∂2
xV (t, x,m) = 0,

(3.14)

where m is the mean and the function V is the value function. Now, let us take derivative
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of V with respect to x and denote Ṽ (t, x, µ) = ∂xV (t, x,m), we have

∂tṼ (t, x, µ) + q(m− x)∂xṼ (t, x, µ)− qṼ (t, x, µ) + (ε− q2)(x−m)

− Ṽ (t, x, µ)∂xṼ (t, x, µ) +
σ2

2
∂2
xṼ (t, x, µ) = 0,

(3.15)

One can find that the function U(t, x, µ) = ηt(x−
∫
R vdµ(v)) in this chapter, is a classical

solution to equation (3.15).

3.4 Analysis of the Finite Player Game in Equilib-

rium

3.4.1 FBSDE in the finite player game and the corresponding

quasilinear parabolic system

Now, let us come back to the finite player game. Recall that (Ω,F ,P, {Ft}) is a

stochastic basis, where the edge random variables gij and random variable for the initial

value of the state processes X i
0 are given, as well as an infinite collection of standard Brow-

nian motions W i, such that {W i, X i
0, gij} are mutually independent. The log-monetary

reserves of N banks lending to and borrowing from each other are represented through

the diffusion processes X i
t for i = 1, · · · , N . The system starts at time t = 0 from i.i.d.

random variables X i
0 = ξi0, such that E(ξi0) = 0 and E(ξi0)2 <∞.

The reduced Hamiltonian for bank i is given by

H i(x1, · · · , xN , yi,1, · · · , yi,N , α1, · · · , αN)

=
N∑
k=1

αkyi,k +
1

2
(αi)2 − qαi(x̄i − xi) +

ε

2
(x̄i − xi)2.
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The necessary condition of the game version of the Pontryagin principle suggests that

one minimizes H i with respect to αi to achieve the optimal control

α∗,i = −yi,i + q(x̄i − xi).

The adjoint processes (Y i,j
t )i,j=1,··· ,N and (Zi,j,k

t )i,j,k=1,··· ,N are defined as the solutions of

the following backward stochastic differential equations (BSDEs):

dY i,j
t = −∂xjH i(X1

t , · · · , XN
t , Y

i,1
t , · · · , Y i,N

t , α1, · · · , αN) dt+
N∑
k=1

Zi,j,k
t dW k

t .

Any equilibrium taken over open loop strategies must satisfy the following fully coupled

system of FBSDEs:

dX i
t =

[
−Y i,i

t + q

(∫
R
xdµ̄N,it (x)−X i

t

)]
dt+ σdW i

t ,

dY i,i
t =

[
qY i,i

t − (ε− q2)

(
X i
t −

∫
R
xdµ̄N,it (x)

)]
dt+

N∑
j=1

Zi,i,j
t dW j

t ,

X i
0 = ξi0, Y i,i

T = c

(
X i
T −

∫
R
xdµ̄N,iT (x)

)
,

(3.16)

with the empirical distributions

µ̄N,it =
1

Ni

N∑
j=1

gijδXj
t
.

With a slight abuse of notation, for simplicity of the analysis following, we denote Y i :=
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Y ii and Zi,j
t := Zi,i,j

t , and study the following system of FBSDEs:

dX i
t =

[
−Y i

t + q

(
1

Ni

N∑
j=1

gijX
j
t −X i

t

)]
dt+ σdW i

t ,

dY i
t =

[
qY i

t − (ε− q2)

(
X i
t −

1

Ni

N∑
j=1

gijX
j
t

)]
dt+

N∑
j=1

Zi,j
t dW

j
t ,

X i
0 = ξi0, Y i

T = c

(
X i
T −

1

Ni

N∑
j=1

gijX
j
T

)
.

(3.17)

3.4.2 The wellposedness of the system of FBSDEs (3.17)

The system of FBSDEs (3.17) can be written in matrix form,

d
−→
Xt =

[
A
−→
Xt +B

−→
Yt

]
dt+ σd

−→
Wt,

d
−→
Yt =

[
Â
−→
Xt + B̂

−→
Yt

]
dt+ Ztd

−→
Wt,

XN
0 = x,

−→
YT = G

−→
XT ,

(3.18)

where
−→
Xt := (X1

t , · · · , XN
t )T ,

−→
Yt := (Y 1

t , · · · , Y N
t )T and

−→
Wt := (W 1

t , · · · ,WN
t )T are all

valued in RN , Zt := (Zi,j
t ) is valued in RN×N , and the coefficient matrices are given by

A = qM , B = (−1)IN , Â = (ε− q2)M , B̂ = qIN , G = (−c)M with

M =



−1 1
N1
g12 · · · 1

N1
g1N

1
N2
g21 −1 · · · 1

N2
g2N

...
...

. . .
...

1
NN
gN1

1
NN
gN2 · · · −1


N×N

, IN =



1

1

. . .

1


N×N

. (3.19)

With the linearity of coefficients of this fully coupled FBSDE, by the Theorem 2.1 in

[70], we have the following existence result of a finite solution, which is crucial in the

convergence analysis later.
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Proposition 7. the FBSDE system (3.18) has a solution (
−→
Xt,
−→
Yt , Zt) such that

E( sup
0≤t≤T

|
−→
Xt|2) <∞, E( sup

0≤t≤T
|
−→
Yt |2) <∞, E

∫ T

0

|Zt|2dt <∞.

With the linearity in the drift terms and the constant volatility term of X i
t and Y i

t

processes, the uniqueness of solution is a direct result of [87].

Proposition 8. (i) the FBSDE system (3.17) admits a unique solution (X i
t , Y

i
t , Z

i,j
t )i,j=1,··· ,N .

(ii) The function vN,i(t,x) for (t,x) ∈ [0, T ]×RN and i = 1, 2, · · · , N , defined through

vN,i(t,Xt) := Y i
t with Xt = (X1

t , · · · , XN
t ), is continuous and is a viscosity solution of

the quasilinear parabolic systems of PDEs

∂tv
N,i(t,x) +

N∑
j=1

(
−vN,j(t,x) + q

(
1

Nj

N∑
k=1

gjkx
k − xj

))
∂xjv

N,i(t,x)

+
σ2

2

N∑
j=1

∂2
xjv

N,i(t,x)− qvN,i(t,x) + (ε− q2)

(
xi − 1

Ni

N∑
j=1

gijx
j

)
= 0,

vN,i(T,x) = c

(
xi − 1

Ni

N∑
j=1

gijx
j

)
.

(3.20)

3.5 Convergence Results under Frozen Graph

For (t, x) ∈ [0, T ]× RN , and i = 1, 2, · · · , N , we set

ūi(t,Xt) = U(t,X i
t , µ̄

N
t ), µ̄Nt =

1

N

N∑
i=1

δXi
t
.

3.5.1 Closeness of ūi(t,Xt) to vN,i(t,Xt)

Before we prove the convergence of ūi(t,Xt) to vN,i(t,Xt), let us first give the PDEs

ūi(t,Xt) satisfies.
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Proposition 9. One has for any i ∈ 1, · · · , N ,

∂tū
i(t,x) +

N∑
j=1

[
− ūj(t,x) + q

(
1

N

N∑
k=1

xk − xj
)]

∂xj ū
i(t,x)

+
σ2

2

N∑
j=1

∂2
xj ū

i(t,x)− qūi(t,x) + (ε− q2)

(
xi − 1

N

N∑
k=1

xk

)
= 0.

(3.21)

Proof. Recall that the master equation is given by

∂tU(t, x, µ) +

[
− U(t, x, µ) + q

(∫
R
vdµ(v)− x

)]
∂xU(t, x, µ) +

σ2

2
∂2
xU(t, x, µ)

+

∫
R

[
− U(t, v, µ) + q

(∫
R
vdµ(v)− v

)]
∂µU(t, x, µ)(v)dµ(v)

+
σ2

2

∫
R
∂v∂µU(t, x, µ)(v)dµ(v)− qU(t, x, µ) + (ε− q2)

(
x−

∫
R
vdµ(v)

)
= 0,

(3.22)

therefore, one has at a point (t, xi, µ̄Nt ):

∂tū
i(t,x) +

[
− ūi(t,x) + q

(∫
R
vdµ̄Nt (v)− xi

)]
∂xU(t, xi, µ̄Nt ) +

σ2

2
∂2
xU(t, xi, µ̄Nt )

+

∫
R

[
− U(t, v, µ̄Nt ) + q

(∫
R
vdµ̄Nt (v)− v

)]
∂µU(t, xi, µ̄Nt )(v)dµ̄Nt (v)

+
σ2

2

∫
R
∂v∂µU(t, xi, µ̄Nt )(v)dµ̄Nt (v)− qūi(t,x) + (ε− q2)

(
xi −

∫
R
vdµ̄Nt (v)

)
= 0.

(3.23)

With the explicit form

U(t, xi, µ̄Nt ) = ηt(x
i − 1

N

N∑
j=1

xj),
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we have

∂xiū
i(t, x1, · · · , xN) =∂xU(t, xi, µ̄Nt ) +

1

N
∂µU(t, xi, µ̄Nt )(xi),

∂xj ū
i(t, x1, · · · , xN) =

1

N
∂µU(t, xi, µ̄Nt )(xj), j 6= i,

∂2
xiū

i(t, x1, · · · , xN) =
1

N
∂v∂µU(t, xi, µ̄Nt )(xi),

∂2
xj ū

i(t, x1, · · · , xN) =
1

N
∂v∂µU(t, xi, µ̄Nt )(xj), j 6= i,

and ∂2
xU(t, xi, µ̄Nt ) = 0. Plugging in equation, we have

∂tū
i(t,x) +

[
− ūi(t,x) + q

(
1

N

N∑
k=1

xk − xi
)][

∂xiū
i(t,x)−

���
���

���
��1

N
∂µU(t, xi, µ̄Nt )(xi)

]

+
N∑

j=1,j 6=i

[
− ūj(t,x) + q

(
1

N

N∑
k=1

xk − xj
)]

∂xj ū
i(t,x)

+

((((
(((

((((
(((

((((
(((

((((
(((

(([
− U(t, xi, µ̄Nt ) + q

(
1

N

N∑
k=1

xk − xi
)]

∂µU(t, xi, µ̄Nt )(xi)

+
σ2

2

N∑
j=1

∂2
xj ū

i(t,x)− qūi(t,x) + (ε− q2)

(
xi − 1

N

N∑
k=1

xk

)
= 0.

(3.24)

Therefore,

∂tū
i(t,x) +

N∑
j=1

[
− ūj(t,x) + q

(
1

N

N∑
k=1

xk − xj
)]

∂xj ū
i(t,x)

+
σ2

2

N∑
j=1

∂2
xj ū

i(t,x)− qūi(t,x) + (ε− q2)

(
xi − 1

N

N∑
k=1

xk

)
= 0.

(3.25)
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By Itô’s formula and using the parabolic system equation (3.20), we have

dvN,i(t,Xt)

=

{
∂tv

N,i(t,Xt) +
N∑
j=1

[
−vN,j(t,Xt) + q

(
1

Nj

N∑
k=1

gjkX
k
t −X

j
t

)]
∂xjv

N,i(t,Xt)

+
σ2

2

N∑
j=1

∂2
xjv

N,i(t,Xt)

}
dt+ σ

N∑
j=1

∂xjv
N,i(t,Xt)dW

j
t

=

{
qvN,i(t,Xt)− (ε− q2)

(
X i
t −

1

Ni

N∑
j=1

gijX
j
t

)}
dt+ σ

N∑
j=1

∂xjv
N,i(t,Xt)dW

j
t .

(3.26)

By Itô’s formula and using the result of Proposition 9, we have

dūi(t,Xt)

=

{
∂tū

i(t,Xt) +
N∑
j=1

[
−vN,j(t,Xt) + q

(
1

Nj

N∑
k=1

gjkX
k
t −X

j
t

)]
∂xj ū

i(t,Xt)

+
σ2

2

N∑
j=1

∂2
xj ū

i(t,Xt)

}
dt+ σ

N∑
j=1

∂xj ū
i(t,Xt)dW

j
t

=r̄i(t,Xt)dt+

{
qūi(t,Xt)− (ε− q2)

(
X i
t −

1

N

N∑
j=1

Xj
t

)}
dt+ σ

N∑
j=1

∂xj ū
i(t,Xt)dW

j
t

(3.27)
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with

r̄i(t,Xt) =
N∑
j=1

[
−vN,j(t,Xt) + q

(
1

Nj

N∑
k=1

gjkX
k
t −X

j
t

)]
∂xj ū

i(t,Xt)

−
N∑
j=1

[
− ūj(t,Xt) + q

(
1

N

N∑
k=1

Xk
t −X

j
t

)]
∂xj ū

i(t,Xt)

=

[
(ūi(t,Xt)− vN,i(t,Xt)) + q

(
1

Ni

N∑
k=1

gikX
k
t −

1

N

N∑
k=1

Xk
t

)]
ηt(1−

1

N
)

−
∑
j 6=i

[
(ūj(t,Xt)− vN,j(t,Xt)) + q

(
1

Nj

N∑
k=1

gjkX
k
t −

1

N

N∑
k=1

Xk
t

)]
ηt
N
.

(3.28)

Taking difference of the two equations above, we have

d
(
ūi(t,Xt)− vN,i(t,Xt)

)
=q
(
ūi(t,Xt)− vN,i(t,Xt)

)
dt+ r̄i(t,Xt)dt− (ε− q2)

(
1

Ni

N∑
j=1

gijX
j
t −

1

N

N∑
j=1

Xj
t

)
dt

+ σ
N∑
j=1

(
∂xj ū

i(t,Xt)− ∂xjvN,i(t,Xt)
)
dW j

t .

(3.29)
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Taking the square and applying Itô’s formula, we have

d
[
ūi(t,Xt)− vN,i(t,Xt)

]2
=2q

(
ūi(t,Xt)− vN,i(t,Xt)

)2
dt

+ 2
(
ūi(t,Xt)− vN,i(t,Xt)

)
r̄i(t,Xt)dt

− 2(ε− q2)
(
ūi(t,Xt)− vN,i(t,Xt)

)( 1

Ni

N∑
j=1

gijX
j
t −

1

N

N∑
j=1

Xj
t

)
dt

+ σ2

N∑
j=1

(∂xju
N,i(t,Xt)− ∂xjvN,i(t,Xt))

2dt

+ 2σ
N∑
j=1

(
ūi(t,Xt)− vN,i(t,Xt)

)
(∂xj ū

i(t,Xt)− ∂xjvN,i(t,Xt))dW
j
t .

