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A B S T R A C T  

Microinfarcts and microhemorrhages are characteristic lesions of cerebrovascular disease. Although multiple studies have been published, there is 
no one universal standard criteria for the neuropathological assessment of cerebrovascular disease. In this study, we propose a novel application 
of machine learning in the automated screening of microinfarcts and microhemorrhages. Utilizing whole slide images (WSIs) from postmortem 
human brain samples, we adapted a patch-based pipeline with convolutional neural networks. Our cohort consisted of 22 cases from the Univer-
sity of California Davis Alzheimer’s Disease Research Center brain bank with hematoxylin and eosin-stained formalin-fixed, paraffin-embedded 
sections across 3 anatomical areas: frontal, parietal, and occipital lobes (40 WSIs with microinfarcts and/or microhemorrhages, 26 without). We 
propose a multiple field-of-view prediction step to mitigate false positives. We report screening performance (ie, the ability to distinguish 
microinfarct/microhemorrhage-positive from microinfarct/microhemorrhage-negative WSIs), and detection performance (ie, the ability to local-
ize the affected regions within a WSI). Our proposed approach improved detection precision and screening accuracy by reducing false positives 
thereby achieving 100% screening accuracy. Although this sample size is small, this pipeline provides a proof-of-concept for high efficacy in 
screening for characteristic brain changes of cerebrovascular disease to aid in screening of microinfarcts/microhemorrhages at the WSI level.

K E Y W O R D S :  deep learning; digital pathology; histology; infarcts; vascular dementia

I N T R O D U C T I O N
Microinfarcts and microhemorrhages within the brains of per-
sons with cerebrovascular disease increase the risk of vascular 
dementia and are only discernible upon microscopic evalua-
tion.1 Microinfarcts/microhemorrhages can result from small 
vessel disease, arteriolosclerosis, and/or the rupture or 
obstruction of cerebral vessels.2 There are various histological 
features of these microscopic lesions based on temporal 
aspects; they can be very heterogeneous.3 An overview of dif-
ferent types of these lesions is shown in Figure 1. Infarcts can 
vary by age (chronic, subacute, and acute),4 size (lacunar, 
micro, and macro/large),5 and may include hemorrhagic com-
ponents. The is considerable heterogeneity which can be 
based on varying anatomic appearances, there have been 

reports of variable interrater agreement.3,6 This complexity is 
compounded by the fact there are many proposed standar-
dized criteria for neuropathological assessment of cerebrovas-
cular diseases,6–11 with no single universal criteria.1,6–11

Digital pathology, empowered by computational tools for 
medical image analysis, has revolutionized the characterization 
of diseases.12 Machine learning (ML) enhances this capability 
by offering automated and scalable methods for examining 
pathologies in whole slide images (WSIs), the digitized version 
of microscope slides.13–15 Recent research demonstrates ML 
models have attained competitive results in the automated anal-
ysis of many pathologies in human post-mortem brains.16–21

Additionally, there have been successful in-vivo studies using 
ML to classify or segment vascular pathologies, such as infarcts 
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in imaging modalities such as CT and MRI.22–24 To our knowl-
edge, there exist no peer-reviewed publications on automated 
detection of microinfarcts or microhemorrhages in WSIs of 
human brains using ML.

To fill this gap, we outline 3 key aspects for the current 
pipeline, namely to: (1) carefully define the task to be auto-
mated, focusing on microinfarcts/microhemorrhages in white 
matter (WM); (2) create a pilot annotated WSI dataset 
encompassing a variety of appearances of microinfarcts/micro-
hemorrhages, as well as un-infarcted tissue as controls; and 
(3) assess the interpretability of the model’s predictions on 
their accuracy in identifying microinfarct/microhemorrahage 
markers consistent with the physiological definition of the 
pathologies, and distinguishing them with other pathologies 
like WM rarefaction (WMR) that may share overlapping fea-
tures. We primarily focus on convolutional neural network 
(CNN) models because of their proven efficacy in similar 
domains,18,20,21,25 and their capability for interpretability.26

This article presents an end-to-end, patch-based pipeline for 
WSI processing and ML model training, aimed at the auto-
mated neuropathological analysis of microinfarcts/microhe-
morrhages in WSIs derived from decedents within the 
University of California Davis Alzheimer’s Disease Research 
Center (UCD ADRC) brain bank. To our knowledge, this 
study is the first to automate a workflow using ML for micro-
infarct/microhemorrhage screening in post-mortem WSIs 

derived from human brain, while making the code and images 
freely available.

