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ARTICLE

Accurate and Fast Multiple-Testing Correction
in eQTL Studies

Jae Hoon Sul,1,2 Towfique Raj,2,3,4 Simone de Jong,5 Paul I.W. de Bakker,6 Soumya Raychaudhuri,1,2,7,8

Roel A. Ophoff,5,9,10 Barbara E. Stranger,11,12 Eleazar Eskin,10,13,* and Buhm Han14,15,*

In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are

associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because

genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum

p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multi-

ple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation

test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple

testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-

disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction

techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces

extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Geno-

type-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset.
Introduction

The advent of RNA sequencing (RNA-seq) and expression

microarrays has allowed studies to accurately quantify

expression levels of genes in humans and many model

organisms.1–4 With association-mapping methods, in

combination with genotyping technologies that uncover

individuals’ genetic states at large numbers of sites in the

genome, it has become feasible to identify genomic loca-

tions where genetic variation correlates with gene-expres-

sion variation. Such variants and genomic locations are

referred to as expression quantitative trait loci (eQTLs).

Many studies have performed genome-wide eQTL map-

ping to discover eQTLs in a number of organisms, popula-

tions, cellular states, and tissues.5–7

eQTL studies provide not only sets of genetic variants

associated with gene expression but also sets of genes for

which an eQTL has been identified. The term ‘‘eGenes’’

has been used to describe those genes whose expression

levels have been associated with genetic variation at a spe-

cific genetic locus. Identifying eGenes is important because

genes are themainmolecular units in many biological pro-

cesses, are interpretable, and allow follow-up network and

pathway analyses. To detect eGenes, one typically iden-

tifies cis-variants (i.e., those located proximal to a given
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gene) and tests each of them for association with expres-

sion levels of the gene to assess whether any of them is

an eQTL. However, since one tests multiple variants per

gene, multiple-testing correction is required. Even if one

observes a relatively small (significant) eQTL p value, the

p value might not be sufficiently significant to overcome

the multiple-testing burden for a given gene, which can

require correction for up to thousands of tests.

To correct for multiple testing and obtain a p value for

each gene (eGene p value), multiple different approaches

are available. The Bonferroni correction is overly conserva-

tive because it fails to take into account the linkage-

disequilibrium (LD) structure within a genomic region.

Because the LD structure is known to vary widely across

the genome, the Bonferroni correction tends to have a

bias penalizing those regions that bear strongly correlated

variants. Another approach is the permutation test. The

permutation test properly accounts for LD but has two lim-

itations. First, it is computationally expensive.8 Its time

complexity increases linearly as the number of individuals

increases, and recent eQTL studies have dramatically

increased their sample sizes, from dozens of individuals

to hundreds and even to a few thousand.9–12 Given that

we expect studies with tens of thousands of individuals

in the near future, the permutation test will quickly
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become prohibitively inefficient for practical use. Second,

significant p values are truncated to a limited level of sig-

nificance determined by the number of permutations.

For example, 10,000 permutations restrict the p values to

a lower bound of 10�4. Typically, one will obtain a list of

genes that have the same lower-bound p values, such as

10�4. However, it is desirable to know the exact signifi-

cance of each eGene p value for better interpretation and

prioritization of genes.

In this paper, we propose an accurate and efficient

approach for assessing eGene p values in an eQTL study.

We perform multiple-testing correction to obtain eGene

p values by using a multivariate normal distribution

(MVN). We take into account LD structure among ge-

netic variants by incorporating genotype correlations as

a covariance matrix in an MVN. Our approach samples

test statistics from this MVN to create the null distribu-

tion of test statistics, which corresponds to the null

distribution generated from permutations. The null dis-

tribution sampled from an MVN approximates the true

null distribution well, but not exactly, because of asymp-

totic assumptions made in an MVN. Hence, we propose

an approach that reshapes the null distribution of an

MVN to account for errors induced by the asymptotic

assumptions. We then assess eGene p values from this

optimized null distribution in the same fashion as the

permutation test.

We apply ourMVN approach to three human eQTL data-

sets. The first dataset is the whole-blood gene-expression

dataset of the Genotype-Tissue Expression (GTEx) pilot

study. This dataset consists of RNA-seq data of whole blood

and associated genotypes of 156 unrelated individuals. The

second dataset is of a single brain region (cerebellum) from

an eQTL study conducted by Gibbs et al.13 This study con-

sists of microarray gene-expression data of four brain re-

gions total (althoughwe only used data of one brain region

here) and associated genotypes of 150 individuals. The

third dataset is the eQTL dataset of the HapMap 3 proj-

ect.12 This dataset consists of microarray gene-expression

data of lymphoblastoid cell lines and associated genotypes

of 726 individuals from eight human populations.

Applying our approach to these three datasets allowed us

to evaluate the performance of our approach in datasets

with different sample sizes and SNP densities. We show

that our method consistently yields very accurate eGene

p values in all three datasets (accuracy> 98%).With regard

to computational efficiency, our approach is tens of times

faster than the permutation test in all these datasets. For

larger eQTL datasets, the efficiency gain of our method

will become even greater because the time complexity of

our approach does not depend on the sample size. That

is, its runtime for eQTL datasets with tens of thousands

of individuals is as fast as that for datasets with dozens of

individuals. Unlike the permutation test, which truncates

p values to a lower bound, our method also provides an ac-

curate eGene p value for every gene, including extremely

significant genes.
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Material and Methods

eQTLs and eGenes
An eQTL is a genetic variant, such as a SNP, where genotypes of the

variant are associated with variation in gene expression of a given

gene. An eGene is a gene that has an eQTL. Studies typically utilize

the following approach to detect eGenes. First, a statistical test is

performed to compute correlation and its p value between the

expression of a gene and every genetic variant in cis with the

gene. We consider variants within 1 Mb of a transcription start

site (TSS) as cis-variants in this paper. One could also look at

trans-variants (variants distant from a gene), but because of their

weak effects, they require a larger sample size for detection of their

effects. The minimum p value among those of all genetic variants

in cis with the gene is then selected. Because many hypothesis

tests are performed in this approach, the minimum p value needs

to be corrected formultiple testing. This corrected p value is for the

gene, and we call it a ‘‘gene-level p value’’ or ‘‘eGene p value.’’