(3.30)

The terminal conditions are given by

ūi(T,x) = c(xi − 1

N

N∑
j=1

xj), vN,i(T,x) = c

(
xi − 1

Ni

N∑
j=1

gijx
j

)
.

3.5.2 Preliminary Convergence Analysis

Now let us see the convergence of ūi(t,Xt) to vN,i(t,Xt), when the realization of the

graph is frozen.

Proposition 10. There exists a constant C, independent of N and of the realization of

the Erdös Rényi graph, such that

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2
≤CEx

(
1

Ni

N∑
j=1

gijX
j
T −

1

N

N∑
j=1

Xj
T

)2

+ C

∫ T

t

Ex

(
1

Ni

N∑
k=1

gikX
k
s −

1

N

N∑
k=1

Xk
s

)2

ds
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Proof. Integrating from t to T and taking expectation, we have

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2
=c2Ex

(
1

Ni

N∑
j=1

gijX
j
T −

1

N

N∑
j=1

Xj
T

)2

− 2q

∫ T

t

Ex

(
ūi(s,Xs)− vN,i(s,Xs)

)2
ds

− 2

∫ T

t

Ex

[(
ūi(s,Xs)− vN,i(s,Xs)

)
r̄i(s,Xs)

]
ds

+ 2(ε− q2)

∫ T

t

Ex

[(
ūi(s,Xs)− vN,i(s,Xs)

)( 1

Ni

N∑
j=1

gijX
j
s −

1

N

N∑
j=1

Xj
s

)]
ds

− σ2

N∑
j=1

∫ T

t

Ex(∂xj ū
i(s,Xs)− ∂xjvN,i(s,Xs))

2ds.

(3.31)

Notice that

σ2

N∑
j=1

∫ T

t

Ex

(
∂xj ū

i(s,Xs)− ∂xjvN,i(s,Xs)
)2
ds ≥ 0,

we have

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2
≤CEx

(
1

Ni

N∑
j=1

gijX
j
T −

1

N

N∑
j=1

Xj
T

)2

+ C

∫ T

t

Ex

(
ūi(s,Xs)− vN,i(s,Xs)

)2
ds+M+N .

(3.32)
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For term M, by convexity argument and by symmetry, we have

M :=2

∫ T

t

Ex

[∣∣ūi(s,Xs)− vN,i(s,Xs)
∣∣ · |r̄i(s,Xs)|

]
ds

≤C
∫ T

t

Ex

(
ūi(s,Xs)− vN,i(s,Xs)

)2
ds

+ C

∫ T

t

Ex

[∣∣ūi(s,Xs)− vN,i(s,Xs)
∣∣ · ∣∣∣∣∣ 1

Ni

N∑
k=1

gikX
k
s −

1

N

N∑
k=1

Xk
s

∣∣∣∣∣
]
ds

+
C

N

∑
j 6=i

∫ T

t

Ex

[∣∣ūi(s,Xs)− vN,i(s,Xs)
∣∣ · |ūj(t,Xs)− vN,j(s,Xs)|

]
ds

+
C

N

∑
j 6=i

∫ T

t

Ex

[∣∣ūi(s,Xs)− vN,i(s,Xs)
∣∣ · ∣∣∣∣∣ 1

Nj

N∑
k=1

gjkX
k
s −

1

N

N∑
k=1

Xk
s

∣∣∣∣∣
]
ds

≤C
∫ T

t

Ex

(
ūi(s,Xs)− vN,i(s,Xs)

)2
ds+ C

∫ T

t

Ex

(
1

Ni

N∑
k=1

gikX
k
s −

1

N

N∑
k=1

Xk
s

)2

ds

(3.33)

For term N , by convexity argument and by symmetry, we have

N :=C

∫ T

t

Ex

[(
ūi(s,Xs)− vN,i(s,Xs)

)( 1

Ni

N∑
j=1

gijX
j
s −

1

N

N∑
j=1

Xj
s

)]
ds

≤C
∫ T

t

Ex

(
ūi(s,Xs)− vN,i(s,Xs)

)2
ds+ C

∫ T

t

Ex

(
1

Ni

N∑
k=1

gikX
k
s −

1

N

N∑
k=1

Xk
s

)2

ds

(3.34)

In sum, by Gronwall’s lemma, we have

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2
≤CEx

(
1

Ni

N∑
j=1

gijX
j
T −

1

N

N∑
j=1

Xj
T

)2

+ C

∫ T

t

Ex

(
1

Ni

N∑
k=1

gikX
k
s −

1

N

N∑
k=1

Xk
s

)2

ds
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Proposition 11. There exists a sequence of random variables (δN)N≥1 constructed on

the probability space (Ωg,Fg,Pg), such that

sup
0≤t≤T

1

N

N∑
i=1

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2 ≤ δN

and

Pg[ lim
N→∞

δN = 0] = 1.

Proof. Applying the result of Section 4.2 on Delarue [79], and the unique bounded second

moment of (X i
s)s∈[0,T ],i=1,··· ,N given in Proposition 7, we know that

1

N

N∑
i=1

Ex

[
ūi(t,Xt)− vN,i(t,Xt)

]2 ≤ δN ,

where

δN =
C

N2

N∑
j,l=1

∣∣∣∣∣1− 1

N

N∑
i=1

N2

N2
i

1Ni≥1gijgil

∣∣∣∣∣+
C

N

N∑
j=1

∣∣∣∣∣1− 1

N

N∑
i=1

N

Ni

1Ni≥1gij

∣∣∣∣∣ .
and limN→∞ δN = 0, Pg almost surely.

3.5.3 Law of Large Numbers

We denote by Pp(R) the subspace of P(R) of the probability measures of order p,

namely those elements of P(R) which integrate the p-th power of the distance to a fixed

point. For each p ≥ 1, if µ and µ′ are probability measures of order p, Wp(µ, µ
′) denotes

the p-Wasserstein’s distance defined as

Wp(µ, µ
′) = inf

{[∫
|x− y|pRπ(dx, dy)

]1/p

; π ∈ Pp(R× R) with marginals µ and µ′

}
.
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Notice that if X and X ′ are random variables of order 2 taking values in R, and with

law µ and µ′ respectively, then we have

W2(µ, µ′) ≤
[
Ex|X −X ′|2R

]1/2
.

Proposition 12. Pg almost surely,

lim
N→∞

sup
0≤t≤T

Ex[W2(µ̄Nt , µt)
2] = 0,

where W2 is the 2-Wasserstein distance, µ̄Nt is the empirical distribution of state process

of the finite player game i.e. µ̄Nt = 1
N

∑N
j=1 X

j
t , and µt is the law of the state process at

Mean Field Equilibrium.

Proof. Inspired by Delarue [79], we create copies of (Xt)0≤t≤T , which are driven by the

(X i
0, (W

i
t )0≤t≤T ) as (X i

t)0≤t≤T , instead of driving by the (X0, (Wt)0≤t≤T ), namely

dX̂ i
t =
[
−U(t, X̂ i

t ,L(X̂ i
t)) + q

(
Ex[X̂

i
t ]− X̂ i

t

)]
dt+ σdW i

t .

That is, (X̂ i
t)i≥1 are i.i.d with the same dynamics as (Xt), and the law of X̂ i

t is µt. The

dynamics of the difference of the processes X i
t and X̂ i

t are given by

d(X i
t − X̂ i

t)

=

[
−Y i

t + U(t, X̂ i
t ,L(X̂ i

t)) + q

(
1

Ni

N∑
j=1

gijX
j
t − Ex[X̂

i
t ]

)
− q(X i

t − X̂ i
t)

]
dt

(3.35)
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Note that, by the explicit form of the U function, we have

(
−Y i

s + U(s, X̂ i
s,L(X̂ i

s))
)2

≤2
(
Y i
s − U(t,X i

s, µ̄
N
s )
)2

+ 2
(
U(s,X i

s, µ̄
N
s )− U(s, X̂ i

s,L(X̂ i
s))
)2

≤C
(
Y i
s − U(s,X i

s, µ̄
N
s )
)2

+ C(X i
s − X̂ i

s)
2 + C

(
1

N

N∑
j=1

Xj
s − Ex[X̂

i
s]

)2

.

(3.36)

Therefore, considering X i
0 = X̂ i

0, integrating from 0 to t, and taking square and then

expectation, we have

Ex(X
i
t − X̂ i

t)
2

=2

∫ t

0

Ex

[
(X i

s − X̂ i
s)
(
−Y i

s + U(s, X̂ i
s,L(X̂ i

s))
)]
ds

+ 2q

∫ t

0

Ex

[
(X i

s − X̂ i
s)

(
1

Ni

N∑
j=1

gijX
j
s − Ex[X̂

i
s]

)]
ds− 2q

∫ t

0

Ex(X
i
s − X̂ i

s)
2ds

≤C
∫ t

0

Ex

(
−Y i

s + U(s,X i
s, µ̄

N
s )
)2
ds

+ C

∫ t

0

Ex

(
1

N

N∑
j=1

Xj
s − Ex[X̂

i
s]

)2

ds+ C

∫ t

0

Ex

(
1

Ni

N∑
j=1

gijX
j
s − Ex[X̂

i
s]

)2

ds,

where in the last two inequalities we applied convexity argument and Gronwall’s Lemma.

Recalling that the 2-Wasserstein distance W2 is given by

W2(µ, µ′) = inf
γ

{∫
R×R
|u− u′|2γ(du, du′); γ(· × R) = µ, γ(R× ·) = µ′

}1/2

,

we know there exists a constant C independent of N and t such that

Ex[X̂
i
t −X i

t ]
2 ≤ C

∫ t

0

Ex[Y
i
s − Ȳ i

s ]2ds+ C

∫ t

0

Ex[W2(µ̄Ns , µs)
2]ds+ C

∫ t

0

Ex[W2(µ̄N,is , µs)
2]ds
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Taking the mean over i yields,

Ex[W2(µ̂Nt , µ̄
N
t )2] ≤ δN + C

∫ t

0

Ex[W2(µ̄Ns , µs)
2]ds+ C

∫ t

0

Ex[W2(µ̄N,is , µs)
2]ds, (3.37)

where µ̂Nt is defined as the empirical distribution of an independent and identically dis-

tributed sample of law, i.e.

µ̂Nt =
1

N

N∑
i=1

δX̂i
t
.

For this reason, apparently,

lim
N→∞

Ex[W2(µ̂Nt , µt)
2] = 0,

and

sup
0≤t≤T

Ex[W2(µ̂Nt , µt)
2] ≤ 2 sup

0≤t≤T
Ex[X

2
t ] <∞.

By Lebesgue’s dominated convergence theorem and equicontinuity argument as in De-

larue [79], one can show that

lim
N→∞

sup
0≤t≤T

Ex[W2(µ̂Nt , µt)
2] = 0. (3.38)

The triangle inequality implies

Ex[W2(µ̄N,is , µs)
2] ≤ Ex[W2(µ̄N,is , µ̄Ns )2] + Ex[W2(µ̄Ns , µs)

2] (3.39)

and

Ex[W2(µ̄Ns , µs)
2] ≤ Ex[W2(µ̂Ns , µ̄

N
s )2] + Ex[W2(µ̂Ns , µs)

2]. (3.40)
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Therefore, by Gronwall’s lemma, inequality (3.37) gives

Ex[W2(µ̂Nt , µ̄
N
t )2] ≤δN + C

∫ t

0

Ex[W2(µ̂Ns , µs)
2]ds+ C

∫ t

0

Ex[W2(µ̄N,is , µ̄Ns )2]ds. (3.41)

Recalling that

µ̄N,it =
1

Ni

N∑
j=1

gi,jδXj
t
, µ̄Nt =

1

N

N∑
j=1

δXj
t
.

Note that

sup
0≤t≤T

Ex[W2(µ̄N,it , µ̄Nt )2] ≤ sup
0≤t≤T

Ex[
1

Ni

N∑
j=1

gi,jX
j
t −

1

N

N∑
j=1

Xj
t ]

2 <∞.

Therefore, we have

lim
N→∞

sup
0≤t≤T

Ex[W2(µ̄N,it , µ̄Nt )2] = 0. (3.42)

By equation (3.41), we know that

lim
N→∞

sup
0≤t≤T

Ex[W2(µ̂Nt , µ̄
N
t )2] = 0. (3.43)

By equation (3.40), we obtain

lim
N→∞

sup
0≤t≤T

Ex[W2(µ̄Nt , µt)
2] = 0. (3.44)

as desired.
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3.6 Weakly Interacting Particle System on Random

Graph

Recall that on the filtered probability space (Ω,F ,P, {Ft}), the edge random variables

gij and random variable for the initial value of the state processes ξi are given, as well

as an infinite collection of standard Brownian motions W i, such that {W i, ξi, gij} are

mutually independent, over where the state processes of finite player games are given by

dX i
t =

[
−Y i

t + q

(
1

Ni

N∑
j=1

gijX
j
t −X i

t

)]
dt+ σdW i

t .

Now, in order to achieve a higher level analysis (from the law of large numbers) in terms

of the central limit theorem, it is necessary to incorporate graph in the master equation.

Specifically, on (Ω,F ,P, {Ft}), we define a new system of SDEs, starting at the same

point as X i
t i.e. X i

0 = X̃ i
0 = ξi, with Eξi = 0 for simplicity,

dX̃ i,N
t =

[
− U(t, X̃ i,N

t , µ̃N,it ) + q(
1

Ni

N∑
j=1

gijX̃
j,N
t − X̃ i,N

t )

]
dt+ σdW i

t , (3.45)

where

µ̃N,it =
1

Ni

N∑
j=1

gijδX̃j,N
t
.

That is,

dX̃ i,N
t = (ηt + q)(

1

Ni

N∑
j=1

gijX̃
j,N
t − X̃ i,N

t )dt+ σdW i
t ,

in matrix notation simply

dX̃N
t = −G · X̃N

t dt+ σdWt, i = 1, · · · , N (3.46)
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where

X̃t =


X̃1,N
t

...

