UCLA UCLA Previously Published Works

Title

Longitudinal Measurement Invariance of the ASEBA Youth/Adult Self-Reports Across the Transition From Adolescence to Adulthood.

Permalink

https://escholarship.org/uc/item/1cf782mv

Authors

Moriarity, Daniel P Mac Giollabhui, Naoise Cardoso Melo, Dener <u>et al.</u>

Publication Date

2024-04-18

DOI

10.1177/10731911241245875

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NoDerivatives License, available at <u>https://creativecommons.org/licenses/by-nd/4.0/</u>

Peer reviewed

1	Longitudinal Measurement Invariance of the ASEBA Youth/Adult Self-Reports Across the
2	Transition from Adolescence to Adulthood
3	Daniel P. Moriarity, Ph.D. ¹ ; Naoise Mac Giollabhui, Ph.D. ² ; Dener Cardoso Melo ³ ,
4	Catharina Hartman, Ph.D. ³
5	ilen
6	ares
7	¹ Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
8	² Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School
9	³ Department of Psychiatry, University of Groningen
10	× 1er
11	Correspondence concerning this article should be addressed to Daniel P. Moriarity, E-mail:
12	dmoriarity@mednet.ucla.edu
13	
14	Funding: Daniel P. Moriarity was supported by National Research Service Award F32
15	MH130149 and grant #QPR21101 from the California Governor's Office of Planning and
16	Research/California Initiative to Advance Precision Medicine.
17	<pre></pre>
18	

Abstract

20	The ability to quantify within-person changes in mental health is central to the mission of
21	clinical psychology. Typically, this is done using total or mean scores on symptom measures;
22	however, this approach assumes that measures quantify the same construct, the same way, each
23	time the measure is completed. Without this quality, termed longitudinal measurement
24	invariance, an observed difference between timepoints might be partially attributable to changing
25	measurement properties rather than changes in comparable symptom measurements. This
26	concern is amplified in research using different forms of a measure across developmental periods
27	due to potential differences in reporting styles, item-wording, and developmental context. This
28	study provides the strongest support for the longitudinal measurement invariance of the Anxiety
29	Scale, Depression/Affective Problems: Cognitive Subscale, and the ADHD Scale; moderate
30	support for the Depression/Affective Problems Scale and the Somatic Scale, and poor support for
31	the Somatic Symptoms Subscale of the Dutch Achenbach System of Empirically Based
32	Assessment Youth Self-Report and Adult Self-Report in a sample of 1,309 individuals (N=1,090
33	population-based, N=219 clinic-based/referred to an outpatient clinic before age 11 years) across
34	6 waves of data (mean ages $=$ 11 years at Wave 1 and 26 years at Wave 6).
35	
36	
37	(h),

- Keywords: Measurement; measurement invariance; longitudinal; adolescent; adult;
- developmental; psychopathology

Introduction

42	Central to psychology's mission to examine mechanisms and treatments for
43	psychopathology is the ability to measure change in symptoms over time. Studies typically
44	quantify change via increases or decreases in total scores on self-report measures; however, this
45	assumes that the total score quantifies symptoms the same way at each time point. For example,
46	change score approaches assume that a score of 13 at baseline is comparable to a score of 13 at
47	post-treatment (i.e., is largely compromised by the same symptom profile and identical factor
48	structure). The ability for a measure to quantify the same construct, the same way, across
49	different times points is referred to as longitudinal measurement invariance.
50	The three most commonly assessed types of measurement invariance are configural,
51	metric (i.e., "weak"), and scalar (i.e., "strong"; for a more detailed review on measurement
52	invariance, see Putnick & Bornstein, 2016). We provide a brief conceptual overview here, with
53	more technical information available in the Methods section. Configural invariance refers to the
54	equivalence of model form (i.e., which items load onto which latent constructs). Metric
55	invariance refers to equality of factor loadings. Scalar invariance refers to equality of item
56	intercepts (i.e., the average response to an item when the associated latent score is zero). For
57	visualization of these measurement invariance types see Figure 1. Without measurement
58	invariance, a questionnaire does not measure a construct the same way across different time
59	points, precluding mean comparison of scores to evaluate change in the underlying construct. A
60	non-psychological example would be to consider if you weighed yourself on a scale at home
61	today and re-weighed yourself using the same scale from the moon tomorrow. The subject and
62	measurement tool are constant, but the underlying measurement properties change overtime in a
63	way that invalidates direct comparison of the two measurements.

Figure 1.

- 65 Visualization of Measurement Invariance Types Illustrated by the Measurement Properties of
- *Item C*

Note. Focal differences associated with the specified type of invariance are highlighted by a bolded and underlined69 statement.

This concern is amplified when different measures are used to assess the same construct
at different time points in a longitudinal study. For example, the TRacking Adolescents'
Individual Lives Survey (TRAILS) is a large prospective cohort following 11-year-olds and reassessing them every 2-3 years. At the onset of TRAILS, participants completed the Youth Self-

74 Report (YSR; Achenbach, 1991) from the Achenbach System of Empirically Based Assessment

(ASEBA, a comprehensive set of assessments designed to assess adaptive and maladaptive 75 functioning) to assess youth psychological health. The YSR includes 112 items and has been 76 disaggregated into several different factor structures based on researcher/clinician needs. The 77 TRAILS data documentation provides two strategies: syndromes (comprised of 11 scales) or 78 DSM-oriented scales (comprised of 6 scales). Given that TRAILS waves have been completed 79 during childhood, adolescence, and adulthood, all original participants "aged out" of the YSR by 80 Wave 4 and shifted to completing the more developmentally appropriate Adult Self-Report 81 (ASR; Achebach & Rescorla, 2003) of the ASEBA system. However, this change in measures, in 82 addition to potential developmental changes in both symptom-reporting by increasingly mature 83 individuals and age-related differences in the latent construct, could be a source of measurement 84 *non*-invariance. 85

Given the size of the ASR/YSR, the few investigations into their longitudinal 86 measurement invariance have tested select subscales to maintain computational brevity. For 87 example, Barzeva, Meeus, & Oldehinkel (2019) found that the social withdrawal scales were 88 measurement invariant in people measured four times in the TRAILS study using both the YSR 89 and ASR. Research from the Netherlands Twin Registry (Abdellaoui et al., 2012) found that the 90 ASR Thought Problems Subscale was measurement invariant across three age groups (12–18, 91 19–27, and 28–59 years). However, only one time point per participant was used in this analysis 92 so longitudinal measurement invariance within people was not tested, just between different age 93 groups, thus these results only measure between-person differences (e.g., potentially cohort 94 95 effects) instead of testing measurement invariance across time within individuals. The only study we found testing age-related measurement invariance of the entire eight factor model used a 96 similar age-stratification technique—supporting measurement invariance of the ASR between 97

