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Abstract 

Membrane contact sites between endoplasmic reticulum (ER) and plasma membrane (PM), or 

ER-PM junctions, are found in all eukaryotic cells. In excitable cells they play unique roles in 

organizing diverse forms of Ca2+ signaling as triggered by membrane depolarization. Endoplasmic 

reticulum-plasma membrane junctions underlie crucial physiological processes such as 

excitation-contraction coupling, smooth muscle contraction and relaxation, and various forms of 

activity-dependent signaling and plasticity in neurons. In many cases the structure and molecular 

composition of ER-PM junctions in excitable cells comprises important regulatory feedback loops 

linking depolarization-induced Ca2+ signaling at these sites to regulation of membrane potential. 

Here, we describe recent findings on physiological roles and molecular composition of native ER-

PM junctions in excitable cells. We focus on recent studies that provide new insights into canonical 

forms of depolarization-induced Ca2+ signaling occurring at junctional triads and dyads of striated 

muscle, as well as the diversity of ER-PM junctions in these cells and in smooth muscle and 

neurons.  
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INTRODUCTION 

Specialized membrane contact sites (MCS) between endoplasmic reticulum (ER) and the inner 

face of the plasma membrane (PM), termed ER-PM junctions, allow for events occurring within 

the limiting membrane of the cell to impact ER function, and vice-versa (1-3). In excitable cells 

this includes coupling effects of rapid changes in membrane potential that occur with electrical 

activity to ER function, which can reciprocally impact PM function including membrane excitability. 

ER-PM junctions play crucial roles in diverse aspects of physiology across all eukaryotic cell 

types, including prominent roles in lipid signaling and homeostasis and as sites for diverse forms 

of Ca2+ signaling (1-6). While many of these functions of ER-PM junctions are conserved in all 

eukaryotic cells, including excitable cells, their exist specialized structures, molecular 

compositions and functions of ER-PM junctions unique to excitable cells. In particular ER-PM 

junctions in excitable cells are specialized to mediate unique modes of Ca2+ signaling triggered 

by membrane depolarization.  

 Numerous molecules have been identified that contribute to the generation and 

maintenance of ER-PM junctions in mammalian cells (1; 2; 5). One class comprises resident ER 

integral membrane tethering proteins that bind to specific forms of phosphorylated lipids in the 

inner leaflet of the PM, including junctophilins (JPHs), extended synaptotagmins (E-Syts), and 

VAMP-associated proteins (VAPs). The other class are pairs of integral PM and ER proteins 

whose interacting cytoplasmic domains form the contacts between the two membranes. To date 

the known pairings involve a PM polytopic ion channel (an Orai Ca2+ channel or a KV2 K+ channel) 

interacting with a single transmembrane segment resident ER protein (a STIM or VAP protein, 

respectively). ER-PM junctions of both classes form functional microdomains that mediate distinct 

forms of Ca2+ signaling (3).  

 Here, we review recent research findings on the structure, molecular composition and 

function of ER-PM junctions in forming specialized microdomains for Ca2+ signaling in excitable 

cells, with a primary focus on striated and smooth muscle and neurons. We discuss similarities 
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and differences between these structures and functions in different excitable cell types. While 

important roles of ER-PM junctions in mediating events triggering excitation-contraction (E-C) 

coupling in skeletal muscle and cardiomyocytes were established many decades ago, more 

recent studies have revealed richness of proteins that establish and regulate the structures that 

underlie these events. Moreover, studies in other excitable cells have revealed similarities but 

also important cell type-specific distinctions in the structure and function of ER-PM junctions.  

 

ENDOPLASMIC RETICULUM-PLASMA MEMBRANE JUNCTIONS IN MUSCLE CELLS  

While they likely exist in all eukaryotic cells, ER-PM junctions were originally discovered in 

electron microscope (EM) images in a 1957 study examining ultrastructure of skeletal and cardiac 

muscle cells (7). The terms dyads (two-element) and triads (three-element) were applied to 

describe the arrangement of junctional sarcoplasmic reticulum (jSR) alongside periodic, 

sarcomere-adjacent, invaginating tubules of PM known as transverse tubules (t-tubules). As they 

engage SR, the specialized ER of muscle cells, we refer to them as SR-PM junctions. Triads are 

the predominant SR-PM junctions in skeletal muscle cells, where t-tubules often appear 

sandwiched between two jSR cisternae (Fig. 1A). Dyads are more frequently observed in cardiac 

muscle cells (Fig. 1B). SR-PM junctions are not limited to those involving t-tubules but are also 

found along axial-tubules and at surface sarcolemma in peripheral couplings which predominate 

in smooth muscle cells (Fig. 1C). Interestingly, the number of junctions, their length, and 

intermembrane distance appear to confer specialization across muscle types according to the 

speed, force, and manner of contraction (i.e., phasic or tonic), such that fast-twitch skeletal muscle 

has the largest number of tightly associated, triadic junctions; slow-twitch skeletal and cardiac 

muscle have fewer, predominantly dyadic junctions, while slower, weaker smooth muscle has the 

fewest and loosest junctions. Here we discuss how muscle SR-PM junctions are specialized for 

the primary functional output of contraction and relaxation. We highlight current knowledge on 

their molecular composition, synthesis, and breakdown. 
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SKELETAL MUSCLE SARCOPLASMIC RETICULUM-PLASMA MEMBRANE JUNCTIONS 

Depolarization-induced Ca2+ signaling events at skeletal muscle sarcoplasmic reticulum-

plasma membrane junctions. Skeletal muscle SR-PM triads are the primary location of EC 

coupling (8), whereby an electrical signal (i.e., an action potential; AP) is transduced into 

mechanical contraction. Efficient skeletal muscle EC-coupling is required for a plethora of critical, 

sometimes life-sustaining functions including breathing, movement, chewing, and swallowing. 

Triads house the ion channel machinery of EC-coupling. This includes PM-localized L-type Ca2+ 

channels (LTCCs), also known as dihydropyridine receptors or DHPRs, comprising pore-forming 

and voltage sensing CaV1.1 α1S subunits complexed with auxiliary subunits (9). On the other side 

of the triad, juxtaposed SR-localized ryanodine receptors (specifically RyR1) constitute the SR-

Ca2+ release channel portion of the machinery. DHPRs and RyRs physically interact in a complex 

that bridges the junctional cleft (Fig. 1A). APs triggered by excitatory neurotransmission at the 

neuromuscular junction (NMJ) propagate throughout the muscle fiber sarcolemma and into t-

tubules. These brief depolarizing impulses last 2–5 ms and trigger outward movement of the 

voltage sensor domain of the t-tubule CaV1.1 channels. Their direct physical interaction allows 

the conformational change in the DHPRs to be allosterically coupled to activation of RyRs 

triggering Ca2+ release from SR via a mechanical mechanism that does not require Ca2+ influx 

through DHPRs (10-13). The elevation in intracellular Ca2+ activates myofilaments and generates 

muscle contraction. Thus, skeletal muscle SR-PM junctions are the structural platforms for 

transmission of excitation from PM to SR. Signaling at triads is bidirectional as physical interaction 

between RyRs and DHPRs also enhances CaV1.1 activity (12; 14) and slow ICa current activation 

kinetics (14; 15). Confirming that a mechanical linkage mediates retrograde RyR1-to-DHPR 

signaling was demonstrated by its restoration by expression of only the N-terminal cytosolic 

portion of RyR1 (RyR11:4300) that lacks the ion channel forming segments in RyR1-null dyspedic 

myotubes (14).  
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 Given that both orthograde (outside-in, DHPR-to-RyR1) and retrograde (inside-out, RyR1-

to-DHPR) signaling pathways requires physical association between DHPRs and RyRs, a logical 

hypothesis was that this interaction tethered jSR and PM and was the basis of triad formation. 