M E T H O D S
Cohort

For cohort selection, the UCD ADRC brain bank was queried 
for cases who had come to autopsy, had a complete neuropa-
thology report utilizing the National Alzheimer’s Coordinating 
Center’s (NACC) Neuropathology from version 10 and had 
available WSIs as of October 2023 (date range was August 
2017 through October 2023, n¼ 101). We then determined 
whether these cases were denoted to have old microinfarcts, 
old microbleeds, microinfarcts, and/or acute/subacute micro-
hemorrhages/microinfarcts utilizing data collected through 
the NACC Neuropathology form vs 10 (variables: NPOLD2, 
NPOLDD2, NPATH4, NPATH6). As the NACC forms do 
not provide specific regional locations for microinfarcts/ 
microhemorrhages (ie, specific slide/anatomic location), a 
neuropathology expert (Brittany Dugger [BD]) examined the 
detailed neuropathology reports of potential cases and corre-
sponding WSIs. The identified locations of microinfarcts/ 
microhemorrhages were then converted from textual data. 
Given the heterogeneity of brain regions, we selected anatomi-
cal areas with the highest prevalence of cases exhibiting micro-
infarcts/microhemorrhages. Within the UCD ADRC, this was 

Figure 1. Schematic outlining the different classification categories of infarcts (size, age, and cause), their sub-classifications found in 
postmortem tissue, and their characteristics. The top row shows examples of lesions for each classification category. For size classification, 
we show an example of microinfarct on the left. For age classification, we show a chronic infarct, and for cause classification, we show a 
hemorrhagic infarct. The thresholds for age classification (<24 h for acute, days for subacute, and weeks to years for chronic) were 
determined according to reference4; the thresholds for size classification (over 10 mm diameter for large, 5-10 mm in diameter for lacunar, 
0.1-5 mm in diameter for microinfarcts) were determined according to reference.5
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periventricular WM regions, which have previously been 
reported to have increase in microinfarcts/ 
microhemorrhages.27

Samples consisted of formalin-fixed, paraffin-embedded 5- 
to 7-μm sections stained with hematoxylin and eosin (H&E). 
Of the 101 cases queried, 17 cases had at least 1 microinfarct/ 
microhemorrhage within the frontal, parietal, and/or occipital 
periventricular WM regions. Furthermore, of the 101 cases, 
we also selected 5 cases that did not contain any microin-
farcts/microhemorrhages in periventricular WM, to serve as 
an additional control group. Demographics of the 22 cases 
(17 with and 5 cases without any microinfarcts/microhemor-
rhages) are listed in Table 1.

All participants or legal representatives approved informed 
consent during the participants’ lives as part of the University 
of California Davis Alzheimer’s Disease Center program. The 
data collection process followed current laws, regulations, and 
guidelines (such as sharing de-identified data that does not 
contain information used to establish the identity of deceased 
subjects).

Data and annotations
Two scanners were used to generate WSIs. Stained slides from 
a subset of subjects were digitized by a Leica Aperio AT2 
scanner (.svs format) at 0.5 µm per pixel resolution (N¼ 8) 
and at 0.25 µm per pixel (N¼ 1). Stained slides of the remain-
ing subjects were digitized by a Zeiss Axio Z1 scanner (.czi 
format) at 0.25 µm per pixel resolution (N¼ 13). The sche-
matic from selected cases to WSIs is shown in Figure 2.

A trained expert (BD) annotated the 66 available slides. We 
adopted a binary classification system (Yes/No for microin-
farct/microhemorrhages - of which we refer to as “infarct” vs 
“un-infarcted”); only infarcts (regardless of age) having bor-
ders within the sampled tissues were traced using ImageScope 
v12.4.6.7001 (for .svs format WSI) or ZEN 3.0 Blue Edition 
(for .czi format WSI); cases with infarcts encompassing the 
entire tissue sample were excluded. Twenty-six WSIs had 
annotated regions; the remaining 40 were classified as un- 
infarcted (Table 1). As seen in Figure S1, tissue affected by 
WMR can display similar features of infarcts (eg, tissue rare-
faction/degradation) as WMR is within the realm of vascular 
disease.28 Hence, all WSIs were also assessed for a WSI-level 
WMR semiquantitative score as: 0 (none), 1 (mild), 2 (mod-
erate), and 3 (severe), assigned by BD adapting previously 
defined criteria.28

