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ABSTRACT OF THE DISSERTATION 

 

Leveraging Clinical Imaging and Machine Learning Algorithms to Characterize Acute Ischemic 

Stroke Patients for Treatment Decision-Making  

by 

Jennifer Sara Polson 

Doctor of Philosophy in Bioengineering 

University of California, Los Angeles, 2023 

Professor Corey W. Arnold, Chair  

 

For patients diagnosed with acute ischemic stroke, treatments such as thrombolysis and 

thrombectomy aim to restore blood flow to areas experiencing ischemia. These treatments have 

vastly improved outcomes, but it is currently unknown why some patients experience 

unsuccessful reperfusion or hemorrhagic complications. Taking advantage of recent advances in 

deep learning vision transformers, we developed algorithms for classification and prediction tasks 

regarding a patient’s potential response to therapies using imaging taken at hospital admission. 

These models achieved higher generalization performance when identifying patients within the 

treatment window and those that will achieve successful recanalization. Our results illustrate 

that magnetic resonance (MR) and computed tomography (CT) imaging contains signal that 

can predict successful treatment response and that deep learning models can localize to salient 

regions within imaging without requiring time-intensive manual segmentation.  
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CHAPTER 1 

Introduction  

1.1 Motivation 

Stroke is a major public health concern, as it is one of the leading causes of 
morbidity and mortality worldwide. In the United States, stroke is the fifth leading 
cause of death, and approximately 795,000 people in the United States are estimated to 
have a stroke each year, with acute ischemic stroke (AIS) accounting for the large 
majority of cases. Patients with strokes can have significant, detrimental impacts on 
their lives; stroke can lead to long-term disability, including paralysis, cognitive 
impairment, and communication difficulties. These disabilities can have a significant 
impact on the quality of life of the patient and their ability to function independently. 
Additionally, stroke is one of the leading causes of institutionalization and long-term 
care, which can have a significant economic impact on healthcare systems and society. 
Given the high incidence, impact, and cost of stroke, there is significant motivation to 
reduce incidence and improve patient outcomes. In addition to prevention and recovery 
efforts, a prompt and accurate assessment of the patient's condition is of paramount 
importance in the diagnosis and treatment of AIS, as the longer the brain is deprived of 
blood flow, the more extensive the damage it sustains.  

Machine learning (ML) algorithms have been demonstrated to be an effective tool in 
this regard, providing automated analysis of patient data across multiple modalities, 
potentially improving clinical decision making in an expedient fashion. In addition to 
providing a quick and accurate diagnosis, machine learning algorithms can also help 
doctors better understand the underlying causes of a patient's stroke and predict the 
likelihood of future strokes. This can be particularly helpful in cases where the 
underlying cause of stroke is unclear or where a patient has multiple risk factors. By 
analyzing imaging data and other patient information, machine learning algorithms can 
provide physicians with insight into the factors that are most likely to contribute to a 
stroke and help them to develop personalized treatment plans for each patient. The use 
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of machine learning in acute ischemic stroke is motivated by the need for faster and 
more accurate diagnosis and treatment of this condition. Using the power of machine 
learning, doctors and researchers can gain insight into the underlying causes of stroke 
and develop more effective treatments to improve patient outcomes. 

1.1.1 Identifying Patients Within the Thrombolytic Treatment Window 

Thrombolysis is a medical treatment that aims to dissolve blood clots that have formed 
in blood vessels. It is achieved by administering a thrombolytic agent, such as tissue 
plasminogen activator (tPA), which promotes the breakdown of the clot, allowing blood 
to flow normally again. For AIS patients, the benefit of thrombolytic therapy is 
positively associated with earlier reperfusion time.1,2 Until recently, thrombolysis was 
only recommended for AIS patients with a known symptom onset time (i.e. time since 
stroke or TSS) within 4.5 hours.2,3 AIS with unknown or unclear TSS has been reported 
in as many as 35% of patients.4 In one study, only 6.5% of patients hospitalized for AIS 
received intravenous thrombolysis, with unknown TSS being the primary reason for 
treatment exclusion.3 Many studies have sought clinical factors to assess eligibility and 
risk for thrombolytics, with a significant focus on neuroimaging.5–7  

1.1.2 Predicting Patient Responses to Endovascular Thrombectomy 

Endovascular thrombectomy (EVT) physically removes the clot from the occluded 
artery and has an entirely different set of risk factors that could influence outcome, such 
as collateral status. Collateral status refers to the compensatory vascular anatomy that 
may provide blood perfusion to areas experiencing ischemia.8 Per the current clinical 
guidelines, advanced imaging such as perfusion-weighted imaging may be taken at 
admission to assess for collateral flow from other arteries in the brain.2 The presence of 
high collateral status may indicate that a patient will respond well to invasive 
mechanical thrombectomy therapies.9–11 As with collateral status, other clinical response 
variables have been substantially linked to post-thrombectomy outcome. For example, 
restoration of blood flow to the stroke area is quantified by the change in cerebral 
infarction (TICI) score.6,7,12 During EVT, this score is assessed after each attempt to 
remove the clot, and a final TICI score is assigned to the patient at the end of the 
procedure to signify how much blood flow has been restored.  
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1.2 Challenges and Objectives 

Although recent technological advancements have made machine and deep learning 
applications more robust and accessible, there remain several challenges to apply these 
algorithms to clinical tasks. As models increase in complexity, larger amounts of training 
data are required for them to learn the underlying feature representations that are 
salient to the pertinent tasks. However, there are substantial regulatory, fiscal, and 
societal barriers that prevent the sharing and aggregation of disease-specific datasets at 
a broad scale.  Beyond these domain-level concerns, rapid diagnostic and treatment 
paradigms for suspected stroke patients introduce multifaceted limitations for algorithm 
development, evaluation, and eventual deployment, particularly in pretreatment and 
intraprocedural contexts.  

1.2.1 Stroke Tissue Progression is Complex 

The Efficacy and Safety of MRI-Based Thrombolysis in the Wake-Up 
Stroke (WAKEUP) trial showed that signal mismatch between diffusion-weighted 
imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) can be used to select 
AIS patients with unknown TSS for thrombolytic treatment.13 Accordingly, use of DWI-
FLAIR mismatch is now recommended (evidence level IIa) in the updated American 
Heart Association-American Stroke Association (AHA-ASA) guidelines to identify 
unwitnessed AIS patients who may benefit from thrombolytic treatment.2 However, 
assessing DWI-FLAIR mismatch relies on radiologists who may have differing levels of 
skill or approaches to image interpretation. Thus, this approach is prone to reader 
variability that may result in the erroneous exclusion of patients who could benefit from 
thrombolytic treatment.14 TSS on the other hand, is an objective surrogate biomarker in 
clinical settings. Therefore, an automated method that accurately classifies TSS would 
increase the number of patients eligible for thrombolytic treatment. Machine learning 
has shown utility for stroke-specific clinical decision support,15,16 and deep learning 
specifically has been widely explored for imaging-based tasks.17,18 However, models often 
perform more poorly on unseen external datasets, requiring external evaluation of these 
algorithms.19 
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1.2.2 Rapid Acquisition Impacts Image Quality 

Substantial efforts have been made to explore additional imaging protocols for the 
characterization of vascular physiology that assess stroke progression and inform 
potential treatment response. Several algorithms have been developed using perfusion 
imaging as input to identify physiological changes in brain tissue.15,17,20  However, given 
the time-dependent benefits of swift stroke diagnosis and treatment, current American 
Heart Association/American Stroke Association (AHA/ASA) guidelines recommend 
studies be completed within 20 minutes of arrival to the hospital.2 Clinical stroke 
imaging acquisition protocols are optimized to gather only the minimum information 
necessary to diagnose ischemic stroke and rule out contraindicative phenomena such as 
hemorrhage. Consequently, protocols used in routine clinical practice typically lack 
advanced perfusion imaging series.  

These rapid protocols currently recommended by AHA/ASA generate images of 
substantially lower quality than those taken with protocols with longer acquisition 
windows. The slice thickness of CT or MRI acquired for suspected stroke can be up to 
5mm, substantially thicker than anatomical scanning protocols for such neurological 
diseases as glioblastoma, multiple sclerosis, and dementia.21–23 This also means that it is 
often not feasible to perform a second study if the image quality is low, and the final 
image may contain substantial noise or artifacts. These quality control issues can limit 
the ability of machine learning algorithms to distill information from these images, 
preventing landmark-based preprocessing or model convergence during training. Finally, 
for patients with AIS, diagnostic and treatment decision-making takes place on the 
order of minutes. Thus, models developed with a clinical use case in mind must 
prioritize inferential efficiency. This can preclude the use of time-intensive manual 
annotations or preprocessing steps in machine learning pipelines designed for 
pretreatment classification or prediction tasks.  

1.3 Contributions 

In this work, we seek to develop automated approaches that leverage clinical imaging to 
characterize patients with acute ischemic stroke before and during treatment, to better 
inform clinicians. Building on our previous work, our objective is to expand our 
lightweight medical image architecture to determine the eligibility of a patient for AIS 
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treatment, either by thrombolytics or by thrombectomy. Utilizing novel architectures 
and training approaches, our objective is to classify or predict a patient’s time clock 
(TSS), tissue clock (DWI-FLAIR mismatch), thrombectomy recanalization (mTICI), 
and first pass thrombectomy (FPE), and collateral status, to provide eligibility 
information for clinicians. This work represents efforts across several modalities, with 
efforts toward classifying vascular characteristics and predicting likelihood of successful 
therapies. This dissertation can be summarized in three aims: 
Aim 1 To explore the relationship between TSS and DWI-FLAIR mismatch for 

patients through fully and semi-supervised deep learning methods. We 
hypothesize that patients with AIS have individualized responses to 
ischemic injury that can be characterized by standard pretreatment 
imaging protocols. We first report on the evaluation of a fully supervised 
deep learning algorithm to classify TSS on a data set comprising patients 
from two institutions. Our model achieved higher generalization 
performance on external evaluation datasets than the current state-of-the-
art for TSS classification. We then employ a semi-supervised deep learning 
framework to classify the DWI-FLAIR mismatch, which utilizes prior 
information about TSS to generate pseudolabels for training. These results 
demonstrate the potential for automatic assessment of onset time from 
imaging without the need for highly trained radiologists. More broadly, 
these efforts illustrate that incorporating clinical proxy information into 
semi-supervised learning frameworks can improve model optimization by 
increasing the fidelity of unlabeled samples included in the training 
process. 

Aim 2  To develop machine learning frameworks to predict response to 
endovascular therapy from pretreatment stroke imaging. We hypothesize 
that machine learning methods can predict a patient's response to 
treatment from image series acquired during routine clinical treatment. 
We first develop an annotation-free radiomics approach that uses atlas-
based thresholding to compute features from a region of interest and then 
feed those into feature selection and machine learning algorithms. We then 
compare this approach to a deep learning algorithm that utilizes weight 
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sharing and non-local attention modules. We evaluate the models on both 
MRI and CT images, reporting the cross-validation performance and 
performance on unseen prospective test sets. The results demonstrate that 
certain advanced imaging series improve the predictive capacity of the 
deep learning model and, to our knowledge, represent the first annotation-
free prediction models for recanalization and first-pass effect. 

Aim 3 To extract temporal imaging biomarkers from images taken during an 
EVT procedure via generation of perfusion parameter maps and 
transformer-based temporal deep learning networks. We hypothesize that 
digital subtraction angiography (DSA), taken during EVT, can be 
leveraged during the procedure to inform procedural decision-making. We 
first demonstrate the ability of DSA to capture vascular parameters by 
creating perfusion maps from temporal DSA sequences and comparing 
these with pre- and post- treatment MRI series. We then implement 
transformer-based architectures to generate a binary classification of a 
patient’s collateral flow in the affected stroke region. These networks are 
then compared for their ability to classify collateral flow from a DSA 
sequence taken during a single pass of EVT, evaluating these methods 
against a network previously developed on DSA images. The results 
indicate that transformers can leverage raw unprocessed versions of DSA 
sequences to provide information on the physiology of a patient and 
inform treatment decision-making.  

1.4 Organization of the Dissertation 

The rest of the dissertation will proceed as follows. Chapter 2 illustrates the landscape 
of acute ischemic stroke diagnosis and treatment, provides an overview of machine 
learning and deep learning, and highlights recent and notable literature in the field of 
artificial intelligence for ischemic stroke. Chapter 3 summarizes efforts to classify stroke 
onset time from admission imaging for patients with unknown stroke onset. This 
chapter is based on a previous publication. Chapter 4 outlines efforts to detect 
penumbral tissue as targets for thrombolytic therapy, which is a summary of previously 
published work. Chapter 5 describes efforts to predict clinical response to EVT using 
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pretreatment imaging. Chapter 6 contains a recent proof-of-concept study to classify 
vascular parameters from DSA images acquired during EVT. Chapter 7 concludes the 
dissertation, describing the limitations of each study and the utility of the findings, as 
well as suggesting future directions of study. 
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CHAPTER 2 

Background 

2.1 Acute Ischemic Stroke 

Acute ischemic stroke (AIS) occurs when blood flow to a part of the brain is blocked by 
a clot. Stroke is a leading cause of death and disability worldwide. According to the 
World Health Organization, stroke is the second leading cause of death globally and is 
one of the leading causes of disability, with more than 50 million people living with the 
effects of stroke.24 The prevalence of stroke varies by region, with higher rates typically 
seen in low- and middle-income countries. The severity of stroke can also vary, with 
some people experiencing only mild symptoms, while others may have more severe 
symptoms that require long-term care. Common symptoms of stroke include sudden 
weakness or numbness on one side of the body, difficulty speaking or understanding 
language, difficulty seeing in one or both eyes, and a severe headache.  

During a stroke, the lack of blood flow to a part of the brain (ischemia) causes a lack 
of oxygen and nutrients to brain cells. This leads to a decrease in the production of 
available cellular energy required for regular function. Cells may also start to produce 
free radicals, which can damage the cell membrane and other cell structures. As 
ischemia continues, cells may release neurotransmitters, such as glutamate, that can 
overstimulate other cells and cause them to die. The cells may also release enzymes, 
such as proteases and lipases, which can break down the cell's structural proteins and 
fats. These reactions can further damage the cell and contribute to its death. If ischemia 
is not reversed and blood flow is not restored, brain cells will eventually experience cell 
death, known as infarction. The brain has limited ability to recover from stroke, so it is 
crucial to seek medical attention as soon as possible. Early treatment can help minimize 
the extent of the damage and improve the chances of a successful recovery.  
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Substantial clinical research has shown that minimizing the time between the onset 
of symptoms and thrombolytic administration can improve outcomes. Therefore, 
prehospital and hospital workflows are designed to minimize the delay between 
symptom recognition and treatment. Upon admission, hospital provider teams at 
primary stroke centers perform immediate diagnostics, including an image study, in 
rapid succession. These diagnostic studies and labs allow the provider to assess patient 
eligibility for two different treatments: thrombolysis and thrombectomy. The prehospital 
workflow recommended by the American Heart Association/American Stroke 
Association is detailed in Figure 2-1. 
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Figure 2-1. Prehospital and admission workflow for patients with suspected stroke. Reproduced from the 
AIS Toolkit25 
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2.1.1 Thrombolysis 

Thrombolytics, such as tissue plasminogen activator (tPA), are medications that are 
used to dissolve blood clots and restore blood flow to the brain. tPA works after 
injection by binding to fibrin infrastructure of a clot thrombus. Once bound, the enzyme 
cleaves peptide bonds on plasminogen found in the clot, turning it into plasmin. Plasmin 
is a serine protease that works directly on fibrin, thereby loosening the fibrous structure 
and dissolving the clot. For many thrombus types, tPA is effective at restoring blood 
flow to the brain; ideally, thrombolytics work to reperfuse tissue that is experiencing 
ischemia but that is not yet infarcted. Accordingly, it must be given within a certain 
time frame after the onset of stroke symptoms to be effective. tPA also carries a risk of 
hemorrhagic transformation and thus may be contraindicated for many patients. 