However, triadic junctions are still present in CaV1.1-null dysgenic mice (16), and RyR1-null 

dyspedic mice (17). Dyspedic skeletal muscle triads had a smaller gap (~7 nm) between jSR and 

t-tubule PM than WT mice (~12 nm in WT) (17). RyRs are the largest known ion channel with a 

bulky N-terminal cytosolic ‘cap’ domain that protrudes 10-12 nm from the SR membrane (18; 19), 

traversing and likely defining the ~12 nm junctional gap at triads (17). RyRs also influence the 

distribution of DHPRs, which align in the t-tubule PM opposite checkboard-like arrays of RyR1, 

with every other RyR1 associated with a tetrad of DHPRs (20). While present in bony fish and all 

higher order vertebrates (21), such arrays are absent in dyspedic mice where DHPRs are more 

randomly distributed (17). In summary, the EC-coupling function of the SR-PM junctions in 

skeletal muscle requires the presence and physical interaction of DHPRs and RyR1. However, 

these MCS remain in mice lacking expression of one or the other interacting partner, albeit with 

an altered structure in the absence of RyR1. While triads form and can be captured with EM in 

dysgenic and dyspedic myocytes, there is little information on their stability or lifetime. Future 

studies should examine whether a lack of DHPR or RyR1 impacts triad stability. 

 Skeletal muscle is highly specialized for rapid contraction and relaxation, having a vast 

SR with a huge Ca2+ storage capacity and little intrinsic leak. A high concentration of SR-localized 

SERCA1 Ca2+ transporting ATPases exists at triads, meaning Ca2+ release is well-matched by a 

rapid reuptake especially during single twitch contractions. However, there is still a need for Ca2+ 

entry to ensure Ca2+ homeostasis and store repletion during repetitive contractions to avoid 

muscle fatigue. A specialized form of store operated Ca2+ entry (SOCE), as mediated by a 

complex of ER STIM1 and PM Orai1 proteins contributes to meeting this need in skeletal muscle, 

as reviewed recently in this series (22). While fundamental to homeostasis of depolarization-

induced Ca2+ signaling at SR-PM junctions in skeletal muscle, due to space constraints we refer 
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the reader to this review, and others on STIM and Orai store-operated Ca2+ channels (23; 24) 

including skeletal myopathies resulting from STIM and Orai mutations (25). 

 

TRIAD FORMATION AND MAINTENANCE 

Role of Mitsugumin29. As previously stated, in skeletal muscle DHPRs and RyRs are not 

required for formation of SR-PM junctions. In a calculated effort to identify triad-forming proteins, 

monoclonal antibodies (mAbs) were developed from mice immunized with rabbit skeletal muscle 

membrane vesicles (26). One (mAb1007) yielded a striated pattern of immunolabeling in skeletal 

muscle reminiscent of that of DHPRs and RyR1, with subsequent immunogold EM confirming 

mAb1007 immunolabeling was at triads. The mAb1007 target protein was immunopurified, 

partially sequenced and subsequently cloned from rabbit skeletal muscle and named 

mitsugumin29 (MG29), for a 29 kDa protein of triads (mitsugumi is triad junction in Japanese). 

MG29 has four transmembrane segments and is related to the synaptophysin family of proteins 

which share common functional and structural properties with connexins (27), and that regulate 

the fusion pore complex where synaptic vesicles form junctional complexes with PM to 

orchestrate exocytosis (28). This suggested MG29 could tether SR to PM in skeletal muscle cells, 

potentially forming a gap-junction-like pore there. Additionally, MG29 expression in amphibian 

embryos was found to precede t-tubule and triad formation, beginning in SR membranes, and 

ultimately localizing to triads as they form (29). However, MG29 knockout (KO) mice were found 

to maintain tethered triads and were viable, surviving into adulthood despite mild reductions in 

contractile strength and ultrastructural abnormalities in triad junctions including dilated, 

fragmented terminal SR cisternae, and swollen, irregularly aligned t-tubules (30). So, while MG29 

appears to play a role in shaping jSR and t-tubule morphology, it is not the critical SR-PM tether.  

 

Role of junctophilin. Junctophilins (JPHs) are ER proteins that act as PM tethers by binding PM 

phospholipids via membrane occupation and recognition nexus or MORN domains (31). The 
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discovery of JPHs came from a second mAb (mAb2510) isolated from the same screen that 

identified MG29 (31). mAb2510 also yielded immunolabeling of triads, and immunopurification of 

its target protein led to cloning of JPH1 and its identification as the essential tether of skeletal 

muscle SR-PM junctions (31). There are four known isoforms of JPH, of which JPH1 (661 aa) 

and JPH2 (696 aa) are expressed in skeletal muscle (31). These conserved proteins (32) span 

the cleft of ER-PM junctions, employing an N-terminal PM anchor of eight N-terminal MORN 

motifs that have been proposed to bind to PM phospholipids, specifically PI(4,5)P2 and 

phosphatidylserine (PS), and a C-terminal ER transmembrane segment (31; 33; 34). While a 

recent structural study revealed positively charged patches within MORN motifs that could 

potentially interact with negatively charged phospholipids, co-crystallization in high concentrations 

PI(4,5)P2 or PS revealed a very low binding affinity for lipids in this in vitro setting (35). The 

structure also cast doubt on an alternative hypothesis that JPH2 was PM-associated due to its 

palmitoylation (36), as proposed cysteine sites of palmitoylation were either buried and 

inaccessible, or obscured by binding to other proteins (35). JPH1 truncation mutants lacking the 

C-terminal SR anchor remain PM-localized (31) but the exact mechanism of JPH-PM association 

remains to be fully elucidated. ER-PM junctions that form in response to exogenous expression 

of JPH1 in amphibian embryos have a mean cleft distance of ~7.6 nm (31), virtually identical to 

that observed in RyR1-null dyspedic mouse myotubes (17), and lacked feet structures that would 

indicate presence of RyRs. This supports that the large cytosolic cap of RyRs influences the 

junctional gap distance and hints that elasticity or flexibility in JPH1 allows it to extend to ~12 nm 

to accommodate RyR1 but still maintain its tethering function.  

 The importance of JPH1 for triad formation and EC-coupling was demonstrated in JPH1 

KO mice which have significantly fewer triadic junctions in skeletal muscle in tongue, jaws, thigh, 

diaphragm, and presumably more broadly (37). These mice die within one day of birth (i.e., on 

postnatal day 1 or P1) due to issues with suckling and feeding which is not rescued by feeding 

via gastric tubes, due to breathing and regurgitation issues. In addition, force generation in JPH1-
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null pup hindlimb muscle was found to be reduced compared to WT pups confirming the 

importance of JPH1-mediated triad tethering for efficient skeletal muscle EC-coupling and 

survival. Interestingly, almost all skeletal muscles examined in JPH1 KO mice had an unaltered 

number of dyadic junctions (37), supporting a role for JPH2 in dyads and JPH1 in triads. Skeletal 

muscle triads only begin to develop at embryonic day 17 (E17), coincident with upregulation of 

JPH1 expression (37; 38). In contrast, dyads in skeletal muscle appear at E14 when JPH2 

expression is already high (38). The profound issues with suckling and breathing that led to death 

at P1 suggests a disproportionate vulnerability of jaw muscle and diaphragm to JPH1 KO. Further 

insights came with studies of triads and dyads in WT and JPH1 KO pups from E17 through P1, 

extending to P3 for WT pups (38). A steep increase in triad numbers after birth was seen in WT 

digastric and diaphragm muscles, more so than in hindlimb muscles, reflecting the importance of 

these muscles in early life-sustaining functions and the deficits in suckling and breathing in P1 

JPH1 KO mice. Acute adenovirus-mediated double knockdown (KD) of JPH1 and JPH2 with a 

small hairpin RNA was used to interrogate their role in adult skeletal muscle SR-PM junctions, 

where triads are in the majority (39). Simultaneous KD to 40-60% of normal expression levels of 

both JPH isoforms led to abnormal alignment of triads, and occasionally to the absence of triadic 

junctions. Taken together, these results strongly support a role for JPH1 and JPH2 in SR-PM 

tethering in skeletal muscle, with a prominent role for JPH1 in triad development and 

maintenance.  