98	two age groups (18-35 vs. 36-59 years; Guerrero et al., 2020). Thus, while preliminary evidence
99	supports longitudinal measurement invariance of the YSR/ASR to the extent they have been
100	investigated, much more work is needed. Specifically, 1) additional subscales of the YSR/ASR
101	must be examined (ideally in the same sample), 2) longitudinal measurement noninvariance (vs.
102	age group measurement invariance) must be evaluated to facilitate change-in-symptom research,
103	and 3) measurement invariance of symptoms in individuals transitioning between the YSR and
104	ASR should be investigated to determine the appropriateness of using both in longitudinal
105	research.
106	The theoretical and clinical utility of a large, longitudinal dataset such as TRAILS for
107	garnering developmental insight through adolescence and across the transition to adulthood is
108	immense, if the foundational psychometric work is done to inform future longitudinal modeling
109	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS
109 110	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring
109 110 111	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of
109 110 111 112	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in
109 110 111 112 113	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement
109 110 111 112 113 114	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement invariance of DSM-IV subscales that are shared between the YSR and the ASR (i.e.,
109 110 111 112 113 114 115	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement invariance of DSM-IV subscales that are shared between the YSR and the ASR (i.e., Depression/Affective Problems, Anxiety, Attention Deficit Hyperactivity Disorder (ADHD), and
109 110 111 112 113 114 115 116	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement invariance of DSM-IV subscales that are shared between the YSR and the ASR (i.e., Depression/Affective Problems, Anxiety, Attention Deficit Hyperactivity Disorder (ADHD), and Somatic) using six waves of TRAILS Data. Further, this study also tested the longitudinal
109 110 111 112 113 114 115 116 117	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement invariance of DSM-IV subscales that are shared between the YSR and the ASR (i.e., Depression/Affective Problems, Anxiety, Attention Deficit Hyperactivity Disorder (ADHD), and Somatic) using six waves of TRAILS Data. Further, this study also tested the longitudinal measurement invariance of two constituent subscales of the Depression Scale/Affective
109 110 111 112 113 114 115 116 117 118	and data collection. Further strengthening the utility of this dataset for this purpose, TRAILS includes two subsamples: one population-based sample and a second clinical sample featuring youth referred to an outpatient clinic before age 11 years—facilitating comparison of measurement properties in both community and clinical samples. Given its widespread use in TRAILS and other studies, the present investigation evaluated the longitudinal measurement invariance of DSM-IV subscales that are shared between the YSR and the ASR (i.e., Depression/Affective Problems, Anxiety, Attention Deficit Hyperactivity Disorder (ADHD), and Somatic) using six waves of TRAILS Data. Further, this study also tested the longitudinal measurement invariance of two constituent subscales of the Depression Scale/Affective Problems (cognitive and somatic symptoms) previously identified using TRAILS data (Bosch et

Methods

121 **Participants**

Data were drawn from the TRacking Adolescents' Individual Lives Survey (TRAILS), a 122 123 prospective cohort study examining psychosocial development and mental health in youth. 124 Adolescents aged 11 years were recruited and invited to attend regular follow-up assessments every 2-3 years. Two separate cohorts were followed by TRAILS—one population-based and 125 another clinic-based (Huisman et al., 2008; Oldehinkel et al., 2015). Adolescents in the 126 population-based cohort were recruited from 135 schools in five municipalities in the north of 127 The Netherlands, including both urban and rural areas. Eligible participants were required to be 128 enrolled in primary school, and of 2,935 youth who met this criterion. 2,230 (76%) provided 129 informed consent from both parent and child to participate. The clinic-based cohort consisted of 130 children referred to a psychiatric outpatient clinic before the age of 11 for a variety of psychiatric 131 and behavioral problems. The current study utilized data from 1,309 participants (N=1,090 132 population-based, N=219 clinic-based) from Waves 1 - 6 (see Table 1 for descriptives and below 133 for data cleaning details). 134

135 Procedures

In this study, symptoms were measured at each assessment (Waves 1 – 6) using either the
Youth Self-Report or the Adult Self-Report (determined by participant age at the time of
assessment). Children started the study with the Youth Self-Report at approximately 11 years old
and shifted to the Adult Self-Report when they turned 16 years old (Wave 4).

- 140
- 141
- 142
- 143

Table 1. Descriptive Statistics for Variables of Interest in Combined Population + Clinic-

based Cohorts (N=1309)

	Mean	SD	Range
Wave 1			
% Female	56.7%		
Age (years)	11.09	.55	10.01—12.54
SES (z)	.16	.75	-1.73-1.73
Depression/Affective Problems	4.06	3.21	0-18
Somatic Subscale	2.29	1.94	0-11
Cognitive Subscale	1.77	1.85	0-11
Anxiety	2.28	1.88	0-10
ADHD	4.36	2.56	0—13
Somatic	3.33	2.32	0—11
Wave 2			
Age (years)	13.39	.59	11.58—14.93
Depression/Affective Problems	3.80	3.38	0—24
Somatic Subscale	2.24	2.00	0—10
Cognitive Subscale	1.56	1.93	0—14
Anxiety	2.40	1.93	0—10
ADHD	4.77	2.67	0—14
Somatic	2.23	2.02	0—9
Wave 3			~ /
Age (years)	16.15	.66	14.42-18.33
epression/Affective Problems	3.97	3.58	0-24
Somatic Subscale	2.55	2.18	0-12
Cognitive Subscale	1.42	1.94	0-14
nxiety	213	1.90	0-11
DHD	4.88	2 77	0-14
omatic	1.00	1.94	0-10
Wave 4			0 10
re (years)	18.97	.59	17.98-21.06
epression/Affective Problems	4 40	4 40	0-24
Somatic Subscale	2 10	2.13	0_10
Cognitive Subscale	1.37	1.89	0-12
nxiety	2.83	2.54	0-12
DHD	5.91	4.45	0-21
omatic	1.13	2.09	0-14
Wave 5		2.02	v 11
Age (vears)	22.13	.66	20.74-24.10
Depression/Affective Problems	4.63	4.37	0-26
Somatic Subscale	2.33	2.10	0_9
Cognitive Subscale	1.41	1.83	0—13
Inxiety	2.94	2.59	0-13
ADHD	5 53	4.27	022
Somatic	1.89	2.19	0-16
Vave 6	1.07	2.17	0 10
ver (vears)	25.66	63	24 35_27 82
Penression/Affective Problems	5.60	.05 4 07	02
Somatic Subscale	2.60	2.27	0-20
Cognitive Subscale	1.6/	2.27	0_10
nviety	2.61	2.00	0-12
DHD	5.01	2.74 A 21	0-14
ometia	2.17	4.31	0-23
Jillatic	2.17	4.41	U—1.)

Note: z= z-standardized on whole sample (not analytic sample). ADHD = Attention Deficit Hyperactivity Disorder.

151 Missing Data Analyses

Participants were removed if they were missing 100% of symptom data at any time point 152 153 (removing these participants solved some issues with model convergence). Individual analytic 154 datasets were created to maximize sample size by only removing participants missing data on a given DSM-IV scale. This resulted in identical analytic datasets (N=1,090 population-based, 219 155 clinic-based) except for the Somatic Scale datasets, which were slightly smaller (N=1.074 156 population-based, 217 clinic-based). Because of the negligible difference in samples, descriptive 157 statistics for the analytic dataset corresponding to the non-Somatic Scales. 158 T-tests and chi-squared tests examined whether the analytic sample (N=1,309, 83%) 159 population cohort, 17% clinic-based cohort) differed significantly from the entire baseline 160 sample (N=2772, 80% population cohort, 20% clinic-based cohort) based on reported age, 161 gender, socioeconomic status, and depression symptoms. The mean level of socioeconomic 162 status (indexed by a composite of z-standardized variables, see below for more information) in 163 the analytic sample was higher than in the excluded sample [t(2762) = 12.88, p < .001; mean 164 difference = .49 standard deviations]. Further, the analytic sample was younger [t(2770) = 2.09], 165 p = .035; mean difference = .04 years], had higher anxiety symptoms [t(2675.44) = 3.598, p < 100166 .001; standardized mean difference = .14], and higher somatic symptoms [t(2692) = 2.687, p =167 .007; mean difference = .10]. The analytic sample also differed from the excluded sample in the 168 proportion of females that were retained in the sample, $\chi^2(1,2772) = 84.36$, p < .001, with 169 fewer males present in the analytic sample (Standardized Residual = -4.6). No differences 170 between the analytic and entire sample in baseline depressive symptoms were reported for the 171 172 Depression/Affective Problems Scale [t(2716) = 1.453, p = .146]; standardized mean difference = .06], Cognitive Symptoms Subscale [t(2715) = 1.926, p = .054; standardized mean difference = 173

174 .07], Somatic Symptoms Subscale [t(2714) = .584, p = .559; standardized mean difference = 175 .02], or ADHD Scale [t(2717) = .278, p = .781; standardized mean difference = .01] of the YSR 176 (note degrees of freedom for symptom measures are slightly different due to different degrees of 177 item-level missingness relative to the size of the scale in question).