X̃N,N
t

 , G = a



1 −g12

N1
· · · −g1N

N1

−g21

N2
1 · · · −g2N

N2

...
...

. . .
...

−gN1

NN
−gN2

NN
· · · 1


, dWt =


dW 1

t

...

dWN
t

 .

For simplicity, we firstly consider the case (ηt + q) equals to a constant a and focus on

the following weakly interacting particle system on random graph, which consists of a

large number of nodes in which the state of each node is governed by a diffusion process

that is influenced by the neighboring nodes:

X̃ i,N
t = ξi + a

∫ t

0

(
N∑
j=1

gij
Ni

1{Ni>0}X̃
j,N
s − X̃ i,N

s

)
ds+

∫ t

0

σdW i
s , i = 1, · · · , N. (3.47)

Note that, here the “strength” of the interaction between a node and its neighbor is

inversely proportional to the total number of neighbors of that node, which gives the so-

called “weakly interacting”. We also note that M or M· denotes a constant independent

of N whose definition may change from one proof to another, in the sequel.

3.6.1 Law of Large Numbers

We create an infinite particle system, which are driven by the (ξi, (W i
t )0≤t≤T ) as

(X̃ i,N
t )0≤t≤T , and evolves according to:

dX̃ i
t = a(

∫
R
vdµt(v)− X̃ i

t)dt+ σdW i
t ,
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where (X̃ i
t)i≥1 are i.i.d and the law of X̃ i

t is µt. That is, (X̃ i
t)i≥1 have the same dynamics

in the McKean-Vlasov type, simply

X̃ i
t = ξi − a

∫ t

0

X̃ i
sds+

∫ t

0

σdW i
s , i = 1, · · · , N. (3.48)

The following theorem will show that E
[
max0≤u≤t |X̃ i,N

u − X̃ i
u|
]

is of order at most N−1/2,

and the law of large numbers and propagation of chaos result holds following a standard

argument [89].

Theorem 7. One has

sup
N≥1

√
NE

[
max
0≤u≤t

|X̃ i,N
u − X̃ i

u|
]
<∞. (3.49)

Proof. We have

E

[
max
0≤u≤t

|X̃ i,N
u − X̃ i

u|
]

≤a
∫ t

0

E

∣∣∣∣∣
N∑
j=1

gij
Ni

1{Ni>0}X̃
j,N
s − X̃ i,N

s + X̃ i
s

∣∣∣∣∣ ds
≤a
∫ t

0

E

∣∣∣∣∣
N∑
j=1

gij
Ni

1{Ni>0}(X̃
j,N
s − X̃j

s )

∣∣∣∣∣+ E

∣∣∣∣∣
N∑
j=1

gij
Ni

1{Ni>0}X̃
j
s

∣∣∣∣∣+ E|X̃ i,N
s − X̃ i

s|ds

=a

∫ t

0

1©+ 2©+ 3©ds.

(3.50)

Let us use the fact that

L(gij, Ni, X̃
i,N
s , X̃ i

s) = L(gji, Nj, X̃
j,N
s , X̃j

s )
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to firstly tackle 1©:

1© =E

∣∣∣∣∣
N∑
j=1

gij
Ni

1{Ni>0}(X̃
j,N
s − X̃j

s )

∣∣∣∣∣
≤E

[
N∑
j=1

gji
Nj

1{Nj>0}

∣∣∣X̃ i,N
s − X̃ i

s

∣∣∣]

=E

[(
N∑
j=1

gji
Nj

1{Nj>0} − 1

)∣∣∣X̃ i,N
s − X̃ i

s

∣∣∣]+ E
∣∣∣X̃ i,N

s − X̃ i
s

∣∣∣
≤

E

(
N∑
j=1

gji
Nj

1{Nj>0} − 1

)2

E
∣∣∣X̃ i,N

s − X̃ i
s

∣∣∣2
1/2

+ E
∣∣∣X̃ i,N

s − X̃ i
s

∣∣∣
≤(M1 4©)1/2 + E

∣∣∣X̃ i,N
s − X̃ i

s

∣∣∣ ,

(3.51)

where M1 a constant independent of N thanks to the finite second moment of X̃ i,N
s and

X̃ i
s, and

4© = E

(
N∑
j=1

gji
Nj

1{Nj>0} − 1

)2

.

Next, we are going to use the independence of (gji, Nj) and (gki, Nk) for j 6= k to

tackle 4©.
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4© =E

(
N∑
j=1

gji
Nj

1{Nj>0} − 1

)2

=E

[
N∑
j=1

N∑
k=1

gji
Nj

gki
Nk

1{Nj>0}1{Nk>0}

]
− 2E

[
N∑
j=1

1{Nj>0}
gji
Nj

]
+ 1

=
N∑
j=1

E

[
gji
N2
j

1{Nj>0}

]
+ E

[
N∑
j=1

N∑
k=1,k 6=j

gji
Nj

gki
Nk

1{Nj>0}1{Nk>0}

]

− 2
N∑
j=1

E

[
1{Nj>0}

gji
Nj

]
+ 1

=
N∑
j=1

E

[
gji
N2
j

1{Nj>0}

]
+

[
N∑
j=1

N∑
k=1,k 6=j

E

[
gji
Nj

1{Nj>0}

]
E

[
gki
Nk

1{Nk>0}

]]

− 2P(Ni > 0) + 1

=E

[
1{Ni>0}

Ni

]
+ 5©− 2P(Ni > 0) + 1.

(3.52)

Let us firstly take care of the first term in (3.52).

E

[
1{Ni>0}

Ni

]
≤E

[
2

1 +Ni

]

=
N−1∑
k=0

2

1 + k

 N − 1

k

 pk(1− p)N−1−k

=2
N−1∑
k=0

(N − 1)!

(k + 1)!(N − 1− k)!
pk(1− p)N−1−k

=
2

p

N∑
m=1

1

N

 N

m

 pm(1− p)N−m

≤ 2

pN
.

(3.53)
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Then, for 5© in (3.52), we have

5© =
N∑
j=1

N∑
k=1,k 6=j

E

[
gji
Nj

1{Nj>0}

]
E

[
gki
Nk

1{Nk>0}

]

≤
N∑
j=1

N∑
k=1

E

[
gji
Nj

1{Nj>0}

]
E

[
gki
Nk

1{Nk>0}

]

=

(
N∑
j=1

E

[
gji
Nj

1{Nj>0}

])2

=

(
N∑
j=1

E

[
gij
Ni

1{Ni>0}

])2

=P2(Ni > 0).

(3.54)

Plug in the above two results to in (3.52), we have

4© ≤ 2

pN
+ (P(Ni > 0)− 1)2

=
2

pN
+ P2(Ni = 0)

=
2

pN
+ (1− p)2(N−1)

(3.55)

So far, we have finished the analysis of 1© in (3.50).

In the following, we analyze 2© in (3.50), using the fact that the graph is independent
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of X̃ i
s and EX̃ i

s = 0.

2©2 ≤E

(
N∑
j=1

gij
Ni

1{Ni>0}X̃
j
s

)2

=E

(
N∑
j=1

gji
Ni

1{Ni>0}X̃
j
s

)2

=E
N∑
j=1

N∑
k=1

gji
Ni

gki
Ni

1{Ni>0}X̃
j
sX̃

k
s

=
N∑
j=1

N∑
k=1

E

(
gji
Ni

gki
Ni

1{Ni>0}

)
E
(
X̃j
sX̃

k
s

)
=

N∑
j=1

E

(
g2
ji

N2
i

1{Ni>0}

)
E
(
X̃j
s

)2

+
N∑
j=1

N∑
k=1,k 6=j

E

(
gji
Ni

gki
Ni

1{Ni>0}

)
E
(
X̃j
sX̃

k
s

)
=

N∑
j=1

E

(
gji
N2
i

1{Ni>0}

)
E(X̃j

s )
2

≤M2E

(
1{Ni>0}

Ni

)
≤2M2

pN
,

(3.56)

where the last two inequalities are achieved by the fact that X̃ i
s has finite second moment

and the last inequality in equation (3.53).
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Plug the above results into equation (3.50), we have

E max
0≤u≤t

|X̃ i,N
u − X̃ i

u|

≤2a

∫ t

0

E max
0≤u≤t

∣∣∣X̃j,N
u − X̃j

u

∣∣∣ ds+

(
M1

[
2

pN
+ (1− p)2(N−1)

])1/2

Ta+

√
2M2

pN
Ta

≤2a

∫ t

0

E max
0≤u≤t

∣∣∣X̃j,N
u − X̃j

u

∣∣∣ ds+
M√
pN

,

(3.57)

where M depends on a, p and T .

By Gronwall’s lemma, we have

E

[
max
0≤u≤t

|X̃ i,N
u − X̃ i

u|
]
≤ M√

pN
e2at. (3.58)

Therefore,

sup
N≥1

√
NE

[
max
0≤u≤t

|X̃ i,N
u − X̃ i

u|
]
<∞. (3.59)

Note that, here the result naturally generate to maxi∈N, since for all i,

E

[
max
0≤u≤t

|X̃ i,N
u − X̃ i

u|
]

are the same by symmetry.
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3.6.2 Fluctuation and Central Limit Theorem

In this section, we establish a functional central limit theorem that characterizes the

limiting fluctuations of X̃ i,N around its law of large numbers limit. Specifically, we show

that, the family {UN(φ)} converges weakly to a mean 0 Gaussian field {U(φ)}, as N goes

to infinity, in the sense of convergence of finite dimensional distributions, where

UN(φ) =
φ(X̃1,N

T ) + φ(X̃2,N
T ) + · · ·+ φ(X̃N,N

T )√
N

,

for φ ∈ L2
c(C , µ), a family of functions on the path space that are suitably centered and

have appropriate integrability properties, which will be defined precisely in the proof of

this functional central limit theorem (Theorem 8).

The proof relies on a change of measure technique using Girsanov’s theorem, which

goes back to the classical works of [90] and [91]. Let us firstly recall that on the filtered

probability space (Ω,F ,P, {Ft}), the edge random variables gij and random variable for

the initial value of the state processes X̃ i,N
0 are given, as well as an infinite collection

of standard Brownian motions W i, such that {W i, X̃ i,N
0 , gij} are mutually independent.

Let V i = (W i, X̃ i),

F̃Nt = σ{V 1(s), V 2(s), · · · , V N(s), {gij, 1 ≤ i, j ≤ N}, 0 ≤ s ≤ t}

and

PN = L(V 1, V 2, · · · , V N , {gij, 1 ≤ i, j ≤ N}).

Define a new probability measure QN by

dQN

dPN
= exp(JN(T )),
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where exp(JN(T )) is an F̃Nt -martingale under PN given by

JN(t) = JN,1(t)− 1

2
JN,2(t), t ∈ [0, T ],

with

JN,1(t) =
a

σ

N∑
i=1

∫ t

0

(
1

Ni

N∑
j=1

gij1{Ni>0}X̃
j
s

)
dW i

s ,

JN,2(t) =
a2

σ2

N∑
i=1

∫ t

0

(
1

Ni

N∑
j=1

gij1{Ni>0}X̃
j
s

)2

ds.

By Girsanov Theorem, (X̃1, · · · , X̃N , gij) has the same distribution under QN as

(X̃1,N , · · · , X̃N,N , gij) under P. Therefore, define

UN(φ) =
φ(X̃1

T ) + φ(X̃2
T ) + · · ·+ φ(X̃N

T )√
N

for φ ∈ L2
c(C , µ), and we have

E exp(iUN(φ)) =EQN

exp
[
iUN(φ)

]
=EPN exp

[
iUN(φ) + JN,1(T )− 1

2
JN,2(T )

]

where i is the imaginary number.

Now, we can see that the original CLT term UN(φ) with graph involved in is replaced

with the corresponding term UN(φ) generated by the i.i.d. system without graph, how-

ever the tradeoff is the additional martingale term JN,1(T ) and quadratic variation term

JN,2(T ), which both contain graph. In the following, we firstly analyze their asymptotic

behaviors as N goes to infinity.

Preliminary Analysis of JN,1(t):

In the following proposition, we give the preliminary result regarding the term JN,1(t).
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Proposition 13. For

JN,1(t) =
a

σ

N∑
i=1

∫ t

0

(
1

Ni

N∑
j=1

gij1{Ni>0}X̃
j
s

)
dW i

s ,

we have

JN,1(T ) =
a

σ

1

N

N∑
i=1

N∑
j=1
j 6=i

∫ T

0

X̃j
sdW

i
s

+
a

σ

1

pN

N∑
i=1

N∑
j=1
j 6=i

(gij − p)X̃j
sdW

i
s +R1

(3.60)

with

EPNR2
1 ≤

M logN

N
.

Proof.

JN,1(t) =
a

σ

N∑
i=1

N∑
j=1

∫ t

0

(
1

Ni

gij1{Ni>0}X̃
j
s

)
dW i

s

=
a

σ

N∑
i=1

N∑
j=1
j 6=i

∫ t

0

(
1

pN

)
gijX̃

j
sdW

i
s

+
a

σ

N∑
i=1

N∑
j=1
j 6=i

∫ t

0

(
1{Ni>0}

Ni

− 1

pN

)
gijX̃

j
sdW

i
s

︸ ︷︷ ︸
1©

(3.61)
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Because
(
1{Ni>0}
Ni

− 1
pN

)
gij and X̃j

s are independent, we have

EPN 1©2 =
a2

σ2

N∑
i=1

N∑
j=1
j 6=i

∫ T

0

EPN
[(

1{Ni>0}

Ni

− 1

pN

)
gijX̃

j
s

]2

ds

=
a2

σ2

N∑
i=1

N∑
j=1
j 6=i

∫ T

0

EPN

[(
1{Ni>0}

Ni

− 1

pN

)2

g2
ij

]
EPN

[
X̃j
s

]2

ds

≤M1

N∑
i=1

N∑
j=1
j 6=i

EPN
(
1{Ni>0}

Ni

− 1

pN

)2

≤M1E
PN (pN1{Ni>0} −Ni)

2

p2N2
i

=M1

 1

p2
PN(Ni = 0) + EPN (pN −Ni)

2

p2N2
i

1{Ni>0}︸ ︷︷ ︸
2©

 ,

(3.62)

where

2© =EPN (pN −Ni)
2

p2N2
i

1{Ni>0}1{|Ni−pN |>
√

2(N−1) logN}

+ EPN (pN −Ni)
2

p2N2
i

1{Ni>0}1{|Ni−pN |≤
√

2(N−1) logN}

≤N
2

p2
PN(|Ni − pN | >

√
2(N − 1) logN)

+
2(N − 1) logN

p2(pN −
√

2(N − 1) logN)2

≤ N2

p2

2

N4︸ ︷︷ ︸
by Hoeffding’s inequality

+
2(N − 1) logN

p2 p
2

4
N2

≤M2
logN

N
.