 Physical interactions between CaV1.1 and RyR1 are essential for skeletal muscle EC-

coupling but how are these proteins concentrated at triads? A new hypothesis for this was raised 

in recent work (40) where channel accumulation at striated muscle SR-PM junctions was 

postulated to occur due to a 'left behind' phenomenon attributed to lack of access of the endocytic 

machinery to the confined junctional space. Further studies will be required to test this interesting 

postulate but it is notable that elements of the cortical actin scaffold, a key player in endocytosis, 

are excluded from some ER-PM junctions in neurons (41; 42) where MCS are said to form at 
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'holes' in the scaffold. While imaging cortical actin in muscle cells presents more of a challenge 

due to the abundance of actin in the sarcomeres, it would be interesting to determine if a similar 

exclusion of cortical actin occurs in striated muscle SR-PM junctions and to investigate whether 

this abrogates endocytosis in triads and dyads. Not mutually exclusive with this hypothesis, a role 

for JPHs in recruiting and retaining these Ca2+ channels to their respective membranes in skeletal 

muscle triads has been supported by several studies. Co-immunoprecipitation and pulldown 

experiments performed on rabbit skeletal muscle cell microsomes have revealed a quadripartite 

complex consisting of CaV1.1, RyR1, JPH1, and a cholesterol-binding scaffolding protein called 

caveolin 3 (Cav-3) (43). In the same study, JPH2 was seen to co-purify with CaV1.1. The CaV1.1 

interaction sites were mapped to similar regions on JPH1 (aa 232-369) and JPH2 (aa 216-399), 

encompassing MORN motifs 7 and 8 and an adjacent region (43), and the JPH1 interacting region 

on CaV1.1 to the proximal C-terminal region of aa 1595-1606 (44). Isothermal titration calorimetry 

experiments recently confirmed the 1:1 stoichiometry between a 16 aa rabbit CaV1.1 peptide (aa 

1594-1609) and the first three MORN motifs of JPH1 and JPH2 (35). That these sites on JPH1 

and JPH2 are distinct from those originally identified (43) may suggest that the reduced 

environment of the in vitro experiments influenced the precise nature of protein-protein 

interactions. The crystal structure of JPH2 in complex with the aa 1594-1609 CaV1.1 peptide 

revealed several critical interaction interfaces (35). Alanine substitution of three key residues 

(Arg1599, Arg1600, and Phe1605) within this region yielded a CaV1.1 mutant that failed to bind 

JPH2 and that exhibited reduced clustering (~60%) compared WT CaV1.1 when expressed in 

dysgenic myotubes (35). That using siRNA to KD both JPH1 and JPH2 yielded a more profound 

effect on CaV1.1 clustering in myotubes (44) suggests additional interaction sites may exist 

outside of these three residues. The double KD of JPH1 and JPH2 also significantly reduced 

RyR1 clustering at SR-PM junctions (44), consistent with its impact on CaV1.1 clustering and in 

agreement with the initial report of JPH1-RyR1 interactions (45). Together, these studies support 

that JPH1 and JPH2 interactions with CaV1.1 and RyR1 promotes recruitment and retention of 
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these channels at triads and dyads of skeletal muscle myotubes, but with some molecular details 

remaining to be elucidated.  

 If JPH interactions with CaV1.1 and RyR1 are essential for their localization at skeletal 

muscle dyads and triads, a logical prediction is that JPH KD should be detrimental to EC-coupling. 

Indeed, double KD of JPH1 and JPH2 in myotubes leads to reduced voltage-gated Ca2+ current 

(ICa) and diminished amplitude of evoked Ca2+ transients (44). Once situated and clustered at 

stable dyad/triad junctions, interaction between CaV1.1 and RyR1 is also facilitated by STAC3 

interactions with the II-III loop of CaV1.1 (see (46) for a recent review) and by CaVβ1a (47). 

Accordingly, conformational coupling of CaV1.1 and RyR1 has recently been recapitulated in non-

muscle tsA201 (i.e., HEK293T) cells transiently transfected with RyR1, CaV1.1, STAC3, CaVβ1a, 

and JPH2 (48). Together, these studies show that great progress has been made in defining the 

components of the specialized SR-PM junctions (triads, dyads) that mediate depolarization-

induced Ca2+ signaling in skeletal muscle although further definition of details of the molecular 

mechanisms and how they are disrupted in disease remain to be elucidated. 

 

CARDIAC MUSCLE SARCOPLASMIC RETICULUM-PLASMA MEMBRANE JUNCTIONS 

Depolarization-induced Ca2+ signaling events at cardiac muscle sarcoplasmic reticulum-

plasma membrane junctions. Junctional dyads constitute the specialized nanodomain for 

cardiac EC-coupling. In cardiomyocytes, SR-PM junctions form not just at z-lines adjacent to 

transverse t-tubule membranes but also at peripheral membranes, and along axially orientated 

sarcolemmal tubules. Depending on the age (49) and size of the animal (50; 51), there may be 

more or less dyadic (transverse or axial tubule-associated) or peripheral (surface sarcolemma-

associated) populations. In myocytes without an extensive t-tubule network (e.g., atrial myocytes 

in certain species), peripheral couplings are the site of EC-coupling. At dyadic junctions, clusters 

of CaV1.2 L-type Ca2+ channels are concentrated on t-tubules (52-56) within nanometer proximity 

of their functional RyR2 partners clustered on jSR (Fig. 1B). In contrast to skeletal muscle, cardiac 
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myocytes do not have cross-junctional physical linkages between the PM LTCCs and SR RyRs, 

but their proximity at dyads is still required to ensure their efficient and rapid chemical 

communication. AP depolarization of cardiomyocytes stimulates CaV1.2 channel opening, leading 

to a small influx of Ca2+ that then triggers Ca2+-induced Ca2+ release (CICR) of a larger amount of 

Ca2+, observed experimentally as Ca2+ “sparks” (57), from the closely apposed RyR2 clusters. 

Near simultaneous triggering of 20,000-50,000 Ca2+ release units (CRUs) across a single 

myocyte leads to a global elevation in Ca2+ sufficient to trigger contraction. Subsequent relaxation 

is achieved when SERCA2-mediated SR Ca2+ uptake and to a lesser extent PM Na+/Ca2+ 

exchanger (NCX1)-mediated extrusion return intracellular [Ca2+] to resting levels.  

 There exists a 12-15 nm dyadic cleft between jSR and PM at these junctions with an 

average length of between 100-200 nm, and diffusion of cytosolic molecules is restricted within 

this confined and crowded space (58; 59). As in skeletal muscle, the cytosolic portion of RyR2 

protrudes ~12 nm into the cleft, and anywhere from 9 to >100 RyR2 are present per CRU (60). 

CaV1.2 channels are thought to protrude ~2 nm into the cleft (61), with 1 – >13 CaV1.2 channels 

per dyad (56; 62) at an estimated RyR2:CaV1.2 ratio of 7.3 (63). Along with these SR and PM 

Ca2+ channels, Cav-3, β-adrenergic receptors, associated signaling complexes, and anchoring 

proteins are also densely packed into dyads. The high density of proteins in such a small space 

has been suggested to help funnel Ca2+ entering through CaV1.2 channels toward closely 

apposed RyR2, facilitating high EC-coupling gain and rapid, high-fidelity contraction (58). 