Per the current clinical guidelines in the U.S., thrombolysis is only recommended for 
patients meeting certain clinical criteria and with a known symptom onset within 4.5 
hours.2 Up to 35% of patients were deemed ineligible for this treatment due to unknown 
time since stroke (TSS).26 However, the recent WAKEUP trial provided a new avenue 
for patients to receive thrombolytic treatment. Using MR imaging, a neuroradiologist 
may assess differences in signal between DWI and FLAIR series when stroke onset time 
is unknown to determine thrombolytic eligibility.13 In fact, in the most recent version of 
the American Heart Association guidelines for treating acute stroke, for patients with 
unclear time of symptom onset, MRI can be performed to identify areas with DWI-
FLAIR mismatch that could benefit from IV tPA. This can offer another therapeutic 
avenue for these patients; however, this assessment is prone to a large amount of reader 
variability and may exclude many patients from treatment.14 At many institutions, the 
lack of expert level neuroradiologists could pose another problem given the short 
diagnostic window to evaluate MR images for stroke patients. 

As clinical care teams cannot fully control the time between the onset of symptoms 
and the arrival of the patient to the hospital, substantial effort has been put into 
reducing door-to-needle time (DNT), defined as the time elapsed between when a 
patient arrives at the hospital and when receiving thrombolytic therapy. The American 
Heart Association & American Stroke Association (AHA/ASA) creates clinical 
treatment guidelines that are followed by hospitals in the U.S. and then adopted by 
stroke associations across the globe. They have launched a multiphase campaign called 
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the Target: Stroke Initiative that created evidence-based strategies to reduce DNT as 
well as ideal DNT metrics for stroke centers (tertiary care centers that can provide 
interventions to patients admitted for stroke) to meet. 

2.1.2 Endovascular Thrombectomy 

Endovascular thrombectomy (EVT) represents another more invasive treatment 
avenue. This procedure involves using a device to physically remove a blood clot from 
within a blood vessel in the brain. Current clinical guidelines recommend two 
techniques: stent retrieval and direct aspiration. In stent retriever thrombectomy, a 
stent (a small metal mesh tube) is used to physically remove a blood clot from within a 
blood vessel in the brain. The stent is placed within the vessel and then expanded to 
capture the clot. The stent and clot are then removed from the vessel together. Direct 
aspiration thrombectomy uses a catheter with a small suction device to remove a blood 
clot from within a blood vessel in the brain. The catheter is inserted through a small 
incision in the skin and guided to the site of the clot using imaging techniques such as 
X-ray or ultrasound. These techniques represent the current state-of-the-art, but there 
are other techniques, including balloon-guided catheterization and stenting, that are still 
used depending on the device and training access.27 

Through several clinical trials, EVT has been demonstrated to produce superior 
outcomes with statistically insignificant differences in complications.28 However, only a 
limited number of patients are eligible for this treatment. Original trial criteria 
demonstrated efficacy in patients with a large vessel occlusion (LVO) identified on 
vessel imaging presenting within 6 hours of symptom onset, a NIH Stroke Scale (NIHSS) 
score ≥ 6, an Alberta Stroke Program Early CT Score (ASPECTS) ≥ 6, and a prestroke 
modified Rankin Score (mRS) of 0 or 1. Under these criteria, it is estimated that only 10% 
of patients with AIS would be eligible for this treatment.29–32 

Procedural advances in neurointerventional radiology have continued to make great 
strides toward improving the safety and outcomes of patients with AIS. Two trials 
demonstrated efficacy for patients beyond the 6-hour window under different inclusion 
parameters. The DWI or CT perfusion (CTP) assessment with clinical mismatch in the 
Triage of Wake-Up and Late Presenting Stroke Undergoing Neurointervention with 
Trevo (DAWN) trial, EVT had demonstrated clinical efficacy and improved outcomes 
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for patients within 6 to 24 hours of symptom onset who experienced a large clinical 
deficit with a small infarct volume, provided that they did not have an infarct covering 
more than a third of the middle cerebral artery territory or intracranial 
hemorrhage.6,33,34 Following this, the DEFUSE 3 trial developed clinical and imaging 
conditions under which a patient could experience improved outcomes more than 6 
hours from symptom onset.35 Patients included in this study required a level of 
mismatch between the volume of signal on diffusion-weighted imaging and perfusion-
weighted MR or CT imaging taken at admission. These two studies substantially 
expanded the pool of eligible patients.  

The demonstrated success of EVT with DAWN and DEFUSE 3 criteria fomented 
significant efforts to expand other eligibility criteria. Recent trials have expanded the 
criteria along most of the axes to include non-proximal occlusions (such as distal 
branches of the middle cerebral artery and posterior circulation), mild strokes of LVO, 
large infarct volume, and those presenting beyond the 24-hour window.36–41 

2.1.2.1. Measuring EVT Success 

Successful EVT requires reperfusion of the ischemic tissue, which is achieved through 
the reopening of blocked blood vessels (know as recanalization). This is measured 
primarily using the mTICI (modified thrombolysis in cerebral infarction) scoring system, 
which evaluates the degree of recanalization  achieved after thrombolytic treatment or 
EVT. The TICI scale was first introduced as a modification of the previously used TIMI 
(thrombolysis in myocardial infarction) scale, which had a range of 0-2 compared to a 
range of 0-3 in mTICI. The mTICI scale was developed as a more comprehensive and 
accurate tool to assess recanalization after thrombolytic therapy, as it allowed for a 
more detailed assessment of the degree of recanalization achieved. 

The mTICI scale ranges from 0 to 3, with 0 indicating no recanalization, 1 indicating 
partial recanalization, 2a-b indicating partial recanalization, and 3 indicating complete 
recanalization. Detailed criteria for each mTICI score can be seen in Table 2-1. As with 
any qualitative assessment, mTICI scoring can be prone to inter-reader variability. 
When studying this variability, Suh et al. obtained an intraclass coefficient (ICC) of 
0.67.42 Mair et al. used Krippendorff's Alpha (K-Alpha) to assess interrater variability 
in three groups: multicenter angiography panel experts (K-Alpha of 0.60), 



14 

neuroradiology trainees (0.63), and nonexperts (0.39).43 Tung et al. also examined 
interrater variability for and found an ICC of 0.77 and an overall Cohen's Kappa of 0.58 
for oTICI (67 percent class boundary between 2a and 2b) and 0.62 for mTICI.44 

Despite this variability is assessment, clinical trials have illustrated that patients 
who experience partial and/or full recanalization of the blood vessel typically experience 
better outcomes, particularly if recanalization is achieved in three attempts or less.45–49 
Moreover, the best long-term clinical outcomes have been associated with patients who 
experience recanalization after one attempt to remove the clot; this is known as the first 
pass effect (FPE).50–55  

Table 2-1. Descriptions of mTICI scoring criteria. Scores are assessed using vascular imaging during 
treatments. 
TICI Grade Original TICI Modified TICI Modified TICI With 2c 

0/1 No/minimal reperfusion No/minimal reperfusion No/minimal reperfusion 

2a Partial filling <2/3 
territory 

Partial filling <50% 
territory Partial filling <50% territory 

2b Partial filling ≥2/3 
territory 

Partial filling ≥50% 
territory Partial filling ≥50% territory 

2c … … 
Near complete perfusion 
except slow flow or few distal 
cortical emboli 

3 Complete perfusion Complete perfusion Complete perfusion 

2.1.2.2. EVT Complications  

There are several adverse complications that can arise during EVT. Complications 
occur in about 20% of cases, and recanalization is not achieved in approximately 10-30% 
of patients, dependent on technique.56 Vascular anatomy can affect clot retrieval in even 
highly proximal occlusions. The vessel may not be accessible because of unforeseen 
stenosis, elongation of the clot, pre-existing dissection within the vasculature, or 
inability to guide the device through the clot to deploy the retrieval mechanism.57 When 
the clot can be effectively accessed, there can still be complications that prevent full 
removal of the clot thrombus and therefore successful recanalization. The most common 
complications arise when the clot is recalcitrant to removal; either peripheral 
components of the clot remain after EVT, or no material could be removed from the 
thrombus at all. Clinically ineffective reperfusion refers to a spectrum of phenomena 
wherein patients are recanalized during the procedure but tissue still experiences a lack 
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of oxygen resulting in tissue death.58 Recent clinical studies have explored the no-reflow 
phenomenon, defined as a lack of tissue reperfusion despite angiographic reperfusion.59–62 
Between 6-20% of patients are affected by reocclusion of the treated vessels within 24 
hours of treatment.63,64 Distal embolization can occur when the clot fragments upon 
contact with retrieval devices and clot fragments proceed further into the vasculature. 
There may also be damage to the vasculature itself; arterial perforation can cause 
symptomatic hemorrhage of the cerebrum or subarachnoid space. Even among patients 
without symptomatic complications, there are post-procedural complications that can 
affect outcome long-term.56,65–68 Reperfusion injury is a phenomenon that can occur 
following the restoration of blood flow to an area of the brain that has been previously 
deprived of oxygen and nutrients due to an occlusive thrombus. It can occur due to 
several mechanisms, including the generation of reactive oxygen species, the activation 
of the complement system, and the influx of inflammatory cells. The consequences of 
reperfusion injury can include the exacerbation of ischemic injury, the development of 
edema, and the induction of neuronal death.69–72 

There are several pathophysiological mechanisms that can influence the probability 
of recanalization and subsequent reperfusion in a patient. Factors correlated with 
functional outcomes following EVT include the location of clot, length of EVT 
procedure, use of statins, remaining thrombus fragments, and stenotic vessels.64 
Additionally, stroke etiology and impact on outcome is a prevalent area of study. For 
example, intracranial atherosclerosis (ICA), which is the accumulation of plaque in the 
blood vessels of the brain, can affect the success of EVT. Plaque build-up in blood 
vessels can narrow the lumen (the opening inside the blood vessel) and make it harder 
for the EVT device to reach and remove the clot. ICA has been shown to increase the 
risk of reocclusion and recurrent strokes, causing inflammation and damage to the 
arterial wall that can lead to further vascular injury or further narrowing of the vessel 
lumen.66 

2.1.2.3. Adjuvant Therapies 

If EVT does not proceed as planned, neurointerventionalists have a variety of adjuvant 
therapies at their disposal. These therapies are intended to enhance the effectiveness of 
thrombectomy by improving blood flow restoration, reducing the risk of complications, 
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and mitigating the effects of ischemic injury. The most invasive include rescue stenting, 
which involves the use of a stent to mechanically open a blocked or narrowed blood 
vessel in the brain rather than retrieving the clot in standard EVT.73 Clinical evidence 
suggests that, among refractory cases of EVT, rescue stenting can achieve recanalization 
rates similar to those for which EVT is successful.74,75 Current clinical guidelines do not 
recommend rescue stenting as a first-line treatment option, given the increased risk of 
hemorrhage from the use of required antiplatelet therapeutics.2  

Pharmacological agents that can also be utilized during or following EVT. 
Thrombolytics such as tPA can be administered intravenously (IV) or intra-arterially 
(IA) using a microcatheter or a thrombolytic delivery system in conjunction with EVT. 
The latter avenue has garnered recent interest due to the Chemical Optimization of 
Cerebral Embolectomy (CHOICE) trial, which compared the safety and effectiveness of 
the administration of IA-tPA versus placebo in the treatment of patients with acute 
LVO ischemic stroke who had already undergone a successful EVT. Their preliminary 
findings indicated that IA-tPA improved neurological status at 90 days compared to 
placebo with no significant impact on patient safety.76 Additionally, some studies have 
suggested that agents such as magnesium, nicorandil, and statins, may have a 
neuroprotective effect and reduce the risk of reperfusion injury.77,78 Further clinical trials 
have also indicated the use of anticoagulants such as heparin, may improve 
recanalization rates, decrease the risk of reocclusion and reduce the risk of no-reflow 
phenomenon; however, these are nascent studies that have not been clinically 
recommended.79–81 

2.2 Stroke Imaging 

Imaging plays a crucial role in the diagnostic process of AIS. One imaging technique 
commonly employed in the diagnosis of AIS is magnetic resonance imaging (MRI). MRI 
employs a strong magnetic field and radio waves to generate detailed images of the 
brain. MRI is particularly valuable in identifying the underlying causes of a stroke, such 
as thrombotic or hemorrhagic events, and in predicting the likelihood of future strokes, 
allowing for the development of personalized treatment plans for each patient.5,82 

Computed tomography (CT) scans are among the most frequently used imaging 
techniques in AIS diagnosis. CT scans generate detailed images of the brain utilizing X-
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ray technology and are performed quickly and efficiently in emergency settings. CT 
scans aid physicians in identifying the presence and location of a stroke, as well as 
assessing the extent of any brain damage. 

2.2.1 Magnetic Resonance Imaging 

MRI is a non-invasive imaging modality that uses a combination of a strong magnetic 
field, radiofrequency (RF) pulses, and a computer to produce detailed images of internal 
organs and structures within the body. MRI generation is based on the principle of 
nuclear magnetic resonance. An MRI machine uses a large, cylindrical magnet to 
generate the main magnetic field, which is usually between 0.5 and 3 Tesla. The patient 
is placed inside the magnet, and the RF pulses are emitted by a coil or antenna that 
surrounds the patient. Because of their positive charge, protons in atomic nuclei align 
when placed in a strong magnetic field and precess, or spin, around the nuclei at a 
specific frequency. Protons first absorb energy from a RF pulse. As the protons relax 
back to their original state, they emit energy in the form of RF signals, which can be 
detected by a coil or antenna. These signals are used to create images of the tissue being 
imaged. 