(3.63)
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Note that, in the first inequality above,

(pN −Ni)
2

p2N2
i

1{Ni>0} ≤
N2

p2

achieved by the fact that pN ≤ N and 1 ≤ Ni ≤ N . Therefore,

EPN 1©2 ≤M1

[
1

p2
(1− p)N−1 +

M2 logN

N

]
≤ M3 logN

N
.

(3.64)

In sum, we have

JN,1(T ) =
a

σ

1

N

N∑
i=1

N∑
j=1
j 6=i

∫ T

0

X̃j
sdW

i
s

+
a

σ

1

pN

N∑
i=1

N∑
j=1
j 6=i

(gij − p)X̃j
sdW

i
s +R1

with

EPNR2
1 ≤

M logN

N
.

Next, define

U1 =
a

σ

1

pN

N∑
i=1

N∑
j=1
j 6=i

(gij − p)X̃j
sdW

i
s .

Note that, here EPN (U1|W,X) = 0.

Proposition 14. One has

EPN

W,X

[
eitU1

]
→ e−

1
2
t2σ2

1 → e−
1
2
t2σ̃2

,
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where

σ2
1 := EPN

W,X

[
U2

1

]
and

σ̃2 :=
1− p
p

a2

σ2

∫ T

0

σ2
sds, σ2

s = EPN (X̃1
s )2.

Proof. Firstly, rewrite U1 as

U1 =
a

σ

1

pN

∑∑
i<j

[∫ T

0

(gij − p)X̃j
sdW

i
s +

∫ T

0

(gji − p)X̃ i
sdW

j
s

]
.

Note that, for different pairs (i, j) with i < j, (gij) are independent. Then

σ2
1 =EPN

W,X̃

[
U2

1

]
=
a2

σ2

1

p2N2
EPN

W,X

∑∑
i<j

[∫ T

0

(gij − p)X̃j
sdW

i
s +

∫ T

0

(gji − p)X̃ i
sdW

j
s

]2

.

Hence, by Itô Isometry, we have

EPN
[
σ2

1

]
=
a2

σ2

1

p2N2

∑∑
i<j

[
EPN

(∫ T

0

(gij − p)X̃j
sdW

i
s

)2

+ EPN
(∫ T

0

(gji − p)X̃ i
sdW

j
s

)2
]2

=
a2

σ2

2

p2N2

∑∑
i<j

∫ T

0

EPN
[
(g12 − p)X̃1

s

]2

ds

=
a2

σ2

2

p2N2

(
N

2

)
p(1− p)

∫ T

0

EPN (X̃1
s )2ds

=
1− p
p

a2

σ2

N − 1

N

∫ T

0

σ2
sds

=
N − 1

N
σ̃2,

where

σ̃2 =
1− p
p

a2

σ2

∫ T

0

σ2
sds.
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Next, let us analyze the variance

VarP
N [
σ2

1

]
=EPN

[
σ2

1 − EPN
(
σ2

1

)]2

=
a4

σ4

1

p4N4

∑∑
i<j

EPN
{

EPN

W,X

[∫ T

0

(gij − p)X̃j
sdW

i
s +

∫ T

0

(gji − p)X̃ i
sdW

j
s

]2

− EPN
[∫ T

0

(gij − p)X̃j
sdW

i
s +

∫ T

0

(gji − p)X̃ i
sdW

j
s

]2}
≤M a4

σ4

1

p4N4

(
N

2

)
.

That is, VarP
N

[σ2
1]→ 0 as N →∞, which implies σ2

1 → σ̃2 as N →∞ in L2.

Therefore, by Lyapunov CLT, we have the result as desired.

Define

U2 =
a

σ

1

N

N∑
i=1

N∑
j=1
j 6=i

∫ T

0

X̃j
sdW

i
s .

By Theorem 1 in [92], we have

U2 =⇒ a

σ
I2(h2),

where

h2(ω, ω′) =
1

2
(h(ω, ω′) + h((ω′, ω))),

h(ω, ω′) =

∫ T

0

X̃s(ω)dWs(ω
′)

and I2(h2) is h2’s multiple wiener integral. Here, the symbol “ =⇒ ” is used to denote

convergence in distribution.

Preliminary Analysis of JN,2(t):

Before we proceed with the analysis regarding the term JN,2(t), let us firstly prove the

following Lemma, which will be used later.
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Lemma 4. One has

EPN
(
N2

1{N1>0}

N2
1

− 1

p2

)2

≤M
logN

N
. (3.65)

Proof. Conditional on the value of N1, one has

EPN
(
N2

1{N1>0}

N2
1

− 1

p2

)2

=EPN

((
N2

1{N1>0}

N2
1

− 1

p2

)2 ∣∣∣∣{N1 > 0}

)
PN(N1 > 0)

+ EPN

((
N2

1{N1>0}

N2
1

− 1

p2

)2 ∣∣∣∣{N1 = 0}

)
PN(N1 = 0)

= EPN

((
N2

N2
1

− 1

p2

)2 ∣∣∣∣{N1 > 0}

)
︸ ︷︷ ︸

A

PN(N1 > 0) +
1

p4
PN(N1 = 0).

(3.66)

In the following, we assume N1 > 0 and work on term A.

A =EPN
(

(p2N2 −N2
i )2

p4N4
i

)
1{|Ni−pN |>

√
3(N−1) logN}

+ EPN
(

(p2N2 −N2
i )2

p4N4
i

)
1{|Ni−pN |≤

√
3(N−1) logN}

≤N
4

p4
PN

(
|Ni − pN | >

√
3(N − 1) logN

)
+

3(N − 1) logN · ((p+ 1)N)2

p4 ·
(
pN −

√
3(N − 1) logN

)4

≤ 2N4

p4N6
+

(3× 4)N3 logN

p4 ·
(
pN
2

)4

≤M logN

N
,

(3.67)
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where we used Hoeffding’s inequality and the quantity that

(p2N2 −N2
i )2 =(pN −Ni)

2 · (pN +Ni)
2

≤3(N − 1) logN · ((1 + p)N)2.

(3.68)

Now we are ready to give the analysis result regarding the term JN,2(t) in the following

proposition.

Proposition 15. For

JN,2(t) =
a2

σ2

N∑
i=1

∫ t

0

(
1

Ni

N∑
j=1

gij1{Ni>0}X̃
j
s

)2

ds,

we have

JN,2(T ) =
a2

pσ2

∫ T

0

(σs)
2ds+

a2

σ2
· N − 2

N2

∑∑
i 6=j

∫ T

0

X̃ i
sX̃

j
sds+R2 (3.69)

with

EPNR2
2 ≤

M logN

N
,

where

σ2
s = EPN (X̃ i

s)
2, i = 1, · · · , N.
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Proof.

JN,2(T ) =
a2

σ2

N∑
i=1

N∑
j=1

N∑
k=1

∫ T

0

(
1{Ni>0}

N2
i

gijgikX̃
j
sX̃

k
s

)
ds

=
a2

σ2

N∑
i=1

N∑
j=1

∫ T

0

(
1{Ni>0}

N2
i

)
gij(X̃

j
s )

2ds︸ ︷︷ ︸
3©

+
a2

σ2

N∑
i=1

N∑
j=1

N∑
k=1
k 6=j

∫ T

0

1{Ni>0}

N2
i

gijgikX̃
j
sX̃

k
s ds

︸ ︷︷ ︸
4©

(3.70)

Step 1. Let us firstly deal with term 3©

3© =
N∑
i=1

N∑
j=1

∫ T

0

(
1{Ni>0}

N2
i

)
gijE

PN (X̃j
s )

2ds

+
N∑
i=1

N∑
j=1

∫ T

0

(
1{Ni>0}

N2
i

)
gij

[
(X̃j

s )
2 − EPN (X̃j

s )
2
]
ds︸ ︷︷ ︸

5©

(3.71)

Now let us work on the major term of 3©

N∑
i=1

N∑
j=1

1{Ni>0}

N2
i

gij

∫ T

0

EPN (X̃j
s )

2ds

=

∫ T

0

σ2
sds ·

N∑
i=1

1{Ni>0}

Ni

=
1

p

∫ T

0

σ2
sds+

a2

σ2

∫ T

0

σ2
sds

N∑
i=1

(
1{Ni>0}

Ni

− 1

Np

)
︸ ︷︷ ︸

B

,

(3.72)

where

σ2
s = EPN (X̃ i

s)
2, i = 1, · · · , N.
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By previous results in (3.62) and (3.63), we have

EPNB2 ≤ M logN

N
. (3.73)

Next, we work on the term 5©.

EPN 5©2 =EPN
N∑
i1=1

N∑
j1=1

N∑
i2=1

N∑
j2=1

∫ T

0

(
1{Ni1>0}

N2
i1

)
gi1j1

[
(X̃j1

s )2 − EPN (X̃j1
s )2
]
ds

×
∫ T

0

(
1{Ni2>0}

N2
i2

)
gi2j2

[
(X̃j2

t )2 − EPN (X̃j2
t )2
]
dt.

(3.74)

Note that, the j1 6= j2 terms will disappear, for the reason that X̃s and gij are independent

and

EPN
[
(X̃j2

t )2 − EPN (X̃j2
t )2
]

= 0.

Denote

λ = EPN
{∫ T

0

[
(X̃1

t )2 − EPN (X̃1
t )2
]
ds

}2
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EPN 5©2 =λ
N∑
i1=1

N∑
i2=1

N∑
j=1

EPN
[
1{Ni1>0}

N2
i1

1{Ni2>0}

N2
i2

gi1jgi2j

]

=λ
N∑
i=1

N∑
j=1

EPN
[
1{Ni>0}

N4
i

gij

]

+ λ
N∑
i1=1

N∑
i2=1
i2 6=i1

N∑
j=1

EPN
[
1{Ni1>0}

N2
i1

1{Ni2>0}

N2
i2

gi1jgi2j

]

≤λ
N∑
i=1

EPN
[
1{Ni>0}

N3
i

]
+ λ

N∑
i1=1

N∑
i2=1
i2 6=i1

N∑
j=1

EPN
[
1{Ni1>0}

N2
i1

1{Ni2>0}

N2
i2

]

≤NλEPN
[

23

(N1 + 1)3

]
+N3λEPN

[
1{N1>0}

N2
1

1{N2>0}

N2
2

]
≤ 8Nλ

33

N3p3︸ ︷︷ ︸
Lemma 5.1 in [80]

+N3λEPN

[
4

(Ñ1 + 1)2

4

(Ñ2 + 1)2

]

=
8 · 33λ

N2p3
+ 16N3λ

(
22

(N − 1)2p2

)2

︸ ︷︷ ︸
Lemma 5.1 in [80]

≤M4

N
,

(3.75)

where Ñ1 := N1 − g12 and Ñ2 := N2 − g21, and thus Ñ1 and Ñ2 are independent, in

addition Ñ1, Ñ2 ∼ Binomial(N − 2, p). Therefore,

3© =
1

p

∫ T

0

σ2
sds+ 5©+ B, (3.76)

where

EPN [ 5©2 + B2] ≤ M logN

N
.
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Step 2. Now, let us handle term 4©

4© =
N∑
i=1

N∑
j=1

N∑
k=1
k 6=j

1

p2N2
gijgik

∫ T

0

X̃j
sX̃

k
s ds

+
N∑
i=1

N∑
j=1

N∑
k=1
k 6=j

(
1{Ni>0}

N2
i

− 1

p2N2

)
gijgik

∫ T

0

X̃j
sX̃

k
s ds

︸ ︷︷ ︸
6©

.
(3.77)

Next, let us firstly take care of term 6© in term 4©:

EPN 6©2 ≤
N∑
i1=1

N∑
i2=1

N∑
j=1

N∑
k=1
k 6=j

EPN
[(

1{Ni1>0}

N2
i1

− 1

p2N2

)(
1{Ni2>0}

N2
i2

− 1

p2N2

)
gi1jgi1kgi2jgi2k

]

× EPN
(∫ T

0

X̃j
sX̃

k
s ds

)2

︸ ︷︷ ︸
µ:=

≤ µ

N2
EPN

N∑
i1=1

N∑
i2=1

(
N2

1{Ni1>0}

N2
i1

− 1

p2

)(
N2

1{Ni2>0}

N2
i2

− 1

p2

)

≤ µ

2N2
EPN

N∑
i1=1

N∑
i2=1

(N2
1{Ni1>0}

N2
i1

− 1

p2

)2

+

(
N2

1{Ni2>0}

N2
i2

− 1

p2

)2


=
µ

N2
N2EPN

(
N2

1{N1>0}

N2
1

− 1

p2

)2

≤M logN

N
,

(3.78)

where the last inequality follows by Lemma 4.
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Next, we go back to the major term of 4©

N∑
i=1

N∑
j=1

N∑
k=1
k 6=j

1

p2N2
gijgik

∫ T

0

X̃j
sX̃

k
s ds

=
∑∑∑
j 6=i k 6=i,j

1

N2

∫ T

0

X̃j
sX̃

k
s ds+

∑∑∑
j 6=i k 6=i,j

gijgik − p2

p2N2

∫ T

0

X̃j
sX̃

k
s ds︸ ︷︷ ︸

7©

,
(3.79)

where 7© can be bounded as the following

EPN 7©2 =
N∑
i1=1

N∑
i2=1

N∑
j=1

j 6=i1,i2

N∑
k=1

k 6=i1,i2,j

EPN
[
gi1jgi1k − p2

p2N2
· gi2jgi2k − p

2

p2N2

]

× EPN
(∫ T

0

X̃j
sX̃

k
s ds

)2

=µ
∑∑∑
j 6=i k 6=i,j

EPN
(
gijgik − p2

p2N2

)2

≤M
N
.