However, even with multiple CaV1.2 channels in each dyad, not all of them will open with every 

depolarization, as CaV1.2 channels have a maximum open probability of <0.5 (64). However, they 

manage to consistently trigger CICR from cross-dyad RyR2 during every heartbeat (62). One 

hypothesis proposed to reconcile this apparent discrepancy involves CaV1.2 clustering and 

cooperative gating (55; 65). Concerted opening of multiple CaV1.2 channels within a cluster, 

driven by the constituent channel with the highest open probability, amplifies Ca2+ influx through 

PM channels during cardiac APs when extremely depolarized (0 to +50 mV) membrane potentials 
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lead to only tiny femtoamp unitary Ca2+ currents, which in independently gating channels would 

be unable to reliably trigger RyR2 openings. Combined with restricted ionic diffusion within dyads, 

cooperative gating constitutes a fail-safe system for the beating of the heart (66).  

 Unlike skeletal muscle, contractile force of the heart cannot be graded by activating more 

NMJs. Every single cardiomyocyte participates in every beat of the heart due to the functional 

syncytium created by their tight electrical coupling. Thus, in the heart, force is graded by the 

degree of Ca2+ release and regulatory pathways that enhance Ca2+ influx and/or enhance 

sensitivity of the RyR2 to Ca2+ generate positive inotropic responses. Recent work has revealed 

existence of an endosomal reservoir of CaV1.2 channels that is rapidly mobilized to enable 

channel exocytosis into t-tubule membranes during β-adrenergic stimulation (53; 54). Newly 

inserted channels form large clusters in which the channels gate cooperatively to amplify Ca2+ 

influx, stimulating larger CICR, and eliciting stronger contractions. This provides a mechanism to 

tune EC-coupling and graded force generation by rapidly increasing expression of CaV1.2 

channels in t-tubule membranes.  

 

DYAD FORMATION AND MAINTENANCE 

In mice and rats, t-tubules are not present at birth in ventricular myocytes but begin forming at 

~P10 with dyads appearing by P20 (67). In humans t-tubules develop in utero with dyads evident 

by 32 weeks of gestation (68). Dyad density and t-tubule network complexity increases with heart 

rate, reflecting the functional importance of these signaling platforms for rapid, coordinated rises 

in intracellular Ca2+and accompanying contraction. Accordingly, small mammals like mice and 

rats have a higher density of dyads than larger mammals with lower heart rates like cows, sheep, 

and humans (69). Accumulating evidence supports that cardiac dyads are highly dynamic 

structures that undergo constant remodeling and alterations as jSR retracts and emerges in the 

vicinity of t-tubules (70; 71). Similarly, on the PM side of the dyad, t-tubules exhibit plasticity 

particularly during development and disease (69). While we do not have the complete molecular 
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picture of exactly how t-tubules and dyads are formed, several proteins have been identified as 

key players including Cav-3, JPH2, amphiphysin II/bridging integrator I protein (BIN1), and nexilin 

(Fig. 1B). Caveolin-3 is concentrated in t-tubules during development (67; 72), and remains a 

dyad-localized protein as junctions mature into adulthood. However, EC-coupling and Ca2+ 

signaling persist in the face of Cav-3 KO (73) implying it does not play an essential role in dyad 

formation or maintenance. Accordingly, here we focus on roles of JPH2, BIN1, and nexilin. 

 

Role of junctophilin2 (JPH2). While both JPH1 and JPH2 are expressed in skeletal muscle, 

cardiomyocytes express only JPΗ2 (37) which is the SR protein that tethers cardiac dyads 

together (74). Transmission EM studies of purified JPH2 revealed an ~15 nm long structure, the 

approximate width of the dyadic cleft (33). Underscoring its critical role in cardiac development 

and function, knocking out JPH2 in mice is embryonic lethal between E9.5 and E11.5 when 

cardiac contractile activity commences (31), coincident with onset of t-tubule formation (67). 

Furthermore, cardiac-specific silencing of JPH2 in adult mice precipitates heart failure within a 

week and is associated with more variation in dyadic spacing and an aberrant increase in RyR2 

activity (75). Conversely, overexpression of JPH2 has been reported to reduce RyR2 activity (76). 

These findings point toward a role of JPH2 in stabilizing the closed state of RyR2, important in 

minimizing occurrence of potentially arrhythmogenic diastolic CICR and SR leak. JPH2 KO mice 

also have reduced colocalization between CaV1.2 and RyR2 in ventricular myocytes (75), and 

ultrastructural analyses revealed the number of dyads in JPH2 silenced myocytes is 40% lower 

than controls, while JPH2 overexpression produces enlarged RyR2 clusters and dyads (76). 

These results suggest JPH2 plays a critical role in dyad maintenance and spacing in adult 

ventricular myocytes (75). JPH2 also physically interacts with CaV1.2 and is postulated to play a 

role in recruitment and retention of CaV1.2 channels at dyads (77; 78).  

 Developmental upregulation of JPH2 expression coincides with t-tubule development and 

maturation (67), while JPH2 KD during development results in disorganized and disrupted t-tubule 
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networks (79). Cardiac specific JPH2 KO mice fail to form mature t-tubules, while overexpression 

of JPH2 promotes accelerated t-tubule development (80; 81). That failure to produce t-tubules in 

developing myocytes occurred despite unaltered BIN1 levels (80) speaks to the profound 

importance of JPH2 in t-tubule biogenesis and maturation. Many heart failure models exhibit 

disrupted t-tubule networks that have been linked with JPH2 downregulation in a reversion 

towards an immature phenotype (79; 82-84). A similar association has been reported in patients 

with hypertrophic (82), dilated, or ischemic cardiomyopathy (83; 84). JPH2 mutations are 

associated with hypertrophic cardiomyopathy in humans (82; 85). Indeed, JPH2 gene therapy has 

been proposed as a putative heart failure therapeutic, as AAV9-mediated restoration of JPH2 

levels in a pressure-overload model of heart failure was found to prevent t-tubule loss and rescue 

SR Ca2+ handling and systolic function (86). However, findings of reduced expression or function 

of JPH2 is not a generalized feature of heart failure, and some animal models and human HF 

patients show t-tubule network disruption despite normal JPH2 levels (87; 88). These findings 

suggests that JPH2 is a driver of t-tubule loss in heart failure, but perhaps not the only one.  

 

Role of BIN1. The membrane curvature and tubule forming protein BIN1 (also known as 

amphiphysin II) is involved in t-tubule biogenesis in both skeletal and cardiac muscle (89) and is 

known to play a role in targeted delivery of CaV1.2 channels to t-tubules (90). A cardiac specific 

isoform of BIN1 (BIN1+13+17) has been linked with formation of microfolds on t-tubules (91). 

These BIN1-scaffolded microfolds limit ionic diffusion within t-tubules which may allow efficient 

recapture of extruded Ca2+ (90). Cardiac-specific heterozygous KO of BIN1 lowers capacitance of 

cardiomyocytes due to the reduced amount of t-tubule membrane (90). The microfolds are also 

thought to facilitate formation of dyadic microdomains as BIN1 delivers CaV1.2 channels to these 

t-tubule folds via microtubules and jSR localized RyR2 are proposed to be attracted to these sites 

(92). Accordingly, super-resolution STORM imaging has revealed close associations between 

CaV1.2, RyR2, and BIN1 in adult mouse cardiomyocytes (92). Thus, if BIN1 levels are 
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downregulated, and less microfolds are formed, one may expect there to be fewer interfaces for 

dyad formation.  

 BIN1 is also downregulated in heart failure (87; 90) and this has been linked to 

pathogenesis since cardiac-specific KO of BIN1 precipitates dilated cardiomyopathy in mice (90). 

Interestingly, in sheep and ferret models of heart failure, reduced t-tubule density occurs 

coincident with decreased BIN1 expression, and these alterations occur in the absence of any 

change in JPH2 expression (87). BIN1 KD in adult rat ventricular myocytes leads to reduced t-

tubule density and increased Ca2+ transient dysynchrony suggesting disrupted dyads and altered 

Ca2+ signaling, while JPH2 KD led to more longitudinally-arranged t-tubules but not a change in 

overall density (87).  