MRI scanners can be programmed to utilize different pulse sequences and relaxation 
measurements to generate image series that highlight different types of tissue. T1-
weighted images are created by using a short RF pulse and a short recovery time. This 
results in low signal intensity in tissues with a high concentration of water, such as 
cerebrospinal fluid, and high signal intensity in tissues with a low concentration of 
water. T2-weighted images, on the other hand, are created by using a long RF pulse and 
a long recovery time. This results in a high signal intensity in tissues with a high 
concentration of water and a low signal intensity in tissues with a low concentration of 
water. T2-weighted images are useful for visualizing pathology in the brain and spinal 
cord, such as edema, hemorrhage, and inflammation, as well as for detecting tumors and 
other lesions in other parts of the body. Both T1 and T2-weighted images can utilize 
contrast agents, which are paramagnetic compounds that alter the local magnetic field 
around the protons. This decrease in the longitudinal magnetization of protons results in 
a decrease in signal intensity on T1-weighted images and therefore increases in contrast 
between normal and abnormal tissue. 
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2.2.1.1. Fluid-attenuated Inversion Recovery 

Fluid-attenuated inversion recovery (FLAIR) is a pulse sequence that is commonly 
used in neuroimaging. The basic principle of FLAIR is the inversion of the longitudinal 
magnetization of fluid-like tissues, such as cerebrospinal fluid (CSF), which have a long 
T1 relaxation time, while leaving the magnetization of other tissues, such as brain 
tissue, unaffected. This leads to a suppression of the signal from fluid-like tissues, which 
results in improved contrast between the brain tissue and CSF. The FLAIR sequence is 
derived from the inversion recovery (IR) pulse sequence, which is typically used to 
suppress the signal from tissues with long T1 relaxation times. The IR pulse sequence is 
composed of a 90-degree RF excitation pulse, followed by a variable inversion time and 
a 180-degree RF refocusing pulse. The T1 is chosen to match the T1 relaxation time of 
the tissue being suppressed. In the FLAIR sequence, the T1 is prolonged to match the 
T1 relaxation time of the CSF. This is achieved by applying a frequency-selective 
inversion pulse before the 90-degree RF excitation pulse, which inverts the 
magnetization of the fluid-like tissues with a long T1 relaxation time, such as the CSF. 
In practice, FLAIR MRI images show hypointense signals in the CSF spaces, such as 
ventricles, cisterns, and sulci, due to the suppression of the signal from these fluid-like 
structures. FLAIR is particularly useful in neuroimaging because it allows for better 
visualization of lesions that have similar signal intensity as CSF, which can help to 
improve the detection and characterization of lesions, such as tumors and infarcts, that 
are in the brain's CSF spaces.  

2.2.1.2. Diffusion-weighted Imaging 

Diffusion-weighted MRI (DWI) is a technique used to visualize the microstructure of 
biological tissues in the brain. DWI is sensitive to the random Brownian motion of 
water molecules in a tissue. The underlying theory is that the diffusion of water 
molecules is restricted by the presence of obstacles, such as cell membranes and fibers. 
By measuring the diffusion of water molecules in different directions, DWI can provide 
information about the microstructure of the tissue and its tissue properties. DWI is 
performed by applying a magnetic field gradient in a specific direction, which causes the 
water molecules to diffuse preferentially in that direction. The signal intensity in a voxel 
is then measured using the apparent diffusion coefficient (ADC) of water molecules. The 
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ADC is defined as the ratio of the diffusion coefficient to the density of the diffusing 
water. The ADC can be measured using the following formula: 

𝐴𝐷𝐶 = (𝑆0 − 𝑆𝑏) 
𝑆0

 

Where 𝑆0  is the signal intensity without a gradient applied and 𝑆𝑏 is the signal 
intensity with a gradient applied. The 𝑏 value is the strength of the applied gradient, 
and it is related to the diffusion coefficient by the formula: 

𝑏 = 𝛾2 ∗  Δ𝑡 ∗  𝐺2 
Where 𝛾 is the gyromagnetic ratio, Δ𝑡 is the duration of the applied gradient and 𝐺 

is the gradient strength. In clinical practice, DWI is used to measure the abnormal 
diffusion of water, which can highlight areas of restricted blood flow in the brain. 
During a stroke, the interruption of blood flow leads to an energy crisis in the affected 
tissue, resulting in the breakdown of the cellular membrane and the subsequent leakage 
of intracellular contents into the extracellular space. This leads to an increase in the 
extracellular space and a decrease in the water diffusion. Specifically, a reduction in the 
ADC values within the affected area is observed. The sensitivity of DWI in detecting 
acute ischemic injury is due to its ability to detect these microstructural changes within 
minutes of the onset of ischemia, whereas other MRI sequences such as T2-weighted or 
FLAIR may not detect these changes until several hours or even days later, when edema 
or tissue death has occurred.  

2.2.1.3. Perfusion-weighted Imaging 

Perfusion-weighted imaging (PWI) is an advanced imaging technique based on the 
measurement of the contrast agent concentration in the blood over time, and it can 
provide valuable information about the hemodynamic status of the brain in the setting 
of stroke. Raw PWI data is generated by injecting a contrast agent into the 
bloodstream, typically a bolus injection of a paramagnetic contrast agent such as 
gadolinium-based contrast agents, and then measuring the signal intensity of the 
contrast agent in the brain over time using an MRI sequence such as dynamic 
susceptibility contrast (DSC) or dynamic contrast-enhanced (DCE) MRI. The DSC 
sequence is based on the measurement of the signal intensity changes caused by the 
susceptibility effect of the contrast agent, which is a property of the contrast agent that 
causes a local distortion of the magnetic field. The DCE sequence is based on the 
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measurement of the signal intensity changes caused by the T1 relaxation effect of the 
contrast agent. The T1 relaxation effect of the contrast agent is caused by the 
interaction of the contrast agent with the protons in the tissue, which causes a change 
in the longitudinal relaxation time. 

To derive hemodynamic parameters from serial tissue tracer concentration 
measurements, it is essential to have a general model that describes the way in which 
the tracer passes through or distributes in the target organ. This model must be based 
on an understanding of the administration method of the tracer, whether it be bolus 
injection or constant infusion, and assumptions about the pharmacokinetic properties of 
the tracer in the organ of interest. These assumptions include diffusibility from 
intravascular to extravascular space, volume of distribution, and equilibrium half-life of 
the tracer. Curves depicting changes in intensity based on the concentration of the 
contrast agent over time can be generated that are then used for computation of 
hemodynamic perfusion parameter maps.  

The main parameters derived from PWI are time to maximum (Tmax), mean transit 
time (MTT), cerebral blood volume (CBV), and cerebral blood flow (CBF). Tmax 
represents the time to peak enhancement of the contrast agent in the blood, MTT 
represents the mean transit time of the contrast agent through a voxel, CBV represents 
the volume of the blood in a voxel, and CBF represents the blood flow through a voxel. 
Tmax and MTT are calculated by measuring the contrast agent concentration over time 
in the affected area and in a normal area of the brain. Tmax is the time at which the 
contrast agent concentration is highest in the affected area, and MTT is the average 
time required for the contrast agent to pass through the area. CBV and CBF are 
calculated by measuring the contrast agent concentration before and after a bolus 
injection. The difference in contrast agent concentration between the pre-injection and 
post-injection images is used to calculate CBV and CBF. CBV is calculated by dividing 
the difference in contrast agent concentration by the pre-injection contrast agent 
concentration, and CBF is calculated by dividing the CBV by the MTT. 

PWI can be used to detect and localize the area of ischemia or infarction caused by 
the interruption of blood flow. In the acute phase of stroke, CBF values in the affected 
area decrease, indicating a decrease in blood flow, consistent with the ischemic injury. 
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As the tissue recovers or degenerates, the CBF values may increase or decrease 
accordingly. 

2.2.2 Computed Tomography 

CT imaging is widely used in the diagnosis of AIS due to its ability to provide 
detailed images of the brain quickly and easily in an emergency setting. During a CT 
scan, the patient is positioned on a table that moves through a circular opening in the 
CT scanner. The X-ray tube and detector rotate around the patient, capturing multiple 
X-ray images from different angles. X-rays are electromagnetic radiation with a short 
wavelength and high energy, which allows them to penetrate through the body and be 
absorbed by different tissues to varying degrees. The absorption of X-rays by the body 
is dependent on the molecular composition and density of the tissue, which allows for 
the creation of detailed images of the internal structures of the body. To acquire the 
image, a narrow beam of X-rays is directed through the patient, and the intensity of the 
X-rays that pass through the patient is measured by an array of detectors on the other 
side. This raw projection data is a series of X-ray attenuation measurements taken at 
different angles around the patient. The machine then uses image reconstruction 
algorithms to convert the projection data into an image that represents the distribution 
of X-ray attenuation coefficients within the patient’s body. 

CT images can be generated with or without contrast using an iodine-based agent. 
While non-contrast CT (NCCT) images are at a lower resolution than those with 
intravenous contrast, they require a lower radiation dose and can be generated more 
rapidly. In stroke, the contrast serves to provide more detailed visualization of the 
vasculature and other anatomical structures within the brain. After the contrast agent is 
injected, a series of CT images are acquired at different time intervals. The images are 
then processed using specialized image reconstruction techniques, such as maximum 
intensity projection (MIP), to create detailed images of the blood vessels. MIP is a 3D 
image reconstruction technique that uses the most intense voxel within a specific region 
of interest to create a single image that highlights the blood vessels. Additionally, the 
use of contrast can also generate CT perfusion (CTP) images. In these protocols, CT 
scanners rapidly acquire images of the brain at several time points, generating a 
temporal volume that can trace the contrast agent. As the agent is permeable, these 
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time-series images visualize how the contrast perfuses from blood vessels into the brain 
tissue. These can be processed in the same fashion as MRI-perfusion to generate 
perfusion parameter maps.   

2.2.3 Digital Subtraction Angiography 

Digital subtraction angiography (DSA) is a medical imaging technique used to visualize 
blood vessels in the body. It is commonly used to diagnose and treat conditions that 
affect the blood vessels, such as blockages or aneurysms. In a DSA exam, a 
radiosensitive contrast agent is injected via catheter into proximal blood vessels. X-ray 
images are taken prior to and following contrast injection. The contrast absorbs the 
radiation, making blood vessels appear with high contrast. This allows the blood vessels 
to be clearly visualized and any abnormalities to be detected. At the end of the exam, 
the images are subtracted, removing any tissue that did not receive contrast. The 
resulting image highlights the vascular structure, which can be useful for diagnosing 
vessel abnormalities or providing prognostic value during therapeutic procedures. 

Within ischemic stroke, DSA can be used to visualize stenosis, or the thinning of 
artery openings, and characterize the extent of stenosis. It remains the gold standard for 
visualization of collateral flow. Beyond diagnosis, DSA provides intra-procedural insight 
into the vasculature during several phases of EVT, as it’s used to guide catheter 
placement and navigation to the thrombus and to confirm successful recanalization or 
clot retrieval following removal attempts. Modern stent retriever devices have even been 
manufactured with radiopaque materials to be optimally visualized during the 
procedure. The use of DSA during EVT has become standard clinical practice among 
primary stroke institutions, as it’s been demonstrated to reduce the rate of vessel 
injuries.83–85 

During EVT, DSA images are acquired in two views.  Frontal DSA images are taken 
from a direct front-facing angle, looking at the coronal view. These images provide 
detailed information about the blood vessels in both hemispheres of the brain, allowing 
for contralateral visualization of vessels in addition to those on the affected side. Lateral 
DSA images are taken from a side angle, looking at the blood vessels from a sagittal 
view. These images can provide more granular visualization of blood vessels in the 
posterior portion of the brain, such as the vertebral artery and the posterior cerebral 
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artery. Both frontal and lateral views are typically taken during a DSA examination to 
provide a comprehensive understanding of the blood vessels in the brain and to identify 
any abnormalities or blockages. The neurointerventionalist will use the information from 
both views to plan the best approach during the procedure. 

2.3 Machine Learning 

Machine learning (ML) is a subfield of artificial intelligence that involves the 
development of algorithms and statistical models that enable systems to learn from and 
make predictions about data. These models can identify patterns and relationships 
within large and complex datasets and can be used to make predictions and decisions 
without explicit human intervention. ML methods can have varying degrees of 
supervision during training and typically belong to one of a few categories: supervised 
learning, unsupervised learning, and reinforcement learning. In supervised learning, the 
algorithm is provided with labeled training data and learns to make predictions based 
on this data. In unsupervised learning, the algorithm is provided with unlabeled data 
and learns to identify patterns and relationships within the data. In reinforcement 
learning, the algorithm is trained through trial-and-error interactions with its 
environment. One of the key benefits of machine learning is its ability to improve the 
performance of classification or prediction tasks by automatically learning patterns 
underlying data representations. 

2.3.1 Radiomics 

Radiomics is an emerging field that leverages advanced image processing techniques and 
machine learning algorithms to extract a wide range of quantitative features and 
biomarkers from medical images that can then be used for various clinical applications. 
These features can then be used to classify, predict, or monitor various aspects of 
disease progression and treatment response.  

A radiomics pipeline typically requires image preprocessing, then segmentation of the 
image into a region of interest (ROI). From an ROI, features can be extracted that are 
categorized into three types: first-order statistics, shape-based features, and texture-
based features. First-order statistics include measures such as mean, standard deviation, 
and histogram-based features. They provide information on the overall intensity 
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distribution of the ROI. Shape-based features provide information on the geometric 
properties of the ROI, and may include area perimeter, and compactness. Beyond these 
features, statistical methods can include texture-based features that provide detail as to 
the spatial distribution of intensities within the ROI. These features can then be used in 
any manner of machine learning.  

The applications of radiomics are diverse and include the identification of imaging 
biomarkers for disease diagnosis, prognosis, and treatment response prediction. For 
example, radiomics has been used to extract features from CT images for the prediction 
of treatment response in lung cancer, prostate cancer, and head and neck cancer. 
Radiomics has also been used to extract features from MRI images for the diagnosis of 
brain tumors and prediction of treatment response in glioma. Radiomics has also been 
applied in the field of radiation therapy, where it has been used to predict treatment 
response and to monitor tumor response to radiation therapy.  

Despite significant potential to improve the diagnostic accuracy, prognostic power, 
and treatment response prediction of various diseases, the field of radiomics is still in its 
infancy and there is a need for further research to establish the clinical utility and 
generalizability of radiomics features across different imaging modalities, disease types, 
and populations. To achieve this, it is necessary to develop standardized and validated 
image processing pipelines and to establish rigorous evaluation criteria for the 
assessment of radiomics features. 

2.3.2 Deep Learning 

Deep learning is a subfield of ML that involves the use of neural networks to perform 
tasks that are typically difficult for traditional machine learning algorithms, such as 
image and speech recognition, natural language processing, and decision-making. Deep 
learning algorithms are composed of multiple layers, each of which is responsible for a 
specific feature extraction or transformation. The layers are organized in a hierarchical 
structure, with the lower layers responsible for simple feature extraction, such as edge 
detection, and the upper layers responsible for more complex feature extraction, such as 
object recognition. This hierarchy of layers is what gives deep learning its name, as it 
allows the algorithm to learn a hierarchy of features, from simple to complex. Deep 
learning is different from traditional machine learning in a few ways: Deep learning 
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models can process large amounts of data with high dimensionality. When trained, these 
models can extract features from the input data where traditional machine learning 
algorithms need to be provided with predefined features. These models can learn non-
linear relationships between input and output data. Finally, deep learning algorithms 
can generalize well to new data, even when it has a different distribution than the 
training data. 

2.3.3 Semi-Supervised Learning 

Semi-supervised learning (SSL) is a machine learning technique that uses a 
combination of labeled and unlabeled data to train a model. It is often used when there 
is a large amount of unlabeled data available, but only a small amount of labeled data. 
SSL relies on several assumptions. First, if each sample in a set is plotted along feature 
axes, the set of samples lies in a continuous space (known as the continuity 
assumption). Second, dimensions of the input space’s manifold are significantly higher 
than that on which the data lies (known as the manifold assumption). Finally, for the 
cluster assumption, the data has natural predilection to form clusters and that data 
points that are a part of the same cluster have the same label. 