(3.80)

Therefore,

4© =
∑∑∑
j 6=i k 6=i,j

1

N2

∫ T

0

X̃j
sX̃

k
s ds+ 6©+ 7©, (3.81)

where

EPN [ 6©2 + 7©2] ≤ M logN

N
.

In sum of (3.76) and (3.81), we have

JN,2(T ) =
a2

pσ2

∫ T

0

(σs)
2ds+

a2

σ2
· N − 2

N2

∑∑
j 6=k

∫ T

0

X̃j
sX̃

k
s ds+R2

115



Topic in Mean Field Games on Random Graph Chapter 3

with

EPNR2
2 ≤

M logN

N
.

Next, define

U3 =
a2

σ2
· N − 2

N2

∑∑
j 6=i

∫ T

0

X̃ i
sX̃

j
sds.

By Theorem 1 in [92], we have

U3 =⇒ a2

σ2
I2(h̃2),

where

h̃2(ω, ω′) =

∫ T

0

X̃s(ω)X̃s(ω
′)ds

and I2(h̃2) is h̃2’s multiple wiener integral.

Derivation of Central Limit Theorem:

Denote C := C([0, T ] : R), the space of continuous functions from [0, T ] to R, endowed

with the uniform topology; denote C2 := C × C ; denote ν ∈ P(C2), the common law

of (W i, X̃ i) for i = 1, · · · , N , where the dynamics of X̃ i are given by (3.48); recall

that µ is the law of X̃ i and let L2(C , µ) be the space of measurable functions φ such

that
∫

C
φ2(x)µ(dx) < ∞; denote L2

c(C , µ) as the space of all functions φ such that∫
C
φ(x)µ(dx) = 0; define the canonical processes V∗ := (W∗(ω), X∗(ω)) := (ω1, ω2) for

ω = (ω1, ω2) ∈ C2.

Recall that

UN(φ) =
φ(X̃1

T ) + φ(X̃2
T ) + · · ·+ φ(X̃N

T )√
N

,
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where φ ∈ L2
c(C , µ). Denote

ϕ(t, s1, s2) = exp

(
−1

2
t2σ̃2

)
ψ(s1, s2),

where ψ(s1, s2) is the characteristic function of
(
Z(φ), a

σ
I2(h2))− a2

2σ2 I2(h̃2)
)

, and

Z(φ) ∼ N

(
0,EPN

(
φ(X̃1

T )
)2
)
.

Denote ϕU(t, s1, s2) as the characteristic function of
(
U1, U

N(φ), U2 − 1
2
U3

)
. It follows

from Theorem 1 in [92] that

EPN exp

(
i

[
[s1U

N(φ) + s2

(
U2 −

1

2
U3

)])
→ ψ(s1, s2),

as N →∞. Therefore,

ϕU(t, s1, s2)− ϕ(t, s1, s2)

=EPN
{

exp

(
itU1 + i

[
s1U

N (φ) + s2

(
U2 −

1

2
U3

)])
− exp

(
−1

2
t2σ̃2

)
ψ (s1, s2)

}
=EPN

{
exp

(
i

[
s1U

N (φ) + s2

(
U2 −

1

2
U3

)])
EPN

W,X̃
exp (itU1)− exp

(
−1

2
t2σ̃2

)
ψ (s1, s2)

}
=EPN

{
exp

(
i

[
s1U

N (φ) + s2

(
U2 −

1

2
U3

)])(
EPN

W,X̃
exp (itU1)− exp

(
−1

2
t2σ̃2

))}
+

{
EPN exp

(
i

[
s1U

N (φ) + s2

(
U2 −

1

2
U3

)])
− ψ (s1, s2)

}
exp

(
−1

2
t2σ̃2

)
,

which converges to 0 as N goes to infinity.

Therefore,

(U1, U
N(φ), U2 −

1

2
U3) =⇒ (Z,Z(φ),

a

σ
I2(h2))− a2

2σ2
I2(h̃2)),

117



Topic in Mean Field Games on Random Graph Chapter 3

with Z ∼ N(0, σ̃2). Hence,

(UN(φ), JN,1(T )− 1

2
JN,2(T )) =⇒(Z(φ), Z +

a

σ
I2(h2))− a2

2σ2
I2(h̃2)) +

a2

2pσ2

∫ T

0

σ2
sds)

=(Z(φ), Z +
1

2
I2(η) +

a2

2pσ2

∫ T

0

σ2
sds)

where

η(ω, ω′) =
a

σ
(h(ω, ω′) + h(ω′, ω))− a2

2σ2
ψ2(ω, ω′).

Define integral operator A on L2(C2, ν) as

Af(ω) =
a

σ

∫
C2

(∫ T

0

X(ω)dW (ω′)

)
f(ω′)v(dω′),

for f ∈ L2(C2, ν) and ω ∈ C2. Then

Trace(AA∗) =
a2

σ2

∫
C2×C2

(∫ T

0

X(ω)dW (ω′)

)2

v(dω)v(dω′)

=
a2

σ2

∫ T

0

EPN X̃2
sds

=
a2

σ2

∫ T

0

σ2
sds.

Note that

σ̃2 =
a2

2pσ2

∫ T

0

σ2
sds− Trace(AA∗).

Next, recall that

UN(φ) =
φ(X̃1,N

T ) + φ(X̃2,N
T ) + · · ·+ φ(X̃N,N

T )√
N

.

Also recall that, by Girsanov Theorem, (X̃1, · · · , X̃N , gij) has the same distribution under
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QN as (X̃1,N , · · · , X̃N,N , gij) under P, we have

E exp(iUN(φ)) =EPN exp

[
iUN(φ) + JN,1(T )− 1

2
JN,2(T )

]
→EPN exp

[
iZ(φ) +

1

2
I2(η)− 1

2
Trace(AA∗) + Z − 1

2
σ̃2

]
=EPN exp

[
iZ(φ) +

1

2
I2(η)− 1

2
Trace(AA∗)

]
· EPN exp

[
Z − 1

2
σ̃2

]
=EPN exp

[
iZ(φ) +

1

2
I2(η)− 1

2
Trace(AA∗)

]
= exp

[
−1

2

∥∥(I − A)−1φ
∥∥
L2(C2,ν)

]
,

for φ = φ(X∗) ∈ L2(C2, ν), where we have used the property that Z and (Z(φ), I2(η))

are independent,

EPN exp [Z] = exp

[
1

2
σ̃2

]
and the last equality follows by the classical result in Shiga–Tanaka [90].

Theorem 8 (Central Limit Theorem). UN(φ) converges to a mean 0 Gaussian field

{U(φ) : φ ∈ L2
c(C , µ)} in the sense of finite dimensional distribution such that,

E(U(φ)U(ψ)) = 〈(I − A)−1φ , (I − A)−1ψ〉L2(C2,ν),

for φ, ψ ∈ L2
c(C , µ) and φ,ψ ∈ L2(C2, ν), as N goes to infinity.
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3.7 Convergence Results under Random Graph

3.7.1 Preliminary result for convergence

For (t,x) ∈ [0, T ]× RN and i = 1, 2, · · · , N , we set

uN,i(t,x) := U(t, xi, µ̄N,ix ), µ̄N,ix =
1

Ni

N∑
j=1

gijδxj .

In the following, we show that uN,i is almost a solution to the quasilinear parabolic system

(3.20):

Proposition 16. One has for any i ∈ 1, · · · , N ,

∂tu
N,i(t,x) +

N∑
j=1

(
−uN,j(t,x) + q

(
1

Nj

N∑
k=1

gjkx
k − xj

))
∂xju

N,i(t,x)

+
σ2

2

N∑
j=1

∂2
xju

N,i(t,x)− quN,i(t,x) + (ε− q2)

(
xi − 1

Ni

N∑
j=1

gijx
j

)
+ rN,i(t,x) = 0,

uN,i(T,x) = c

(
xi − 1

Ni

N∑
j=1

gijx
j

)
,

(3.82)

with

rN,i(t,x) = ηt(ηt + q)

(
− 1

Ni

N∑
k=1

gikx
k +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlx
l

)
.
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Remark 9. Note that even under complete graph,

rN,i(t,x) =ηt(ηt + q)

− 1

N − 1

N∑
k=1
k 6=i

xk +
1

(N − 1)2

N∑
j=1
j 6=i

N∑
l=1
l 6=j

xl


6=0.

Proof. Recall that the master equation is given by

∂tU(t, x, µ) +

[
− U(t, x, µ) + q

(∫
R
vdµ(v)− x

)]
∂xU(t, x, µ) +

σ2

2
∂2
xU(t, x, µ)

+

∫
R

[
− U(t, v, µ) + q

(∫
R
vdµ(v)− v

)]
∂µU(t, x, µ)(v)dµ(v)

+
σ2

2

∫
R
∂v∂µU(t, x, µ)(v)dµ(v)− qU(t, x, µ) + (ε− q2)

(
x−

∫
R
vdµ(v)

)
= 0,

therefore, one has at a point (t, xi, µ̄N,ix ):

∂tu
N,i +

[
− uN,i + q

(∫
R
vdµ̄N,ix (v)− xi

)]
∂xU(t, xi, µ̄N,ix ) +

σ2

2
∂2
xU(t, xi, µ̄N,ix )

+

∫
R

[
− U(t, v, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− v

)]
∂µU(t, xi, µ̄N,ix )(v)dµ̄N,ix (v)

+
σ2

2

∫
R
∂v∂µU(t, xi, µ̄N,ix )(v)dµ̄N,ix (v)− quN,i + (ε− q2)

(
xi −

∫
R
vdµ̄N,ix (v)

)
= 0.

With the explicit form

U(t, xi, µ̄N,ix ) = ηt(x
i − 1

Ni

N∑
j=1

gijx
j),
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we have

∂xiu
N,i(t,x) =∂xU(t, xi, µ̄N,ix ),

∂xju
N,i(t,x) =

gij
Ni

∂µU(t, xi, µ̄N,ix )(xj), j 6= i,

∂2
xiu

N,i(t,x) =∂2
xU(t, xi, µ̄N,ix ),

∂2
xju

N,i(t,x) =
gij
Ni

∂v∂µU(t, xi, µ̄N,ix )(xj), j 6= i.

Note that∫
R

[
− U(t, v, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− v

)]
∂µU(t, xi, µ̄N,ix )(v)dµ̄N,ix (v)

=
1

Ni

∑
j 6=i

gij

[
− U(t, xj, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− xj

)]
∂µU(t, xi, µ̄N,ix )(xj)

=
∑
j 6=i

[
− U(t, xj, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− xj

)]
∂xju

N,i(t,x)

=
∑
j 6=i

[
− U(t, xj, µ̄N,jx ) + q

(∫
R
vdµ̄N,jx (v)− xj

)]
∂xju

N,i(t,x) + rN,i(t,x),

(3.83)

where

rN,i(t,x) :=
∑
j 6=i

[
− U(t, xj, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− xj

)
+ U(t, xj, µ̄N,jx )− q

(∫
R
vdµ̄N,jx (v)− xj

)]
∂xju

N,i(t,x).

(3.84)

By the explicit form of uN,i(t,x), we know that, for j 6= i,

∂xju
N,i(t,x) = − ηt

Ni

gij,
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and

− U(t, xj, µ̄N,ix ) + q

(∫
R
vdµ̄N,ix (v)− xj

)
+ U(t, xj, µ̄N,jx )− q

(∫
R
vdµ̄N,jx (v)− xj

)
=(ηt + q)

(
1

Ni

N∑
k=1

gikx
k − 1

Nj

N∑
l=1

gjlx
l

)
.

(3.85)

Therefore, we know that

rN,i(t,x) =− ηt(ηt + q)

Ni

N∑
j=1

gij

(
1

Ni

N∑
k=1

gikx
k − 1

Nj

N∑
l=1

gjlx
l

)

=ηt(ηt + q)

(
− 1

Ni

N∑
k=1

gikx
k +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlx
l

)
.

(3.86)

Next, note that

σ2

2

∫
R
∂v∂µU(t, xi, µ̄N,ix )(v)dµ̄N,ix (v)

=
σ2

2Ni

∑
j 6=i

gij∂v∂µU(t, xi, µ̄N,ix )(xj) =
∑
j 6=i

σ2

2
∂2
xju

N,i(t,x).
(3.87)

Therefore,

∂tu
N,i(t,x) +

N∑
j=1

(
−uN,j(t,x) + q

(
1

Nj

N∑
k=1

gjkx
k − xj

))
∂xju

N,i(t,x)

+
σ2

2

N∑
j=1

∂2
xju

N,i(t,x)− quN,i(t,x) + (ε− q2)

(
xi − 1

Ni

N∑
j=1

gijx
j

)
+ rN,i(t,x) = 0,

(3.88)
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with

rN,i(t,x) = ηt(ηt + q)

(
− 1

Ni

N∑
k=1

gikx
k +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlx
l

)
.

Let us firstly suppose the rate of convergence of term rN,i(t,x) is C(N), a function

C(·) depending on N . The importance of the bound of this term will be revealed in

the following analysis. As an appetizer, we firstly give a preliminary analysis of bound

O(N−1/2) in the following Remark.

Remark 10. One has

1

N

N∑
i=1

E

(
− 1

Ni

N∑
k=1

gikX
k
s +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

)2

≤ C√
N

and then

1

N

N∑
i=1

E
(
rN,i(t,x)

)2 ≤ C√
N
.