 Lentiviral transduction of BIN1 in human embryonic stem cell derived cardiomyocytes 

(hESC-CMs) results in membrane tubulation, and CaV1.2 cluster recruitment to those tubules to 

form functional CRU microdomains containing CaV1.2-RyR2 (93). Virally-mediated BIN1 

overexpression can restore t-tubule microfolding and normalize CaV1.2 and RyR2 organization 

leading to decreased mortality in a mouse transverse aortic constriction (TAC) model of pressure-

overload induced heart failure (94). BIN1 expression is reportedly normalized upon delivery of 

AAV9-SERCA2a in failing, post-infarction rat hearts (95). This treatment rescued t-tubule density, 

and improved Ca2+ spark synchronicity, but interestingly did not rescue JPH2 levels, implying that 

BIN1 but not JPH2 is required to maintain a functional t-tubule network and efficient EC-coupling. 

Taken together, these studies imply a role for BIN1 in t-tubule biogenesis, maintenance and in 

recruitment and retention of CaV1.2 on t-tubules. Loss of BIN1 destabilizes t-tubules and impacts 

dyad integrity and EC-coupling.  

 

Role of nexilin. Nexilin (NEXN) is an actin-binding and z-disk stabilizing protein (96; 97) recently 

identified as a critical determinant of dyad formation and stability. Mutations or genetic ablation of 

NEXN are associated with cardiomyopathy in zebrafish, mice, and humans (97-101). Global KO 
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of NEXN is associated with perinatal lethality with mice succumbing to dilated cardiomyopathy 

(DCM) within 8 days of birth (100) while cardiac specific KO also precipitated DCM and lethality 

within 12 days (102). In the cardiac-specific KO model, loss of NEXN led to reduced expression 

of other dyadic proteins including CaV1.2, RyR2, and JPH2, while BIN1 expression was unaltered 

(102). NEXN colocalizes and copurifies with JPH2 and RyR2, confirming NEXN as a dyad-

localized protein, while EM studies of cardiac-specific NEXN KO myocytes revealed a significant 

reduction in the number of ~12 nm SR-PM junctions suggesting a critical role in dyad formation 

and integrity. Furthermore, t-tubules fail to form in cardiac-specific NEXN KO mice suggesting an 

essential role in t-tubule formation. The mice likely survive the first 12 days after birth as peripheral 

couplings (~30 nm junctional distance) between surface sarcolemma and SR still form to sustain 

a low but ultimately inadequate level of EC-coupling (102). Inducible KO of NEXN in adult 

cardiomyocytes also precipitated DCM and led to altered Ca2+ handling and t-tubule network 

remodeling (98). Together, these studies suggest NEXN is involved in t-tubule biogenesis, 

maintenance, and regulation, although the exact mechanism by which NEXN, BIN1 and JPH2 

function together to exert their effects including how they influence expression of other dyadic 

proteins have yet to be fully elucidated.  

 
SMOOTH MUSCLE SARCOPLASMIC RETICULUM-PLASMA MEMBRANE JUNCTIONS 

Depolarization-induced Ca2+ signaling events at smooth muscle sarcoplasmic reticulum-

plasma membrane junctions. Smooth muscle cells (SMCs) that line blood vessels, airways, 

gastrointestinal, urinary, and reproductive tracts are significantly thinner and smaller than their 

striated muscle counterparts and thus do not require a complex, penetrating network of t-tubules 

to ensure uniform conduction of electrical depolarizations. Instead, SMCs have many shallow, 

caveolin-scaffolded, flask-shaped invaginations of their PM termed caveolae (103). Junctional 

membrane complexes called peripheral couplings form at interfaces between the caveolar PM or 

the surface PM and the underlying peripheral SR (103; 104). The reported distance between the 
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two membranes at these points representing SR-PM junctions in SMC ranges from 10-20 nm 

(104). Peripheral couplings have been implicated in force generation in visceral and vascular 

smooth muscle tissues. SMC peripheral couplings are sites of BK channel – RyR2 crosstalk that 

play an important role in regulating SMC contractility (105; 106). In vascular SMCs (VSMCs), 

functional coupling between BK and RyR2 generates a spontaneous transient outward current 

(STOC) resulting in membrane hyperpolarization in response to elevated cytosolic Ca2+ levels that 

can occur downstream of depolarization-induced opening of LTCCs, thus favoring vasodilation of 

blood vessels (Fig 1C i). A similar crosstalk between these channels is associated with SMC 

relaxation in phasic smooth muscle tissues including that of the bladder (107).  

PM-localized TRPM4 (transient receptor potential melastatin 4) and SR-localized IP3 

receptors (IP3R) are also functionally coupled at peripheral coupling sites in VSMCs (108). In this 

case, release of Ca2+ from IP3R activates TRPM4 channels which conduct Na+ into the cells, 

depolarizing the membrane and favoring the opening of LTCCs and consequent vasoconstriction 

(108; 109) (Fig 1C ii). Finally, in some smooth muscle tissues RyR or IP3R-mediated Ca2+ release 

triggers opening of Ca2+-activated Cl- channels which generate a spontaneous transient inward 

current (STIC) that depolarize the muscle and favor contraction (110) (Fig 1C iii).  

 

PERIPHERAL COUPLING FORMATION AND MAINTENANCE 

There remains a scarcity of information on how and when peripheral couplings are formed in 

SMCs but recent work has provided some insight into how they are supported and maintained. In 

cerebral artery SMCs, peripheral couplings are supported by microtubule arches that press the 

SR against the PM (111). The microtubule depolymerizing agent nocodazole is reported to 

increase SR-PM distances in cerebral artery SMCs up to four-fold, while actin depolymerization 

had no appreciable effect in diffraction limited confocal microscopy (111). Furthermore, in super-

resolution imaging experiments with 20-30 nm lateral resolution nocodazole significantly reduced 

colocalization between SR-localized RyR2 and PM-localized BK channels. As discussed above, 
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these two channels functionally couple to one another to orchestrate SMC relaxation in response 

to elevations in intracellular Ca2+ concentration. This coupling is reliant on nanometer proximity 

between the two within peripheral coupling signaling microdomains and accordingly, nocodazole 

treatment was seen to alter the kinetic and spatial properties of Ca2+ sparks, reducing BK channel 

activity and promoting hypercontractility evidenced by a higher myogenic tone of pressurized 

artery preparations (111). Several proteins have been found to support and tether peripheral 

couplings. Here we consider the roles of junctophilin and STIM1. 

 

Role of junctophilin. Although less widely studied in SMC compared to striated muscle, recent 

work has revealed an important role for JPH2 in regulating the membrane potential and contractile 

activity of VSM, in that morpholino-mediated JPH2 silencing reduced the number of SR-PM 

peripheral coupling sites (112). At these sites, JPH2 colocalizes with RyR2 and although JPH2-

knockdown does not appear to alter Ca2+ spark generation or morphology, it leads to reduced BK 

channel activity and hypercontractility. Silencing of JPH2 with siRNA has been independently 

shown to reduce BK channel activity in rat mesenteric arteries (113) where JPH2 is postulated to 

form a macromolecular complex with BK channels, RyR1, and caveolin-1 (Cav-1). A direct 

association between Cav-1 and JPH2 has been isolated to a 20 aa sequence on JPH2, and Cav-

1 null mice display reduced JPH2-BK channel colocalization supporting that Cav-1 recruits BK 

channels to JPH2 tethered caveolar peripheral couplings, permitting their efficient functional 

interactions with RyR2 (113; 114). Together this evidence suggests an essential role for JPH2 in 

tethering and maintaining peripheral coupling sites to ensure adequate proximity between SR 

RyR2 and PM BK channels for regulation of SMC contractility.  