Studies often obtain eGene p values for many genes and apply

another multiple-testing correction, such as false-discovery rate,

to identify eGenes.14,15

Spearman’s Rank Correlation Coefficient
One of the widely used statistical tests for identifying eQTLs is the

Spearman’s rank correlation coefficient.4,12,14,16–18 This is a non-

parametric test, and its power and type I error are robust to the

deviance of expressions from the normal distribution. The Spear-

man’s rank correlation is defined as the Pearson correlation of

the ranks where ties are given mean values. Given the Spearman’s

rank correlation, denoted as r, the test statistic

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r
(Equation 1)

asymptotically follows a t distribution with n – 2 degrees of

freedom, where n is the number of individuals. A p value of this

t statistic can be obtained from the cumulative density function

of the t distribution. In this paper, Spearman’s rank correlation

test is mainly used to test for association between genetic variation

and gene-expression variation unless specified otherwise.

Pearson Correlation Coefficient
Another statistical test for identifying eQTLs is the Pearson corre-

lation coefficient. This is a parametric test that assumes that

expression values follow a normal distribution. However, because

the normality assumption is often violated in eQTL datasets, a

rank-based inverse normal transformation is applied to make

expression values follow the normal distribution.15 In this study,

we used the GenABEL package19 to perform the rank-based inverse

normal transformation. Once expression values are transformed,

we perform a linear regression between expression values and ge-

notypes to compute a p value of correlation between the two vari-

ables, which is equivalent to a p value of the Pearson correlation

coefficient.

Traditional Approaches for Assessing eGene p Values
Bonferroni Correction

The Bonferroni correction assumes that all genetic variants in cis

with a gene are independent, as if there is no LD among variants.

The Bonferroni correction then corrects the minimum p value

among all p values of cis-variants by multiplying the p value by
015



Table 1. FPR of Spearman’s Rank Correlation Coefficients on SNPs with Two Different MAFs, 5% and 30%

Threshold

MAF 30% MAF 5%

FPR TF Ratio FPR TF Ratio

0.01 0.0101525 0.984981 0.0094544 1.05771

0.001 0.0010509 0.951554 0.0008058 1.24099

0.0001 0.0001108 0.902454 6.161E�5 1.62298

1E�5 1.191E�5 0.839278 3.883E�6 2.57533

1E�6 1.328E�6 0.755398 2.121E�7 4.71385

TF ratio is the ratio between the threshold and FPR, (threshold/FPR). FPR is measured from the generation of many null datasets, and a p value of Spearman’s
correlation is computed from a t distribution. A sample size of 144 individuals was used.
the number of tests (the number of cis-variants). However, nearby

genetic variants are commonly in LD with each other, which im-

plies that the effective number of tests can be much smaller

than the number of cis-variants. Hence, the Bonferroni correction

is overly conservative for estimating eGene p values and could lead

to a loss of power for detecting eGenes.

Permutation Test

The permutation test is the gold-standard approach for correcting

for multiple testing.20 It is widely used to estimate eGene p values

because it takes into account LD among variants.4,12,14 Let m be

thenumberofvariants in ciswithgene y.Wefirst compute a statistic

for each variant, denoted as Si for the i
th variant, that measures cor-

relation strength between the ith variant and the expressionof gene

y. Let Smax ¼ max(S1, S2, ., Sm). We want to perform a multiple-

testing correction on Smax while taking into account LD among m

variants. The permutation test permutes gene-expression values

of individuals and computes S
0
max in eachpermutation. This collec-

tion of S
0
max from the permutation test represents the null distribu-

tion of an eGene p value. An eGene p value of gene y is then esti-

mated with the proportion of S
0
max that is equal to or greater than

Smax. Although thepermutation test is the gold standard for obtain-

ing eGene p values, it has two limitations. First, time complexity,

which is O(nmp), where n is the number of individuals, m is the

number of variants, and p is the number of permutations, is high.

The permutation test quickly becomes infeasible as the sample

size (n) of eQTL studies increases; several current eQTL studies

have collected data from more than a thousand individuals.9–11

Second, the eGenep value canbe approximated only to a threshold

limited by the number of permutations. If we perform 10,000 per-

mutations, the minimum p value we can obtain is 10�4. We will

have much richer information for follow-up analysis if we have

the exact significant p values instead of 10�4.
eGene-MVN
eGene-MVN, the approach we propose here, consists of four steps:

MVN sampling, distribution reshaping, small-sample adjustment,

and extreme p value approximation.

Multivariate Normal Sampling

We first approximate the null distribution of the gold-standard

permutation test by using multivariate normal sampling. Let rij
be a genotype correlation between the ith and jth variants. Under

the null, test statistics (S1, S2, ., Sm) asymptotically follow the

MVN with mean 0 and variance S, where S ¼ {rij} is the m 3 m

genotype correlation matrix among m variants.8,21 We sample m

statistics from this MVN, find S
0
max, and compute its p value. We

repeat this many times and obtain the distribution of p values of
The Am
S
0
max under the null hypothesis. Then, an eGene p value is the pro-

portion of p values from this distribution that is as significant as or

more significant than a p value of Smax. Note that we can use MVN

under the asymptotic assumption for the Spearman’s rank correla-

tion coefficient and the Pearson correlation coefficient, both of

which give a t-distributed statistic, because a t distribution asymp-

totically converges to a normal distribution.