This can be seen from below:

1

N

N∑
i=1

E

(
− 1

Ni

N∑
k=1

gikX
k
s +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

)2

=E
1

N

N∑
i=1

{
1{Ni≥1}

N2
i

N∑
j=1

N∑
l=1

gijgilX
j
sX

l
s −

21{Ni≥1}

N2
i

N∑
k=1

gikX
k
s

N∑
j=1

gij
1

Nj

N∑
l=1

gilX
l
s

+
1{Ni≥1}

N2
i

(
N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

)2}
=E ( 1©− 2× 2©+ 3©) ,

(3.89)
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with

1© =
1

N2

N∑
j,l=1

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gijgil − 1

]
Xj
sX

l
s, (3.90)

2© =
1

N2

N∑
k,l=1

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gikgil

(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij

)
− 1

]
Xk
sX

l
s, (3.91)

Firstly, let’s work on term 1©. By Cauchy–Schwartz inequality, we have

E ( 1©) ≤ 1

N2


N∑

j,l=1

E

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gijgil − 1

]2


1/2

·

[
N∑

j,l=1

E(Xj
sX

l
s)

2

]1/2

=

 1

N2

N∑
j,l=1

E

[
1

N

N∑
i=1

(
N2

N2
i

1{Ni≥1} −
1

p2

)
gijgil +

1

p2

(
1

N

N∑
i=1

gijgil − p2

)]2


1/2

· 1

N

[
N∑
j=1

E(Xj
s )

2

]1/2

≤C

 1

N2

N∑
j,l=1

E

[
1

N

N∑
i=1

(
N2

N2
i

1{Ni≥1} −
1

p2

)]
+

1

p4
E

(
1

N

N∑
i=1

gijgil − p2

)2


1/2

≤C

[
E

1

N

N∑
i=1

(
N2

N2
i

1{Ni≥1} −
1

p2

)2

+
C

N

]1/2

≤ C√
N
.

(3.92)
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Term 2© can be tackled in the same way, using Cauchy–Schwartz inequality.

E ( 2©) ≤C

 1

N2

N∑
k,l=1

E

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gikgil

(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij

)
− 1

]2


1/2

≤C
{

1

N2

N∑
k,l=1

E

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gikgil

(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)

+

(
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gikgil − 1

)]2}1/2

≤C
{

1

N2

N∑
k,l=1

E

[
1

N

N∑
i=1

N2

N2
i

1{Ni≥1}gikgil

(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)
+

C√
N

]2}1/2

≤C
{

1

N2

N∑
k,l=1

E

[
1

N

N∑
i=1

(
N2

N2
i

1{Ni≥1} −
1

p2

)(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)

+
1

p2

1

N

N∑
i=1

(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)]2}1/2

+
C√
N

=E

[
1

N

N∑
i=1

(
N2

N2
i

1{Ni≥1} −
1

p2

)(
1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)]2

≤ 1

N

N∑
i=1

E

(
N2

N2
i

1{Ni≥1} −
1

p2

)2
(

1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)2

≤

[
1

N

N∑
i=1

E

(
N2

N2
i

1{Ni≥1} −
1

p2

)4
]1/2

·

( 1

N

N∑
j=1

N

Nj

1{Nj≥1}gij − 1

)4
1/2

= I© · II©,

(3.93)

where

I© ≤ (
C

N2
)1/2 =

C

N
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and

II© =
1

N

N∑
i=1

E

[
1

N

N∑
j=1

(
N

Nj

1{Nj≥1} −
1

p

)
gij +

1

pN

N∑
j=1

(gij − p)

]4

≤C
N

N∑
i=1

E

[
1

N

N∑
j=1

(
N

Nj

1{Nj≥1} −
1

p

)]4

+
C

N

N∑
i=1

E

[
1

pN

N∑
j=1

(gij − p)

]4

≤C
N

N∑
i=1

1

N

N∑
j=1

E

(
N

Nj

1{Nj≥1} −
1

p

)4

+
C

Np4

N∑
i=1

E

[
Ni

N
− p
]4

≤ C

N2
.

Now, we know that

2© ≤ C√
N
.

Similarly, we can prove that

3© ≤ C√
N
.

Proposition 17. One has,

1

N

N∑
i=1

E
[
uN,i(t,Xt)− vN,i(t,Xt)

]2 ≤ C(N),

where C(N) is a function depending on N , the same as the bound of rN,i(t,x).

Proof. We prove this Proposition by firstly analyze under the realization of the random

graph, that is we use the notation E to denote conditional expectation under graph, and

then we take expectation E with respect to probability measure P.
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Recall that the system of FBSDEs of finite player games (3.17) is given by

dX i
t =

[
−Y i

t + q

(
1

Ni

N∑
j=1

gijX
j
t −X i

t

)]
dt+ σdW i

t ,

dY i
t =

[
qY i

t − (ε− q2)

(
X i
t −

1

Ni

N∑
j=1

gijX
j
t

)]
dt+

N∑
j=1

Zi,j
t dW

j
t ,

X i
0 = ξi0, Y i

T = c

(
X i
T −

1

Ni

N∑
j=1

gijX
j
T

)
.

By Itô’s formula and using the parabolic system equation (3.20), we have

dvN,i(t,Xt)

=

{
∂tv

N,i(t,Xt) +
N∑
j=1

[
−vN,j(t,Xt) + q

(
1

Nj

N∑
k=1

gjkX
k
t −X

j
t

)]
∂xjv

N,i(t,Xt)

+
σ2

2

N∑
j=1

∂2
xjv

N,i(t,Xt)

}
dt+ σ

N∑
j=1

∂xjv
N,i(t,Xt)dW

j
t

=

{
qvN,i(t,Xt)− (ε− q2)

(
X i
t −

1

Ni

N∑
j=1

gijX
j
t

)}
dt+ σ

N∑
j=1

∂xjv
N,i(t,Xt)dW

j
t .

(3.94)
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By Itô’s formula and using the result of Proposition 16, we have

duN,i(t,Xt)

=

{
∂tu

N,i(t,Xt) +
N∑
j=1

[
−vN,j(t,Xt) + q

(
1

Nj

N∑
k=1

gjkX
k
t −X

j
t

)]
∂xju

N,i(t,Xt)

+
σ2

2

N∑
j=1

∂2
xju

N,i(t,Xt)

}
dt+ σ

N∑
j=1

∂xju
N,i(t,Xt)dW

j
t

=

{
quN,i(t,Xt)− (ε− q2)

(
X i
t −

1

Ni

N∑
j=1

gijX
j
t

)
− rN,i(t,Xt)

}
dt

+
N∑
j=1

[
−vN,j(t,Xt) + uN,j(t,Xt)

]
∂xju

N,i(t,Xt)dt

+ σ
N∑
j=1

∂xju
N,i(t,Xt)dW

j
t .

(3.95)

Taking difference of the two equations above, we have

duN,i(t,Xt)− vN,i(t,Xt)

=q
(
uN,i(t,Xt)− vN,i(t,Xt)

)
dt− rN,i(t,Xt)dt

+
N∑
j=1

[
−vN,j(t,Xt) + uN,j(t,Xt)

]
∂xju

N,i(t,Xt)dt

+ σ

N∑
j=1

(
∂xju

N,i(t,Xt)− ∂xjvN,i(t,Xt)
)
dW j

t .

(3.96)
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Taking the square and applying Itô’s formula, we have

d
[
uN,i(t,Xt)− vN,i(t,Xt)

]2
=2q

(
uN,i(t,Xt)− vN,i(t,Xt)

)2
dt

− 2
(
uN,i(t,Xt)− vN,i(t,Xt)

)
rN,i(t,Xt)dt

+ 2
(
uN,i(t,Xt)− vN,i(t,Xt)

) N∑
j=1

[
−vN,j(t,Xt) + uN,j(t,Xt)

]
∂xju

N,i(t,Xt)dt

+ σ2

N∑
j=1

(∂xju
N,i(t,Xt)− ∂xjvN,i(t,Xt))

2dt

+ 2σ
(
uN,i(t,Xt)− vN,i(t,Xt)

) N∑
j=1

(∂xju
N,i(t,Xt)− ∂xjvN,i(t,Xt))dW

j
t .

(3.97)

Integrating from t to T , taking expectation and considering the terminal condition

uN,i(T, x) = vN,i(T, x),

we have

E
[
uN,i(t,Xt)− vN,i(t,Xt)

]2
=− 2q

∫ T

t

E
(
uN,i(s,Xs)− vN,i(s,Xs)

)2
ds

+ 2

∫ T

t

E
[(
uN,i(s,Xs)− vN,i(s,Xs)

)
rN,i(s,Xs)

]
ds︸ ︷︷ ︸

M

−2

∫ T

t

E

[(
uN,i(s,Xs)− vN,i(s,Xs)

) N∑
j=1

[
−vN,j(s,Xs) + uN,j(s,Xs)

]
∂xju

N,i(s,Xs)

]
ds︸ ︷︷ ︸

N

− σ2

N∑
j=1

∫ T

t

E(∂xju
N,i(s,Xs)− ∂xjvN,i(s,Xs))

2ds.

(3.98)

130



Topic in Mean Field Games on Random Graph Chapter 3

Recalling that, for s ∈ [t, T ],

uN,i(s,Xs) = ηs(X
i
s −

1

Ni

N∑
j=1

gijX
j
s ),

we have

∂xiu
N,i(s, x) = ηs, ∂xju

N,i(s, x) = − ηs
Ni

gij, j 6= i.

Recalling that

rN,i(t, x) = ηt(ηt + q)

(
− 1

Ni

N∑
k=1

gikx
k +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlx
l

)
,

and notice that

σ2

N∑
j=1

∫ T

t

E|∂xjuN,i(s,Xs)− ∂xjvN,i(s,Xs)|2ds ≥ 0

and

2q

∫ T

t

E
(
uN,i(s,Xs)− vN,i(s,Xs)

)2
ds ≥ 0,

we have

E
[
uN,i(t,Xt)− vN,i(t,Xt)

]2 ≤M+N . (3.99)
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For term M, by convexity argument and by symmetry, we have

M≤C
∫ T

t

E

[∣∣uN,i(s,Xs)− vN,i(s,Xs)
∣∣ · ∣∣∣∣∣− 1

Ni

N∑
k=1

gikX
k
s +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

∣∣∣∣∣
]
ds

≤C
∫ T

t

E
(
uN,i(s,Xs)− vN,i(s,Xs)

)2
ds

+ C

∫ T

t

E

(
− 1

Ni

N∑
k=1

gikX
k
s +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

)2

ds.

For term N , by convexity argument and by symmetry, and by the fact that Ni < N and

gij ≤ 1, we have

N ≤ C
Ni

gij

∫ T

t

E

[
N∑
j=1

∣∣uN,i(s,Xs)− vN,i(s,Xs)
∣∣ · ∣∣uN,j(s,Xs)− vN,j(s,Xs)

∣∣] ds

≤ C
Ni

gij

N∑
j=1

∫ T

t

E
[

1

2

∣∣uN,i(s,Xs)− vN,i(s,Xs)
∣∣2 +

1

2

∣∣uN,j(s,Xs)− vN,j(s,Xs)
∣∣2] ds

≤C
∫ T

t

E
∣∣uN,i(s,Xs)− vN,i(s,Xs)

∣∣2 ds.
By Gronwall’s lemma, we have

E
[
uN,i(t,Xt)− vN,i(t,Xt)

]2 ≤ C

∫ T

t

E

(
− 1

Ni

N∑
k=1

gikX
k
s +

1

Ni

N∑
j=1

gij
1

Nj

N∑
l=1

gjlX
l
s

)2

ds.

Taking expectation under P, we have

1

N

N∑
i=1

E
[
uN,i(t,Xt)− vN,i(t,Xt)

]2 ≤ C(N),

where C(N) is a function depending on N , the same as the bound of rN,i(t,x).
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Proposition 18. One has,

1

N

N∑
i=1

E(X i
t − X̃

i,N
t )2 ≤ C(N),

where C(N) is a function depending on N , the same as the bound of rN,i(t,x).

Proof. Recall that the state processes of finite player games are given by

dX i
t =

[
−Y i

t + q

(
1

Ni

N∑
j=1

gijX
j
t −X i

t

)]
dt+ σdW i

t .

Recall that the weakly interacting particle system on random graph X̃ i,N
t , starting at the

same point as X i
t , i.e. X i

0 = X̃ i,N
0 = ξi0, evolves according to

dX̃ i,N
t =

[
− U(t, X̃ i,N

t , µ̃N,it ) + q(
1

Ni

N∑
j=1

gijX̃
j,N
t − X̃ i,N

t )

]
dt+ σdW i

t , (3.100)

where

µ̃N,it =
1

Ni

N∑
j=1

gijδX̃j,N
t
.
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The dynamics of the difference of the processes X i
t and X̃ i,N

t are given by

d(X i
t − X̃

i,N
t )

=

[
−Y i

t + U(t, X̃ i,N
t , µ̃N,it ) +

q

Ni

N∑
j=1

gij(X
j
t − X̃

j,N
t )− q(X i

t − X̃
i,N
t )

]
dt

=
[(
U(t, X̃ i,N

t , µ̃N,it )− U(t,X i
t , µ̄

N,i
t )
)

+
(
U(t,X i

t , µ̄
N,i
t )− Y i

t

)]
dt

+

[
q

Ni

N∑
j=1

gij(X
j
t − X̃

j,N
t )− q(X i

t − X̃
i,N
t )

]
dt

=

[
(ηt + q)

Ni

N∑
j=1

gij(X
j
t − X̃

j,N
t )− (ηt + q)(X i

t − X̃
i,N
t )

]
dt

+
(
uN,i(t,Xt)− vN,i(t,Xt)

)
dt

(3.101)

Therefore, considering X i
0 = X̃ i,N

0 , a standard estimate using Gronwall’s lemma yields

1

N

N∑
i=1

E(X i
t − X̃

i,N
t )2 ≤ C

N

N∑
i=1

E
(
uN,i(t,Xt)− vN,i(t,Xt)

)2
,

and then

1

N

N∑
i=1

E(X i
t − X̃

i,N
t )2 ≤ C(N)

follows.

Proposition 19. When

1

N

N∑
i=1

E(X i
t − X̃

i,N
t )2 ≤ CN−1−ε,

for ε > 0, X i
t and X̃ i,N

t have the same central limit theorem result.