Semi-supervised approaches have utility for medical machine learning use cases. It 
can be difficult and expensive to obtain a large amount of labeled medical data that has 
been labeled by clinicians or other medical experts. In this case, semi-supervised learning 
can be used to make the most of the limited amount of labeled data available by 
incorporating additional unlabeled data into the training process. A semi-supervised 
approach can help to improve the performance of medical diagnostic systems. For 
example, by using semi-supervised learning to train a model on a combination of labeled 
and unlabeled medical data, it may be possible to develop a diagnostic system that is 
more accurate and reliable than a system trained only on a small amount of labelled 
data samples.86 

2.4 Explainable AI 

Explainable AI (XAI) refers to the field of artificial intelligence that aims to develop 
algorithms and models that can be easily understood and explained by humans. The 
goal of XAI is to provide interpretability and transparency into the decision-making 
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process of AI systems, so that the reasoning behind the predictions made by these 
systems can be understood and trusted. 

In deep learning, interpretability methods enable the examination of the underlying 
patterns and rules that are learned by an algorithm, as well as the identification of 
potential biases and areas of failure within the model. These methods can be used to 
evaluate the model’s performance, and improvements can be made to enhance its overall 
performance. Additionally, interpretability is an essential aspect for ensuring the ethical 
alignment of the model, such as identifying and mitigating unintended discrimination or 
bias. Medical deep learning models are often used to make decisions that have a direct 
impact on patient care and treatment, so it is essential that the decisions made by these 
models can be understood and explained by medical professionals. Additionally, medical 
images can be noisy and hard to interpret, interpretability helps to understand the 
decision-making process and identify the important features in the image.  

There are many different techniques and methods that are used in XAI at different 
stages of model deployment. Pre-modeling explanations can work to describe the data 
and modeling inputs. During development, models can be chosen that are inherently 
interpretable, depending on the model inputs and parametric complexity. In deep 
learning, most XAI methods are implemented post-modeling to generate local or global 
explanations. These XAI methods include model-specific and model-agnostic 
interpretability methods that can utilize gradients or activations within the model to 
generate visualizations.  

2.4.1 Gradient-Based Saliency Maps 

In deep learning, saliency maps are often used to help understand and interpret the 
decisions made by a neural network when classifying an image. A saliency map is a 
visual representation of an image that highlights the regions that are most important or 
most relevant to a particular task. Generating saliency maps relies on backpropagation, 
computing the gradients of the loss with respect to the learned weights of the network. 
Given an input image 𝐼 with dimensions (𝑥, 𝑦) and a target class 𝑐, the image is fed into 
a network to generate a class score 𝑆𝑐(𝐼) and activation 𝑎. Backpropagation calculates 
the error between 𝑆𝑐(𝐼) and the true output. From this loss, the gradient is calculated 
with respect to the weights of the network: 
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𝑤𝑖,𝑗 = 𝜕𝑆𝑐
𝜕𝐼  

The gradient 𝑤𝑖,𝑗is then normalized and rearranged to match the dimensionality of 

the input. As this is computed for every input feature, the output shares 1:1 
dimensionality with an input. For an image, this algorithm computes the gradient of the 
output prediction, illustrating how much the prediction would change if we perturbed 
each pixel of the input image. Higher values in the saliency map indicate regions of the 
input image that are more important for the prediction. Beyond this vanilla 
implementation of gradient maps, there are many variations and refinements to this 
algorithm, such as using guided backpropagation or integrating gradients across multiple 
layers.  

2.4.2 Grad-CAM 

Gradient class activation maps (Grad-CAMs) are another method for highlighting which 
regions of an image are most important in a deep learning network.87,88 The Grad-CAM 
algorithm generalizes class activations maps (CAMs) by using the gradient information 
and activations from a trained network to find regions of the image that are most 
relevant to the prediction. Using the same conventions from 2.4.1, 𝑓𝑘(𝑥, 𝑦) can represent 
the activation at the last convolutional layer for a given pixel location, and 𝜔𝑘

𝑐  can 
represent the weight corresponding for the class at that convolutional unit. Accordingly, 
the CAM can be given as follows at each spatial point:  

𝐴𝑐(𝑥, 𝑦) =  ∑ 𝜔𝑘
𝑐  𝑓𝑘(𝑥, 𝑦)

𝑘
 

Using these activation maps, the next step is to compute the gradient of the output 
of the network with respect to the input image from the activations 𝐴𝑘  and class 
𝑦𝑐 ,  𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘 , which are then subjected to global average pooling along the x and y 

dimensions: 

𝛼𝑘
𝑐 = ∑

𝜕𝑦𝑐

𝜕𝐴𝑖,𝑗
𝑘

𝑥,𝑦
 

The gradient of the output of the network with respect to the input image is utilized 
to determine the level of perturbation in the output of the network, resulting from a 
small change in the input image. Subsequently, the gradients are multiplied by the 
activations of the final convolutional layer of the network, which serves to accentuate 
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the regions of the input image that have the highest influence on the network's output. 
The final step involves summing the weighted gradients over all channels and applying a 
rectified linear unit (ReLU) activation function: 

𝐿𝐺𝑟𝑎𝑑𝐶𝐴𝑀
𝑐 = ReLU (∑ α𝑘

𝑐𝐴𝑘

𝑘
) 

Given the dimensionality reduction that occurs with convolutional operations, the 
map serves as a low-dimensional visual representation of the regions of the input image 
that are most important for the given classification task.  

2.5 Attention and Transformer Modules 

Attention is a mechanism used in neural networks to allow the model to focus on 
different parts of the input for different tasks. It is typically used in sequence-to-
sequence models and transformer-based architectures.89 More specifically, a self-
attention mechanism computes a weight for each element in the input sequence, which 
represents the importance of that element with respect to the other elements in the 
sequence and the target label.90 

The self-attention mechanism can be mathematically described as follows. First, a 
set of query, key, and value vectors are computed for each element in the input 
sequence. These vectors are typically generated by applying linear transformations to 
the input element. The dot product of the query vector and the key vector of each 
element is computed. This produces a matrix of dot products, known as the attention 
matrix. The attention matrix is then passed through a softmax function, which produces 
a probability distribution over the elements in the input sequence. This distribution 
represents the importance of each element in the input sequence with respect to the task 
at hand. The value vectors for each element in the input sequence are then weighted by 
the probability distribution and summed to produce a weighted sum of the value 
vectors. Finally, the weighted sum of the value vectors is passed through a linear 
transformation to produce the final output of the self-attention mechanism. 

Recent focus has been shifting to transformer-based architectures, which extend the 
self-attention mechanism for classification tasks on sequential data. Instead of using a 
single matrix of weights to compute the attention weights, transformers use multi-head 
attention to combine the outputs of the different attention heads. In multi-head 
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attention, the context vectors produced by each attention head are concatenated and 
passed through another set of learned weights to produce a final output. By employing 
stacked multi-head attention modules, transformers can capture long-range dependencies 
in sequences, and large-scale self-supervised pretraining methods such as BERT and 
GPT have been successfully applied to many NLP tasks.90,91 

Vision transformers (ViTs) are a recent development in computer vision that are 
based on the original NLP transformer models.92 Just as transformer models in NLP can 
capture long-range dependencies in sequences, ViTs can capture long-range dependencies 
in images, which is important for tasks such as object recognition and segmentation. 

There are several strengths of vision transformers that make them suitable for medical 
imaging tasks. ViTs bring versatile modeling capabilities for heterogeneous data, 
allowing for effective combination and modeling of various data modalities, such as 
imaging data, clinical data, and text data. Vision transformer models have demonstrated 
great scalability with respect to model complexity and larger data size. Self-supervised 
approaches have shown that transformers can capture long-distance dependencies in 
images, leading to state-of-the-art performance in major natural image tasks.93–95 With 
these advantages, ViTs may have better potential than CNNs to handle spatiotemporal 
data, given their ability to process sequence input.96–100 It is expected that by adjusting 
the components of the transformer model, it can capture spatial information while 
simultaneously incorporating pixel-level features in the time series dimension. 
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CHAPTER 3 

Classifying Time Since Stroke Using Admission Imaging 

3.1 Overview 

The treatment of acute ischemic stroke (AIS) patients is a time-sensitive endeavor, as 
therapies aim to target areas experiencing ischemia to prevent irreversible damage to 
brain tissue. The administration of thrombolytics, such as tissue plasminogen activator 
(tPA), is considered a viable treatment option for AIS patients, however, the window of 
opportunity for administering these therapies is limited. tPA administration carries risks 
and negative contraindications. For example, tPA is contraindicated in cases of active 
bleeding, recent surgery, head trauma, or intracranial bleeding. Additionally, tPA 
should not be administered to patients who have had a stroke within the previous 3 
months, or who have high blood pressure. There is also a risk of hemorrhage and other 
serious side effects with tPA administration. Therefore, it is important that the decision 
to administer tPA to AIS patients is made on a case-by-case basis, taking into 
consideration the patient's medical history, current condition, and imaging results.  

The earlier treatments like thrombolysis and EVT are administered, the greater 
chance a patient can reverse the impacts of ischemia and progression into cell death. 
However, if thrombolytics are administered too far into the tissue progression, there can 
be further damage to the neurovasculature. Currently, time since stroke (TSS) serves as 
a proxy for stroke progression, and clinical workflows rely on this to assess a patient’s 
eligibility for any stroke treatment. Many patients are unable to access these therapies 
due to an unknown TSS. To expand the number of patients eligible for these lifesaving 
treatments, many studies and clinical trials have sought to use other clinical factors to 
assess eligibility and risk. The most common avenue is imaging, which is currently part 
of the clinically recommended workflow for stroke treatment. Many clinical trials have 
used various imaging series and parameters to assess at-risk tissue and determine the 
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most effective treatment windows for patients. Recently, the WAKEUP trial indicated 
that a neuroradiologist may assess differences in signal between DWI and FLAIR when 
stroke onset time is unknown to determine a proxy for tissue progression. In fact, in the 
most recent version of the American Heart Association guidelines for treating acute 
stroke, for patients with unclear time of symptom onset, MRI can be performed to 
identify areas with DWI-FLAIR mismatch that could benefit from IV alteplase.  

There are many algorithmic approaches that could be used to determine patient 
eligibility for treatments, with the goal of improving the patient outcomes thanks to 
increased accuracy and speed of assessment. Machine learning has shown utility among 
clinical imaging tasks.101–104 Often, the approach involves extracting features from a 
region of interest (ROI) within an image, and then using an algorithm for classification. 
For stroke-related models, stroke lesions have been segmented using a variety of 
automated methods to reduce neuroradiologist annotation requirements. However, these 
methods have achieved middling performance, and moreover there may be more 
information outside of these segmented regions that could inform clinical factors, such as 
TSS. When considering large image inputs such as 3D MRI or CT scans, deep learning 
may also be applied; it has recently become an area of prolific medical research across 
multiple diagnostic domains. Convolutional networks have been widely explored as a 
deep learning approach for imaging-based tasks because they aggregate pixel 
information in neighboring regions; intuitively, this works well for medical images that 
contain a high number of input pixels. However, these algorithms require a large volume 
of data, and the performance on the training set does not translate to good performance 
on new data. To assess algorithms for practical use, external validation is necessary to 
bridge this generalization gap.  

In this work, we evaluate and compare three methods to assess TSS: the current 
clinical standard of measuring DWI-FLAIR mismatch by neuroradiologists, a previously 
published machine learning method involving radiomic feature extraction from a region 
of interest, and a novel deep learning algorithm with a soft attention module. We train 
both models and report the bootstrapped performance on internal validation datasets; 
we compare this performance to the radiologist-generated mismatch assessments. We 
use gradient-based visualizations to gain insight into model behavior and inspect these 
visualizations as weakly supervised localization to the stroke area. Using an external 
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validation set of patient images, we explore the generalizability of the algorithms by 
varying the amounts of new data and augmentations used for model refinement and 
retraining. Given the recent research in DWI-FLAIR mismatch and the updated clinical 
guideline for treating AIS patients, we also explore the performance of our proposed 
deep learning model refined on DWI-FLAIR mismatch labels and evaluated in 5-fold 
cross-validation. Our contributions are the following: 1) performance improvement 
compared to previous state-of-the-art in TSS classification, 2) performance validation on 
an external clinical dataset, and 3) an exploration of clinical factors that may underlie 
model performance. 

3.2 Materials and Methods 

3.2.1 Datasets 

This study utilized a retrospective, observational dataset comprising patients from two 
institutions. Individuals were included in the cohorts based on the following inclusion 
criteria: 1) diagnosis with AIS, 2) received pretreatment MRI protocol with DWI, 
FLAIR, and apparent diffusion coefficient (ADC) series without motion degradation, 
and 3) known TSS within 24 hours of image acquisition. The internal cohort (Figure 
3-2) comprised 417 patients treated from 2011-2019. The second dataset, published by 
Lee et al., totaled 355 patients, with more extensive exclusion criteria previously 
described.16 A summary of the preprocessing pipeline is seen in Figure 3-1. T2w(DWI 
b0), DWI(DWI b1000), and FLAIR imaging sequences were obtained from the 
institutional image archiving and communication system for each patient (PACS). All 
patients had MRIs conducted on a 1.5 T or 3 T echo-planar Siemens MR imaging 
machine with 12-channel head coils. The DWI b0 sequence was employed as a T2w 
proxy because it represents the initial step of DWI acquisition with no diffusion 
attenuation, and the DWI represents the sequence with a b value of 1000. To ensure 
consistency across both datasets, images were subjected to a preprocessing pipeline.105 
Images had the neck and skull removed via the Brain Extraction Tool and underwent 
N4-bias field correction.106,107 The T2 series was registered to the Montreal Neurological 
Institute (MNI-152) T2 atlas and then served as the fixed volume for co-registration. 
Finally, series underwent z-score intensity normalization and histogram matching.108 
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Figure 3-1. Preprocessing Pipeline. The sequences were loaded into our automated preprocessing workflow 
after picture retrieval. First, all sequences were subjected to N4 bias field correction. The picture series 
were then reoriented to the T2w MNI-152 atlas. FSL BET was then used to remove the neck and skull. 
The T2w sequence was registered to a version of the T2w MNI-152 atlas that was enlarged to 224 224 26 
using linear interpolation to match the z dimension of the stroke sequences using FSL FLIRT. Following a 
second run of FSL BET to eliminate any lingering artifacts, the remaining sequences were co-registered to 
the T2w volume. Finally, the intensity was normalized, and histogram matching was done with the help 
of a reference research. 
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Figure 3-2. Patient flowchart illustrating inclusion criteria for this study. n, number of patients. 

3.2.2 Classification Task 

The primary goal of our model was to classify patients within the thrombolytic 
treatment window (4.5 hours) based on their pretreatment imaging. To determine 
patient label, three time points were collected from the electronic health record and 
image metadata. From the patient record, last known well and symptom onset time 
were gathered, if they were varied. Additionally, the image study end time was 
extracted from the PACS image metadata. Patients were binarized into two groups. A 
positive label was given to individuals who underwent imaging within 4.5 hours of their 
last known well time and symptom onset, and a negative label was assigned to those 
who underwent imaging outside this window. Patients at exactly 4.5 hours were deemed 
outside the window. Any patient with an unknown last known well time, were excluded 
from the dataset. Each dataset was then divided into development and evaluation sets 
to be used for training and testing following an 80/20 random stratified split with 
respect to the target label as well as clinical parameters. 
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3.2.3 DWI-FLAIR Mismatch Assessments 

For each patient in the evaluation sets, three neuroradiologists independently assessed 
mismatch between the DWI and FLAIR series. These labels served as a proxy for TSS, 
as mismatch indicates that a stroke occurred recently enough such that there are regions 
that have experienced ischemia (visible on DWI) but are not yet infarcted (visible on 
FLAIR). Thus, cases with mismatch were assigned labels of <4 hours and cases without 
mismatch were labeled ≥4.5 hours. Radiologists performed these assessments on 
workstations within the same facility, and they were blinded to model classifications and 
electronic health record data. Final assessments were determined by a majority vote 
among the three experts. 