Only regions of microinfarcts/microhemorrhages were 
annotated through tracing and those traces were processed 
into binary infarct maps (workflow depicted in Figure 3). 
Binary maps, matching the dimensions of the original WSI, 
enabled us to pinpoint the pixels annotated as microinfarcts/ 
microhemorrhages, while remaining blinded to demographic 
and pathological variables. Another trained expert blinded to 
demographics/pathological variables, VP, annotated for the 
presence of microinfarct/microhemorrhages for all 66 WSIs 
(without delineation). We leveraged those annotations as 
presence or absence of the pathologies at the WSI level. We 
grouped the distinct lesions of microinfarcts and microhemor-

rhages (termed infarct in the remainder of this article), as one 
single category given the small datasets.

Prior to assigning infarct or un-infarcted labels to WSI 
patches, we leveraged the WSI segmentation model from Lai 
et al.21 to assign background labels (depicted in black in  
Figure 3) to the extracted patches. Once background patches 
were removed and labeled, the remaining patches were labeled 
according to the binary infarct maps (Figure 3). A single 
patch was labeled infarcted if more than half of its pixels were 
annotated as infarct by BD.

The dataset was split into train, validation, and test sets on 
a case-level split (Table 1), stratified for infarct ground-truth, 
WMR ground-truth, and file extension type. The case-level 
split signifies all WSI from a single case were in a single set 
with no spillover to a different set. We chose a subject-level 
split to prevent our ML model from overfitting to the subject- 
specific features. Due to the class imbalance of infarcts in WSI 
and subject-level, the subject-level split imposed constraints in 
our stratification of the split data, as we were not able to main-
tain identical ratios of infarct samples (Table S1).

Pipeline
Overview and pre-processing

Ultra-high-resolution WSIs contain a rich set of information, 
including a wide range of morphological patterns, cellular fea-
tures, and tissue structures.29 However, using WSIs for ML 
analysis can be challenging due to their large size, which 
exceeds the processing capabilities of most commercially avail-
able graphical processing units (GPU). This limitation pre-
vents the direct use of segmentation or object detection ML 
algorithms.30 To address the challenges of using gigapixel 
WSIs for developing an automated ML system, we used a 
patch-based method.30 In the patch-based approach, a WSI is 
initially subdivided into multiple fixed-size patches, such as 
512× 512 pixels. Each patch is then assigned a class label, 
such as infarct, un-infarcted, or background. Subsequently, the 
model is trained using the patch dataset derived from the 
WSIs and their annotations. The trained model is then used 
to predict the classification of WSI patches in the validation 
and test sets. However, the patch-based method does not gen-
eralize well, particularly when dealing with dataset heterogene-
ity, such as varying magnifications of images.31 To address this 
issue, we implemented a pre-processing step harmonizing all 
WSIs to a consistent resolution of 0.25 µm per pixel prior to 
both training and evaluation, following methodology of Oli-
veira et al.31 This harmonization process helped ensured the 
model could effectively handle diverse image magnifications 
and maintain robust performance across different WSIs.

Model architecture
In this pipeline, we utilized existing deep learning architectures 
originally developed for general image classification tasks.32

Among these architectures, CNNs have gained notable popular-
ity in the last decade particularly for medical image analysis. 
CNN deep architectures and significant performance improve-
ments have been noted in many image classification tasks.33,34

We used ResNet-18, a residual network commonly used in 
patch-based ML in the histopathology literature.21,35 ResNet-18 
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incorporates residual connections, which makes networks easier 
to optimize, leading to improved training.36

Post-processing and detection
After the training phase, the output of our pipeline is a WSI-level 
prediction heatmap generated using the sliding window approach 
to systematically process all WSI patches, a technique commonly 
employed in patch-based pipelines.20,21,30 Similar to other ML- 
based work in pathology,37 we focus on detecting individual path-
ologies rather than segmenting them. Due to the inherent chal-
lenges posed by the imprecise boundaries of infarct lesions,3 we 
avoided defining our task as a pixelwise segmentation of the 
infarct region for the current study. Therefore, the heatmap out-
put shown in Figure 3, is an intermediate output of our study 
prior to generating prediction bounding boxes.