178

Measures

179 Symptoms

180 During Waves 1 - 3, symptoms were measured using the Youth Self-Report (YSR;

Achenbach, 1991). During Waves 4 - 6, symptoms were measured using the Adult Self-Report 181 (ASR) were used during (Achenbach & Rescorla, 2003). Item wording can be found in Table 2. 182 All items were answered using a 3-point Likert scale (0-2), with higher endorsements indicating 183 more severe symptoms. For the descriptive (Table 1) and missing data analyses (described 184 above) involving symptom summary statistics, scores were determined by taking the average of 185 the items responded to in the scale in interest and then multiplying by the total number of items 186 in the scale. Symptom summary scores were not calculated for observations with < 80% of item-187 level data. 188

189 Depression/Affective Problems

190 The YSR Depression/Affective Problems Scale had 13 items (split into a seven item 191 Cognitive Subscale and a six item Somatic Subscale based on item content in previous TRAILS 192 studies (Bosch et al., 2009)). The ASR Depression/Affective Problems Scale had 14 items (split 193 into a seven item Cognitive Subscale and a five item Somatic Subscale based on item content in 194 previous TRAILS studies (Bosch et al., 2009), refer to Table 2 to compare items and wording 195 between measures). The Ω reliability coefficient at Waves 1 and 4 (first wave using the ASR) 196 were .74 and .86 (respectively) for the Depression/Affective Problems Scale, .58 and .72

,jien

197 (respectively) for the Somatic Symptoms Subscale, and .69 and .80 (respectively) for the

198 Cognitive Symptoms Subscale.

199 Anxiety

200 The YSR Anxiety Scale had 6 items and the ASR Anxiety Scale had 7 items (refer to Table 2

201 to compare items and wording between measures). The Ω reliability coefficient at Waves 1 and 4

202 (first wave using the ASR) were .63 and .78, respectively.

203 Attention Deficit Hyperactivity Disorder (ADHD)

The YSR ADHD Scale had 7 items and the ASR ADHD Scale had 13 items (refer to Table 2 to compare items and wording between measures). The Ω reliability coefficient at Waves 1 and 4 (first wave using the ASR) were .71 and .85, respectively.

207 *Somatic*

208 The YSR Somatic Scale had 7 items and the ASR Somatic Scale had 9 items (refer to Table 2 209 to compare items and wording between measures). The Ω reliability coefficient at Waves 1 and 4 210 (first wave using the ASR) were. 71 and .83, respectively.

211 Sociodemographic variables

Participant sex was assessed at Wave 1, when participants could respond that they identified as 'Female', which was scored as '0' or 'Male', which was scored as '1'. Age was assessed at all assessments. Socio-economic status (SES) was measured at Wave 1 and Wave 4. SES was estimated using five indicators: family income, maternal educational level, paternal educational level, maternal occupational level and paternal occupational level using the International Standard Classification of Occupations (Ganzeboom & Treiman, 1996). A composite measure of SES was calculated for the TRAILS cohort based on five z-transformed

- indicators (which has been consistently used in TRAILS), with higher values representing higher 219
- SES and a one unit difference representing one standard deviation in difference (Jonker et al., 220
- 2017). The composite measure of SES was assessed at Wave 1 and Wave 4 and were highly 221
- 222

eigh e tarma, 22 e

223 Table 2. The Cognitive and Somatic Subscale Item Wording

	Itom	Seelo
English	Dutch	Scale
There is very little that I like	Er is beel weinig wat ik leuk vind	Depression/Affective Problems: Cognitive
Lerva lot	Ik huil veel	Depression/Affective Problems: Cognitive
Lintentionally try to injure myself or attempt	Ik null veel Ik probeer mezelf opzettelijk te verwonden of doe	Depression/Affective Problems: Cognitive
suicide	zelfmoordpogingen	Depression/Affective Floblenis. Cognitive
I don't eat as well as I should	Ik eet niet zo goed als zou moeten	Depression/Affective Problems: Somatic
I feel worthless or inferior	Ik voel me waardeloos of minderwaardig	Depression/Affective Problems: Cognitive
I feel too much guilt	Ik heb te veel last van schuldgevoel	Depression/Affective Problems: Cognitive
I feel overtired for no apparent reason	Ik voel me oververmoeid zonder duidelijke reden	Depression/Affective Problems: Somatic
I sleep more than most of my peers during the day	Ik slaap meer dan de meeste van mijn leeftijdgenoten	Depression/Affective Problems Somatic
and/or at night	overdag en/of 's nachts (geef aan):	
I'm thinking about ending my life	Ik denk erover een eind aan mijn leven te maken	Depression/Affective Problems: Cognitive
I have trouble sleeping	Ik heb problemen met slapen (geef aan)	Depression/Affective Problems: Somatic
I don't have much energy	Ik heb niet veel energie	Depression/Affective Problems: Somatic
I am unhappy, sad or depressed	Ik ben ongelukkig, verdrietig of gedeprimeerd	Depression/Affective Problems: Cognitive
*I sleep less than most of my peers	*Ik slaap minder dan de meeste van miin leeftijdgenoten	*Depression/Affective Problems: Somatic
I have trouble making decisions	LIk heb moeite om beslissingen te nemen	Depression/Affective Problems
I feel like I can't succeed	Ik heb het gevoel dat ik niet kan slagen	Depression Affective Problems
I am afraid of certain animals, situations or places	Ik ben bang voor bepaalde dieren, situaties of plaatsen	Anxiety
I am nervous or tense	Ik ben nerveus of gespannen	Anxiety
I'm too anxious or scared	Ik ben te angstig of bang	Anxiety
I often worry	Ik maak me vaak zorgen	Anxiety
*I'm too dependent on adults	*Ik ben te afhankelijk van volwassenen	*Anxiety
*I'm afraid to go to school	Ik ben bang om naar school te gaan	*Anxiety
1Palpitations	1Hartkloppingen	Anxiety
L'm worried about my family or relatives	Llk maak me zorgen over mijn familie of gezin	Anxiety
I worry about my future	Llk maak me zorgen over mijn toekomst	Anxiety
Pains (no stomachache or headache)	Pijnen (geen buikpijn of hoofdpijn)	Somatic
Headache	Hoofdpijn	Somatic
Nausea	Misselijkheid	Somatic
Eye problems (for which glasses or lenses do not	Oogproblemen (waarvoor een bril of lenzen niet helpen)	Somatic
help)		
Rash or other skin problems	Huiduitslag of andere huidproblemen	Somatic
Stomach ache	Buikpijn	Somatic
Vomit	Overgeven	Somatic
1 feel dizzy or light-headed	Llk voel me duizelig of licht in mijn hoofd	Somatic
Dead feeling or tingling in body parts	Dood gevoel of tintelingen in lichaamsdelen	4.Somatic
I don't finish things I need to do	Ik maak dingen die ik moet doen niet af	ADHD
I have difficulty concentrating or keeping my	Ik heb movite on me te concentreren, of om lang mijn	ADHD
attention on something for long periods of time	aandacht ergens bij te houden	Abilb
I am impulsive or do things without thinking	Ik hen impulsief of doe dingen zonder er hij na te denken	ADHD
I have trouble sitting still	Ik heb moeite om stil te zitten	ADHD
*Lam inattentive or easily distracted	*Ik ben ononlettend of makkelijk afgeleid	*ADHD
*I talk too much	*Ik praat te veel	*ADHD
*I make more noise than other boys or girl	*Ik maak meer lawaai dan andere jongens of meisies	*ADHD
I'm too forgetful	Ik hen te vergeetachtig	ADHD
I often accidentally hurt myself often get injured	Ik bezeer me vaak per ongeluk raak vaak per ongeluk	ADHD
accidentally	gewond	
L'm not doing well at my job	Llk doe het niet goed op mijn werk	↓ ADHD
I throw myself into things without thinking about	Ik stort mij in dingen zonder over de risicos na te denken	ADHD
the risks		
People think I'm chaotic	Mensen denken dat ik chaotisch ben	↓ADHD
I often lose things	Ik ben vaak dingen kwijt	ADHD
↓I feel restless	Ik voel me rusteloos	ADHD
L'm too impatient	Ik ben te ongeduldig	ADHD
I don't pay much attention to details	Ik let niet goed on details	ADHD