3.2.4 Deep Learning Model 

As seen in Figure 3-3, our deep learning model utilized DWI, ADC, and FLAIR 
volumes. Model input encompassed three corresponding MRI slices, one from each 
series, of a single hemisphere of the brain. We designed a multi-slice model that utilizes 
weight sharing to extract spatial information from neighboring slices. Image series were 
stacked as channels and fed into a network architecture based on ResNet34, which uses 
residual “skip connections” between ResBlocks (two convolutional layers each followed 
by an activation function) to learn image representations.109 Each convolutional block is 
modeled after ResNet residual blocks, consisting of the following sequence: convolutional 
kernel, batch normalization, rectified linear unit activation function, second 
convolutional kernel and second batch normalization. After feeding the images through 
a shared convolutional layer and ResBlock, intermediate features of neighboring slices 
were grouped and fed through five individual weight sharing neighborhood subnetworks. 
The outputs were fed into a trainable aggregation layer to fuse the features across 
subnetworks, enabling the model to learn the importance of certain subnetworks over 
others. Channel and spatial attention modules, which enable learning salience across 
channels and slices, were attached to the last two ResBlocks to extract multi-scale 
features.110 Outputs were then fused with backbone features and fed through a fully 
connected layer to generate a patient-level TSS classification. Following previous work, 
we first trained the model to perform stroke detection and then further trained it for our 
primary task of TSS classification.105 The model was trained for 100 epochs with early 
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stopping if validation metrics did not improve for five epochs. Binary cross-entropy was 
used as the loss function. The Adam optimizer was used with weight decay, which 
optimizes objective functions using adaptive estimates of gradients.111 Other 
hyperparameters included a learning rate of 0.0001 and a batch size of 12. 

 
Figure 3-3. Convolutional neural network architecture with shared weights used to classify time since 
stroke (TSS). The deep learning architecture used DWI, FLAIR, and advanced diffusion coefficient series 
as input. The model split the volume into slices 𝑧1,… , 𝑧𝑀and stacks the image series as channels. Each 
slice 𝑧𝑚 was fed into a shared set of convolutional layers. Intermediate output features from groups of 
adjacent slices were then propagated through five neighborhood subnetworks 𝑛𝑒𝑡𝑤𝑜𝑟𝑘1,… , 𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑁 , 
where weights are shared among the slice neighborhoods. Each subnetwork contained convolutional 
ResBlocks as well as convolutional attention modules to assist the model with localization. The resulting 
outputs from each subnetwork are aggregated using a weighted softmax function to generate a TSS 
classification for the image. CNN, convolutional neural network. 

3.2.5 Training and Evaluation 

To train models, the development sets were split into five folds for cross-validated 
hyperparameter tuning, and the chosen parameters were used to train a model on the 
entire development set. Training was run in replication across ten random seeds. These 
trained models were run on the evaluation data, and metrics were computed and 
aggregated to generate confidence intervals. Metrics included sensitivity, specificity, 
accuracy, and receiving-operator characteristic area-under-the-curve (ROC-AUC). The 
AUC analysis threshold was determined utilizing Youden’s Index on the training data. 
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These statistics were compared to those calculated using radiologist-assessed mismatch 
as a surrogate for TSS.  

3.3 Experiments 

3.3.1 Baseline Comparison 

The proposed method, a weight sharing deep learning model, was compared to two 
other methods: neuroradiologist assessed DWI-FLAIR mismatch and a threshold-based 
radiomics machine learning (ML) model.16 A summary of these models can be seen in 
Table 3-1. The ML method began with infarct segmentation via thresholding of the 
normalized patient ADC map using a previously determined absolute value. These 
regions of interest (ROIs) were used as the basis for radiomic feature extraction, using 
DWI and FLAIR series and a FLAIR-ADC ratio map. These features were subjected to 
univariate t-tests to select the most informative features that were used as input for the 
following algorithms: random forest classification, support vector machine classification, 
and logistic regression. 

Table 3-1. Summary of proposed model and baseline comparisons. ML, machine learning; DL, deep 
learning; DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery. 

 Model Name Type Description 

Proposed DL Model Deep Learning Neighborhood network utilizing weight 
sharing across slices and attention networks. 

Baseline 
Comparisons 

ML Model Machine Learning 

Radiomic pipeline using thresholding to 
generate infarct ROI, extraction of features 
from FLAIR regions, and statistical t-tests 
to select the most relevant features for 
classification algorithms.  

DWI-FLAIR 
Mismatch 

Neuroradiologist 
Assessment 

Majority vote from three neuroradiologists 
to assess signal mismatch between DWI 
b1000 and FLAIR series. 

3.3.2 Incorporation of External Data 

To evaluate the clinical utility of the machine learning and deep learning algorithms, we 
considered the following experiments: (1) training and testing on data from the same 
institution, (2) training and testing on data from different institutions, (3) training on a 
combination of data from both institutions. For the last experiment, we considered two 
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different types of experiments, whereby we either added incremental amounts of 
external data, which increased the size of the training set, or we replaced increasing 
amounts of training samples from the internal dataset with training samples from the 
external set. For each experiment, we report the performance on each test set.  

3.3.3 Visualizations for Interpretability 

We implemented three visualization methods used for model interpretability: occlusion 
sensitivity, class activation maps (CAMs), and integrated gradients. Each method 
provides unique feature importance maps for a given input. Occlusion sensitivity 
involves perturbing patches of input images and calculating the effect each perturbation 
has on the target class classification.112 To generate CAMs, an activation map is 
computed using the output from the last convolutional layer of the network; this serves 
to identify regions of the image that provide the greatest discrimination for the correct 
label. Finally, outputs are backpropagated through the network to create pixelwise maps 
of network gradients for individual input images. We also visualize the gradients 
generated via guided backpropagation.113 

3.4 Results 

3.4.1 Cohort Characteristics 

Our study utilized two datasets. Of the internal set, 222 patients had a TSS under 
4.5 hours, while the remaining 195 patients had a TSS over 4.5 hours. For external 
evaluation, we utilized a dataset totaling 355 patients, of which 182 underwent MRI 
within 4.5 hours of onset and 173 after 4.5 hours of onset.16 Clinical characteristics of 
these datasets are summarized in Table 3-2. 
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Table 3-2. Distribution of clinical demographics for the datasets: internal (left) and external (right, 
reproduced from Lee et al.16). Represented as n (%) or median (interquartile range). n, number of 
patients; NIHSS, NIH Stroke Scale. 
 Internal Dataset External Dataset 
 Train (n = 343) Test (n = 74) Train (n = 299) Test (n = 56) 
Age (years) 70 (55-80) 68 (57-79) 63 (55–73) 67 (55–71) 
Female 176 (52%) 46 (56%) 86 (34%) 20 (36%) 
Admission NIHSS 8 (4-16) 6.5 (2-18) 4 (2–10) 5 (2–12) 
Onset to MRI 
(minutes) 210 (105-683) 230 (107-661) 270 (152–715) 240 (142–448) 

Within 4.5-h 
Window (%) 185 (54%) 37 (50%) 153 (58%) 24 (43%) 

3.4.2 Baseline Comparison 

The majority radiologist assessment of mismatch for the internal evaluation set, when 
compared to EHR-derived TSS, had low sensitivity (0.622) with high specificity (0.865). 
The aggregate assessment achieved higher accuracy (0.743) compared to the average 
accuracy of any individual radiologist (0.658). The mismatch assessments for the 
external evaluation set had higher sensitivity (0.743) while maintaining a high specificity 
(0.800). 

The performance results of the DL and ML methods trained on the internal, 
external, and combination training sets are summarized in Table 3-3. As a result of the 
thresholding technique applied by the ML method, 204 patients out of 417 patients from 
the internal dataset had an extracted ROI, and 343 out of 355 patients from the 
external dataset had an extracted ROI. Additionally, the ML model selected different 
radiomics features depending on the dataset. In applying univariate t-tests to 89 
radiomics features, 37 features were selected for the internal training set, and 35 were 
selected for the external training set with only seven features overlapping. When 
compared to the radiologist assessments, both the ML and DL models had higher 
sensitivity, though lower specificity. The average rate of agreement between the DL 
classifications and radiologist assessments was 0.411 (0.01), indicating a similar level of 
agreement as among the radiologists for the internal evaluation set. 

The internally trained model achieved an AUC of 0.768 (0.03), with an accuracy of 
0.726 (0.02), a sensitivity of 0.712 (0.08), and a specificity of 0.741 (0.09). On the 
external dataset, the model achieved an AUC of 0.737 (0.03), an accuracy of 0.724 
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(0.04), a sensitivity of 0.757 (0.04), and a specificity of 0.679 (0.07). When trained using 
both internal and external data, performance on both evaluation sets improved, 
achieving an average AUC of 0.840 (0.03) on the internal test dataset and 0.814 (0.01) 
on the external test dataset. This aggregate model yielded an average accuracy of 0.794 
(0.04), surpassing the accuracy of the aggregate neuroradiologist assessment. 

Table 3-3. Performance Metrics for TSS Classification. Performance metrics for the deep learning (DL) 
machine learning (ML)16 models trained on the internal, external, and combination training sets, and 
tested on each separate test set. All the data represent mean ± standard deviation. n, number of image 
studies used in the training set. 
 Train Set Test Set AUC Accuracy Sensitivity Specificity 

Deep 
Learning 
Model 

UCLA 
(n = 340) 

UCLA 0.768±0.03 0.726±0.02 0.712±0.08 0.741±0.09 

External 0.737±0.03 0.724±0.04 0.757±0.04 0.679±0.07 

External 
(n = 299) 

UCLA 0.732±0.02 0.707±0.03 0.716±0.09 0.687±0.08 

External 0.772±0.02 0.767±0.03 0.850±0.08 0.648±0.09 

Both 
(n = 639) 

UCLA 0.840±0.03 0.789±0.04 0.777±0.06 0.802±0.07 

External 0.814±0.01 0.800±0.04 0.850±0.08 0.727±0.08 

Machine 
Learning 
Model 

UCLA 
(n = 164) 

UCLA 0.730±0.07 0.675±0.07 0.405±0.07 0.811±0.08 

External 0.680±0.15 0.653±0.10 0.714±0.15 0.500±0.13 

External 
(n = 284) 

UCLA 0.698±0.08 0.625±0.09 0.297±0.08 0.865±0.10 

External 0.780±0.05 0.735±0.05 0.657±0.05 0.800±0.08 

Both 
(n = 448) 

UCLA 0.783±0.03 0.750±0.04 0.405±0.03 0.892±0.03 

External 0.795±0.03 0.735±0.03 0.686±0.03 0.750±0.04 

3.4.3 Incorporation of External Data 

The impact of external training data on model AUC is summarized in Figure 3-4. The 
proposed deep-learning model achieved lower performance on the external evaluation set 
when no refinement is performed; however, the model achieved comparable performance 
for both evaluation sets when as few as 40 external samples were introduced into 
training, and better performance when 160 external patients were used. Intuitively, this 
corroborates the idea that deep learning algorithms achieve higher performance when 
trained on larger amounts of data and is illustrated in the second panel of Figure 3-4, 
where the performance on both cohorts did not improve with the replacement of 
internal data with external data. 
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Figure 3-4. Receiving-operator characteristic area under curve (ROC-AUC) of models with varying 
amounts of external training data, both when added to (A) or replacing (B) samples in the internal 
training set. Performance on both internal and external test sets are reported, in blue and pink, 
respectively, with 95% confidence intervals. Numbers on the x-axis indicate the number of 
internal/external samples used for training. SD, standard deviation. 

3.4.4 Visualizations for Interpretability 

Visualizations were generated to reveal image regions on which the model focused. Four 
representative cases are shown in Figure 3-5. Figure 3-5A shows a patient with DWI-
FLAIR mismatch that is within the treatment window that the model correctly 
classifies. The model does not focus solely on areas of high imaging signal contrast, 
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suggesting that there is valuable signal in less prominent regions. Figure 3-5B shows a 
patient outside the treatment window and without signal mismatch. The DL model also 
correctly classified this image, and gradient visualizations indicate that the model was 
able to detect tissue changes on both FLAIR and DWI sequences. Figure 3-5C shows a 
case with a stroke onset time just under the 4.5-hour threshold that the 
neuroradiologists agreed contained no signal mismatch. In this instance, the model’s 
classification was inside the window. The gradients and CAM localize to the stroke 
lesion, while the occlusion method shows that areas outside the stroke volume were most 
salient to the classification. Finally, Figure 3-5D shows a case well over the window for 
tPA. The radiologists agree that there is no mismatch, yet our model classified this case 
as within the window. The occlusion-based visualization shows that the model is unable 
to localize the stroke on either the ADC or FLAIR series. The CAM highlights that 
there is not a strong region of activation. Notably, the signal intensity of the stroke is 
relatively low, which may account for the model’s behavior. Changes to the 
preprocessing protocol may better distinguish the lesion and improve model performance 
for such cases. 
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Figure 3-5. Deep learning visualizations for four patients (a-d) generated from a model trained to classify 
patient images as within or outside the thrombolytic window. For each patient, three visualizations were 
generated: occlusion, guided backpropagation (GBP) and class activation maps (CAM). The table below 
lists the TSS, age, radiologist-assessed mismatch, and classification yielded by the model. ADC, apparent 
diffusion coefficient. 

Time Since Stroke 188 minutes  (3.1 hours) 324 minutes (6 hours)
Mismatch Assessment Yes (2-1) No (0-3)
Model Classification TSS < 4.5  TSS < 4.5 

ADC

DWI

FLAIR

A B

Image Occ GBP CAM
C D

Time Since Stroke 260 minutes (4.3 hours) 874 minutes (14.5 hours)
Mismatch Assessment No (0-3) No (0-3)
Model Classification TSS < 4.5 TSS < 4.5 

Image Occ GBP CAM

Image Occ GBP CAM Image Occ GBP CAM

ADC

DWI

FLAIR
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3.5 Discussion 

The relationship between TSS and imaging features has been studied extensively; 
nevertheless, it remains unclear which signal patterns accurately capture the time course 
of ischemic tissue. DWI-FLAIR mismatch is one eligibility measure for thrombolysis in 
the most recent treatment guidelines. In our study, the inter-reader agreement for DWI-
FLAIR mismatch aligns with that found in previous studies.114,115 Despite an average of 
12 years’ experience among the neuroradiologists, variability among their assessments 
implies that a patient’s treatment options and therefore potential outcomes are reader 
dependent. Using TSS as the eligibility metric (“time clock”), the radiologist assessments 
identified 62% (23/37) of evaluation set patients who were within the 4.5-hour window 
of stroke onset. The DL model, by contrast, identified 76% (29/37) of patients within 
the window of eligibility. The lack of agreement among radiologists for the DWI-FLAIR 
mismatch assessments, along with the discrepancy between “tissue clock” and “time 
clock,” illustrate the need for more research into this relationship. 