Prior ML work in pathology has shown post-processing steps 
are able to improve output masks and remove unwanted predic-
tions.21 We implemented an additional post-processing step 
within our patch-based pipeline to refine the prediction areas in 
the output heatmaps (Figure 3). Initially, we employed the mor-
phological opening operation, a fundamental image processing 
technique particularly useful for removing small, unwanted noise 
or fine structures in an image while preserving the overall struc-
ture of larger objects.38 In our study, opening operation was uti-
lized to eliminate small false positive predicted regions. Second, 
we performed the connected component analysis with an area 
thresholding (AT) to filter out the remaining false positives.39 In 
this, the same intensity regions of a binary image with areas 
below the specified threshold are often considered noise or unde-
sired artifacts and are therefore excluded from further analysis. 

Lastly, we applied the morphological dilation operation to refine 
the leftover infarct predicted regions further.40

After the post-processing morphological operations were 
applied, we leveraged the prediction heatmap to define 
detected infarcted regions. We used distance thresholding 
(DT) to generate the bounding boxes covering the infarct pre-
dicted regions.39 In general, DT is a technique commonly 
used in image processing to define or limit the spatial extent 
of certain features or objects within an image based on their 
proximity to a reference point or region. In the context of gen-
erating bounding boxes for infarct predictions, DT ensures the 
generated bounding boxes accurately encompass the areas 
identified as infarcts while excluding adjacent regions. An 
example of the detection output of our pipeline, consisting of 
a binary output mask with a bounding box denoting the 
detected infarct region is shown in Figure 3.

Selecting field-of-view
Selecting an appropriate field-of-view (FOV) is an important 
step in the patch-based analysis of infarct in WSI. Tradition-
ally, pathology-based ML studies have used smaller patch sizes 
such as 256× 256 pixels.20,21,41 However, infarct detection 
can have subjective components, and the affected area may be 
much larger than other pathologies, thus not fitting the entire 
lesion in a 256× 256 pixels patch. We experimented with 3 
distinct patch sizes: 256× 256, 512× 512, and 1024× 1024 
pixels in the pipeline. We trained, validated, and evaluated sep-
arate models for each patch size using the same end-to-end 
pipeline. Different patch sizes can yield varying degrees of suc-
cess regarding computational efficiency and the resultant heat-
maps used for infarct detection (Figure 4).

Figure 2. Overview schematic for the regions sampled and whole slide image (WSI) pipeline. Frontal, parietal, and occipital periventricular 
WM regions were sampled from each of the 22 cases and subjected to H&E staining, then scanned in to create a digital WSI. This figure 
only depicts the Zeiss scanner; an Aperio scanner was also utilized to generate WSIs as discussed in Methods section. Figure created in 
BioRender.com. H&E, hematoxylin and eosin; WM, white matter.

118 � Journal of Neuropathology & Experimental Neurology, Vol. 84, No. 2, February 2025 



To leverage the advantages of small (such as 256× 256) 
and large (such as 1024× 1024) FOVs, we proposed a multi- 
resolution FOV strategy for patch classification depicted in  
Figure 3. This approach started with evaluating the model 
using a standard 512× 512 or 1024× 1024 patch. If the 
model predicted the presence of an infarct, the patch was fur-
ther subdivided into 4 256× 256 or 512× 512 sub-patches, 

respectively, each corresponding to a corner of the original 
patch. The classification of the original larger patch as an 
infarct was contingent upon a committee decision of the 
smaller FOV ML model on all 4 of the smaller sub-patches. 
We evaluated different committee decisions for infarct predic-
tion, such as complete agreement (where all sub-patch predic-
tions must agree on the infarct prediction), partial agreement 

Figure 3. Overview figure for our end-to-end pipeline. The first step for stage I, pre-processing and heatmap generation (light blue box on 
top), was patch generation. After tiling the WSI, we assigned the patch labels of infarct, un-infarcted, or background. The labeled patches 
were then used to train the ML model. Once trained, our ML model could output predictions for each WSI patch, which we used to 
generate heatmaps. In the heatmaps, black represents background, yellow represents un-infarcted tissue, and blue represents infarcted tissue. 
The first steps of stage II, that is post-processing and detection (dark blue box on bottom), were to take heatmaps and apply morphological 
closing and opening operations to remove small positive predicted regions from the output. Subsequently, we took the prediction mask and 
established the infarct prediction bounding box regions to compare their detection accuracy with our ground truth prediction boxes. From 
the comparison between prediction and ground truth bounding boxes, we acquired the box IoU score metric, which is shown in the top- 
right portion of this figure. The areas of individual detected infarct regions were later leveraged for WSI-level screening prediction. ML, 
machine learning; WSI, whole slide image.
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(where up to n sub-patch predictions must agree on the infarct 
prediction), and confidence threshold (where one patch’s 
infarct prediction confidence must be above a threshold [t]). 
The multi-FOV approach acts as a refined filter augmenting 
the model’s sensitivity to infarcted regions by necessitating a 
level of agreement among the smaller, more granular 
classifications.