 

Role of STIM1. A recent study found STIM1 was constitutively active and playing an 

unconventional role in VSMCs, acting independently of Orai1 and SOCE to stabilize peripheral 

coupling sites (115). Smooth muscle specific, inducible STIM1 KO mice have been observed to 
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possess fewer and smaller peripheral coupling sites and reduced RyR2-BK channel 

colocalization. TRPM4:IP3 SR-PM sites are also impacted by STIM1 KO and thus the balance 

between contractile and dilatory pathways is altered (115). Ultimately the animals are hypotensive 

suggesting impaired contractility of the VSMCs. Super-resolution microscopy also hints that SR-

anchored STIM1 may interact with BK channels and TRPM4 channels on the PM (115) and while 

this remains to be confirmed with biochemical approaches it could provide some mechanistic 

insight into how STIM1 stabilizes these specific sites. 

 

ENDOPLASMIC RETICULUM-PLASMA MEMBRANE JUNCTIONS IN NEURONS 

Shortly after the discovery of ER-PM junctions in striated muscle, EM images from neurons 

revealed a distinct form of ER-PM junctions, named “subsurface cisternae”, in which stacks of ER 

cisterns were found in close apposition to PM (116; 117). It was noted soon after that the structure 

of the junction between the most PM proximal ER cistern and PM in neurons was similar to 

junctional triads of skeletal muscle (118), with a 10-20 nm gap between ER and PM filled with 

electron dense material. Presumably this electron dense material represents proteins that form 

the physical structure that maintains close apposition of ER and PM at these sites, together with 

signaling proteins that mediate the functions associated with these specialized microdomains. 

However, a comprehensive analysis of components of neuronal ER-PM junctions is for the most 

part lacking. Detailed morphometric ultrastructural analyses reveal that brain neurons have 

extensive portions of PM engaged in ER-PM junctions (119), especially on their cell bodies or 

somata, with certain neurons having >12% of their somatic PM surface area engaged in an ER-

PM junction (119). Given the cellular and molecular complexity of the brain (120), it is not 

surprising that many of the proteins that contribute to the formation and maintenance of ER-PM 

junctions in other mammalian cell types (2; 3) are also expressed in brain, at least at the mRNA 

level. While in most cases their expression and localization at neuronal ER-PM junctions or their 

contribution to depolarization-induced Ca2+ signaling has not been defined, recent studies have 
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provided numerous cases of contributions of junction-forming proteins and specific classes of ER-

PM junctions to this important form of neuronal Ca2+ signaling.  

 

Depolarization-induced Ca2+ signaling events at neuronal endoplasmic reticulum-plasma 

membrane junctions. Neurons have many different forms of Ca2+ signaling, including as 

triggered by membrane depolarization (121). As in cardiomyocytes, Ca2+ influx through PM 

voltage-gated Ca2+ channels (VGCCs) can trigger CICR in neurons, with Ca2+ sparks observed in 

somata and proximal dendrites of hippocampal pyramidal neurons (122-125) at sites in close 

spatial proximity to PM (125-127). Applying selective inhibitors of LTCCs or RyRs blocks these 

spontaneous Ca2+ sparks (122-125). RyRs are present in high density clusters at ER-PM junctions 

containing high-density clusters of the junction-forming voltage-gated KV2.1 K+ channel protein, 

such as striatal medium spiny and thalamic neurons (128), and hippocampal pyramidal neurons 

(42; 125; 129; 130). In somata of cultured hippocampal neurons these sites also contain clustered 

LTCCs and represent “hot spots” for Ca2+ sparks (125) (Fig. 2A).  

 Due to their relatively low affinity for Ca2+ BK channels must localize near their Ca2+ source 

for reliable Ca2+-dependent activation (131), and in certain neurons are localized at neuronal ER-

PM junctions. In cartwheel interneurons of dorsal cochlear nucleus, RyR-mediated ER Ca2+ 

release triggered by PM CaV2.1 channels activates somatic BK channels (127). CaV2.1 Ca2+ 

channels and BK channels also colocalize over somatic subsurface cisternae in cerebellar 

Purkinje cells (132), supporting that these CaV2.1-RyR-BK triads are present at ER-PM junctions 

(Fig. 2B). In neurons of the suprachiasmatic nucleus, BK channels exhibit a circadian 

dependence in activation by PM LTCCs (day) or ER RyRs (night) (133). It is intriguing that this 

diurnal switch in Ca2+ sources could represent dynamic changes in BK channel localization at ER-

PM junctions.  

 Another form of CICR are Ca2+ puffs (124) resulting from Ca2+-dependent activation of 

Ca2+ release from ER IP3Rs (134; 135). In hippocampal neurons Ca2+ puffs occur on the soma 
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and the major apical dendrite but not on oblique branches that contain the bulk of dendritic spines 

(124). While the sites of Ca2+ puffs correspond to prominent sites of ER-PM junctions in neurons 

(119) whether this localized Ca2+ release occurs at neuronal ER-PM junctions has not been 

determined, although in non-excitable HeLa cells local IP3R Ca2+ release occurs at ER-PM 

junctions (136). Following up on earlier studies (137; 138), a detailed immunogold EM study 

revealed ER IP3Rs and PM BK channels are enriched at subsurface cisternae in cerebellar 

Purkinje neurons (139).  

 Cisternal organelles on the axon initial segment (AIS) are a highly modified form of 

subsurface cisternae ER-PM junctions (140). These represent sites at which junction-forming KV2 

channels and ER RyRs are clustered (41), and also sites of axo-axonic GABA synapses (140). 

High resolution optical Ca2+ imaging reveals highly localized “hot spots” of depolarization-induced 

Ca2+ signaling on the AIS (141), although their spatial relationship to cisternal organelles has not 

been defined. ER-PM junctions are not present in dendritic spines (142) or presynaptic terminals 

(119), although up to 1% of PM surface area of certain axons is engaged in MCS with ER (119). 

Not surprisingly, given the cellular and molecular complexity of brain neurons, numerous 

molecules that have been linked to formation and or maintenance of ER-PM junctions in other 

cells (1-3) are expressed in brain. However, for the most part, their presence and role in ER-PM 

junctions in brain neurons, and their contribution to depolarization-induced Ca2+ signaling has not 

been elucidated. Recent studies have linked ER-PM junctions containing neuronal JPH isoforms, 

and those containing PM KV2 K+ channels to specialized forms of depolarization-induced Ca2+ 

signaling that profoundly impact neuronal physiology. 

 

Junctophilins and their relationship to depolarization-induced Ca2+ signaling in neurons. 

While the overall role of the neuronal JPH3 and JPH4 junctophilin isoforms has not been as firmly 

established as for the JPH1 and JPH2 forms in striated muscle, there are numerous studies that 

support their involvement in neuronal Ca2+ signaling. At the RNA level, JPH3 and JPH4 exhibit 
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distinct cellular patterns of expression in brain (143), suggesting that different neurons may have 

ER-PM junctions populated by different JPH proteins or combinations thereof. JPH3 and JPH4 

single KO mice exhibit motor abnormalities (144-146), presumably related to the high levels of 

expression of JPH3 and JPH4 in cerebellar Purkinje neurons (143). However, JPH3 and JPH4 

appear to be somewhat redundant as overall growth, survival and behavior are much more 

profoundly impacted in JPH3/JPH4 dKO mice than in single KO mice, with motor deficits the 

primary behavioral phenotype (146). Trinucleotide repeats within the JPH3 gene underlie 

Huntington disease-like 2 (HDL2) a severe neurodegenerative disorder sharing many similarities 

to Huntington disease (147). Both JPH3 mRNA and protein are reduced in brains from HDL2 

patients (145), although both loss of function of JPH3 protein (145) and expression of a 

polyglutamine repeat protein encoded by the antisense strand of the JPH3 gene (148) have been 

implicated in the etiology of HDL2. 