Our study reports the average performance of ten replicates and evaluates two 
methods on the same datasets, revealing insight into the generalizability of these 
algorithms. When evaluated on external data, our model was able to achieve higher 
performance than the current state-of-the-art ML method. This could be due to a few 
reasons, including inclusion of potentially informative penumbral brain tissue, and more 
inclusive feature selection. Previous models, including the ML model evaluated in this 
study, have utilized segmentation models that identify the stroke region of interest from 
DWI.16,116 When compared to expert segmentation, performance of these methods has 
been moderate, primarily under-segmenting the stroke lesion. Moreover, these methods 
fail to incorporate penumbral regions that could inform vascular stroke progression 
status.117 In contrast, the DL model utilizes the ipsilateral brain hemisphere, thereby 
including information from both the ischemic core and the penumbral tissue outside 
diffusion-weighted lesions that may provide key insights into the tissue clock. 
Additionally, ROI extraction methods such as thresholding may exclude cases when a 
lesion is not identified, which is not a limitation in our brain hemisphere based 
approached. For the ML model, the selection of statistically significant radiomics 
features may induce bias into the model that favors the training data. Our DL model, in 
contrast, distills features from the entire input iteratively. The DL model also carries 



45 

advantages over the previous deep learning models,105 likely as the model uses attention 
modules to focus on pertinent channel and brain regions as well as the integration of 
information from neighboring slices. Despite these advantages, the DL model does have 
some drawbacks. The model has more input parameters than a standard radiomics-
based ML model, requiring larger datasets and more computational time. This 
computation time is negligible for inference but should be considered for updating 
models when training. Additionally, there was still a performance gap for the DL model 
between the internal and external datasets, which motivated our external evaluation 
experiments. Aggregating the training datasets improves performance on both 
evaluation cohorts, indicating that DL classifiers improve synergistically when exposed 
to diverse training data. 

Our study has several areas of potential improvement. While our dataset comprises 
the largest used for TSS classification from two cohorts, it cannot fully represent all 
patients seen in practice. Our preprocessing ideally minimizes dataset variation, but 
further analysis is needed to assess applicability to cohorts from other institutions. With 
recent advances in deep learning for medical image processing, multi-site harmonization 
could further minimize batch effects and scanner variations across sites, provided there 
is sufficient data to train these models.118 Second, we were only able to evaluate this 
model for a small set of patients for which the radiologists assessed mismatch. A 
common bottleneck when using machine learning for medical image tasks is that 
acquiring labels (e.g., having multiple neuroradiologists assess images for DWI-FLAIR 
mismatch) is labor-intensive and may not be feasible on a large scale. Third, TSS is not 
a perfect surrogate biomarker as it does not always correlate to underlying tissue 
changes informing ischemia.13 Nonetheless, given the low inter-reader agreement of 
DWI-FLAIR mismatch, a TSS classification using an automated method may aid the 
radiologist in clinical decision-making. This model predicted a binarized stroke onset due 
to the variations in last known well and symptom onset time; with more discrete TSS 
determinations, predictions could be made on a continuous or ordinal scale to prove 
more granular patient classifications. 
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3.6 Conclusion 

Our proposed DL model allowed classification of TSS based on MR images and achieved 
higher AUC than the current best-in-class ML model when external data was 
introduced, showing a more robust automated algorithm to determine stroke onset time. 
The results of this study indicate that a small amount of external data can improve 
generalized performance across patients from multiple institutions. These findings 
support the future study of the implementation of a deep learning algorithm for clinical 
decision support in the setting of AIS treatment. This highlights the need for more 
accurate and reliable methods for determining the optimal treatment window for AIS 
patients, and further research is needed to better understand the underlying conditions 
that lead to optimal treatment outcomes. 
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CHAPTER 4 

Combining Proxy Information with Semi-supervised 
Learning for Thrombolytic Candidate Identification 

4.1 Overview 

The age of a stroke lesion, or the length of time that a particular area of the brain has 
been affected by ischemia, is an important consideration in the management of stroke. 
In the acute phase of ischemia, the brain's response is primarily focused on preserving 
cellular function. This phase lasts for several hours after the onset of symptoms, during 
which time interventions such as thrombolytic therapy and endovascular therapy may 
be effective in restoring blood flow and preserving brain function. The ischemic 
penumbra is the area around the core of the infarction where brain cells are still alive 
but have not yet experienced irreversible cell death infarction. However, as the ischemia 
persists and the infarction becomes more established, the brain's response shifts towards 
a process of cellular death. The infarct core is characterized by the death of brain cells 
and likely irreversible tissue damage.  The mechanistic underpinnings that correlate 
tissue progression, cell death, and time clock are an area of active study. While tPA is 
generally considered for patients with a known onset within 4.5 hours, recent clinical 
trials have demonstrated that patients with signal intensity differences between 
diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) 
sequences can benefit from thrombolytic therapy.33,82,115,116,119 However, this intensity 
mismatch is subject to high inter-reader variability, and current clinical guidelines still 
primarily rely on known stroke onset times.14,114,120 An automated method of detecting 
this signal mismatch could provide utility for neuroradiologists when assessing patients 
for AIS treatments. 

Deep learning techniques have demonstrated great potential in the field of medical 
imaging diagnosis. However, one of the primary challenges that hinder the widespread 
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application of this approach is the acquisition of high-quality annotations. The process 
of acquiring annotations, which are vital for training models, necessitate assessments 
from multiple domain experts and is both costly and labor-intensive. To address this 
challenge, various approaches have been proposed in the literature to tackle 
classification tasks with manually intensive labels, particularly when the sample size is 
small.86 Semi-supervised learning (SSL) is one such approach that has gained popularity 
across multiple medical domains. This approach involves assigning pseudolabels to 
unlabeled datasets and incorporating them into the training dataset.121,122 These 
approaches can leverage unlabeled data to improve the performance of models even 
when the amount of labeled data is limited. However, it must be noted that this 
approach carries the risk of confirmation bias, which occurs when the model incorrectly 
assigns pseudolabels and influences the loss function to optimize to the incorrect 
minimum.  

There are also machine learning paradigms in which there are annotations that are 
weakly predictive of the target label; in these instances, weakly supervised learning 
(WSL) can be utilized to evaluate samples with unverified labels in relation to their 
proximity to the fully annotated label. 123 This proximity is commonly measured via 
comparison of the features of the samples to the features of the fully annotated samples, 
with samples subsequently being assigned a label based on their degree of similarity to 
the fully annotated samples. This approach can be applied to various tasks such as 
object detection, image classification, and semantic segmentation. In the realm of 
medical imaging, WSL has been utilized for object detection, and semantic 
segmentation, both to generate localizations or region masks while only using image-
level labels or bounding boxes rather than pixel-level annotations. WSL similarly has 
the risk of annotation errors, particularly when utilizing imprecise annotations. 
Additionally, the performance of models trained via WSL may not match that of models 
trained via supervised learning utilizing fully annotated data. Despite these limitations, 
WSL has demonstrated promise in a variety of medical imaging applications and may 
prove to be a valuable tool in scenarios where fully annotated data is scarce. 

In this study, we sought to detect DWI-FLAIR mismatch in an automated fashion, 
and we compared this to assessments done by three expert neuroradiologists. Our 
approach involved training a deep learning model on MRI to classify tissue clock and 
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leveraging time clock as a weak proxy label to supplement training in an SSL 
framework. We evaluate our deep learning model by testing it on an unseen dataset 
from an external institution.  In total, our proposed framework was able to improve 
detection of DWI-FLAIR mismatch, achieving a top ROC-AUC of 74.30%. From a 
technical perspective, this study demonstrated that incorporating clinical proxy 
information into SSL can improve model optimization by increasing the fidelity of 
unlabeled samples included in the training process.  

4.2 Materials and Methods 

4.2.1 Dataset and Problem Formulation 

Our dataset contained two distinct labels - the time clock (TSS) and the tissue clock 
(DWI-FLAIR mismatch). On one hand, the TSS label was available for all patients in 
both datasets, however, it does not provide an entirely accurate representation of the 
underlying tissue changes that lead to ischemic tissue that has not yet experienced 
infarction. In contrast, the DWI-FLAIR mismatch label is a more precise representation 
of the salvageable tissue targeted by thrombolytic treatments. However, the process of 
generating these labels across the entire dataset is quite labor-intensive and there is a 
degree of variability that can occur between different readers. This makes it a challenge 
to ensure consistency and accuracy when generating these labels. 

We will consider 𝑋  as the total set of samples that are available for our semi-
supervised framework. Within this, there are two subsets: 𝑋𝐹 , which are fully labeled 
samples, and 𝑋𝑊 , which are samples that only have the weak label. For this study, we 
can assume that each sample in 𝑋𝐹  has both the weak proxy and manually acquired full 
label. Thus, we will consider TSS as a weak proxy label, and DWI-FLAIR mismatch as 
a full label. Each fully labeled patient can fall into one of four categories, as illustrated 
in Figure 4-1. The goal of the model is to detect DWI-FLAIR mismatch, i.e., classify a 
set of patient images as containing mismatch or not. Accordingly, we formulate this as a 
binary classification task to classify images as mismatch positive (1) or mismatch 
negative (0).  
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Figure 4-1. Categories of fully labeled dataset. Patients can be categorized as Clean, where proxy and true 
label align, or Noisy, where the two labels do not match. In addition, within each of these four categories, 
a patient can also be categorized as easy or hard based on the level of inter-reader agreement for the 
DWI-FLAIR mismatch assessment. 

4.2.2 Classification Models 

Our framework utilized two models that were trained in a decoupled fashion. The first 
was a deep learning model 𝑔𝜃 → ℝ𝑑 → 𝑃  that served as both a feature extractor and 
target label classifier, where ℝ𝑑 represents extracted features and 𝑃  indicates the final 
binary classification for the target variable. The convolutional backbone was based on 
ResNet-18, as that was determined to be the optimal architecture from previous stroke 
MRI classification studies.105 The second model was a discriminator 𝐷𝑆 → 𝐿  that 
classified samples based on the relationship between their weak proxy and target labels. 
That is, the model determined a sample's likelihood that the weak proxy matched the 
target. The model took features extracted from 𝑔𝜃  as input and computed cosine 
similarity to those features extracted for each of the four data categories. 



51 

4.2.3 SSL Framework 

Our framework consisted of two stages. In the first stage, we trained our deep 
learning model. Once the deep learning architecture was sufficiently trained, we froze 
the network for it to serve as a feature extractor. In the second phase, we extracted 
features for both 𝑋𝐹  and 𝑋𝑊 . Using these extracted features, we trained 𝐷𝑆 to classify 
samples in 𝑋𝑊 based on their cosine similarity to samples in 𝑋𝐹 . We then used these 
classifications to infer labels for samples in 𝑋𝑊 for which there was high confidence that 
the pseudolabel was correct. To account for the risk of incorrect pseudolabeling, we 
included two confidence criteria: 1) Does the model output for the unlabeled sample 
match that of the cluster, and 2) Does the proxy (TSS) for the unlabeled sample match 
that of the cluster? In this respect, we only included samples for which the weak proxy 
label for 𝑋𝑊

𝑖  matched the classification determined by 𝐷𝑆 . These high confidence 
samples were then incorporated into the training set, and the process iterates again 
starting at stage 1. Our framework algorithm is depicted in Figure 4-2. 
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Figure 4-2. Outline of the SSL framework. In Stage A, the model is trained on the fully labeled data 
DataL to generate predictions PredL. In Stage B, the model generates features FeatL and FeatU for the 
labeled and unlabeled DataL and DataU, respectively. These features are then fed into a clustering and 
sample selection pipeline to generate a set of pseudolabeled data (DataP and PredL). These pseudolabels 
are then used to repeat Stage A, model training, on the augmented dataset. After a set of iterations 
between Stage A and Stage B, the model enters Stage C, model evaluation. Here, the final trained model 
is used to generate predictions PredT on the external test set DataT.  

4.3 Experiments 

4.3.1 Baseline Comparisons 

Assessments were performed by three radiologists with 11, 16, and 29 years of 
experience. Fleiss’ kappa was calculated to measure the level of agreement among the 
three radiologist assessments. We also report the inter-label agreement between the 
clinically recorded TSS and the DWI-FLAIR mismatch. We also sought to assess the 
concordance of a TSS classification model with one that evaluates DWI-FLAIR 
mismatch. Accordingly, we trained a DL model using the majority radiologist 
assessment of mismatch as training labels, and we tested this model on the test set from 
the other institution. 
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4.3.2 Semi-Supervised Learning 

For all experiments, we used the same initial training set 𝑋𝐹 , comprising 72 patients 
from UCLA with both proxy and target labels. A total of 345 patients 𝑋𝑊 , all from the 
UCLA Stroke dataset, were used as potential pseudo-labeled data in the semi-supervised 
stage of training. All models and experiments were tested on a set of patients 𝑋𝐸, which 
comprised 56 patients from Asan Medical Center. For the deep learning model 𝑔𝜃 , 
hyperparameters were tuned in accordance with previous experiments for this 
architecture.105,124 

We hypothesize that proxy information can supplement the semi-supervised 
framework training process in the following ways: using proxy labels to select weakly 
labeled samples for inclusion in the training set and incorporating samples of varying 
noisiness at different training iterations. We compared our proposed framework to a 
baseline, fully supervised network trained on fully supervised samples alone. We also 
compare to the current state-of-the-art in SSL, a method performed by Berthelot et al. 
that involves consistency regularization on augmented samples.125 To test the effects of 
our proposed techniques, we also completed ablation studies for each methodological 
adaptation implemented in our framework. The primary metric used to perform this 
study was receiver operator characteristic area under the curve (ROC-AUC), though we 
also report detection sensitivity and specificity. Each model was run ten times to report 
mean performance across metrics. 

4.4 Results 

4.4.1 Mismatch Assessments 

Among the 130 test patients within the internal (UCLA) and external (AMC) datasets, 
37.8% (28/74) and 55% (31/54) of patients were found to have DWI-FLAIR mismatch, 
respectively. Inter-reader agreement among the radiologists as pairs and collectively are 
summarized in Table 4-1. Fleiss’ was 0.460 for the internal dataset and 0.575 for the 
external dataset, representing moderate levels of agreement. Performance of the human 
readers, compared to time clock assessment, is illustrated in Table 4-2 for the internal 
and external datasets.  
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Table 4-1. Inter-rater Agreement for the Internal and External Datasets. Calculated using Cohen’s kappa, 
except for All Radiologists, which is computed Fleiss’ kappa. Rad, radiologist; Agg, aggregate reading 
representing majority vote by three radiologists; TSS, time since stroke. 

Site Rad Agreement (κ) 

Internal 

Rad 1 – Rad 2 0.3677 
Rad 1 – Rad 3 0.5264 
Rad 2 – Rad 3 0.4879 
All Radiologists 0.4600 
Agg – TSS 0.4430 

External 

Rad 1 – Rad 2 0.5893 
Rad 1 – Rad 3 0.6306 
Rad 2 – Rad 3 0.5086 
All Radiologists 0.5755 
Agg – TSS 0.5208 

Table 4-2. Radiologist Performance Metrics. Performance metrics for individual and aggregate radiologist 
assessments for the internal and external datasets. Rad, Individual Radiologist; Agg, Aggregate reading 
by radiologists; n, number of patients assessed. 