Assessing model performance
We used the post-processed prediction mask with bounding 
boxes depicted in Figure 3 to assess the model’s detection per-
formance. We followed standard ML definitions for detec-
tion,37 that is, the ability to localize the infarcted regions 
within a WSI. For detection performance assessment, we used 
the object detection metrics of mean average precision (mAP) 
and mean average recall (mAR) set forth by the PASCAL 
VOC challenge,42 and utilized by other ML-based detection 
studies in pathology.37

Given prior work denoting interrater disagreement with 
respect to infarct delineation,6 we could not guarantee 
detected infarct regions of our model would align with experts 
other than the one who annotated our dataset. Hence in addi-
tion to BD, another expert, VP, provided annotation, (detailed 
below in the Statistical evaluation section).

Additionally, our model may predict false positives other 
experts would otherwise consider infarcts. To address the chal-
lenge of evaluating our model’s performance given the subjec-
tivity of infarct region definition, we also assessed our model’s 
WSI-level screening capabilities. We defined screening as the 
ability to detect an infarct-positive WSI. Using the validation 
set for tuning, we defined a diameter threshold for infarct- 
positive WSI prediction based on individual detection results. 
If our model predicted any infarcted region on a given WSI 

with diameter greater or equal to the threshold, we considered 
the WSI as infarct positive. If no predictions surpassed the 
threshold, we considered the WSI as un-infarcted.

Model interpretation
We leveraged Gradient-weighted Class Activation Mapping 
(Grad-CAM) saliency map26 to interpret the predictions of 
our CNN models on the WSI patches. Grad-CAM is a techni-
que used in deep learning to aid in understanding and visualiz-
ing the decision-making of CNNs. Grad-CAM provides 
insights into which regions of a given image are most influen-
tial in the network’s predictions. The saliency maps were gen-
erated using the target concept’s gradients flowing into the 
CNN model’s final convolutional layer. This approach allowed 
us to identify features in patches associated with the given 
prediction.

Statistical evaluation
Cohen’s Kappa (K) was used to assess the statistical signifi-
cance of agreement of WSI-level infarct predictions between 
the screening model and the BD annotator. Additionally, we 
used Cohen’s Kappa to assess the agreement between BD and 
VP annotators on a WSI-level (assessing agreement on pres-
ence or absence, not localization). Kolmogorov-Smirnov test 
was used to measure significance in differences in distribution 
of infarct pixel counts from low and high WMR. All analyses 
were conducted on test set samples. To conduct analysis, we 
used Python (Scikit package43) and considered P values of 
<.05 significant.

Implementation details
All 66 WSIs and their annotations are available on Zenodo 
(DOI: 10.5281/zenodo.13844200). The networks were 

Figure 4. Overview of computational time required for single FOV under different patch sizes. Far left, we have the original whole slide 
image with green traces denoting BD’s infarct annotations. On the right, the heatmap results for different FOVs and their respective 
generation time. In the heatmap, black represent background; yellow represents un-infarcted; and blue represents infarcted tissue. BD, 
Brittany Dugger; FOV, field-of-view.
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trained and evaluated on a system with Nvidia Tesla T4 GPU 
with 16 GB of VRAM or a Nvidia RTX A4500 with 20 GB of 
VRAM, and 192 GB of DDR6 RAM. All networks and their 
respective pre-trained weights were implemented using the 
PyTorch framework.44 For training, we initialized the learning 
rate of 0.01 and set the batch size number as the largest possi-
ble for the given GPU, architecture, and patch size. We 
reduced the learning rate by a multiplicative factor of 0.1 after 
every 10 epochs. To optimize the models, we used the Adam 
optimizer.45 The ResNet-18 starting weights are its Image-
Net46 pre-trained weights. We trained the model for 40 
epochs and saved the hyperparameters/weights resulting in 
the highest balanced accuracy performance on the validation 
set at the end of each epoch.