224 225 226 Note: Unless otherwise noted the Dutch wording reflects the ASR version of the items; wording for some YSR items is slightly different to be more developmentally appropriate; the English version of the items is translated from the Dutch version and may differ slightly from the wording in the original ASR or YSR. ADHD = Attention Deficit Hyperactivity Disorder. *This item was only available in the YSR (Waves 1-3). \downarrow This item was only available in the ASR (Waves 4-6)

227 Statistical Methods

All analyses were conducted in R Version 4.2.2 (R Core Team, 2013). Analyses were 228 229 conducted in lavaan (Rosseel, 2012). Template code was adapted from 230 https://longitudinalresearchinstitute.com/tutorials/item-factor-analysis-measurement-invariance-2nd-order-growth-model-ecls-k/. The analytic code and output is available as supplemental 231 232 material (https://osf.io/hbafn/?view_only=65d1c791a5b74fe7ab71ee0eca56ecdc), Data are not publicly available due to privacy regulations but can be requested for replication, unconditionally 233 and free-of-charge, from TRAILS at www.trails.nl. 234 All models were estimated with a theta parameterization, pairwise deletion for missing 235 data, a combination of diagonally weighted least squares (DWLS; for parameters) and weighted 236 least square mean and variance adjusted (WLSMV; for robust standard errors) estimation, and 237 nonlinear minimization subject to box constraints (NMLINB) optimization. The first factor 238 loading for each factor was constrained to 1 for identification. Variances and covariances were 239 estimated freely. Latent variable means were constrained to zero and propensity variances for 240 items were constrained to 1 unless otherwise specified below. Items that were in one version of a 241 scale but not the other were still modeled to maximize fidelity to clinical use of this measure; 242 however, items that only appeared in one version of the measure were only constrained to 243 equality in different waves of that particular measure. For example, the item "I sleep less than 244 most of my peers" was only assessed in the YSR (i.e., Waves 1-3). As such, the specific equality 245 constraints for testing measurement invariance in this item were only specified in Waves 1-3. 246 As described in the introduction and shown in Figure 1, three types of measurement 247 invariance were tested: configural, metric, and scalar (listed here with increasing stringency). 248 249 The configural invariance model only imposes the constraint that each item loads onto its

specified factor at each time point. The metric invariance (i.e., "weak") model adds constraints 250 that the factor loadings of an item on its factor are equivalent across timepoints. Finally, the 251 scalar invariance (i.e., "strong") model incorporates the constraint that item intercepts (in this 252 case thresholds between item-response options) be equivalent across timepoints while latent 253 variable means are allowed to vary. Thus, while the first timepoint for each latent variable mean 254 is set to zero (identical to configural, metric, and scalar invariance models for scaling reasons), 255 latent variable means are estimated freely for later timepoints. There were no additional residual 256 variances because item responses were modeled using thresholds (given ordinal rather than 257 258 continuous response scales); thus, the scalar invariance model tests both strong and strict invariance. Items that had response options that were not all endorsed at one or more timepoints 259 were dichotomized ("0" = "0" and "1-2" = "1") at all timepoints to facilitate comparison of item 260 thresholds in that particular sample. Models with estimation/convergence issues applied the same 261 dichotomization scheme to any items with low endorsement (i.e., <5% in any response option at 262 any timepoint) in that particular sample. 263

Chi-square tests of fit are reported but were not heavily considered regarding conclusions 264 due to over-sensitivity to negligible differences in large sample sizes Acceptable model fit 265 criteria were a comparative fit index $[CFI] \ge .95$, root mean square-error of approximation 266 [RMSEA] \leq .06, and standardized root-mean-square residual [SRMR] \leq .08 (Hu et al., 1999). 267 Metric invariance was evaluated based on the following cut-off criteria in change of model fit 268 comparing the metric invariance model to the configural invariance model: -.010 change in CFI, 269 270 .015 change in RMSEA, and .030 change in SRMR (Chen, 2007). Scalar invariance had identical criteria when comparing the scalar invariance to the metric invariance models except the cut-off 271 for SRMR was reduced to .010 (per Chen, 2007). (Chen, 2007). It is worth noting that these cut-272

273 offs were established using continuous data. To our knowledge cut-offs have not yet been

established using ordinal data and some estimators for ordinal data (including the

275 DWLS/WLSMV used here) have a tendency not to discover misfit (Xia & Yang, 2019). As such,

results are preliminary and would benefit from re-analysis when appropriate cut-offs for ordinal

277 data are established.

2	78	8
---	----	---

Results

Tables 3 and 4 include details about the fit of each model in the population-based sample and the clinic-based sample (respectively). All factor loadings and item thresholds for the models

can be found in the supplemental material

282 (https://osf.io/hbafn/?view_only=65d1c791a5b74fe7ab71ee0eca56ecdc).