 Studies employing these KO mice support that neuronal JPH proteins are crucial to CICR 

that triggers afterhyperpolarization (AHP) of the membrane potential following an AP in numerous 

types of brain neurons. There are different forms of AHPs mediated by distinct Ca2+-activated K+ 

channels that play critical roles in regulation and plasticity of neuronal excitability (149; 150), and 

diverse forms of Ca2+ influx including CICR are coupled to activation of AHPs (151-153). CA1 

hippocampal neurons from JPH3/JPH4 dKO mice had reduced levels of NMDA receptor and RyR-

dependent AHPs and impaired Schaffer collateral-CA1 long term potentiation, and deficits in 

hippocampal-dependent learning (152). Cerebellar Purkinje neurons have a CaV2.1-triggered and 

RyR-dependent CICR that activates SK channel-mediated AHP that is reduced in JPH3/JPH4 

dKO mice, perhaps contributing to the motor dysfunction in these mice (146). That it is possible 

to co-immunoprecipitate exogenously expressed ER JPH2 (the cardiac JPH isoform) and PM SK2 

channels from heterologous cells (154) suggests the possibility that neuronal JPH isoforms and 

SK2 channels may physically interact at ER-PM junctions in neurons.  
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 Hippocampal neurons have LTCC- and RyR-mediated CICR that activates intermediate 

conductance KCa3.1 Ca2+-activated K+ channels to generate a slow AHP (155). CaV1.3-RyR2-

KCa3.1 exist in a tripartite complex, and superresolution TIRF imaging shows that these proteins 

are co-clustered with JPH3 and JPH4 at somatic sites that presumably represent ER-PM junctions 

(Fig. 2C). Knockdown experiments show that JPH3 and JPH4 expression is necessary to 

maintain this tripartite complex and for normal activation of slow AHP current (155). These results 

support that CICR at JPH-containing ER-PM junctions regulates different forms of Ca2+-

dependent AHPs that impact neuronal AP firing. 

 Neuronal JPH3 and JPH4 were capable of inducing clustering of coexpressed CaV1 and 

CaV2 Ca2+ channels and changes in CaV2.1 and CaV2.2 gating (156). When coexpressed, JPH3 

colocalized with all three RyR isoforms RyR1-3, but JPH4 with only RyR3. The region on CaV1.2 

and CaV1.3 LTCCs that is required for mediating coclustering with neuronal JPH isoforms appears 

to be analogous to that mediating binding of skeletal muscle CaV1.1 to JPH1 (156). However, 

CaV2 Ca2+ channels lack this motif and presumably associate with JPH3 and JPH4 in a distinct 

manner. These studies suggest that distinct combinations of VGCCs, RyR and JPH isoforms 

could contribute to depolarization-induced Ca2+ signaling in different neurons, or as VGCC 

isoforms exhibit substantial differences in their subcellular localization (157), in different neuronal 

compartments. However, the subcellular localization of endogenous JPH isoforms in brain 

neurons and their relationship to sites of VGCC and RyR clustering and of ER-PM junctions that 

are defined anatomically and with molecular markers has not been established.  

 

KV2.1:VAP ER-PM junctions and their relationship to depolarization-induced Ca2+ signaling 

in neurons. KV2 channels function as voltage-gated K+ channels regulating neuronal AP firing 

(158-160). KV2.1, its paralog KV2.2 and their auxiliary AMIGO-1 subunit are unique among 

neuronal PM proteins in being present in large clusters on somata, proximal dendrites and the 

AIS (161-163) that represent ER-PM junctions (42; 128; 129; 164). A detailed morphometric 
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analysis in hippocampal CA1 pyramidal neurons showed that more than 90% of subsurface 

cisternae encountered were positive for KV2.1 immunogold labeling (164), suggesting that KV2 

channels, which have a broad expression in neurons throughout mammalian brain (165) may 

broadly contribute to organization of somatic ER-PM junctions that are so prominent in brain 

neurons (119). KV2 channels function to organize ER-PM junctions (166-168) as a nonconducting 

(i.e., physical) function (168). Mass spectrometry based proteomic analyses employing either 

proximity biotinylation (APEX) in transfected cells exogenously expressing KV2.1 (167) or 

immunopurification of native KV2.1 complexes from crosslinked mouse brain samples (42) led to 

identification of VAP proteins as the ER proteins associated with PM KV2.1. Binding to VAPs is 

mediated by the PRC domain on the long C-terminal tail of KV2 channels (42; 167). The PRC 

domain is necessary and sufficient for KV2-like clustering on neuronal somata (169), and is widely 

used to effectively direct somatic localization of optogenetic reporters (170). VAP proteins interact 

with a variety of cytoplasmic proteins, referred to as the VAPome, localizing them to ER (171). 

The cytoplasmic MSP domain of VAPs binds to FFAT motifs (phenylalanines in an acidic tract), 

and the KV2.1 PRC represents a non-canonical FFAT motif (42; 167) whose acidic nature is 

provided by PRC domain phosphoserine residues defined in phosphoproteomics studies (172) 

and whose mutation eliminates KV2.1 clustering (169). Changes in phosphorylation at these sites 

represents the molecular mechanism of activity-dependent phosphorylation-dependent regulation 

of KV2.1 clustering (125; 173). Ancient forms of metazoan KV2 channels function as voltage-gated 

ion channels but lack a PRC domain (174), such that their nonconducting function to bind VAP 

and organize ER-PM junctions is a later acquisition than their canonical roles as K+ channels. 

 KV2.1-containing ER-PM junctions (Fig. 2A) are enriched in Ca2+ signaling proteins 

including PM LTCC subunits, ER RyRs, calcineurin and others (125). In heterologous cells and 

hippocampal neurons, activity of CaV1.2 LTCCs is enhanced by its clustering at KV2.1-containing 

ER-PM junctions (125), at least in part through the cooperative gating mechanism described 

above. A recent study in VSMCs supports that KV2.1 similarly promotes clustering and enhanced 
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activity of CaV1.2 LTCCs to amplify Ca2+ influx and promote vasoconstriction (175). As in neurons, 

KV2.1 also contributes to VSMC Ca2+ signaling through its action as K+ channel, hyperpolarizing 

the cells, and thus opposing vasoconstriction (176).  

 In hippocampal neurons, KV2.1-containing ER-PM junctions represent hot spots for LTCC-

mediated CICR on neuronal somata, and cells lacking KV2.1 expression have reduced spatial and 

functional association of LTCCs and RyRs and spontaneous Ca2+ spark frequency (125). 

Dynamically altering KV2.1 clustering by treatments that bidirectionally modulate phosphorylation-

dependent binding of KV2.1 to VAP proteins yields parallel changes in LTCC activity and the 

extent of their association with RyRs (125). The KV2.1 C-terminus also contains a separate CCAD 

(Ca2+ channel association domain) motif that is necessary and sufficient for recruitment of LTCCs 

to KV2.1-containing ER-PM junctions (177). A cell penetrating peptide containing this motif 

disrupts LTCC clustering at KV2.1-containing ER-PM junctions without altering the junctions 

themselves, and leads to reduced LTCC clustering and activity, and Ca2+ spark frequency, as 

does coexpression with a KV2.1 mutant with point mutations in the CCAD domain. Interestingly, 

disrupting LTCC clustering at KV2.1-containing ER-PM junctions robustly reduced levels of 

depolarization-induced activation of the transcription factors CREB and c-Fos, suggesting an 

important role of KV2.1-containing ER-PM junctions on neuronal somata in excitation-transcription 

coupling (177). The relationship of KV2.1-containing ER-PM junctions to other junction-forming 

molecules expressed in neurons, and to other forms of depolarization-induced Ca2+ signaling that 

occur at these MCS in neurons remains to be elucidated.  