We applied data augmentation techniques during training 
to enhance the ability of the model to generalize across vari-
ous inputs. This involved randomly flipping the input images 
both horizontally and vertically given histological images have 
no canonical orientation (probability of 50% of being applied 
to each training image). Additionally, all images were normal-
ized to standardize their pixel values before model inference. 
During training, we oversampled infarct datapoints to address 
the class imbalance (Table S1). Furthermore, in the evaluation 
phase of the network, we set a confidence threshold for the 
patch-wise infarct class prediction. The confidence threshold 
value was determined by validation set tuning and was set to 
99.5% confidence for infarct prediction. Heatmaps were gener-
ated with stride 32 for 256× 256 FOV, and stride 64 for all 
other FOVs. Additionally, all parameters required for post- 
processing, multiple FOV evaluation, and WSI-level screening 
thresholds were tuned on the validation set WSIs to maximize 
screening performance on validation set (DT¼ 25 pixels, 
AT¼ 25 pixels, kernel size for opening/closing morphological 
operations¼ 4 pixels). The reported experiments for multiple 
FOV used the highest performing committee rule on valida-
tion set, which was agreement of 2 or more. All codes and 
instructions to reproduce results are available on GitHub 
(https://github.com/ucdrubinet/Infarct).

R E S U L T S
Initial detection performance

After generating the heatmaps, we produced the final output 
of prediction bounding boxes, where were compared to the 
ground truth bounding boxes to evaluate detection perform-
ance metrics (Figure S2). We observed ResNet-18 trained on 
256× 256 FOV is our best-performing model for this task 

with over 0.15 mAP (Figure S2A) and 0.4 mAR for all infarct 
regions (Figure S2B). If we only considered infarcts with a 
diameter ≥1 mm within the WSI, the performance improved 
to over 0.35 mAP (Figure S2C) and 0.6 mAR (Figure S2D). 
The results showed our model performed significantly better 
for larger infarcted regions, where there are fewer boundary 
regions (the most challenging regions to predict). Despite 
competitive mAP and mAR at lower intersection over union 
(IoU) thresholds, we observed a notable decrease as the IoU 
threshold increases.

Our model effectively screened infarcted WSI
In addition to evaluating the detection capabilities of our 
model, we also assessed its screening performance. For screen-
ing, we used our model to generate a single label of infarcted 
or un-infarcted to each WSI. If a given WSI had any infarct 
ground-truth annotation of any size, we considered it to be an 
infarcted WSI. Table 2 summarizes screening performance.

Out of all FOVs tested, 256× 256 FOV-trained ResNet-18 
had best performance with 86.67% accuracy on 87.50% sensi-
tivity and 86.67% specificity (Table 2). Our screening evalua-
tion showed our model could identify which WSIs were 
infarcted without many false positive WSI-level predictions, 
regardless of the imprecise detection of the infarcted region. 
In general, larger FOVs (1024× 1024) performed worse in 
WSI screening due to their high rate of false positive predic-
tions, which lowered the model’s specificity.

The screening and detection results aligned. In both evalua-
tions 256× 256 FOV-trained ResNet-18 had best perform-
ance. This alignment is expected because the screening output 
is a direct product of the detection output.

Performance improved when leveraging multiple FOVs
In addition to testing single FOV models, we also leveraged 
single FOV-trained models for multiple FOV evaluation. 
Figure S3 summarizes our multiple FOV detection experi-
ments, and Table 2 summarizes the screening experiments. 
We observed leveraging multiple FOVs improved our detec-
tion metrics. Our best model was ResNet-18 using both 
1024× 1024 and 512× 512 FOVs, which displayed over 0.2 
mAP (Figure S3A) and 0.4 mAR (Figure S3B) for all infarct 
regions. If we only considered larger infarcts (diameter 
≥1 mm), the performance improved to over 0.6 mAP (Figure 
S3C) and 0.5 mAR (Figure S3D). Both settings showed a 
modest improvement over the best performing single FOV 
model. Additionally, we observed an improvement in screen-
ing performance when using multiple FOVs. In this setting, 

Table 2. Screening performance of the single and multiple FOV model setups tested.

Single FOV Multiple FOV

1024× 1024 512× 512 256× 256
1024 × 1024 & 

512 × 512
512 × 512 & 

256 × 256

Accuracy (%) 66.67 86.67 86.67 86.67 100.00
Specificity (%) 57.14 71.43 85.71 100.00 100.00
Sensitivity (%) 75.00 100.00 87.50 75.00 100.00

Performance refers to WSI-level metrics.
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our best model was ResNet-18 using both 512× 512 and 
256× 256 FOVs, which successfully screened all test set 
infarcted WSIs without any false positive predictions on 
un-infarcted WSI. Table S2 shows the effect of changing the 
prediction threshold on the WSI screening performance.