A major advantage of an MVN approach is that it is much more

efficient than the permutation test for a large sample size because

the time complexity of the MVN approach, O(m2p), does not

depend on the number of individuals (n). Hence, an MVN

approach can be used without efficiency loss for eQTL datasets

with very large n. In addition to considering the runtime, an

MVN approach appropriately takes into account LD among vari-

ants by incorporating LD structure as a covariance matrix in an

MVN. Several MVN approaches have been developed to perform

a multiple-testing correction in genome-wide association studies

(GWASs) and have been shown to be very accurate and

fast.8,21,22

A drawback of the MVN approach is that it is only accurate un-

der the asymptotic assumption. For small eQTL study sizes (dozens

to hundreds of individuals), there can be discrepancy between the

asymptotic distribution and the true null distribution.

Distribution Reshaping

AnMVN assumes that a statistic follows a normal distribution and

that the p value of a statistic follows the uniformdistribution under

the null hypothesis. For many statistics, including the Spearman’s

rank correlation and Pearson correlation coefficients, these proper-

ties only hold asymptotically.21 Specifically, we discovered that a

t-distribution-based p value of the Spearman’s rank correlation

and Pearson correlation coefficients slightly deviates from the uni-

form distribution under the null. We observed a slight inflation of

test statistics for commonSNPs and deflation for rare SNPs. To illus-

trate this phenomenon,wemeasured the false-positive rate (FPR)of

the Spearman’s rank correlation coefficients by using simulated

data, including SNPs with two different minor allele frequencies

(MAFs; 5% and 30%). The number of individuals was 144, and we

generated their genotype data on the basis of the two MAFs. We

also generated random expression data under the null hypothesis.

We then computed a p value of the Spearman’s rank correlation be-

tweeneachSNPandgeneexpressionbyusing the t distribution and

measured the FPR under various thresholds. Ideally, this should

have given us the exact FPR (e.g., 5%), equal to the threshold

(e.g., 5%). However, we observed that a SNP with a MAF of 5%

had a lower FPR than expected, whereas a SNP with a MAF of

30% had a higher FPR (Table 1). This tendency exacerbates as the

threshold becomes more significant. For example, when
erican Journal of Human Genetics 96, 857–868, June 4, 2015 859



Figure 1. FPR of Spearman’s Correlation Coefficients on a SNP
with a MAF of 30% and under Various Thresholds
The x axis is the �log10 of thresholds, and the y axis is the TF ratio
between the thresholds and the FPR (thresholds/FPR). The TF ratio
would be 1 if the p values of Spearman’s correlation coefficients
followed the uniform distribution. Five different sample sizes
(n ¼ 70, 110, 144, 220, and 300) were used.

Figure 2. Boxplot of the Ratio of Naive-MVN eGene p Values to
Permutation-Test eGene p Values
Using different sample sizes (n ¼ 70, 110, 144, 220, and 300), we
measured eGene p values of the two approaches with 1 M permu-
tations and 1 M samplings on 100 probes and computed the ratio
of eGene p values between the two methods. A distribution of the
ratio on 100 probes is plotted. We excluded outliers with very sig-
nificant p values to minimize sampling errors in our estimates.
Blue shading denotes 90% accuracy.
we measured the TF ratio—the ratio between the threshold and

the FPR,which should be 1 if a p value follows theuniformdistribu-

tion—it was as small as 0.76 for a SNP with a MAF of 30% and as

large as 4.71 for a SNPwith aMAF of 5%at threshold 10�5 (Table 1).

We also found that the TF ratio of Spearman’s correlation coef-

ficients depends on the sample size in addition to the MAF. We

repeated the same simulation on the SNP with a MAF of 30% by

using five different sample sizes: 70, 110, 144, 220, and 300 indi-

viduals. We measured the FPR of the SNP for each of those sample

sizes and computed the TF ratio. The results showed that the TF ra-

tio becomes closer to 1 as the sample size increases (Figure 1). This

nonuniform distribution of Spearman’s rank correlation p values

creates a discrepancy in the null distribution between the permu-

tation test and an MVN. We observed a similar phenomenon with

Pearson correlation coefficients.

To solve this discrepancy problem, we use the following distri-

bution-reshaping approach.21 We pre-compute the FPR and the

TF ratio for many different thresholds, MAFs, and sample sizes

by generating a large number of datasets under the null hypothe-

sis. Then in our MVN approach, on the basis of this pre-computed

knowledge, we scale a p value of the MVN approach according to

the TF ratio such that the MVN p value approximates a p value of

the permutation test. This distribution-reshaping approach is

applied to both Spearman’s rank correlation and the Pearson cor-

relation coefficients.

Additional Small-Sample Adjustment

We discovered that even after we applied the distribution-reshap-

ing approach, which approximates the correct p value at each sin-

gle SNP, we still observed a residual discrepancy in the eGene p

value between the permutation test and an MVN. This is possibly

because the distribution-reshaping approach only adjusts for the

small-sample discrepancy on each marginal distribution of MVN

but not on the whole distribution with correlation structure.

This residual discrepancy is observed when the sample size is small

(e.g., <300).

To show an example, we created five eQTL datasets with sample

sizes of 70, 110, 144, 220, and 300 individuals. Each dataset had
860 The American Journal of Human Genetics 96, 857–868, June 4, 2
100 probes, and the number of cis SNPs ranged from 32 to 709.

Genotype data were generated from actual genotype data from

the brain eQTL dataset13 containing genotypes of 144 individuals.