Site Reader 
Mismatch 
Positive 

Accuracy Sensitivity Specificity 

Internal 
(n=74) 

Rad 1 38 0.608 0.568 0.649 
Rad 2 19 0.676 0.432 0.919 
Rad 3 28 0.689 0.541 0.838 
Agg 28 0.743 0.622 0.865 

External 
(n=56) 

Rad 1 31 0.691 0.686 0.700 
Rad 2 35 0.836 0.857 0.800 
Rad 3 24 0.636 0.543 0.750 
Agg 31 0.764 0.743 0.800 

4.4.2 Baseline Model 

The results of retraining the model and evaluating on internal cross validation, using the 
mismatch evaluations as labels, are summarized in Table 4-3 and Figure 4-3. 
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Table 4-3. Summary statistics for 5-fold cross-validation performance of model refined to classify DWI-
FLAIR mismatch. 

 Average (SD) 

AUC 0.754 (0.07)  

Sensitivity 0.651 (0.12) 

Specificity 0.967 (0.07) 

Accuracy 0.769 (0.07) 

 

 
Figure 4-3. ROC curve with confidence interval for 5-fold cross-validation performance of the model 
refined to classify the DWI-FLAIR mismatch. 

4.4.3 Semi-Supervised Method  

Our experimental results are summarized in Figure 4-4 and Table 4-4. When tested on 
an unseen external validation dataset, our semi-supervised framework demonstrated 
outstanding performance, achieving an average ROC-AUC of 74.30±1.9%. This model 
not only outperformed the current state-of-the-art in SSL for the DWI-FLAIR mismatch 
detection task, but it also showed the lowest variance when run in replicate. Our 
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ablation experiments further illustrated that both methods used to leverage proxy 
information were effective in enhancing model performance. 

Table 4-4. Performance metrics across experiments and our proposed framework. 
Model ROC-AUC Sensitivity Specificity 
 Fully Supervised 0.6436±0.066 0.6415±0.298 0.4516±0.277 
 Baseline SSL 0.6711±0.035 0.6097±0.145 0.7045±0.142 
 + Noise Selection 0.6735±0.382 0.7065±0.111 0.6091±0.108 
 + Proxy Selection 0.7082±0.035 0.7581±0.094 0.6136±0.089 
 + Our Model 0.7430±0.019 0.7387±0.107 0.6908±0.088 
MixMatch125 0.6390±0.024 0.7241±0.054 0.7012±0.103 

 

 
Figure 4-4. ROC curves that illustrate the average performance of our proposed method alongside 
ablation experiments. 

4.5 Discussion 

This study sought to evaluate a novel proxy learning framework for detection of imaging 
mismatch in AIS patients. The use of a semi-supervised learning framework allowed us 
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to utilize information from the TSS label, which was available for all patients in our 
dataset, as a proxy for the more complex and resource-intensive DWI-FLAIR mismatch 
label. By incorporating this proxy information, we were able to improve the performance 
of our model and achieve more accurate and reliable results. Furthermore, our study 
provides evidence of the potential benefits of using SSL techniques for medical imaging 
tasks such as AIS, where labels are often expensive and time-consuming to acquire. This 
approach could be extended to other medical tasks where expert annotation is required 
and could help to overcome the limitations of small dataset sizes and inter-reader 
variability. Moreover, the low variance in our results indicate that our semi-supervised 
learning framework is robust and reliable, which is essential for its translation to the 
clinical setting.  

Determining the age of an AIS lesion is critical for informing stroke treatments and 
making the most effective and timely decisions for patient care. The relationship 
between the time clock and tissue clock has been the subject of extensive research for 
many years, with TSS being identified as a surrogate proxy for the progression of 
ischemic tissue. Clinical imaging allows for the identification of the underlying tissue 
changes that occur as the progression of ischemic tissue takes place. One of the most 
widely used methods for identifying patients within 3 hours of stroke onset is using 
signal intensity differences between DWI and FLAIR imaging.115 Recently, this imaging 
biomarker has been incorporated into stroke treatment guidelines with the presence of 
DWI-FLAIR mismatch being sufficient justification to give patients thrombolytics when 
the onset time is unknown. The use of DWI-FLAIR mismatch has also been clinically 
correlated with better outcomes for other stroke treatments such as mechanical 
thrombectomy.119,120 At the same time, there are two major challenges when it comes to 
detecting DWI-FLAIR mismatch. Firstly, it requires assessment by an expert 
neuroradiologist, and secondly, it is an inherently subjective assessment that is prone to 
inter-reader variability.114  Machine learning provides a path to reap the benefits of this 
imaging while reducing these factors.  

This proxy-target paradigm of using a readily available clinical variable as a 
surrogate proxy for an underlying label that requires expert annotation is not limited to 
just stroke treatments but can be extended to other medical tasks as well. A common 
problem among medical tasks is that labels are expensive to acquire, leading to training 
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on small datasets with questionable generalization when evaluated solely on data from 
one institution. To address this, one possible solution is to evaluate generalizability 
using an unseen, external dataset. This allows for a more comprehensive understanding 
of how well a model can generalize to different populations and settings. 

Many areas of machine learning research have explored methods to incorporate prior 
knowledge into their models, as this can be particularly informative for medical image 
detection and segmentation tasks. Our approach utilizes prior information in a semi-
supervised framework in two ways: to stratify unlabeled examples into clinically 
meaningful categories, and to classify samples according to the level of noise. Both 
methods have the goal of enhancing confidence in pseudo-labeled samples. Combining 
these two strategies yielded both higher detection performance and lower variability 
across replicates, the latter addressing instability of machine learning models trained on 
small datasets. Moreover, our proposed method outperformed the current state-of-the-
art in semi-supervised learning, which involves calculating the consistency of predictions 
on augmented samples.126,127 Additionally, the image registration pipeline creates 
spatially aligned images such that stroke location is information contained within the 
image. This allows for greater utility in a model where spatial location is informative 
and reduces the need for other forms of augmentation used in natural image datasets 
(e.g., flipping, rotation, and translation).128 Given that medical datasets, even without 
labels, are often small, even a good feature representation that is reliant on further data 
augmentation may not be as effective. The types of augmentation used in natural image 
datasets, e.g., flipping, rotation, and translation, may be less useful in a model where 
spatial location could be informative.  

4.6 Conclusion 

Our study aimed to utilize TSS as a surrogate marker to detect DWI-FLAIR mismatch 
in MRI performed on patients suffering from AIS. Our experiments demonstrate that 
using proxy information within an SSL framework can significantly improve 
performance in terms of both classification accuracy and model stability. However, our 
study also has several limitations, including the relatively small sample size for both the 
development and evaluation datasets, as well as the limited number of experts who 
generated the annotated labels.  
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To address these limitations, future research directions could include evaluating this 
approach on a larger, multi-institutional dataset. Such an evaluation could enable the 
stratification of patients according to various clinical factors, such as demographics and 
medical history, which could provide new insights into the underlying mechanisms of 
tissue progression during AIS. Moreover, a wider evaluation of this approach could 
potentially lead to the development of a model that is capable of automatically 
detecting DWI-FLAIR mismatch from MRI scans taken at the time of imaging. This 
could be of great value in informing treatment options for AIS patients, as it could 
provide a more accurate and reliable assessment of salvageable tissue and help to 
optimize treatment decisions. 
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CHAPTER 5 

Predicting Recanalization in Acute Ischemic Stroke 
Patients Undergoing Endovascular Therapy from 

Pretreatment Imaging 

5.1 Overview 

For acute ischemic stroke (AIS) patients, treatments such as thrombolysis and 
thrombectomy aim to restore blood flow to areas experiencing ischemia. Endovascular 
thrombectomy (EVT) is recommended for patients up to 24 hours from onset.7,24  EVT 
is considered successful if blood flow is deemed completely or near-completely restored 
to the brain region affected by the stroke. This restoration is quantified by the modified 
treatment in cerebral infarction (mTICI) score, which is assessed both during the EVT 
procedure and upon completion.45,47,129 Clinical trials have illustrated that patients who 
experience significant and/or full recanalization of the blood vessel typically experience 
better outcomes, particularly if recanalization is achieved on the first attempt – known 
as the first pass effect (FPE).49,55,130,131  

Evidence indicates patients with similar clinical history, stroke characteristics, and 
procedural factors experience varied recanalization outcomes. Several studies have 
sought to elucidate the mechanisms underlying a patient’s likelihood of successful 
recanalization, many of which have used imaging as a non-invasive method of 
determining clinical correlates. Like assessments for thrombolytic therapy, TSS onset is 
positively associated with long-term clinical outcomes post-EVT; identification of 
penumbral tissue via MR or CT imaging can inform treatment outcomes. Additionally, 
compensatory flow from pial collateral circulation has a strong correlation with 
prognosis post-EVT.9,11,132 The current AHA/ASA stroke guidelines weakly recommend 
advanced imaging to assess a patient’s collateral status.2  
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Thus, predicting a patient’s post-treatment TICI and potential for FPE can inform 
interventional neuroradiologists about the potential benefit of thrombectomy. Imaging 
has already proven to contain signal that can elucidate individual patient 
characteristics, informing how one might respond to thrombolytic, or the more invasive 
thrombectomy, treatment. Developing methods to predict automatic classification of 
these key clinical variables from admission imaging alone can help clinicians at both 
community hospitals and trauma centers assess the most efficient course of treatment. 
Some imaging biomarkers have been statistically linked to successful recanalization, but 
they are not perfect predictors, and some are prone to inter-reader assessment 
variability. 36,133,134 Machine learning models have been developed to predict 
recanalization, achieving varied prediction performance. Every model with imaging 
inputs has utilized non-contrast CT (NCCT) and/or CT-Angiography (CTA). While 
NCCT can be useful to identify intracranial hemorrhage, diffusion-weighted MRI can 
more precisely visualize the infarct core volume for patients whose onset time is 
unknown outside a 6-hour window of symptom onset. Automated prediction methods 
have only achieved moderate performance and required manual segmentation of the clot 
by an expert neuroradiologist.135–138 Even with the help of segmentation by experts, the 
time-intensive task of manual segmentation across a volume may not be compatible 
with current clinical guidelines such as the Target: Stroke quality improvement Phase 
III campaign, which recommends a door-to-needle time for EVT within 90 minutes of 
direct admission and 60 minutes of transfer patients.139,140 

In this study, we develop and evaluate two methods – a region-based radiomics 
model and an end-to-end deep learning network – for their ability to predict the 
likelihood of a patient experiencing successful recanalization from their admission 
imaging. We report performance metrics for two cohorts of patients: those who 
underwent CT and MRI before treatment.  The paper's contributions include a proof-of-
concept radiomics model in MRI, which establishes the feasibility of using MRI as an 
input modality for EVT success prediction. Additionally, the work demonstrates that 
region-based, annotation-free models can match and outperform previous models 
requiring annotation in CT, achieving matching moderate performance in MRI. The 
lightweight convolutional architecture that uses spatial and cross attention outperform 
radiomics-based machine learning models across both modalities.  
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5.2 Materials and Methods 

5.2.1 Data 

The consecutive, retrospective cohort used for this study was treated at UCLA Ronald 
Reagan Medical Center for acute ischemic stroke from 2014-2021. Patients were 
included if they were diagnosed with a large vessel occlusion (LVO) stroke, had an 
adequate-quality MRI or CT acquired upon admission or suspected stroke, and received 
EVT treatment. Exclusion criteria were as follows: the presence of significant 
hemorrhage, and image registration errors resulting from significant midline shift or 
motion artifacts. As part of the EVT protocol at UCLA, mTICI is assessed during the 
procedure after each clot retrieval pass. For this study, successful recanalization was 
defined as an mTICI of 2b, 2c, or 3.  Baseline features such as age, sex, NIH Stroke 
Scale (NIHSS) at admission, and time since stroke, were compared between patients 
who did or did not experience FPE using the chi-square test for categorical features and 
Student’s t-test for continuous features. The cohort’s clinical, imaging, and procedural 
characteristics are listed in Table 3-1. The tasks were binary mTICI classification and 
FPE classification. 

5.2.2 Image Acquisition and Processing 

Patient MR imaging acquisition was performed on 1.5T and 3T echo-planar MR 
scanners with 12-channel head coils (Siemens, Germany). In the stroke MRI brain 
imaging admission protocol, the diffusion-weighted imaging (DWI) and fluid-attenuated 
inversion recovery (FLAIR) sequences were acquired using the following parameters: 
DWI: TR 4000-9000, TE 78-122ms, corresponding pixel dimensions 0.859x0.859x6.000 to 
1.850x1.850x6.500 mm; FLAIR: TR 8000-9000ms, TE 88-134ms, corresponding pixel 
dimensions 0.688x0.688x6.000 to 0.938x0.938x6.500 mm.  Patients underwent MRI using 
a 1.5T or 3T echo-planar Siemens MR imaging scanner, performed with 12-channel head 
coils. DWI, FLAIR and apparent diffusion coefficient (ADC) sequences were used in this 
study. The DWI images were acquired using a TR range of 4,000-9,000ms and a TE 
range of 78-122ms. The pixel dimension for DWI varied from 0.859x0.859x6.000mm to 
1.850x1.850x6.500mm. FLAIR images were acquired using a TR range of 8,000-9,000ms 
and a TE range of 88-134ms. The corresponding pixel dimension varied from 
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0.688x0.688x6.000mm to 0.938x0.938x6.500mm. ADC maps were calculated from DWI 
b0 and DWI b1000 using the following formula, where 𝑆𝑏1000  and 𝑆𝑏0  are the intensity 
values of DWI b1000 and DWI b0 images. 

𝐴𝐷𝐶 = −
l n (𝑆𝑏1000

𝑆𝑏0
)

1000  

After image retrieval, the sequences were fed into our previously published 
automated preprocessing pipeline to ensure data consistency across individuals and 
reduce noisy information.141 First, N4 bias field correction was applied to all sequences. 
Then, DWI images were skull-stripped and registered to a T2w MNI-152 atlas. FLAIR 
and ADC were co-registered afterwards. Next, intensity normalization and histogram 
matching were performed using a reference case. Lastly, a vascular territory template 
was mapped on the registered images to extract ROI where the stroke lesion was 
located.142 Instead of manually segmenting the stroke lesion or thrombus, or using 
unvalidated segmentation algorithms, our detection method extracted the affected brain 
region automatically. 

Two CT scanners, a Lightspeed VCT (GE Health Care, Milwaukee, USA) and a 
SOMATOM Definition (Siemens, Forchheim, Germany), were used for CT imaging. 
After administering 50 mL of contrast agent intravenously at 5 mL/second, a single-
phase CT angiography (CTA) was obtained (120 kV, 120 reference mAs, 0.3 second 
rotation time, 0.6 pitch, effective dose of about 3 mSv). Following intravenous injection 
of  contrast agent, totaling 50 mL at a rate of 5 mL/second, CTP included 30 successive 
spiral acquisitions (80 kV, 150 mA, effective dose = 3.3mSv, 100 mm in the z-axis) in a 
total of 60s acquisition. Saline was used after each contrast agent injection, with 30mL 
being used for each injection. Both non-contrast CT (NCCT) and CTA image series 
were included as inputs for the imaging-based models. The preprocessing protocol for 
CT images included field-of-view removal, skull stripping, and registration to MNI 
space. The ROI was segmented using the same method from the MRI pipeline, utilizing 
an atlas-based intensity method. 