Proof. Let us focus on the differenceR between the characteristic functions of 1√
N

∑N
i=1X

i
t
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and 1√
N

∑N
i=1 X̃

i,N
t . That is

|R| =

∣∣∣∣∣E exp

(
ia

∑N
i=1X

i
t√

N

)
− E exp

(
ia

∑N
i=1 X̃

i,N
t√

N

)∣∣∣∣∣
=

∣∣∣∣∣∣E
1− exp

ia∑N
i=1

(
X̃ i,N
t −X i

t

)
√
N

 exp

(
ia

∑N
i=1X

i
t√

N

)∣∣∣∣∣∣
≤E

∣∣∣∣∣∣exp

ia∑N
i=1

(
X̃ i,N
t −X i

t

)
√
N

− 1

∣∣∣∣∣∣
≤E


∣∣∣∣∣∣ia
∑N

i=1

(
X̃ i,N
t −X i

t

)
√
N

∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
(
ia

∑N
i=1(X̃

i,N
t −Xi

t)√
N

)2

2

∣∣∣∣∣∣∣∣∣+

a∑N
i=1

(
X̃ i,N
t −X i

t

)
√
N

2


≤a

√√√√E
(∑N

i=1

(
X̃ i,N
t −X i

t

))2

N
+

5

2
a2

E
(∑N

i=1

(
X̃ i,N
t −X i

t

))2

N

≤a

√√√√N
∑N

i=1 E
(
X̃ i,N
t −X i

t

)2

N
+

5

2
a2
N
∑N

i=1 E
(
X̃ i,N
t −X i

t

)2

N

where the second inequality is by Lemma 3.3.7 in [93]. Now we see that when

1

N

N∑
i=1

E(X i
t − X̃

i,N
t )2 ≤ CN−1−ε,

for ε > 0, |R| goes to 0 as N goes to infinity, and hence X i
t and X̃ i,N

t have the same

central limit theorem result.

Therefore, we see that to transfer the CLT result of X̃ i,N
T to X i

T , it suffices to show

that the bound of rN,i(t,x) is O(N−1−ε), which is covered in the paper [63].
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3.8 Open Problems and Future Research

Systemic risk is the risk of collapse of an entire system or market, which refers to the

risks imposed by interlinkages and interdependencies among different parties in the sys-

tem, and related to areas such as Statistics, Finance, Mathematical Finance, Behavioral

Finance, Networks, Counterparty Risk, and etc (see [94]). The rich network of intercon-

nections among firms is one of the most pervasive aspects of the contemporary financial

environment. Linkages between firms can be cyclical in the sense that a default by firm

i on its obligations to firm j through their linkage modeled through gij, may lead firm

j to default on its obligations to firm k through their linkage modeled through gjk, and

eventually a default by firm k may have a feedback effect on firm i. Thus, financial sys-

tem architectures may exhibit cyclical dependence in interfirm obligations. For system

risk analyzed in the case without control, we refer to [95], [96], [97] and [98]. There are

limited literatures which tackled system risk by means of mean field games, see [78, 99].

Mathematically formulate this problem is that, we want to analysis the asymptotic

behavior of 1
N

log P( 1
N

∑N
i=1 X̃

i,N
T ≤ D), as N goes to infinity. There is a close connection

to the analysis in the proof of the functional central limit theorem we have done, which

can be seen through using the Chebyshev’s exponential inequality as the following:

1

N
log P(

1

N

N∑
i=1

X̃ i,N
T ≤ D)

=
1

N
log P(− 1

N

N∑
i=1

X̃ i,N
T ≥ −D)

≤ 1

N
log

EP[exp(− 1
N

∑N
i=1 X̃

i,N
T )]

exp(−D)

=
1

N
log

EQN

[exp(− 1
N

∑N
i=1 X̃

i
T )]

exp(−D)

=
1

N
log

EPN [exp(− 1
N

∑N
i=1 X̃

i
T + JN,1(T )− 1

2
JN,2(T ))]

exp(−D)
.
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Two steps are necessary to finish the system risk analysis: one is to finish the LDP

analysis regarding the weakly interacting particle system X̃ i,N
T , the other is to establish

the so-called “Exponential Equivalence” By Theorem 4.2.13 in [100], we know that as far

as the LDP is concerned, exponentially equivalent measures are indistinguishable. That

is, if an LDP with a good rate function I(·) holds for the probability measures {µ̃Nt },

which are exponentially equivalent to {µ̄Nt }, then the same LDP holds for {µ̄Nt }. By

Definition 4.2.10 in [100], the exponential equivalence is equivalent to

lim
n→∞

1

N
log P( sup

t∈[0,T ]

W2(µ̄Nt , µ̃
N

t ) > ε) = −∞, ∀ε > 0, (3.102)

with

µ̄Nt =
N∑
i=1

X i
T , µ̃

N

t =
N∑
i=1

X̃ i,N
T

in our case, which is to be established in order to transfer the LDP result of X̃ i,N
T to X i

T .
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Appendix to Chapter 1

A.1 Moments of Zt and Xt

A.1.1 Moments of Zt

Proposition 20. The process Zt given by (1.6) has finite moments of any order uniformly

in 0 ≤ δ ≤ 1 for t ≤ T .

The proof is given by Lemma 4.9 in [20]. Thus, for k ∈ Z,

E(0,z)

[∫ T

0

|Zs|kds
]
≤ Ck(T, z), Z0 = z, (A.1)

where Ck(T, z) may depend on (k, T, z) but not on δ.

A.1.2 Moments of Xt

In this subsection, we consider the process Xt evolving according to the SDE,

dXt = rXtdt+ qt
√
ZtXtdWt, X0 = x, (A.2)
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where qt ∈ [d, u] and Zt is the CIR process given by (1.6). In order to show that Xt has

finite moments of any order, we will use a change of measure which will give rise to the

following CIR process

dZ̃t =
(
δκθ − (δκ− nqt

√
δ)Z̃t

)
dt+

√
δ

√
Z̃tdW̃

Z
t , (A.3)

where the parameters κ, θ and δ are the same as the ones in the CIR process given by

(1.6) and n ∈ N.

Denote the moment generating function of the integrated Z̃t process given Z̃s|s=0 = z

by

M̃ δ
z (η) := E(0,z)

[
exp(η

∫ t

0

Z̃sds)

]
, for η ∈ R.

Then, we have the following preliminary result:

Proposition 21. For η ∈ R, M̃ δ
z (η) is bounded uniformly, for δ sufficiently small and

for all t ∈ [0, T ], that is, there exists ε = ε(n, u, d, κ, T, η) > 0 and Ñ(κ, θ, T, z, η) < ∞

such that |M̃ δ
z (η)| ≤ Ñ(κ, θ, T, z, η) <∞, for all δ ≤ ε.

Proof. Note that under the Feller condition 2κθ ≥ 1, the Z̃t process is strictly positive as

it is the original CIR process given by (1.6) in the case n = 0, and for n ≥ 1 the drift is

positive for δ small enough. Therefore, M̃ δ
z (η) ≤ 1 for η ≤ 0, and we only need to focus

on η > 0 in the following. Also, since t = 0 is a trivial case, we concentrate on t ∈ (0, T ]

in the proof. By Corollary 3 of [101], we know that

M̃ δ
z (η) = Ψ(η, t)e−zΞ(η,t),
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where

Ψ(η, t) =

(
b̄ebt/2

b̄ e
b̄t/2+e−b̄t/2

2
+ b e

b̄t/2−e−b̄t/2
2

)2κθ

,

Ξ(η, t) = −2η

(
eb̄t/2−e−b̄t/2

2

b̄ e
b̄t/2+e−b̄t/2

2
+ b e

b̄t/2−e−b̄t/2
2

)
,

and

b̄ =
√
b2 − 2ηδ, b = δκ− nqt

√
δ.

Note that the sign of b depends on the value of n ∈ N. That is, when n ≥ 1, b is

negative for δ sufficiently small, while when n = 0, b is always positive. We also need to

discuss the sign of the term b2 − 2ηδ, which determines whether b̄ is a real number or a

complex number.

Case n ≥ 1 (b < 0).

• If b2 − 2ηδ ≥ 0, then b̄ ≥ 0. Note that when δ < (nd/κ)2, we have

b̄t = t

√
(nqt
√
δ − δκ)2 − 2ηδ ≤ |b|t ≤ nqt

√
δt ≤ nu

√
δT,

and there exists ε1 = ε1(n, u, d, κ, T ) such that when δ < ε1, we have b̄t ≤ 1 and

|bt + O [(bt)2] | < 1
2
. Therefore, by the fact that ebt/2 ≤ 1 and eb̄t/2+e−b̄t/2

2
≥ 1, we
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have

Ψ(η, t) =

 ebt/2

eb̄t/2+e−b̄t/2

2
+ b

b̄t+O[(b̄t)2]
b̄

2κθ

=

(
ebt/2

eb̄t/2+e−b̄t/2

2
+ bt+O [(bt)2]

)2κθ

≤
(

1

1− 1
2

)2κθ

= 22κθ

and

|Ξ(η, t)| =

∣∣∣∣∣−2η

(
b̄t+O

[
(b̄t)2

]
b̄ e

b̄t/2+e−b̄t/2

2
+ b{b̄t+O

[
(b̄t)2

]
}

)∣∣∣∣∣ =

∣∣∣∣∣−2η

(
t+O

[
b̄t2
]

eb̄t/2+e−b̄t/2

2
+ bt+O [(bt)2]

)∣∣∣∣∣
≤ 2η

t+ t

1− 1
2

= 8ηt.

Therefore, for δ < ε1, we have

M̃ δ
z (η) ≤ 22κθe8ηTz.

• If b2 − 2ηδ < 0, then b̄ = iv, where v =
√

2ηδ − b2. Note that 0 < vt ≤
√

2ηδT

and
∣∣∣ sin(vt/2)

vt/2

∣∣∣ ≤ 1. There exists ε2 = ε2(n, u, T, η) such that when δ < ε2, we have

cos (vt/2) ≥ 3
4

and |bt| ≤ 1. Therefore,

Ψ(η, t) =

(
ivebt/2

iv cos(vt/2) + ib sin(vt/2)

)2κθ

=

 ebt/2

cos(vt/2) + bt
2

(
sin(vt/2)
vt/2

)
2κθ

,

Ξ(η, t) = −2η

(
sin(vt/2)

v cos(vt/2) + b sin(vt/2)

)
= −2η

(
t

2 cos(vt/2) vt/2
sin(vt/2)

+ bt

)

and

M̃ δ
z (η) = Ψ(η, t)e−zΞ(η,t) ≤

(
1

3
4
− 1

2

)2κθ

exp(
2ηTz

2× 3
4
− 1

) = 42κθe4ηTz.
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Case n = 0 (b > 0).

• If b2 − 2ηδ ≥ 0, then b̄ ≥ 0. We have b̄t = t
√
δ2κ2 − 2ηδ ≤ δκT , and there exists

ε3 = ε3(κ, T ), such that when δ < ε3, we have b̄t ≤ 1,

Ψ(η, t) ≤

(
b̄eδκt/2

b̄ e
b̄t/2+e−b̄t/2

2

)2κθ

≤
(
eδκt/2

)2κθ ≤ eκ
2θT ,

|Ξ(η, t)| ≤ 2η

(
eb̄t/2 − e−b̄t/2

2b̄

)
≤ η(1 +O(b̄t))T ≤ 2ηT

and

M̃ δ
z (η) ≤ eκ

2θT e2ηTz.

• If b2 − 2ηδ < 0, then b̄ = iv, where v =
√

2ηδ − δ2κ2. Note that 0 < vt ≤
√

2ηδT

and there exists ε4 = ε4(n, u, T, η) such that when δ < ε4, we have cos (vt/2) ≥ 3
4

and sin (vt/2) ≥ 0. Therefore,

Ψ(η, t) =

(
iveδκt/2

iv cos(vt/2) + iδκ sin(vt/2)

)2κθ

=

 eδκt/2

cos(vt/2) + δκt
2

(
sin(vt/2)
vt/2

)
2κθ

,

Ξ(η, t) = −2η

(
sin(vt/2)

v cos(vt/2) + δκ sin(vt/2)

)
= −2η

(
t

2 cos(vt/2) vt/2
sin(vt/2)

+ δκt

)
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and

M̃ δ
z (η) = Ψ(η, t)e−zΞ(η,t) ≤

(
4eκT/2

3

)2κθ

exp(
2ηTz

2× 3
4

) =

(
4eκT/2

3

)2κθ

exp(
4ηTz

3
).

In sum, there exists ε = ε(n, u, d, κ, T, η) and Ñ = Ñ(κ, θ, T, z, η) which is indepen-

dent of δ and t, such that when δ < ε, we have M̃ δ
z (η) ≤ Ñ as desired.

Proposition 22. The process Xt given by (A.2), has finite moments of any order, for

t ≤ T and δ < ε(n, u, d, κ, T, η) given in Proposition 21, where n is a positive integer.

Proof. For each n ∈ N, we have

Xn
t =xn exp

(
nrt− n

2

∫ t

0

(qs
√
Zs)

2ds+ n

∫ t

0

qs
√
ZsdWs

)
=xk exp

(
nrt+

n2 − n
2

∫ t

0

(qs
√
Zs)

2ds

)
× Λt,

where

Λt = exp

(
−n

2

2

∫ t

0

(qs
√
Zs)

2ds+ n

∫ t

0

qs
√
ZsdWs

)
is a martingale, whose Novikov condition is satisfied thanks to Proposition 21, i.e.

E(0,x,z)

[
exp

(
1

2

∫ t

0

(nq
√
Zs)

2ds

)]
≤ E(0,x,z)

[
exp

(
n2u2

2

∫ t

0

Zsds

)]
<∞.

By the corresponding change of measure and the inequality qs ≤ u, we get

E(0,x,z) [Xn
t ] ≤ xn exp(nrt)Ẽ(0,x,z)

[
exp

(
(n2 − n)u2

2

∫ t

0

Z̃sds

)]
(A.4)

where, under the new measure Q̃, the process Z̃t driven by a Q̃-Brownian motion W̃Z
t
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evolves according to (A.3). Hence, by Proposition 21, we have

E(0,x,z) [Xn
t ] ≤ xn exp(nrT )M̃ δ

z

(
(n2 − n)u2

2

)
≤ xn exp(nrT )Ñ ,

where the upper bound xn exp(nrT )Ñ is independent of δ and t.

Therefore, for δ sufficiently small,

E(0,x,z)

[∫ T

0

|Xs|nds
]
≤ Nn, (A.5)

where Nn does not on δ and t ∈ [0, T ].