For eQTL datasets with a sample size less than 144 individuals, we

used a random subset of genotypes of 144 individuals, and for

eQTL datasets with a sample size larger than 144 individuals, we

randomly replicated their genotypes to create genotypes of the

desired number of individuals. Expression data were similarly

generated with actual expression data from one brain region (cer-

ebellum), and random noises were added to expression values

when they were replicated. We estimated an eGene p value for

each probe by using 1 M (million) permutations in the permuta-

tion test and 1 M samplings in an MVN. We applied the distribu-

tion-reshaping approach to correct for the discrepancy at each

single-marker test statistic.

Figure 2 is a boxplot that shows the distribution of the ratio of

MVN eGene p values (with distribution reshaping) to permuta-

tion-test eGene p values on the 100 probes for the different sample

sizes. We excluded outliers in the boxplot because they are probes

that contain a SNP with a very significant p value (e.g., 10�10), and

hence they have a very low or very high ratio as a result of the

insufficient number of permutations in the permutation test.

The results show that, for eQTL datasets with small sample sizes

(e.g., 70 individuals), the MVN eGene p values are overall 11%

more significant than the permutation-test eGene p values. The

overall discrepancy between MVN and permutation-test eGene p

values, however, decreases as the sample size increases, and

when the sample size is 300 individuals, the median ratio of

MVN-approach eGene p values to permuation-test eGene values

is 99%. Although this overall discrepancy might not be a problem

for eQTL studies with large sample sizes, it could cause MVN

eGene p values be more significant than the permutation test e

Gene p values when the sample size is small.

To correct for this residual discrepancy, we propose the

following approach. As shown in Figure 2, this residual
015



discrepancy is only prominent when the sample size is small

(e.g., <300). Thus, we can assume that this discrepancy is a char-

acteristic of the dataset, which has a unique sample size and

MAF distribution. If this is the case, we can pre-compute the data-

set’s mean discrepancy value and use that for further correction.

To this end, we sampled 100 genes from the dataset and performed

10,000 permutations to measure residual discrepancy between the

permutation p value and MVN p value (with distribution reshap-

ing) at each gene. After we approximated the mean value of

discrepancy at this pre-computation step, we corrected for this

mean value for every gene in the dataset in the main analysis.

Because this pre-computation should be quick, we only used

10,000 permutations, which can only measure discrepancy for

moderate p values. Thus, for this pre-computation with 100 genes,

we discarded the original p values and measured discrepancy at a

randomly sampled p value that was, at most, moderately signifi-

cant. The assumption is that the degree of residual discrepancy

is not highly dependent on the p value level, and this strategy

turns out to work well. Specifically, we sampled corrected p values

from the interval [0.03, 0.3] by assuming a uniform distribution.

This approach is very efficient; estimating the discrepancy took

22.6 min for the brain eQTL dataset and 5.3 hr for the GTEx data-

set. We recommend this algorithmwhen the size of an eQTL study

is less than 300 individuals. This small-sample-adjustment algo-

rithm is applied to both Spearman’s rank correlation and Pearson

correlation coefficients.

Extreme p Value Approximation

To effectively approximate extremely significant p values, we use

two approaches. First, we adaptively increase the number of sam-

plings fromMVNup to a very large number (default¼ 10M). Note

that such a large number of samplings would be impractically slow

for permutations, especially with a sample size of thousands of in-

dividuals. A MVN with 10 M samplings allows us to robustly

approximate very small p values, such as 10�5 (SE of estimating

p ¼ 10�5 is only ~10�6). Second, to approximate p values even

more significant than 10�5, we use the following approach. We

approximate the effective number of tests (ratio between the cor-

rected p value and the uncorrected p value) at an extreme

threshold (default ¼ 10�5 to allow accurate estimate). Then, to

approximate corrected p values for extremely significant p values,

we multiply any uncorrected p values beyond 10�5 by this effec-

tive number.
Speed-up for MVN
We discovered that when the number of cis-SNPs for a gene is

much larger than the number of individuals, the efficiency advan-

tage of an MVN over the permutation test diminishes. To increase

the efficiency of an MVN approach in such a case, we split a gene

into multiple blocks of size 500 kb. We then sampled statistics of

SNPs present in each block separately and found the best p value

among all blocks. This approach assumes that SNPs in different

blocks are independent, and because we use a large window size

(500 kb), this assumption holds for a majority of SNP pairs be-

tween blocks. We recommend this speed-up for datasets whose

average number of cis-SNPs is>2,000. Of the three human datasets

used in this paper, we applied this speed-up to the GTEx dataset

(average number of cis-SNPs ¼ 2,300).
Brain eQTL Dataset
Gibbs et al.13 quantified genome-wide gene-expression levels by

using 22,184 probes in four brain regions of 150 individuals. These
The Am
individuals were also genotyped at 561,466 SNPs. We removed (1)

outliers based on overall probe-detection rate and (2) individuals

without expression in all tissues, leaving 144 individuals in the

analysis. Using the data from these same 144 individuals, we

quantile normalized gene expression and performed log2 transfor-

mation for each brain region. We removed probes if their overall

detection level among all individuals was less than 95%; the Illu-

mina detection p value of an individual had to be less than or

equal to 0.01, and at least 95% of all individuals had to pass this

quality control (QC). We performed the following QC for geno-

type data: Hardy-Weinberg equilibrium (HWE) p value of

0.0001, MAF of 5%, and genotype-missing rate of 5% for a SNP.

We adjusted gene expression by using the same covariates used

in Gibbs et al. We used 100 random probes that were detected in

all four brain regions in our simulation, and we used the gene-

expression data from a single region (cerebellum).