283 **Population-Based Sample**

284 Depression Symptoms/Affective Problems Scale

The most severe response option for the self-injury item was not endorsed at all time 285 points; therefore, the item was dichotomized. All three interpreted fit indices supported 286 acceptable model fit for the configural invariance model (CFI = .962, RMSEA = .040, and 287 SRMR = .079). Both CFI and RMSEA supported acceptable global model for the metric model 288 (CFI = .952, RMSEA = .044, SRMR = .085). Only RMSEA supported acceptable global model 289 for the scalar model (CFI = .941, RMSEA = .048, SRMR = .085). All comparisons of model fit 290 supported metric invariance ($\Delta CFI = -.010$, $\Delta RMSEA = .004$, $\Delta SRMR = .006$). Only two out of 291 three comparisons of model fit, specifically Δ RMSEA and Δ SRMR, supported scalar invariance 292 293 $(\Delta CFI = -.011, \Delta RMSEA = .004, \Delta SRMR = .000).$

Cognitive Symptoms Subscale. The most severe response option for the self-injury item 294 was not endorsed at all time points; therefore, the item was dichotomized. Two out of three fit 295 indices (CFI and RMSEA) suggested acceptable model fit for all three invariance models 296 (configural: CFI = .977, RMSEA = .037, SRMR = .084; metric: CFI = .973, RMSEA = .039, 297 SRMR = .088; scalar: CFI = .967, RMSEA = .041, SRMR = .088). All three comparisons of 298 model fit supported metric and scalar invariance of the Cognitive Symptoms Subscale (metric: 299 $\Delta CFI = -.004$, $\Delta RMSEA = .002$, $\Delta SRMR = .004$; scalar: $\Delta CFI = -.006$, $\Delta RMSEA = .002$. 300 Δ SRMR = .000). 301 **Somatic Symptoms Subscale.** Two out of three fit indices (RMSEA and SRMR) 302 suggested acceptable model fit for the configural invariance model (configural: CFI = .940, 303 RMSEA = .056, SRMR = .080). All model fit indices indicated unacceptable model fit for the 304 metric and scalar models (metric: CFI = .914, RMSEA = .066, SRMR = .093; scalar: CFI = .885, 305 RMSEA = .073, SRMR = .094). Both \triangle RMSEA and \triangle SRMR supported metric and scalar 306 invariance of the Somatic Symptoms Subscale (metric: $\Delta RMSEA = .010$, $\Delta SRMR = .013$; scalar: 307 $\Delta RMSEA = .007$, $\Delta SRMR = .001$). ΔCFI was the only comparison of model fit that did not 308 support metric and scalar invariance (metric $\Delta CFI = -.026$, scalar $\Delta CFI = -.029$). 309

310 Anxiety Scale

All three interpreted fit indices supported acceptable global model fit for all three invariance models (configural: CFI = .974, RMSEA = .040, and SRMR = .067; metric: CFI = .972, RMSEA = .041, and SRMR = .069; scalar: CFI = .959, RMSEA = .048, and SRMR = .069). All comparisons of model fit supported metric invariance (Δ CFI = -.002, Δ RMSEA = .001, Δ SRMR = .002). Only two out of three comparisons of model fit, specifically Δ RMSEA and Δ SRMR, supported scalar invariance (Δ CFI = -.013, Δ RMSEA = .007, Δ SRMR = .000).

Two of the three interpreted fit indices (RMSEA and SRMR) suggested acceptable global

- model fit for the configural, metric, and scalar invariance models (configural: CFI = .947,
- 320 RMSEA = .053, SRMR = .073; metric: CFI = .939, RMSEA = .056, SRMR = .077; scalar: CFI =
- 321 .932, RMSEA = .057, SRMR = .077). All three comparisons of model fit supported metric and
- scalar invariance (metric: $\Delta CFI = -.008$, $\Delta RMSEA = .003$, $\Delta SRMR = .004$; scalar $\Delta CFI = -.006$,
- 323 $\Delta RMSEA = .001, \Delta SRMR = .000).$

324 Somatic Scale

Two of the three interpreted fit indices (CFI and RMSEA) supported acceptable global 325 model fit for the configural and metric invariance models (configural: CFI = .963, RMSEA = 326 .039, and SRMR = .091; metric: CFI = .956, RMSEA = .041, and SRMR = .096). Only one of 327 the three interpreted fit indices (RMSEA) supported acceptable global model fit for the scalar 328 invariance models (CFI = .940, RMSEA = .047, and SRMR = .097). All comparisons of model 329 fit supported metric invariance ($\Delta CFI = -.007$, $\Delta RMSEA = .002$, $\Delta SRMR = .005$). Only two out 330 of three comparisons of model fit, specifically $\Delta RMSEA$ and $\Delta SRMR$, supported scalar 331 invariance ($\Delta CFI = -016$, $\Delta RMSEA = .006$, $\Delta SRMR = .001$). 332

	df	χ^2 p	CFI	ΔCFI	RMSEA	ΔRMSEA	90% CI RMSEA	SRMR	ΔSRMR
	Depression/Affective Problems (N=1,090)								
Configural	3144	8660.334 <i>p</i> < .001	.962		.040		.039—.044	.079	
Metric	3205	10072.682 <i>p</i> < .001	.952	010	.044	.004	.043—.045	.085	.006
Scalar	3327	11821.990 <i>p</i> < .001	.941	011	.048	.004	.047—.049	.085	.000
		Depression	n/Affective	Problems: (Cognitive Su	ubscale (N=	1,090)		
Configural	804	1978.987 <i>p</i> < .001	.977		.037		.035—.039	.084	
Metric	834	2201.443 <i>p</i> < .001	.973	004	.039	.002	.037—.041	.088	.004
Scalar	894	2542.368 <i>p</i> < .001	.967	006	.041	.002	.039—.043	.088	.000
		Depressio	on/Affectiv	e Problems:	Somatic Su	bscale (N=1	,090)		
Configural	480	2137.515 <i>p</i> < .001	.940		.056	80	.054—.059	.080	
Metric	502	2876.218 <i>p</i> < .001	.914	026	.066	.010	.064—.068	.093	.013
Scalar	551	3711.493 <i>p</i> < .001	.885	029	.073	.007	.070—.075	.094	.001
				Anxiety (N	=1,090)				
Configural	687	1883.328 <i>p</i> < .001	.974	XV	.040		.038—.042	.067	
Metric	712	2009.606 <i>p</i> < .001	.972	002	.041	.001	.039—.043	.069	.002
Scalar	767	2672.602 <i>p</i> < .001	.959	013	.048	.007	.046—.050	.069	.000
		Atte	ntion Defic	it Hyperacti	vity Disorde	er (N=1,090)		
Configural	1695	6799.622 <i>p</i> < .001	.947		.053		.051—.054	.073	
Metric	1734	7599.285 <i>p</i> < .001	.939	008	.056	.003	.054—.057	.077	.004
Scalar	1816	8300.253 <i>p</i> < .001	.932	006	.057	.001	.056—.059	.077	.000
				Somatic (N	=1,074)				
Configural	1065	2765.502 <i>p</i> < .001	.963		.039		.037—.040	.091	
Metric	1099	3104.100 <i>p</i> < .001	.956	007	.041	.002	.040—.043	.096	.005
Scalar	1172	3908.835 <i>p</i> < .001	.940	016	.047	.006	.045—.048	.097	.001

 Table 3. Model Fit: Population-based Sample

336 337 Note: Δ = change between current model and previous model (i.e., change between configural and metric and change between metric and scalar). df = degrees of freedom, CFI = Comparative Fit Index, RMSEA = Root Mean Square Error of Approximation, CI = Confidence Interval, SRMS = Standardized Root Mean Square Residual.