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

The studies reviewed above provide numerous examples of the molecular architecture, structure, 

and function of ER-PM junctions mediating different forms of depolarization-induced Ca2+ 

signaling in excitable cells. However, it remains that much future research is needed to define the 

molecular composition and functional role of many classes of ER-PM junctions that can be 
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observed microscopically. There exists a tremendous diversity of ER-PM junction structure in 

excitable cells. As we review here, recent studies have begun to define at molecular and in some 

cases atomic detail the macromolecular complexes that underlie the depolarization-induced Ca2+ 

signaling events that represent the crucial functions of some of the most well-defined of these 

junctions (e.g., triads of skeletal muscle and dyads in cardiac muscle), and how they differ 

between distinct types of excitable cells. However, even in these well-studied tissues there are 

alternative forms (e.g., those that form with axial-tubules and surface sarcolemma in striated 

muscle) whose molecular composition and functional role is not as defined, a case that also holds 

for the peripheral couplings of smooth muscle and the diverse forms of ER-PM junctions in 

neurons. In neurons, a diversity of structures exist in the cell body alone (119), suggesting 

differences in molecular composition and function that could provide compartmentalization of PM-

associated Ca2+ signaling events, as occurs in the specialized structures of dendritic spines and 

presynaptic terminals, in the otherwise non-compartmentalized PM of the soma.  

 Another important aspect of ER-PM junctions is their dynamic regulation (178; 179). The 

molecular mechanisms underlying interconversion between the different forms of ER-PM 

junctions seen in static micrographs remain mostly unknown. This also holds for changes during 

development, with aging, and in response to injury and disease. In dividing cells ER-PM junctions 

disassemble and rebuild their junctions in a cell cycle-dependent manner (180). Striated muscle 

cells and neurons are terminally differentiated, and while not subject to this challenge still need to 

dynamically regulate ER-PM junctions to meet their own special needs. For example, muscle SR-

PM contacts are subjected to mechanical stresses and strains that most cell types, including 

neurons, do not encounter. Elegant work recently captured some of the effects of these 

mechanical forces on cardiomyocytes where T-tubule membranes were seen to be compressed 

and deformed as cells shortened during a contraction (181). These forces are also likely to be 

experienced by jSR elements and one can envisage them being pushed toward t-tubule 

membranes as the cell contracts and pulled away again as it relaxes and in the case of 
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myocardium, undergoes stretch during diastolic filling. To survive those repetitive forces, it seems 

necessary that tethers that hold these junctions together should be flexible, numerous, and tough. 

One can also imagine the large cytosolic domains of RyR2 or IP3R as bumpers of sort that may 

prevent crashing of the two membranes into one another. In smooth muscle, their contractions in 

the absence of regular sarcomeres would create a scrunching motion of those cells that could 

wreak havoc on peripheral couplings. Future investigations should examine the effects of these 

mechanical forces on muscle SR-PM junctions and of the consequences of these deformations 

for EC-coupling and SOCE. Neurons exhibit activity-dependent changes in ER-PM junctions. The 

number and length of ER-PM junctions in hippocampal neurons is reduced in response to 

numerous stimuli that increase neuronal activity and cytoplasmic [Ca2+] (182), which are the same 

stimuli that impact the presence and functional contribution of KV2.1 at ER-PM junctions (125; 

173), and that also impact those formed by the association of STIM and Orai (22). The junction-

forming properties of other ER-PM junction proteins are also regulated by diverse intracellular 

processes, including changes in PM lipid composition, cytoplasmic [Ca2+], phosphorylation state, 

etc., that provide a foundation for mediating the dynamic changes in ER-PM junction structure 

and function that meet the needs of the physiology of the cells in which they reside. This is 

especially true for Ca2+-dependent mechanisms of ER-PM junction plasticity that provide dynamic 

regulation of the crucial depolarization-induced Ca2+ signaling that occurs at these sites in 

excitable cells.  
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FIGURE LEGENDS 

Figure 1. SR-PM junctions as platforms for depolarization-induced Ca2+ signaling in 

muscle. a) Depiction of a skeletal muscle triad with the typical SR-TT-SR arrangement where t-

tubule localized CaV1.1 channels (blue) physically interact with jSR-localized RyR1 (teal) to 

orchestrate Ca2+ signaling that leads to contraction during AP-induced depolarizations. Triadic 

proteins JPH1 and JPH2 (dark blue) tether the junctions while triad morphology is supported by 

MG29 (dark red) and BIN1 (grey). b) Illustration of a cardiac muscle dyad showing CaV1.2 

channels (light link) within nanometer proximity of SR-localized RyR2 (teal). This arrangement 

facilitates CICR and myocardial contraction. Dyadic proteins NEXN (orange), BIN1 (grey) and 

JPH2 (dark blue) play roles in dyad regulation, membrane folding, and tethering respectively. c) 

Cartoon of smooth muscle peripheral couplings, focusing on those between the caveolar PM and 

peripheral SR. (i) A MCS containing PM BK channels (gold) and ER RyR2 (teal) allows for BK 

channel activation by RyR2-mediated Ca2+ release, leading to reduced CaV1.2 (pink) activity and 

favoring smooth muscle relaxation. (ii) ER-PM junctions at which activation of PM TRPM4 

channels (purple) by Ca2+ release from closely associated ER IP3Rs (dark green) triggers 

membrane depolarization that enhances CaV1.2 (pink) activity favoring smooth muscle 

contraction. (iii) A MCS containing PM Ca2+ activated Cl- channels (red) that are activated by Ca2+ 

release from nearby ER IP3R (green) or RyR (teal) leads to membrane depolarization that 

activates Cav1.2 (pink) L-type Ca2+ channels leading to smooth muscle contraction. Figure 

created with Biorender.com. CICR: Ca2+-induced Ca2+ release; ER: endoplasmic reticulum; ER-

PM: endoplasmic reticulum-plasma membrane: jSR: junctional sarcoplasmic reticulum; MCS: 

membrane contact site; SR: sarcoplasmic reticulum; STIC: spontaneous transient inward currents 

mediated by Ca2+ activated Cl- channels; STOC: spontaneous transient outward currents 

mediated by Ca2+ activated K+ channels; TT: t-tubule.  
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Figure 2. Neuronal ER-PM junctions as platforms for depolarization-induced Ca2+ 

signaling. a) KV2 containing ER-PM junctions in hippocampal pyramidal neurons comprise PM 

KV2.1 (or KV2.2) channels (light blue) in association with ER VAP proteins (black). KV2 channels 

recruit PM CaV1.2 L-type Ca2+ channels (pink) leading to their increased clustering that enhances 

their activity and brings them into close spatial and functional association with ER RyRs (teal) 

facilitating depolarization-induced CICR and downstream Ca2+ signaling pathways including 

excitation-transcription coupling. b) PM CaV2.1 voltage-gated Ca2+ channels (light green) are 

localized at ER-PM junctions in cartwheel interneurons of dorsal cochlear nucleus bringing them 

into close spatial and functional association with ER RyRs (teal) facilitating depolarization-induced 

CICR that activates Ca2+-activated BK channels (light gold) to control AP firing patterns. c) In 

hippocampal neurons, CaV1.3 LTCCs (light pink) are localized at ER-PM junctions stabilized by 

JPH3 and JPH4 (dark blue) bringing them into close spatial and functional association with ER 

RyRs (teal) facilitating depolarization-induced CICR that activates Ca2+-activated IK channels 

(orange) to generate the slow AHP. Figure created with Biorender.com. AHP: 

afterhyperpolarization; AP: action potential; CICR: Ca2+-induced Ca2+ release; ER: endoplasmic 

reticulum; ER-PM: endoplasmic reticulum-plasma membrane; PM: plasma membrane. 
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