Dataset from the GTEx Pilot Study
The GTEx pilot study collected many tissues from multiple indi-

viduals and performed RNA-seq to quantify gene expression in

those tissues. In our analysis, we used gene expression from whole

blood, which had the largest sample size (n ¼ 156) of all tissues

collected. Gene-expression values were quantile normalized and

corrected for 19 covariates, including three principal components

estimated from genotype data, 15 PEER (probabilistic estimation

of expression residuals) factors,23 and gender. All 156 individuals

were genotyped at 4.3 M SNPs and imputed with 1000 Genomes

Phase I as the reference panel. After filtering out SNPs with MAF

< 5% and SNPs that failed QC, we were left with about 6.8 M

SNPs. For imputed SNPs, we used the best-guess genotypes. For

our analysis, we focused on 3,123 genes present in chromosome 1.

HapMap 3 eQTL Dataset
We downloaded HapMap 3 normalized gene-expression data from

ArrayExpress (series accession numbers E-MTAB-198 for the CEU

(Utah residents with ancestry from northern and western Europe

from the CEPH collection) population and E-MTAB-264 for seven

additional populations).12 For genotype data, we used the third

release of HapMap phase 3, which includes data from 1,397 indi-

viduals genotyped at 1.4 M SNPs.24 In our analysis, we used geno-

type and expression data from 716 individuals. We applied the

following SNP QC: HWE p value of 0.0001, MAF of 5%, and geno-

type-missing rate of 1% for a SNP. We randomly selected 100

probes for which the number of cis-SNPs ranged from 265 to

1,251.

Evaluating Accuracy of p Value Approximation
In each of the genes in each dataset, we obtained an eGene p value

by using our MVN approach. To evaluate the accuracy, we also ob-

tained the gold-standard permutation p value by using up to 5 B

(billion) permutations. Let pi be the MVN p value of gene i, and

let qi be the permutation p value of gene i. We defined the accuracy

of ourmethod in each dataset by using the error rate of pi, which is

error rate ¼
����1� pi

qi

����: (Equation 2)

We then defined the accuracy within a dataset as the average of

(1 � error rate) over all genes. Obviously, the accuracy would be

100% if the MVN p values were perfectly accurate and would

drop from 100% as the p values became inaccurate in either a con-

servative or anti-conservative direction.
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Table 2. Comparison of Runtime between the MVN Approach and Permutation Test on Different Sample Sizes for 10 M Permutations and
10 M Samplings

No. of cis-SNPs

245–247 1,060

Sample size 70 110 144 220 300 716 2,000 10,000

MVN runtime (hr) 0.09 0.09 0.1 0.09 0.09 0.68 0.69 0.77

Permutation runtime (hr) 2.41 2.71 3.12 3.71 4.49 37.56 95.08 487.49

Efficiency gain 25.78 28.77 32.77 39.33 48.09 55.6 138.35 632.65

We used the brain eQTL dataset for sample sizes of 70, 110, 144, 220, and 300 and the HapMap 3 eQTL dataset for sample sizes of 716, 2,000, and 10,000. We
performed 1,000–100,000 permutations and 1,000–100,000 samplings, depending on the sample size and method, and extrapolated the runtime for 10 M per-
mutations and 10 M samplings. Both approaches were implemented with the Intel MKL. The average runtime of ten different runs is reported.
Results

Comparison of Runtime between Permutation Test

and MVN

Wemeasured the runtimes of the permutation test and our

MVN approach by using the brain eQTL (n ¼ 144) and the

HapMap 3 eQTL (n ¼ 716) datasets. We used these two

eQTL datasets to measure the runtime in different sample

sizes (n ¼ 70, 110, 144, 220, 300, 716, 2,000, and 10,000

individuals) by taking subsets of those individuals or by

copying individual data multiple times. We randomly

selected one probe from each dataset. In each selected

probe, there were 245 and 1,060 cis-SNPs in the brain

and HapMap 3 eQTL datasets, respectively. We measured

the runtime in hours for 10M permutations and 10M sam-

plings for the permutation test and an MVN, respectively.

We implemented and optimized both the MVN and the

permutation test by using the Intel Math Kernel Library

(MKL) to make an impartial comparison between the two

approaches.

Results of the runtime comparison demonstrated that

our MVN approach is more than 600 times faster than

the permutation test when the sample size is as large as

10,000 (Table 2). Even when the sample size is small

(e.g., 70), our method is 25 times faster. As the sample

size increases, the ratio of MVN runtime to permutation-

test runtime also increases because the time complexity

of our method does not depend on the sample size,

whereas the permutation test does. This means that for

recent large eQTL studies that contain data from more

than 1,000 individuals,9–11 our MVN approach would be

at least 60 times faster than the permutation test while

generating almost-identical eGene p values. Interestingly,

the runtime of the permutation test increases slightly

sub-linearly with the sample size, probably because of opti-

mization techniques implemented in Intel MKL. We did

not use the speed-up algorithm, which splits a gene into

multiple windows, for our MVN approach in this compar-

ison (Table 2).

We also measured the runtime of the two approaches for

the GTEx dataset, and theMVN took 3,700 central process-

ing unit (CPU) hr to perform 10 M samplings on 3,123

genes in chromosome 1, whereas the permutation test
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took 10,831 CPU hr to perform 1 M permutations. This

means that the MVN is 29 times faster than the permuta-

tion test for the same number of samplings and permuta-

tions. If we applied our MVN approach to all genes in

the whole genome, the runtime would be about 15 days,

using a cluster with 100 CPUs and assuming 31,000 genes

genome-wide, which is ten times more than the number of

genes in chromosome 1 (or, 1.5 days if we chose 1 M sam-

plings instead of 10 M). Nowadays, this can be feasibly

accomplished with a computing cluster with moderate

computing resources. However, the permutation test

would take more than a year to perform the same number

of permutations with the same number of CPUs. Note that

the GTEx dataset has characteristics (relatively small sam-

ple size) that are not preferable for gaining speed over

our approach. Thus, speed gain in this dataset (29 times)

can be thought of as a lower bound of the gain that we

can generally obtain for other datasets. We used the

speed-up algorithm for an MVN approach in the GTEx

dataset because its average number of cis-variants is larger

than 2,000.