339 Clinic-based Sample

340 Depression Symptoms/Affective Problems Scale

341	The most severe response option for both the self-injury and suicidal ideation items were
342	not endorsed at all time points; therefore, these items were dichotomized The initial estimation
343	of this model resulted in a nonpositive definite covariance matrix. Estimation was successfully
344	re-attempted after dichotomizing the items featuring at least one time point where a response
345	option was endorsed at <5% (7 items, see Supplemental code for specific items). Two of the
346	three fit indices (CFI and RMSEA) suggested acceptable model fit for the configural invariance
347	model (CFI = .960, RMSEA = .035, and SRMR = .129). Only RMSEA suggested acceptable
348	model fit for metric and scalar models (metric: CFI = .934, RMSEA = .045, SRMR = .137;
349	scalar CFI = .919, RMSEA = .049, SRMR = .137). Δ CFI was the only comparison of model fit
350	that did not support metric and scalar invariance (metric $\Delta CFI =026$, scalar $\Delta CFI =015$).
351	Both $\Delta RMSEA$ and $\Delta SRMR$ supported metric and scalar invariance of the Somatic Symptoms
352	Subscale (metric: Δ RMSEA = .010, Δ SRMR = .008; scalar: Δ RMSEA = .004, Δ SRMR = .000).
353	Cognitive Symptoms Subscale. The most severe response option for the self-injury and
354	suicidal ideation items were not endorsed at all time points; therefore, the item was
355	dichotomized. The CFI and RMSEA suggested acceptable global model fit for the configural,
356	metric, and scalar invariance models (configural: CFI = .973, RMSEA = .038; metric: CFI =
357	.958, RMSEA = .046; scalar: CFI = .952, RMSEA = .049). SRMR indicated unacceptable mode
358	for the configural, metric, and scalar invariance models (configural SRMR = .141, metric SRMR
359	= .149, scalar SRMR = .149). Δ CFI was the only comparison of model fit that did not support
360	metric invariance ($\Delta CFI =015$, $\Delta RMSEA = .008$, $\Delta SRMR = .008$). All comparisons of model
361	fit supported scalar invariance ($\Delta CFI =006$, $\Delta RMSEA = .003$, $\Delta SRMR = .000$).

362	Somatic Symptoms Subscale. Only one out of three fit indices (RMSEA) suggested
363	acceptable model fit for the configural invariance model ($CFI = .923$, $RMSEA = .059$, and
364	SRMR = .109). All model fit indices indicated unacceptable model fit for the metric and scalar
365	models (metric: CFI = .874, RMSEA = .074, SRMR = .125; scalar CFI = .839, RMSEA = .080,
366	SRMR = .125). Δ CFI was the only comparison of model fit that did not support metric and scalar
367	invariance (metric $\Delta CFI =049$, scalar $\Delta CFI =035$). Both $\Delta RMSEA$ and $\Delta SRMR$ supported
368	metric and scalar invariance of the Somatic Symptoms Subscale (metric: $\Delta RMSEA = .015$,
369	Δ SRMR = .016; scalar: Δ RMSEA = .006, Δ SRMR = .000).
370	Anxiety Scale
371	The most severe response option for the item assessing fear of going to schools was not
372	endorsed at all timepoints; therefore, the item was dichotomized. The CFI and RMSEA
373	suggested acceptable global model fit for the configural, metric, and scalar invariance models
374	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950,
374 375	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar
374 375 376	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All
374 375 376 377	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All comparisons of model fit supported both metric and scalar invariance (metric: Δ CFI =010,
374 375 376 377 378	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All comparisons of model fit supported both metric and scalar invariance (metric: Δ CFI =010, Δ RMSEA = .006, Δ SRMR = .007; scalar: Δ CFI =009, Δ RMSEA = .003, Δ SRMR = .000).
374 375 376 377 378 379	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All comparisons of model fit supported both metric and scalar invariance (metric: Δ CFI =010, Δ RMSEA = .006, Δ SRMR = .007; scalar: Δ CFI =009, Δ RMSEA = .003, Δ SRMR = .000). <i>ADHD Scale</i>
 374 375 376 377 378 379 380 	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All comparisons of model fit supported both metric and scalar invariance (metric: Δ CFI =010, Δ RMSEA = .006, Δ SRMR = .007; scalar: Δ CFI =009, Δ RMSEA = .003, Δ SRMR = .000). <i>ADHD Scale</i> The CFI and RMSEA suggested acceptable global model fit for the configural, metric,
 374 375 376 377 378 379 380 381 	(configural: CFI = .969, RMSEA = .044; metric: CFI = .959, RMSEA = .050; scalar: CFI = .950, RMSEA = .053). SRMR indicated unacceptable model for the configural, metric, and scalar invariance models (configural SRMR = .105, metric SRMR = .112, scalar SRMR = .112). All comparisons of model fit supported both metric and scalar invariance (metric: Δ CFI =010, Δ RMSEA = .006, Δ SRMR = .007; scalar: Δ CFI =009, Δ RMSEA = .003, Δ SRMR = .000). <i>ADHD Scale</i> The CFI and RMSEA suggested acceptable global model fit for the configural, metric, and scalar invariance models (configural: CFI = .968, RMSEA = .044; metric: CFI = .954,

the configural, metric, and scalar invariance models (configural SRMR = .097, metric SRMR =

- 384 .102, scalar SRMR = .102). Δ CFI was the only comparison of model fit that did not support
- metric invariance ($\Delta CFI = -.014$, $\Delta RMSEA = .008$, $\Delta SRMR = .005$). All comparisons of model 385
- fit supported scalar invariance ($\Delta CFI = -.004$, $\Delta RMSEA = .001$, $\Delta SRMR = .000$). 386
- 387 Somatic Scale
- The most severe response option for the items assessing both eye problems and yomiting 388
- were not endorsed at all timepoints; therefore, the items were dichotomized. The CFI and 389
- RMSEA, but not SRMR, suggested acceptable global model fit for the configural and metric 390
- invariance models (configural: CFI = .964, RMSEA = .035, SRMR = .158; metric: CFI = .954, 391
- RMSEA = .040, SRMR = .163). RMSEA was the only index of model fit that suggested 392
- acceptable for the scalar invariance model (CFI = .940, RMSEA = .044, SRMR = .164). All 393
- comparisons of model fit supported metric invariance ($\Delta CFI = -.010$, $\Delta RMSEA = .005$, $\Delta SRMR$ 394
- sup hisoreoninitation = .005). Only $\Delta RMSEA$ and $\Delta SRMR$ supported scalar invariance ($\Delta CFI = -.014$, $\Delta RMSEA =$ 395
- 396