Assessing agreement
Taking the WSI-level predictions from our model’s screening 
performance, we assessed its agreement with the WSI-level 
labels from both annotators, BD and VP. To ensure fair com-
parison, we only considered test set WSIs (N¼ 15), which 
had not been seen by the model during training. First, we eval-
uated the agreement between BD and VP, which had an 
observed an agreement of 0.867 and a Cohen’s Kappa of 
0.737, which signified significant substantial agreement (P �
.05). We then compared the screening results from the 2 
multi-FOV models tested with BD’s annotations, (ie, annota-
tions used in training the model). The smaller FOV models 
(256× 256 and 512× 512) outputted the same WSI-level pre-
dictions as BD (Table 2), which signified Cohen’s Kappa of 1, 
showing perfect agreement (P � .05). However, the larger 
FOV models (512× 512 and 1024× 1024) had lower agree-
ment, with a Cohen’s Kappa of 0.867 (P � .05). In both 
multi-FOV models, we observed the same level of agreement 
or higher for annotators BD and VP. The higher agreement 
with BD showed the model successfully learned from BD’s 
annotations in training.

Saliency map investigation
We further investigated our model’s predictions to diagnose 
the imprecise detection performance observed in our patch- 
level classification results. To interpret our model’s predic-
tions, we used Grad-CAM,26 which allowed us to verify which 
areas of a given patch contributed the most to its prediction 
(see methods - model interpretation section). Grad-CAM 
maps were generated using the 512× 512 FOV-trained 
ResNet-18 on all test set samples. One hundred Grad-CAM 
maps were manually inspected. A few selected examples of 
Grad-CAM maps are shown in Figure 5. We observed the 
model identified features associated with infarcts such as red 
blood cells outside of blood vessels and macrophages1 in the 
true positive prediction. However, in the false positive predic-
tion, the model incorrectly identified a tissue tear and/or 
WMR as evidence of an infarct.

WMR effect on false positive predictions
We assessed all un-infarcted WSIs (N¼ 11) from both test 
and validation sets to evaluate the number of pixels classified 
as infarct, grouping these pixel counts based on the severity of 
their WMR. As there were low numbers in the none/mild 
groups, we collapsed them with the moderate group to give 2 
categories: none to moderate (N¼ 8) and compared them to 
severe (N¼ 3). The pixel counts were acquired from heat-
maps generated by the 512× 512 FOV-trained ResNet-18 
(Figure S4). Given these were control slides, all infarct predic-
tions by the model were false positives. Using the 
Kolmogorov-Smirnov test, we did not find statistically signifi-
cant differences between the distributions of pixel counts 

(P¼ .84). However, we observed the average false positive 
pixel counts in severe WMR were 3 times larger than none-to- 
moderate WMR slides.

D I S C U S S I O N
In this small pilot study, we provide a proof-of-concept for an 
integrated workflow to automate microinfarct/microhemor-
rhage screening in WSIs using ML. By leveraging ML techni-
ques, we propose an open-source ML tool for automated 
microinfarct/microhemorrhage screening to augment the abil-
ity of the experts. While we faced challenges in the precise 
detection of microinfarct/microhemorrhage regions, our mod-
els excelled in screening WSIs for the presence of microin-
farct/microhemorrhages, showing promising utility as a digital 
pathology tool for research.

Our approach notably excelled in screening and achieved 
high accuracy. The high performance in screening (overall 
presence/absence of a microinfarct/microhemorrhage on the 
WSI) is noteworthy, given the heterogeneity of these patholo-
gies and their variable manifestation based on size, age, and 
hemorrhagic or ischemic nature3,5 (Figure 1). Additionally, 
we observed the model was able to display high levels of WSI- 
level agreement with the expert it was trained on. We showed 
the agreement was statistically significant and equal or higher 
than the observed agreement with other annotators. However, 
the complexity of the task was evident in the model’s struggle 
to delineate infarct regions precisely, particularly at higher IoU 
thresholds. This aligns with the inherent difficulties in infarct 
boundaries (what we term the “fuzzy boundary problem”) and 
classification, as highlighted in the existing literature and evi-
denced by the variability in expert evaluations.3,6 Our manual 
investigation of saliency maps showed the model may classify 
infarct patches when features that may be associated with 
infarcts (including but not limited to tissue rarefaction, macro-
phages, corpora amylacea, and/or tissue tears), are detected. 
We hypothesize this occurs due to shortcut learning in train-
ing.47 This effect increases false positives and may be a chal-
lenge in larger FOVs, which include many structures that 
could be mistakenly linked to infarcts.