The Naive MVN Can Yield Inaccurate eGene p Values

We call the pure MVN approach, without our distribution-

reshaping and small-sample-adjustment techniques, the

‘‘naive MVN.’’ Here, we show that the naive MVN can

often be inaccurate, particularly in small studies. We

applied the naive MVN approach and permutation test

to 100 probes randomly selected from the brain eQTL data-

set collected by Gibbs et al.13 (see Material and Methods).

This dataset contains 144 individuals, and we found

SNPs in cis with each probe within 1 Mb of a TSS. We per-

formed 10 M permutations in the permutation test and

10 M samplings in the naive MVN. For significant eGene

p values, we performed more permutations and samplings

(e.g., up to 5 B). We estimated eGene p values of the 100

probes by using both a naive MVN approach and the per-

mutation test, and for each probe, we computed p value ra-

tios between the two approaches. We used the Spearman’s

rank correlation coefficient for test statistics.

Results showed that there are two problems with the

naive MVN approach (green dots in Figure 3). The first

problem is that for significant eGene p values, p values
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Figure 3. Comparison of MVN eGene p Values to Permutation-
Test eGene p Values
We used the brain eQTL dataset and estimated eGene p values on
the random 100 probes by using the two approaches. The x axis is
the �log10 of eGene p values from the permutation test, and the
y axis is the ratio of naive-MVN eGene p values to permutation-
test eGene p values. The dataset contains data from 144 individ-
uals, and we performed 10 M permutations in the permutation
test and 10 M samplings in an MVN to estimate eGene p values.
For probes with significant p values, we performed up to 5 B per-
mutations and 5 B samplings to accurately estimate eGene
p values. Green circles denote the ratio from a naive MVN
approach. Red triangles represent the ratio after application of
the distribution-reshaping algorithm to an MVN. Purple dia-
monds represent the ratio after application of both the distribu-
tion-reshaping and small-sample-adjustment algorithms. Blue
shading denotes 90% accuracy.
from an MVN are more anti-conservative than those from

the permutation test; in Figure 3, there are three probes

whose eGene p values from the permutation test were

smaller than 10�4, and the ratio between the two methods

was less than 90%. The ratio decreased as the p values from

the permutation test decreased, and the ratio was only 70%

for the probe with the most significant p value. The second

problem is that even for non-significant eGene p values be-

tween 1 and 0.1, there exists an overall p value discrepancy

between the naive MVN approach and the permutation

test. The overall discrepancy was about 5% in this eQTL

dataset.

Our MVN Algorithm Generates Accurate eGene

p Values

We propose two algorithms to scale MVN p values such

that they approximate the true null distribution of the per-

mutation test accurately. The first approach is to scale an

MVN p value of a single SNP.We observed a higher discrep-

ancy in the null distribution between anMVN and the per-

mutation test on the single-marker test statistic for smaller

sample size and more-significant p values (Figure 1). Our

approach to correct for this discrepancy was to measure

the discrepancy in the null distribution at various MAFs,

sample sizes, and significance thresholds and to scale an

MVN p value according to the discrepancy (see Material
The Am
and Methods). This approach is similar to the one Han

et al.21 used to scale MVN p values for multiple-testing

correction in GWASs. After application of our distribu-

tion-reshaping algorithm, an MVN yielded more accurate

eGene p values on the three probes with significant

p values (red dots in Figure 3).

The second algorithm we developed attempts to correct

for the overall discrepancy in eGene p values between an

MVN and the permutation test when the sample size is

small. For example, the overall or average discrepancy be-

tween the two methods is about 5% for the brain eQTL da-

taset, which contains 144 individuals. We found that this

discrepancy decreases as the sample size increases

(Figure 2), and when the sample size is 300, little discrep-

ancy is present between the two methods. Our small-sam-

ple-adjustment approach pre-computes the overall

discrepancy by using a subset of probes and scales the

MVN eGene p values according to the discrepancy (see

Figure S1).

After applying both of our algorithms, we found that

eGene p values from an MVN approach were very close to

those from the permutation test (purple dots in Figures 3

and 4); the average ratio of MVN eGene p values to permu-

tation-test eGene p values was 1, the minimum was 0.96,

and the maximum was 1.05. The average ratio was 1

because of the small-sample-adjustment algorithm. An

average error rate, defined as the average of the absolute

value of (1 � ratio) over 100 genes, was 1.56%, and accu-

racy, which is (1 � average error rate), was 98.44%. This

shows that for the 100 probes from the brain eQTL dataset,

our MVN approach yielded p values within 5% of the

p values from the permutation test. It is important to note

that the extreme p value approximation for the MVN

approach discussed in the Material and Methods was not

applied here, and we used the Spearman’s rank correlation

coefficient to estimate correlation between gene expression

and genotypes and to estimate the scaling factors.

Next, we tested the Pearson correlation coefficient for

our test statistics by using the same 100 genes after

applying the rank-based inverse normal transformation.

We separately estimated the Pearson-correlation scaling

factors, which might be different from those for Spear-

man’s rank correlation. Results show that the average error

rate for the Pearson correlation coefficient is 1.62%, which

is very close to that for the Spearman’s rank correlation

(Figure S1).