	df	χ^2	CFI	ΔCFI	RMSEA	ΔRMSEA	90% CI RMSEA	SRMR	ΔSRMR
		P	Depression	n/Affective	Problems (N	N=219)	RUNDERT		<u> </u>
Configural	<mark>3144</mark>	<mark>3980.896</mark> p < .001	<mark>.960</mark>		<mark>.035</mark>		<mark>.031—.038</mark>	<mark>.129</mark>	
Metric	<mark>3205</mark>	4602.924 p < .001	<mark>.934</mark>	<mark>026</mark>	<mark>.045</mark>	<mark>.010</mark>	<mark>.042—.048</mark>	<mark>.137</mark>	<mark>.008</mark>
Scalar	<mark>3287</mark>	4984.286 <i>p</i> < .001	<mark>.919</mark>	<mark>015</mark>	<mark>.049</mark>	<mark>.004</mark>	<mark>.046—.051</mark>	<mark>.137</mark>	<mark>.000</mark>
		Depression	on/Affective	e Problems:	Cognitive S	ubscale (N=	<mark>=219)</mark>		
Configural	<mark>804</mark>	1054.672 p < .001	<mark>.973</mark>		<mark>.038</mark>		<mark>.031—.044</mark>	<mark>.141</mark>	
Metric	<mark>834</mark>	1221.855 p < .001	<mark>.958</mark>	<mark>015</mark>	<mark>.046</mark>	<mark>.008</mark>	<mark>.041—.052</mark>	<mark>.149</mark>	<mark>.008</mark>
Scalar	<mark>869</mark>	1316.430 p < .001	<mark>.952</mark>	<mark>006</mark>	<mark>.049</mark>	<mark>.003</mark>	<mark>.043—.054</mark>	<mark>.149</mark>	<mark>.000</mark>
		Depressi	ion/Affectiv	e Problems	Somatic Su	ubscale (N=	219)		
Configural	480	847.769 <i>p</i> < .001	.923		.059	Sr.	.053—.066	.109	
Metric	502	1105.179 <i>p</i> < .001	.874	049	.074	.015	.068—.080	.125	.016
Scalar	551	1321.866 <i>p</i> < .001	.839	035	.080	.006	.075—.086	.125	.000
				Anxiety (N	<mark>N=219)</mark>				
Configural	<mark>687</mark>	975.182 p < .001	<mark>.969</mark>	XX	<mark>.044</mark>		<mark>.037—.050</mark>	<mark>.105</mark>	
Metric	<mark>712</mark>	1098.660 p < .001	<mark>.959</mark>	<mark>010</mark>	<mark>.050</mark>	<mark>.006</mark>	<mark>.044—.056</mark>	<mark>.112</mark>	<mark>.007</mark>
Scalar	<mark>765</mark>	1228.547 p < .001	<mark>.950</mark>	<mark>009</mark>	<mark>.053</mark>	<mark>.003</mark>	<mark>.047—.058</mark>	<mark>.112</mark>	<mark>.000</mark>
		Atte	ention Defic	cit Hyperact	ivity Disord	ler (N=219)			
Configural	1695	2418.379 p < .001	.968		.044		.040—.048	.097	
Metric	1734	2758.397 <i>p</i> < .001	.954	014	.052	.008	.048—.056	.102	.005
Scalar	1816	2927.656 <i>p</i> < .001	.950	004	.053	.001	.049—.056	.102	.000
	\mathcal{O}			Somatic (N	N=217)				
Configural	1065	1353.662 p < .001	<mark>.964</mark>		<mark>.035</mark>		<mark>.029—.041</mark>	<mark>.158</mark>	
Metric	<mark>1099</mark>	1470.543 p < .001	<mark>.954</mark>	<mark>010</mark>	<mark>.040</mark>	<mark>.005</mark>	<mark>.034—.045</mark>	<mark>.163</mark>	<mark>.005</mark>
Scalar	<mark>1157</mark>	<mark>1641.944</mark> p < .001	<mark>.940</mark>	<mark>014</mark>	<mark>.044</mark>	<mark>.004</mark>	<mark>.039—.049</mark>	<mark>.164</mark>	<mark>.001</mark>

Table 4 Model Fit: Clinic-based Sample

Note: Δ = change between current model and previous model (i.e., change between configural and metric and change between metric and scalar). df = degrees of freedom, CFI = Comparative Fit Index, RMSEA = Root Mean Square Error of Approximation, CI = Confidence Interval, SRMS = Standardized Root Mean Square Residual. 400 401

404	The YSR and ASR are widely used self-report measures of psychological symptoms and
405	well-being. To facilitate their use across developmental periods in research and clinical practice,
406	the YSR and ASR were designed to be comparable measures designed to be developmentally
407	appropriate for youth and adults, respectively. However, use of these measures to quantify
408	change in symptoms for the same individual requires that they assess psychopathology in the
409	same way across time and across measure forms despite different item wordings to complement
410	intended developmental stages (i.e., $YSR \rightarrow ASR$)—otherwise known as longitudinal
411	measurement invariance.
412	To date, no study has investigated the longitudinal measurement invariance of the
413	Depression/Affective Problems Scale (or its constituent Cognitive and Somatic Subscales),
414	Anxiety Scale, ADHD Scale, and Somatic Scale of the YSR and ASR in a sample where
415	participants completed both measures. The present study finds differential support for each of
416	these measures, underscoring the value in separately considering the psychometric properties of
417	multidimensional scales. Results will be discussed in the order they were presented in the Results
418	section (i.e., Depression/Affective Problems, Anxiety, ADHD, and Somatic).
419	Out of the Depression/Affective Problems Scale, the strongest support was for the
420	Cognitive Symptoms Subscale, which featured consistently good model fit in both the population
421	and clinical cohort (except the SRMR which was consistently above the cut-off in both samples)
422	and all comparisons of model fit indices across both samples (except Δ CFI for metric invariance
423	in the clinical cohort) supported all tested levels of invariance. There was slightly less support for
424	the broader Depression/Affective Problems Scale. Specifically, while all three change indices in
425	the population cohort supported metric invariance, Δ CFI did not support scalar invariance.

Similar results were found in the clinical cohort, expect that ΔCFI did not support either metric
or scalar invariance. While the change in model fit statistics is the focal measurement of interest
in invariance testing (because it focuses on how model fit reacts to the constraints that define the
invariance), it is worth considering that all three absolute model fit statistics (CFI, RMSEA,
SRMR) only indicated adequate fit for the configural model in the population cohort. In this
cohort, SRMR did not support adequate global fit of the metric invariance model, and neither
CFI nor SRMR supported adequate fit of scalar invariance models. There was worse absolute fit
in the clinical cohort. With SRMR not indicating acceptable model fit for any of the models
tested and CFI only supporting the configural model. Across both the population and clinical
cohorts, there was less support for the global model fit, and longitudinal measurement invariance

- of, the Somatic Subscale of the Depression/Affective Problems Scale. Nearly identical patterns 436
- of results were found in both cohorts. Two relative change metrics, $\Delta RMSEA$ and $\Delta SRMR$, 437
- supported the metric and scalar invariance of this scale; however, Δ CFI did not support metric or 438
- scalar invariance. In fact, the magnitude of the changes in CFI were quite notable (2.6-4.9x the 439
- acceptable cut-off). With respect to global model fit, only two indices (RMSEA and SRMR) 440
- supported acceptable model fit for configural invariance in the population cohort and only 441
- RMSEA supported acceptable model fit for configural invariance in the clinical cohort. No 442
- global model fit indices supported the metric or scalar invariance models. Consequently, 443
- 444 combination use of the Depression/Affective Problems Scale and Cognitive Symptom Subscale 445 of the XSR and ASR are likely suitable for clinical work or research in adolescent and/or adult
- 446 populations when depression symptoms are of interest; however, the Somatic Symptoms
- 447 Subscale be used with caution or with adjustments to account for measurement noninvariance
- 448 (Putnick & Bornstein, 2016).