A.2 Proof of Proposition 1

Integrating over [t, T ] the SDE (1.7) and the SDE (1.8), we have

Xδ
T = x+

∫ T

t

rXδ
sds+

∫ T

t

qs
√
ZsX

δ
sdWs (A.6)

and

X0
T = x+

∫ T

t

rX0
sds+

∫ T

t

qs
√
zX0

sdWs. (A.7)

The difference of (A.6) and (A.7) is given by

Xδ
T −X0

T =

∫ T

t

r(Xδ
s −X0

s )ds+

∫ T

t

qs(
√
ZsX

δ
s −
√
zX0

s )dWs

=

∫ T

t

r(Xδ
s −X0

s )ds+

∫ T

t

qs
√
z(Xδ

s −X0
s )dWs +

∫ T

t

qs(
√
Zs −

√
z)Xδ

sdWs.

(A.8)
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Let Ys = Xδ
s −X0

s , then Yt = 0 and

YT =

∫ T

t

rYsds+

∫ T

t

qs
√
zYsdWs +

∫ T

t

qs(
√
Zs −

√
z)Xδ

sdWs. (A.9)

Therefore,

E(t,x,z)

[
Y 2
T

]
≤3E(t,x,z)

[(∫ T

t

rYsds

)2

+

(∫ T

t

qs
√
zYsdWs

)2

+

(∫ T

t

qs(
√
Zs −

√
z)Xδ

sdWs

)2
]

≤
∫ T

t

(
3Tr2 + 3u2z

)
E(t,x,z)

[
Y 2
s

]
ds+ 3u2

∫ T

t

E(t,x,z)

[
(
√
Zs −

√
z)2(Xδ

s )2
]
ds︸ ︷︷ ︸

R(δ)

.

(A.10)

Notice that only the upper bound of q is used, which gives the uniform convergence in

q. Also note that using the result that Xt and Zt have finite moments for δ sufficiently

small, we can show that |R(δ)| ≤ Cδ, where C = C(T, θ, u, d, z) is independent of δ.

Denote f(T ) = E(t,x,z)(Y
2
T ) and λ = 3Tr2 + 3u2z > 0, and by Gronwall inequality,

equation (A.10) can be written as

f(T ) ≤
∫ T

t

λf(s)ds+ Cδ ≤ δ

∫ T

t

Cλeλ(T−s)ds+ Cδ

Therefore,

E(t,x,z)(X
δ
T −X0

T )2 = E(t,x,z)Y
2
T = f(T ) ≤ C ′δ,

and the Proposition follows.
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A.3 Existence and uniqueness of (X∗,δt )

For the existence and uniqueness of X∗,δt , we consider the transformation Y ∗,δt :=

logX∗,δt , which is well defined for any t < τ ε, where for any ε > 0,

τ ε : = inf{t > 0|X∗,δt = ε or X∗,δt = 1/ε}

= inf{t > 0|Y ∗,δt = log ε or Y ∗,δt = − log ε}.

By Itô’s formula, the process Y ∗,δt satisfies the following SDE:

dY ∗,δt = −1

2
(q∗,δ)2Ztdt+ q∗,δ

√
ZtdWt. (A.11)

Note that the diffusion coefficient satisfies q∗,δ
√
Zt ≥ d

√
Zt > 0, and is bounded away

from 0, hence by Theorem 1 in section 2.6 of [102] and the result 7.3.3 of [103], the SDE

(A.11) has a unique weak solution. Consequently, we have a unique solution to the SDE

(1.24) until τ ε for any ε > 0. In order to show (1.24) has a unique solution, it suffices to

prove that, for any T > 0,

lim
ε↓0

Q(τ ε < T ) = 0.

Note that the contribution of Y ∗,δ0 (= log x) is trivial on the term limε↓0 log( ε
x
), for

simplicity, we consider Y ∗,δ0 = 0 in the following. For any t ∈ [0, T ], one has

Y ∗,δt =

∫ t

0

−1

2
(q∗,δ)2Zsds+

∫ t

0

q∗,δ
√
ZsdWs.

Then
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Q( sup
t∈[0,T ]

|Y ∗,δt | > | log ε|)

≤Q

(
sup
t∈[0,T ]

[∫ t

0

1

2
u2Zsds+

∣∣∣∣∫ t

0

q∗,δ
√
ZsdWs

∣∣∣∣] > | log ε|

)

≤Q

(
1

2
u2

∫ T

0

Zsds+ sup
t∈[0,T ]

∣∣∣∣∫ t

0

q∗,δ
√
ZsdWs

∣∣∣∣ > | log ε|

)

≤Q
(

1

2
u2

∫ T

0

Zsds >
| log ε|

2

)
+ Q

(
sup
t∈[0,T ]

∣∣∣∣∫ t

0

q∗,δ
√
ZsdWs

∣∣∣∣ > | log ε|
2

)

:=A+ B.

By Markov inequality and by (A.1), we have

A ≤
u2E

∫ T
0
Zsds

| log ε|
≤ u2TC1(T, z)

| log ε|
.

By Doob’s martingale inequality and by (A.1), we have

B ≤
E(
∫ t

0
q∗,δ
√
ZsdWs)

2(
log ε

2

)2 ≤
∫ t

0
E{(q∗,δ)2Zs}ds(

log ε
2

)2 ≤
u2
∫ T

0
EZsds(

log ε
2

)2 ≤ u2TC1(T, z)(
log ε

2

)2 .

Therefore,

lim
ε↓0
A = lim

ε↓0
B = 0.

Finally, we can conclude that

lim
ε↓0

Q(τ ε < T ) = lim
ε↓0

Q( sup
t∈[0,T ]

|Y ∗,δt | > | log ε|) = 0,

for any T > 0, as desired.
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A.4 Proof of Uniform Boundedness of I2 and I3 on δ

With the help of Assumption 4, Cauchy–Schwarz inequality and the uniformly bounded

moments of Zt and Xt processes given in (A.1) and (A.5) respectively, we are going to

prove that I2 and I3 are uniformly bounded in δ.

First recall that

I2 =E(t,x,z)

[∫ T

t

(
ρ(q∗,δ)ZsX

∗,δ
s ∂2

xzP1(s,X∗,δs , Zs)

+
1

2
Zs∂

2
zzP0(s,X∗,δs , Zs) + κ(θ − Zs)∂zP0(s,X∗,δs , Zs)

)
ds

]
.
=I

(1)
2 + I

(2)
2 + I

(3)
2 .

Then we have

I
(1)
2 ≤E(t,x,z)

[∫ T

t

ρuZsX
∗,δ
s |∂2

xzP1(s,X∗,δs , Zs)|ds
]

≤ρuE
1/2
(t,x,z)

[∫ T

t

(
ZsX

∗,δ
s

)2
ds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂2
xzP1(s,X∗,δs , Zs)

)2
ds

]
≤ρuE

1/4
(t,x,z)

[∫ T

t

(Zs)
4ds

]
· E1/4

(t,x,z)

[∫ T

t

(X∗,δs )4ds

]
· ā2

11E
1/2
(t,x,z)

[∫ T

t

(
1 + |X∗,δs |b̄11 + |Zs|c̄11

)2

ds

]
≤ρu (C4)1/4 · (N4)1/4 · Ā11

[
C2b̄11

+N2c̄11

]1/2
,

I(3) ≤1

2
E

1/2
(t,x,z)

[∫ T

t

(Zs)
2ds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂2
zzP0(s,X∗,δs , Zs)

)2
ds

]
≤1

2
(C2)1/2 · A02 [C2b02 +N2c02 ]1/2
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and

I(4) ≤ κE
1/2
(t,x,z)

[∫ T

t

(θ − Zs)2ds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂zP0(s,X∗,δs , Zs)

)2
ds

]
≤ κE

1/2
(t,x,z)

[∫ T

t

θ2 + Z2
sds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂zP0(s,X∗,δs , Zs)

)2
ds

]
≤ 1

2

(
C2 + θ2T

)1/2 · A01 [C2b01 +N2c01 ]1/2 ,

where Ā01, Ā11 and A02 are positive constants.

Next recall that

I3 = E(t,x,z)

[∫ T

t

1

2
Zs∂

2
zzP1(s,X∗,δs , Zs) + κ(θ − Zs)∂zP1(s,X∗,δs , Zs)ds

]
.
= I

(1)
3 + I

(2)
3 .

Then we have

I
(1)
3 ≤1

2
E

1/2
(t,x,z)

[∫ T

t

(Zs)
2ds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂2
zzP1(s,X∗,δs , Zs)

)2
ds

]
≤(C2)1/2 · Ā02

[
C2b̄02

+N2c̄02

]1/2
and

I
(2)
3 ≤ 2κE

1/2
(t,x,z)

[∫ T

t

θ2 + Z2
sds

]
· E1/2

(t,x,z)

[∫ T

t

(
∂zP1(s,X∗,δs , Zs)

)2
ds

]
≤ 2κ

[
θ2T + C2

]1/2 · Ā01

[
C2b̄01

+N2c̄01

]1/2
,

where Ā01, Ā02 are positive constants.
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Lemma 5. Assume that u ∈ C2,α(Ω) satisfies Lu ≥ 0.

1. If it satisfies Neumann or Robin boundary condition, Bu|∂Ω = 0, where Bu =

γ(x)u+Dνu = 0 with γ(x) ≥ 0, γ(x) ∈ C1,α(∂Ω), then u > 0 on Ω unless u ≡ 0.

2. If it has Dirichlet boundary condition, u = 0 on Ω, then u > 0 in Ω. Furthermore,

for any v ∈ C2(Ω) with v|∂Ω = 0, there exists an ε > 0 such that w ≥ εv. If u is

not identically 0, then ∂u
∂ν
< 0 on ∂Ω, where ν is the exterior unit normal of ∂Ω.

Proof. (1) Suppose now v ∈ K \ {0} and denote by u = L−1v, then v = Lu ≥ 0

in Ω. Therefore the strong maximum principle ([104], Theorem 4, Section 6.4.2, [56],

Theorem 3.5) implies that u > 0 in Ω, and thus, u ≥ 0 on Ω. Furthermore, assume

u(x0) = 0 for some x0 ∈ ∂Ω. Then the Hopf boundary lemma ([56], Lemma 3.4) asserts

that Dνu(x0) < 0 and hence Bu(x0) < 0, contradicting Robin boundary condition.

Therefore u > 0 on Ω.

(2) It follows from the maximum principle that w > 0 in Ω and ∂u
∂ν
< 0 on ∂Ω. Next for

any x ∈ ∂Ω, after a local change coordinates, we may assume that there is a neighborhood

U of x on which is defined a coordinate system x = (x′, xn) with x′ = (x1, . . . , xn−1), such
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that U ∩ ∂Ω is defined by xn = 0 and U ∩Ω is expressed by xn > 0. Then the maximum

principle implies that ∂w
∂xn

> 0. On the other side, expanding the Taylor series of w and

v yields

w(x′, xn) = w(x′, 0) +
∂w

∂xn
(x′, 0)xn + o(xn)

and

v(x′, xn) = v(x′, 0) +
∂v

∂xn
(x′, 0)xn + o(xn)

The boundary conditions indicates that

w(x′, 0) = v(x′, 0) = 0 and
∂w

∂xn
(x′, 0) > 0.

Therefore, the preceding equations imply that in a small neighborhood of ∂Ω, say, A,

there exist a small ε1 > 0 such that w > ε1v, and the selection of A can be chosen to

guarantee that D = Ω∩Ac is compact. Therefore considering the continuity of w and v,

as well as, the positivity of w in Ω, there exists ε2 > 0 such that

min
x∈D

w(x) > ε2 max
x∈D

v(x).

Taking ε = min{ε1, ε2} > 0 completes the proof of the lemma.
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C.1 Derivation of FBSDE

dXt = α∗tdt+ σdWt = [−Yt + q(E [Xt]−Xt)] dt+ σdWt

dYt = −∂xH(t,Xt, Yt, Zt, α
∗
t )dt+ ZtdWt

= [−qα∗t − ε(Xt − E [Xt])] dt+ ZtdWt

= [−q [−Yt + q(E [Xt]−Xt)]− ε(Xt − E [Xt])] dt+ ZtdWt

=
[
qYt − (ε− q2)(Xt − E [Xt])

]
dt+ ZtdWt

YT = ∂x

[
c

2
(

∫
R
xdµt −XT )2

]
= c(XT − E [XT ])

(C.1)
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C.2 Explicit Solution of FBSDE (3.6)

We make the following ansatz

Yt = ηt(Xt −mt) + µt,

where mt is the expectation of Xt, ηt and µt are deterministic functions satisfying ηT = c

and µT = 0. By

dXt = [−Yt + q(E [Xt]−Xt)] dt+ σdWt,

we have

Xt −X0 =

∫ t

0

[−Ys + q(E [Xs]−Xs)] ds+ σWt

dE [Xt] = −E [Yt] dt

(C.2)

Similarly, we have

dE [Yt] = qE [Yt] dt (C.3)

Considering E [YT ] = 0, we know that ṁt = 0, for all t ∈ [0, T ]. Therefore,

dYt = η̇t(Xt −mt)dt+ ηt

{
[−Yt + q(mt −Xt)] dt+ σdWt

}
+ µ̇tdt (C.4)

Compare to the SDE of Yt in (3.6), we know that

Zt = σηt

qYt − (ε− q2)(Xt −mt) = η̇t(Xt −mt) + ηt{[−Yt + q(mt −Xt)]}+ µ̇t (C.5)
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Given

Yt = ηt(Xt −mt) + µt,

we have

[
η̇t − η2

t − 2qηt + (ε− q2)
]

(Xt −mt) + [µ̇t − (ηt + q)µt] = 0. (C.6)

Therefore,

η̇t − η2
t − 2qηt + (ε− q2) = 0

ηT = c.

(C.7)

The solution of this scalar Riccati equation is given by (3.7). The ODE for µt is given

by

µ̇t − (q + ηt)µt = 0

µT = 0,

(C.8)

which admits the solution µt = 0, for all t ∈ [0, T ]. Therefore,

Yt = ηt(Xt −mt) and Zt = σηt,

is one solution of the FBSDE, with ηt given in (3.7).
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