Interestingly, implementing multiple FOVs improved the 
model’s detection and screening capabilities, illustrating 
the potential of ensemble approaches in ML for pathology. 
We attribute the higher performance of multiple FOVs over 
single FOV to the reduction of false positive predictions, 
potentially mitigating effects of shortcut features on prediction 
through committee prediction. The committee prediction rule 
requires multiple models to agree on the prediction of a given 
patch, which reduces the chance of false positive prediction 
due to learned shortcuts as they may only be present in one of 
the corner patches.47 On the other hand, this same effect leads 
to a slight reduction of true positive predictions. This explains 
the slight reduction in mAR on larger infarct detection, which 
can be attributed to the committee incorrectly filtering out 
correct infarct predictions.

Existing work addressed classification and segmentation of 
infarcts in in- vivo imaging,22–24,48 but a gap in automated 
post-mortem histological evaluation of infarcts remains. 
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Efficiently screening infarcts in WSIs can provide a tool to aid 
experts, with the potential to enhance deep phenotyping 
research. Our work contributes to the pathology domain and 
bridges a gap in digital pathology, providing an initial bench-
mark to be compared in future works.

Our study is not without limitations. Our data consisted of 
a small convenience sample from a single institution’s 
Alzheimer’s Disease Research Center brain bank focused on a 
few anatomic areas and one staining method (H&E) for vali-
dation of our workflow. Given the noted interrater disagree-
ments in microinfarct/microhemorrhage assessments,6 our 
single-annotator ground truth could be skewed, affecting the 
learning and generalizability of the model. Furthermore, other 
pathologies such as WMR posed additional challenges as we 
lack annotations traces for shortcut learning hypothesis valida-

tion.47 Further investigation of WMR effect on false positives 
is needed as evidenced by the increased false positive rates in 
higher WMR scores, which was found not statistically signifi-
cant (Figure S4). Moreover, our Grad-CAM analysis was lim-
ited as we manually inspected about 200 patches of the over 
400 000 test set patches (Table S1).

Despite limitations, this pilot study aids in filling a critical 
gap in infarct detection. The novel application of ML in post-
mortem automated microinfarct/microhemorrhage screening 
lays a foundation to aid in new avenues for scalable detection 
and quantification in future works. The performance metrics 
of our ML model underscored both the promise and chal-
lenges of applying ML in pathology. Furthermore, saliency 
mapping results aid in model interpretability, affirming 
the physiological coherence of the predictions of our model 

Figure 5. Examples of Grad-CAM saliency maps from the 512× 512 FOV of ResNet-18 trained single FOV model. Top panels: examples 
of false positives (un-infarcted patch incorrectly classified as infarct); bottom panels: examples of true positives (infarct patch correctly 
predicted as infarct). Far left, we have the original patches (Patch). Middle, are the Grad-CAM (saliency maps) of the corresponding patch. 
In the Grad-CAM, warmer colors represent higher relevance for the model’s predictions. Far right images are macro views (Larger Region) 
of the 512× 512 patch region (red box); green lines are the annotation provided by the expert to denote the infarct boundary; scale bar of 
200 µm. Upon qualitative analysis, for both false positive examples, hot spots are predominately over rarified tissue. For the top true positive 
example, the hot spots (located at [80, 450] and [200, 330] coordinates) appear to be macrophages; the bottom hot spots (located at [80, 
250], [150, 210], [190, 210], and [195, 280] coordinates) line the perimeter of a blood vessel. FOV, field-of-view; Grad-CAM, Gradient- 
weighted Class Activation Mapping.
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(Figure 5), and show a promising direction for future research 
addressing shortcut learning in training. By providing an initial 
workflow and dataset for automated infarct screening, 
we allow future studies to expand training and evaluation data-
sets, incorporating WSIs from additional sources, multi-rater 
annotations in training, breakdown of infarct category into 
ischemic and hemorrhagic, further exploring stains with focus 
on vasculature structures, and exploring the integration of 
additional ML techniques to enhance detection precision. In 
conclusion, this pilot study advances a model with the poten-
tial to provide automated analysis pipelines using ML for aug-
menting the ability of the expert.
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