427

428

429

430

431

432

433

434

435

The Anxiety Scale showed the strongest support for both global model fit and 449 longitudinal measurement invariance across the tested scales, as all metrics supported its 450 psychometric properties except ΔCFI for the population scalar invariance model and the SRMR 451 statistics in the clinical cohort (which were, notably, above the suggested cut-off in all models in 452 the clinical cohort). The ADHD Scale, which had the greatest item-level differences between the 453 YSR and ASR had strong support for longitudinal measurement invariance in the population-454 based sample (although the CFI was below the cutoff for acceptable model fit in all models 455 estimated). There was slightly less support for the longitudinal measurement invariance of this 456 scale in the clinical cohort, with ΔCFI below the acceptable cutoff for the metric invariance 457 model and SRMR above the acceptable cutoffs for all models estimated. Finally, the Somatic 458 Scale had identical patterns of psychometric support across the population and clinical cohorts. 459 Specifically, all three relative change metrics supported metric invariance and two of the three 460 (Δ RMSEA and Δ SRMR) supported scalar invariance. However, it is worth noting that the 461 SRMR was above the cutoff for acceptable model fit in all three models, and both CFI and Δ CFI 462 were below the acceptable cutoffs in the scalar invariance model. 463

One of the key strengths of this study is the inclusion of both the YSR and ASR across 464 multiple time points. Thus, instead of solely testing the longitudinal measurement invariance of 465 one of these measures or using the YSR and ASR in different groups, we were able to evaluate 466 the appropriateness of transitioning from the YSR to the ASR for the same participant or client, 467 as most appropriate for their age. Additionally, the sample was large enough to bolster 468 confidence in the generalizability of these findings. Generalizability is further amplified by the 469 fact that this is not an exclusively clinical sample; thus, there are less concerns regarding 470 restriction of range than if this study were conducted in a strictly clinical or nonclinical sample. 471

This study is also the first we are aware of that tested the longitudinal measurement invariance of all of the DSM-IV scales shared between the YSR and ASR. Finally, the ability to separately test some of these models in a population-based vs. a clinic-based cohort supports the relevance of

these results for both community-based and clinical populations.

However, this study should also be considered in light of its limitations. First. sever 476 477 items had to be dichotomized due to lack of participants selecting the most severe option at some waves. Although this is not surprising given the item content relative to the ages of assessment, 478 these are still modeling deviations from standard scoring of the YSR and ASR. Second, as would 479 480 be expected of most psychiatric symptom data, responses were largely skewed toward less severe responses. Third, likely due to a small sample size (relative to parameters estimated), there were 481 estimation issues in the clinic-based cohorts that required items to be dichotomized to address 482 low endorsement rates of certain response items, resulting in some discrepancies between the 483 modeling of identical subscales between cohorts. 484

485

Conclusion

In conclusion, the present study supports the longitudinal measurement invariance of the 486 YSR and ASR Depression/Affective Problems Scale, Cognitive Symptom Subscale of the 487 Depression/Affective Problems Scale, Anxiety Scale, ADHD Scale, and Somatic Scale. The 488 greatest concerns for longitudinal measurement invariance were for the Somatic Symptoms 489 Subscale of the Depression/Affective Problems Scale. Notably, the degree of psychometric 490 support was fairly comparable between cohorts (with the caveat that SRMR was above 491 acceptable cutoffs in every single model tested in the clinical cohort) with slightly stronger 492 support in the population-based sample. Consequently, clinicians and researchers should 493 carefully consider which items to use, and how to aggregate them, when considering the 494

YSR/ASR as a potential measure to track mental health symptoms overtime and across , in the , is that we have a second s developmental stages. However, additional work is needed to replicate this study in other

References

501	Abdellaoui, A., de Moor, M. H. M., Geels, L. M., van Beek, J. H. D. A., Willemsen, G., &
502	Boomsma, D. I. (2012). Thought Problems from Adolescence to Adulthood:
503	Measurement Invariance and Longitudinal Heritability. Behavior Genetics, 42(1), 19–29.
504	https://doi.org/10.1007/s10519-011-9478-x
505	Achebach, T. M. (1991). Manual for the youth self-report and 1991 profile.
506	Achebach, T. M., & Rescorla, L. A. (2003). Manual for the ASEBA adult forms & profiles.
507	Achenbach, T. M. (1991). Manual for the child behavior checklist/4-18 and 1991 profile.
508	Burlington, VT : Dept. of Psychiatry, University of Vermont.
509	http://archive.org/details/manualforchildbe0000ache_g2r5
510	Achenbach, T. M., & Rescorla, L. (2003). Manual for the ASEBA Adult Forms & Profiles: For
511	Ages 18-59 : Adult Self-report and Adult Behavior Checklist. ASEBA.
512	Barzeva, S. A., Meeus, W. H. J., & Oldehinkel, A. J. (2019). Social Withdrawal in Adolescence
513	and Early Adulthood: Measurement Issues, Normative Development, and Distinct
514	Trajectories. Journal of Abnormal Child Psychology, 47(5), 865–879.
515	https://doi.org/10.1007/s10802-018-0497-4
516	Bosch, N. M., Riese, H., Dietrich, A., Ormel, J., Verhulst, F. C., & Oldehinkel, A. J. (2009).
517	Preadolescents' Somatic and Cognitive-Affective Depressive Symptoms Are
518	Differentially Related to Cardiac Autonomic Function and Cortisol: The TRAILS Study.
519	Psychosomatic Medicine, 71(9), 944. https://doi.org/10.1097/PSY.0b013e3181bc756b
520	Chen, F. F. (2007). Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance.
521	Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464–504.
522	https://doi.org/10.1080/10705510701301834

523	Ganzeboom, H. B. G., & Treiman, D. J. (1996). Internationally Comparable Measures of
524	Occupational Status for the 1988 International Standard Classification of Occupations.
525	Social Science Research, 25(3), 201–239. https://doi.org/10.1006/ssre.1996.0010
526	Guerrero, M., Hoffmann, M., & Pulkki-Råback, L. (2020). Psychometric Properties of the Adult
527	Self-Report: Data from over 11,000 American Adults. <i>Stats</i> , 3(4), 465–474.
528	https://doi.org/10.3390/stats3040029
529	Hu, L., Bentler, P. M., & Hu, L. (1999). Cutoff criteria for fit indexes in covariance structure
530	analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A
531	Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
532	Huisman, M., Oldehinkel, A. J., de Winter, A., Minderaa, R. B., de Bildt, A., Huizink, A. C.,
533	Verhulst, F. C., & Ormel, J. (2008). Cohort profile: The Dutch "TRacking Adolescents"
534	Individual Lives' Survey'; TRAILS. International Journal of Epidemiology, 37(6), 1227–
535	1235. https://doi.org/10.1093/ije/dym273
536	Jonker, I., Rosmalen, J. G. M., & Schoevers, R. A. (2017). Childhood life events, immune
537	activation and the development of mood and anxiety disorders: The TRAILS study.
538	Translational Psychiatry, 7(5), e1112. https://doi.org/10.1038/tp.2017.62
539	Mac Giollabhui, N., & Hartman, C. A. (2022). Examining inflammation, health, stress and
540	lifestyle variables linking low socioeconomic status with poorer cognitive functioning
541	during adolescence. Brain, Behavior, and Immunity, 104, 1-5.
542	https://doi.org/10.1016/j.bbi.2022.04.020
543	Oldehinkel, A. J., Rosmalen, J. G., Buitelaar, J. K., Hoek, H. W., Ormel, J., Raven, D.,
544	Reijneveld, S. A., Veenstra, R., Verhulst, F. C., Vollebergh, W. A., & Hartman, C. A.
545	(2015). Cohort Profile Update: The TRacking Adolescents' Individual Lives Survey

- https://doi.org/10.1093/ije/dyu225 547
- Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: 548
- The state of the art and future directions for psychological research. Developmental 549
- Review, 41, 71–90. https://doi.org/10.1016/j.dr.2016.06.004.Measurement 550
- Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of 551
- Statistical Software, 48(2), 1–36. 552
- Team, R. C. (2013). R: A language and environment for statistical computing. R Foundation for 553
- Statistical Computing [Computer software]. http://www.r-project.org 554
- Xia, Y., & Yang, Y. (2019). RMSEA, CFI, and TLI in structural equation modeling with ordered 555
- categorical data: The story they tell depends on the estimation methods. *Behavior* 556
- .28.1 *Research Methods*, *51*(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2 557