We applied our approach to the HapMap 3 eQTL study12

to measure the performance of our approach in a larger

eQTL dataset. The HapMap 3 eQTL dataset has 716 individ-

uals, and we chose 100 random probes (see Material and

Methods). We performed 100 M permutations and 100 M

samplings for the permutation test and an MVN, respec-

tively. We used the Spearman’s rank correlation coefficient

for test statistics. Probes that contained SNPs with very

significant p values (<10�7) were excluded from the

analysis because they requiredmanymore than 100M per-

mutations. We then applied the distribution-reshaping
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Figure 4. Results of Our MVN Approach
Applied to 100 Probes in the Brain eQTL
Dataset
We applied both distribution-reshaping
and small-sample adjustment.
(A) The direct comparison of eGene
p values from our MVN approach to those
from the permutation test; the x axis is the
�log10 of MVN eGene p values, and the
y axis is the �log10 of the permutation-
test eGene p values. A y ¼ x line is drawn
as a black line.
(B) The ratio of MVN eGene p values to
permutation-test eGene p values (y axis)
versus the �log10 of permutation-test
eGene p values (x axis). A y ¼ 1 line is
drawn as a red line. The maximum ratio
is 1.05, the minimum ratio is 0.96, and
the average is 1. The average error rate is
1.56%, and accuracy is 98.44%. Blue
shading denotes 90% accuracy.
algorithm. Results showed that the average ratio of MVN

eGene p values to permutation-test eGene p values was

0.991, even without the small-sample-adjustment algo-

rithm (Figure 5). The minimum and maximum ratios

were 0.979 and 1.024, respectively, and the average error

rate over 100 probes was 1% with 99% accuracy. Hence,

our MVN approach generates eGene p values that are

almost identical to those generated by the permutation

test when the sample size is as large as that of the

HapMap 3 eQTL study. It is also important to note that,

as expected, the small-sample-adjustment algorithm is

not needed for this sample size.
Application to the GTEx Pilot Study

We applied our MVN approach to the GTEx pilot study,

which collected gene-expression data from many different

tissues. We analyzed 3,123 genes in chromosome 1 from

whole blood collected from 156 individuals who were gen-

otyped and imputed at 6.8 M SNPs (see Material and

Methods). We estimated eGene p values of those genes

by using 10 M samplings for MVN and 10,000 permuta-

tions for the permutation test. We performed 10,000 per-

mutations because this is the number of permutations

often used in previous eQTL studies. For our MVN

approach, we used both distribution-reshaping and

small-sample-adjustment algorithms to scale p values,

and we also applied the algorithm for approximating

extreme p values to correct p values lower than 10�5.

Because thousands of cis-SNPs were present for each

gene, we divided each gene into 500-kb blocks and per-

formedMVN sampling on each block to increase efficiency

of the MVN (see Material and Methods). The Spearman’s

rank correlation coefficient was used for test statistics.

We show the Manhattan plot of all eGene p values in

Figure 6A. The plot shows that our MVN approach can es-

timate eGene p values, including highly significant

p values up to 10�38, of all genes because of the procedure

for approximating extreme p values. By contrast, the
864 The American Journal of Human Genetics 96, 857–868, June 4, 2
p values of the permutation test are limited to 10�4 because

of the number of permutations. The plot indicates that

eGenes with permutation p values equal to 10�4 are not

all the same: some p values are just below 10�4, and

some p values are extremely significant, such as 10�38.

Hence, we could be ignoring important differences in

p values among different genes if we use the permutation

test.

We then calculated the ratio of MVN eGene p values to

permutation-test eGene p values, and to accurately mea-

sure this, we performed 1M permutations for the permuta-

tion test and used only genes with permutation eGene

p values > 10�4. Results showed that almost all genes

had ratios between 0.9 and 1.1, meaning that for most

genes, the error rate of the MVN approach is within 10%

(Figure 6B). The average error rate over all genes was

1.57%, and accuracy was 98.43%.We also divided chromo-

some 1 into five bins with the same length and calculated

the proportion of genes with error rates < 10% and < 5%

for each bin (Figure 6C). Results demonstrated that a ma-

jority (97.9%–100%) of genes had an error rate < 10% for

all bins.
Discussion

We have proposed an efficient and accurate MVN

approach for performing multiple-testing correction and

estimating eGene p values in eQTL studies. We developed

strategies to correct for the discrepancies due to small sam-

ple sizes and achieved high accuracy regardless of study

sample sizes. We applied our MVN approach to three

eQTL datasets with different characteristics and demon-

strated that our MVN approach yields eGene p values as ac-

curate as those from the permutation test.

A main advantage of our approach over the permutation

test is that it is considerably faster. We showed that an

MVN is 55 times faster than the permutation test when

the sample size is about 700. The time complexity of our
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Figure 5. Results of the MVN Approach
Applied to 100 Probes in the HapMap 3
eQTL Dataset
Because of the large sample size, we
applied only the distribution-reshaping al-
gorithm to an MVN.
(A) The direct comparison of eGene p
values from our MVN approach to those
from the permutation test; the x axis is
the �log10 of MVN eGene p values, and
the y axis is the �log10 of the permuta-
tion-test eGene p values.
(B) The ratio of MVN eGene p values to
permutation-test eGene p values (y axis)
versus the �log10 of the permutation-test
eGene p values (x axis). The maximum ra-
tio is 1.024, the minimum ratio is 0.979,
and the average is 0.991. The average error
rate is 1.0%, and accuracy is 99.0%. Blue
shading denotes 90% accuracy.
approach is independent of the number of individuals,

which makes it ideal for eQTL studies with large sample

sizes. Recent developments in microarrays and RNA-seq

technologies have enabled eQTL studies to collect data

on a large number of individuals and one of the largest

eQTL studies, byWright et al.,9 has collected data on about

2,500 individuals. This is a similar sample size to that of

GWASs, for which the permutation test is not easily

feasible. As eQTL studies collect data on more individuals

to uncover the genetic basis of gene expression, efficiency

bottleneck will become critical in identifying eGenes, and

our method can be a suitable solution. Note that even for

the smallest dataset that we examined (n ¼ 70), our

method was considerably faster than the permutation

test (26 times faster), which shows that our method can

readily benefit current studies, as well as large future

studies.

Another advantage of our approach is that our algorithm

for approximating extreme p values allows an MVN to

effectively estimate very significant eGene p values.

Approximating eGene p values at extreme significance

levels is important because it allows studies to prioritize

genes for follow-up or replication studies. Using the data

from the GTEx pilot study, we demonstrated that the

limited number of permutations in the permutation test

results in many genes with the same eGene p values

(e.g., 10�4), but our approach yields very different p values

such that some are as small as 10�38. Our strategy is to use a

large number of samplings (10 M) to estimate the effective

number of tests at an extreme threshold (10�5) and apply

the effective number to p values beyond the threshold.

The limitation of this approach is that the effective num-

ber can also change beyond this threshold.25 Therefore,

the accuracy of multiple-testing correction for those

extreme p values can be lower than the accuracy for the

other p values. The creation of an even more accurate mul-

tiple-testing correction of the extreme p values can be an

interesting future research direction.

Several software packages, such as Matrix eQTL,26 are

available for performing eQTL analysis efficiently.
The Am
Although Matrix eQTL is efficient at estimating p values

of SNP and gene pairs, it does not support the estimation

of eGene p values explicitly. One can manually permute

expression values and perform the permutation test by us-

ing Matrix eQTL. However, the time complexity of this

procedure still depends on the number of individuals,

and hence it will be slower than our MVN approach for

large studies.

Our distribution-reshaping algorithm is inspired by an

MVN approach called SLIDE,21 which performs multiple

testing for GWASs and uses a similar distribution-reshap-

ing algorithm. However, there are two major differences

between our algorithm and the one in SLIDE. One is that

our algorithm is for quantitative traits, whereas SLIDE

only considers binary traits. For binary traits, it is relatively

quicker and easier to estimate the TF ratio with the contin-

gency table. However, this is not possible for quantitative

traits, and we had to measure the TF ratio empirically for

various sample sizes and MAFs, which is a more compli-

cated process. Moreover, we separately built the TF-ratio

information for a non-parametric test (Spearman’s rank

correlation) and a parametric test (Pearson’s correlation)

to support a wide range of eQTL analyses. Another differ-

ence is that our approach additionally applies a new

small-sample-adjustment algorithm that scales every

MVN eGene p value by a constant factor. This is not neces-

sary for SLIDE, which considers the sample sizes of GWAS

datasets, which usually involve thousands of individuals.

Our finding suggests that when sample size is small, there

might be a residual discrepancy in eGene p values between

anMVN and the permutation test, and this needs to be cor-

rected by direct comparison of eGene p values between the

two approaches.

Our approach is based on the current practice that, to

find eGenes, investigators test each cis-variant of a gene

and perform multiple-testing correction. To answer the

question of whether a gene is an eGene, different strate-

gies are also possible. For example, if multiple variants

near the TSS have moderate effects on expression levels,

we can boost the signal by combining information from
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Figure 6. Results of GTEx Pilot Study
(A) Manhattan plot of eGene p values from our MVN approach and the permutation test on 3,123 genes in chromosome 1. We per-
formed 10 M samplings with the algorithm for extreme p value approximation for an MVN and 10,000 permutations, which is the
commonly used number of permutations in previous studies, for the permutation test.
(B) Plot showing the ratio of MVN eGene p values to permutation-test eGene p values on the 3,123 genes. We performed 1 M permu-
tations for the permutation test and show the ratios for the genes whose corresponding permutation-test eGene p values were greater
than 10�4. Blue shading denotes 90% accuracy.
(C) The proportion of genes with error rate< 10% and< 5%. Genes are divided into five bins with the same length, and the proportions
are shown for each bin.
multiple variants. In that sense, eGene identification can

be related to gene-based tests27 or rare-variant association

tests.28 We expect that further research will be needed

to evaluate what is the optimal strategy for eGene

identification.

Recently, several eQTL studies, including the GTEx

study,6 have collected gene-expression data from multiple

tissues, and there is a growing interest in detecting eQTLs

from those tissues.7,15 One can increase statistical power

to detect eQTLs and also eGenes by combining informa-

tion across multiple tissues, and the permutation test is

applied similarly to detect eGenes in both multi-tissue

and single-tissue eQTL studies. However, approaches that

attempt to identify eQTLs from multiple tissues are gener-

ally much more computationally intensive than ap-

proaches that detect eQTLs in a single tissue. Hence, the

computational burden of the permutation test is consider-

ably heavier in multi-tissue eQTL studies. Our MVN

approach can be extended to detect eGenes from multiple

tissues in the framework of Meta-Tissue,7 which we
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recently published. Meta-Tissue is a meta-analysis-based

approach for identifying eQTLs from multiple tissues

and utilizes two different meta-analysis methods: fixed ef-

fect and random effect. We can estimate correlation be-

tween two SNPs across multiple tissues by using the idea

of Conneely and Boehnke,29 and hence we can accurately

estimate eGene p values by using our MVN framework. We

tested this approach on five genes in the multi-region

brain eQTL dataset and found that for the fixed-effect

model of Meta-Tissue, our MVN approach yields p values

very similar to those from the permutation test on those

five genes (average error rate of 2.1%; Table S1). We discov-

ered that the current multiple-testing-correction frame-

work might perform slightly worse for the random-effect

model of Meta-Tissue (average error rate of 3.6%), which

is expected because Conneely and Boehnke primarily

assumed the fixed-effect model. We are currently investi-

gating the possibility of extending the framework to the

random-effect model and are planning to apply it to the

GTEx study.
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Supplemental Data

Supplemental Data include one table and one figure and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2015.04.012.
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