5.2.3 Radiomics Model 

Radiomic features were extracted from the ROI for DWI, FLAIR and ADC sequences 
separately using the Python library pyradiomics.143 The features included a) 13 3D 
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shape features and 19 first-order features, b) 24 texture features computed from the 
Gray Level Co-occurrence Matrix (GLCM), c) 14 features from Gray Level Dependence 
Matrix (GLDM), d) 16 features from Gray Level Size Zone Matrix (GLSZM), e) 16 
features from Gray Level Run Length Matrix (GLRLM), and f) five features from 
Neighboring Gray Tone Difference Matrix (NGTDM). 

Many extracted radiomic features have a high degree of correlation, and they may 
provide overlapping information to our machine learning model. To minimize 
information overlap, we implemented three feature selection methods and compared the 
performance of each using different classifiers. Two supervised methods, Least Absolute 
Shrinkage and Selection Operator (LASSO), Random Forest (RF), and one 
unsupervised method, Principal Component Analysis (PCA), were selected due to their 
popularity and efficiency.144 Briefly, LASSO applies a regularization process that 
penalizes the coefficient of regression features to minimize the prediction error and the 
features with non-zero coefficient after shrinking process are selected. For RF, features 
are selected by calculating each feature's contribution to the decrease of the weighted 
impurity of a tree. Feature importance is calculated by averaging the decrease of 
impurity across trees and ranking the features according to this measure, only keeping 
the top 50th percentile of features in this rank. For PCA, the current features are 
transformed to a representation with fewer new features (principal components) by a 
dimensionality reduction process that involves orthogonal linear transformation while 
preserving the variance presented in the data. 

To predict mTICI, the following classifiers were compared: Support Vector Machines 
(SVM), K-Nearest Neighbor (KNN), Logistic Regression (LR), and RF. SVMs separate 
data into target classes by finding the hyperplane that maximizes the margin between 
the classes, while minimizing the classification error. The hyperplane is found by 
identifying the support vectors, which are the data points closest to the decision 
boundary and optimizing the parameters of the hyperplane using various optimization 
techniques. KNN classifies data based on the class of their k-nearest neighbors in the 
training data set, where k is a user-specified parameter. It works by measuring the 
distance between the new data point and all the data points in the training set and 
selecting the k data points that are closest in distance to the new data point. The class 
of the new data point is then determined based on the class of the majority of its k-
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nearest neighbors. LR models the probability of a binary outcome using the logistic 
function, which is a mathematical function that relates the probability of the outcome 
to a linear combination of predictor variables. The coefficients of the predictor variables 
are estimated using maximum likelihood estimation, and the resulting model can be 
used to make predictions for new values of the predictor variables. Classifiers were 
trained using 5-fold cross-validation in the training set. The best model hyper-
parameters were selected via grid search. For example, different kernel functions (radial 
basis, linear, sigmoid), gamma and C values were examined for SVM to generate best 
combination of hyper-parameters. The selected features were scaled using min-max 
normalization before being used in classification training. All feature selection and 
classification models were evaluated using receiving-operator characteristic area-under-
the-curves (ROC-AUC), as well as sensitivity and specificity, which were calculated 
using optimal Youden's J statistic. Performance ranges for a held-out validation set 
were calculated for each combination of feature selection method and 
classifier. This model is summarized in Figure 5-1. 

 
Figure 5-1. The radiomics pipeline used for prediction of recanalization. RF: Random Forest, LASSO: 
Least Absolute Shrinkage and Selection Operator, PCA: Principal Component Analysis, LR: Logistic 
Regression, SVM: Support Vector Machine. 

5.2.4 Deep Learning Model Architecture 

The proposed deep learning model is an end-to-end trainable network consisting of both 
convolutional and attention-based components.145 This network incorporates 
modifications and enhancements to the widely used ResNet backbone. The first 
component is a global feature extractor, which leverages residual convolutional blocks to 
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extract features from each slice. These slice-level features are then fed into local 
networks, which learn representations of adjacent slices and share weights during 
training. Within this local network, a non-local attention module determines the salient 
regions within each slice. Using the intermediate features as input, the non-local 
attention module uses a 1x1 convolution to generate single-head attention for each 
patch within the image as computed to all other patches. These are aggregated using 
matrix multiplication and softmax activation. The non-local attention module was 
included in the network for its self-contained nature, meaning it can be inserted into 
existing architectures without substantial increases in computation.146 

Following the local networks, outputs were fed into the volumetric classifier 
consisting of two modules. The first is a cross-attention module utilizing recent advances 
in vision transformers.147 The low-level features from every slice are fed into the module, 
which utilizes multi-head attention operations to generate slice-level importance. 
Resembling other attention modules including non-local attention, multi-head attention 
consists of a linear layer to generate attention across several scales of the image volume. 
The attention operations are fused using cross-attention, wherein the features from each 
scale are exchanged via layer normalization and residual connection. The use of this 
module in the network enables the model to weigh the most salient slices more heavily 
for the final prediction, while adding limited computational complexity. This attention 
output, along with the output from the local networks, are fed into a linear layer that 
serves as the final classifier, generating the volume-level prediction.  
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Figure 5-2. Overview of the proposed deep learning architecture. Utilizing a ResNet backbone, MR and 
CT images were used as a slice-wise input (input size 26x224x224) for a global 2D convolutional block, 
chosen because of the large slice thickness found in stroke protocols. The outputs from neighboring slices 
were then fed into ResNet34-based branches that shared weights across slice neighborhoods. The model 
leveraged two versions of transformer attention modules. A non-local attention module utilized multi-head 
attention on each slice to focus on salient regions. Within each neighborhood branch, a cross attention 
transformer identified important slices. Finally, the branch outputs were subjected to a weighted softmax 
layer to ultimately generate binary predictions.  

5.2.5 Model Training and Evaluation 

Models were evaluated for their ability to predict a binarized label for each patient. A 
patient was given a positive label if they had an mTICI score of 2b, 2c, or 3 after one 
pass during EVT. Patients that achieved recanalization in several attempts, or who did 
not achieve successful recanalization, were assigned a negative label. The MRI and CT 
cohorts were segmented into retrospective development and prospective evaluation 
groups. Patient images were included in the prospective cohort if they underwent EVT 
in 2020 or later. The development groups were each split into five folds for cross-
validation. The model was trained for 200 epochs with early stopping, using the Adam 
optimizer with weight decay, and a batch size of 12. The learning rate was set to 0.0005 
and the weight decay was set to 0.05. The training was implemented using PyTorch 
1.9.0 on an NVIDIA DGX-2. 

Following the development and hyperparameter tuning, algorithms were evaluated 
on the corresponding prospective evaluation cohort. Receiving-operator characteristic 
area-under-the-curves (ROC-AUC) were reported accordingly. Sensitivity, specificity, 
and accuracy were calculated using Youden’s J statistics from the ROC curve. All 
metrics were reported as mean (standard deviation) on the evaluation set for each 
cohort.  
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5.2.6 Impact of Imaging Data 

The first set of experiments involved assessing the ability for MRI to predict treatment 
response variables, as compared to clinical data extracted from the health record. 
Clinical variables extracted aligned with those used in previous studies, including 
demographic, historical, and stroke parameters. Demographic variables included patient 
age and sex. Patient variables also included history of prior stroke, hypertension, 
hyperlipidemia, atrial fibrillation, diabetes mellitus, and coronary artery disease. Stroke 
parameters extracted were the NIH Stroke Scale (NIHSS) taken at admission and the 
location of the stroke. These variables were utilized as input into the previously 
described machine learning pipeline to generate a final classification; this model was 
used as the baseline. This was compared to the previous radiomics model, as well as an 
aggregate model that used both the imaging and clinical variables.  

In addition, experiments were conducted that evaluated the impact of using different 
imaging series for the predictive model. The series used were those generated during 
standard acquisition protocols for stroke patients upon admission. MRI acquisition 
protocols included diffusion-weighted and perfusion-weighted imaging (DWI and PWI, 
respectively). Experiments included evaluation of the use of DWI alone, PWI alone, and 
the image series together. The CT acquisition protocol involves NCCT and CTA. 
Similar to the MRI experiments, the models were evaluated for their ability to predict 
FPE using NCCT, CTA, and both. 

5.3 Results 

5.3.1 Patient Characteristics 

This cohort included 379 patients who met the criteria; of these, 76 patients were 
excluded due to missing image series (29) or degraded image quality preventing 
preprocessing (24). From this final cohort of 326 patients, 149 underwent MRI, and 177 
underwent CT before EVT. The cohort had an average age of 71.45 ± 16.04 years and 
was 55.73% female. Of this cohort, 98 patients experienced a stroke within 24 hours of 
the last-known well time but had an indeterminable onset time. Among patients with 
known onset time, 189 (57.98%) received imaging within the 4.5-hour window and 202 
(61.96%) underwent contrast MRI or CT within 6 hours. Median NIHSS upon 
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admission was 16 (IQR 10-20). Prior to EVT, 93 patients (28.79%) received intravenous 
thrombolytic therapy. Additional clinical variables as well as differences between the 
MRI and CT cohorts are summarized in Table 5-1.  

Table 5-1. Demographics of patients included in model development. N, number of patients; SD, standard 
deviation, IQR, interquartile range; NIHSS, National Institutes of Health stroke scale; mTICI, modified 
treatment in cerebral infarction score. 

Parameters Measure 
Total 
(N=326) 

MRI 
(N=149) 

CT 
(N=177) 

p-value 

Female N (%) 180 (55.21%) 85 (57.05%) 95 (53.67%) 0.1713 
Age Mean ± SD 70.7 ± 16.11 70.7 ± 16.11 72.08 ± 16.01 0.4432 
NIHSS Median (IQR) 16 (10-20) 15 (8-19) 16 (11-21) 0.1144 
Received 
Intravenous 
Thrombolysis 

N (%) 96 (29.45%) 35 (23.49%) 61 (34.46%) <0.0001 

Stroke Onset Time 0.6013 
Stroke Onset to 
Image Time (min) Median (IQR) 54 (15-15) 167 (123-255) 113 (83-191) -- 

Unknown Onset N (%) 97 (29.75%) 54 (36.24%) 43 (24.29%) -- 
Onset < 4.5 hours N (%) 189 (57.98%) 72 (48.32%) 117 (66.1%) -- 
Onset <  6 hours N (%) 202 (61.96%) 75 (50.34%) 127 (71.75%) -- 
Thrombectomy Outcome 0.4009 
Unsuccessful N (%) 58 (17.79%) 28 (18.79%) 30 (16.95%) -- 
mTICI 0 | 1 | 2a N | N | N 20 | 4 | 34 11 | 2 | 15 9 | 2 | 19 -- 
Successful, 2+ 
Passes N (%) 129 (39.57%) 55 (36.91%) 74 (41.81%) -- 

mTICI 2b | 2c | 3 N | N | N 73 | 31 | 25 36 | 11 | 8 37 | 20 | 17 -- 
Successful, First 
Pass N (%) 136 (41.72%) 66 (44.3%) 70 (39.55%) -- 

mTICI 2b | 2c | 3 N | N | N 59 | 34 | 43 31 | 13 | 22 28 | 21 | 21 -- 

5.3.2 Radiomics Model Performance 

A total of 321 features were extracted for each patient with DWI, FLAIR, and ADC 
sequences. 112 patients were assigned to the training set and 29 patients were assigned 
to the validation set following a 4-1 split, where the validation set was never seen by 
neither the feature selection, grid search nor classifier training processes. The 
demographic distribution for both training and validation sets remained the same for all 
experiments. To examine the stability of model performance, we trained and validated 
the results 100 times by changing the random seed to shuffle the training stage cross-
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validation. The results were reported as the mean ±95% confidence interval. All model 
training was performed using scikit-learn in Python 3. The best parameters for each 
model from grid search were: Random Forest with 80 max depth of the tree, max 
features 3, minimum number of samples required at a leaf node 3, minimum number of 
samples required to split an internal node 12, number of trees 200; SVM with radial 
basis kernel, penalty parameter C 10 and gamma 0.001; LR with L2 penalty and inverse 
regularization C 0.1; KNN with ten neighbors. 

The RF feature selection determined 138 features were informative for mTICI 
classification. The LASSO feature selection kept 36 important features. We implemented 
PCA at 0.99 explained variance cutoff with five principal components for modeling. 
ROC curves on the validation set for each of the top models with best feature selection 
was reported in Figure 5-3. RF feature selection and LASSO feature selection yielded 
comparable performance across different models where the combination of RF feature 
selection and RF classification model achieved best ROC-AUC 74.29±0.68%. On the 
other hand, PCA feature selection yielded lower performance across models. Moreover, 
models with PCA features tended to be less stable with a larger variance except for LR 
model, showing that the PCA method may exclude much important information during 
dimension reduction step. Although the RF model achieved the highest performance, the 
LR model achieved 72.91±0.84% using the RF feature selector and 72.29±0.85% using 
LASSO feature selector. SVM achieved >70% ROC-AUC for RF features but lower for 
LASSO and PCA features. In general, KNN model achieved lower ROC-AUC values for 
all three feature selectors with higher variance across experiments. 
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Figure 5-3. ROC curves - best feature selection method for each model. Top RF model = RF feature + 
RF model, top SVM model = RF feature + SVM model, top LR model = RF feature + LR model, top 
KNN model = LASSO feature + KNN model. 

5.3.3 Impact of Series Selection 

The results of imaging input experiments are summarized in Table 5-2 and Table 5-3 for 
MRI and Table 5-4 and Table 5-5 for CT. Across both modalities, the combination of 
imaging modalities improved predictive performance. In MRI, the deep learning model 
performed best when using both diffusion-weighted and perfusion-weighted images. The 
performance of the model was not significantly different in the cross-validation set, but 
it achieved higher ROC-AUC  (0.9100 ± 0.0583) and accuracy (0.8889 ± 0.0703) in the 
prospective test set. For the CT cohort, the  combination of NCCT and CTA achieved 
the highest FPE prediction performance, with substantial increases in ROC-AUC 
(0.8120 ± 0.0650) and accuracy (0.8233 ± 0.0582) in the test set. These findings suggest 
that the combination of images may provide more comprehensive information for 
accurate prediction of perfusion deficits. 
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Table 5-2. Deep learning model performance on MRI cross-validation folds. 

Series ROC-AUC Accuracy Sensitivity Specificity 

PWI 0.8450 (0.0720) 0.8347 (0.0584) 0.8639 (0.1084) 0.8089 (0.1248) 

DWI 0.7725 (0.0510) 0.7770 (0.0612) 0.7400 (0.1008) 0.8057 (0.1264) 

PWI + DWI 0.8364 (0.0900) 0.8320 (0.0987) 0.7500 (0.1470) 0.9111 (0.0831) 

Table 5-3. Deep learning model performance on prospective MRI test set. 

Series ROC-AUC Accuracy Sensitivity Specificity 

PWI 0.8960 (0.0543) 0.8600 (0.0490) 0.8000 (0.1265) 0.9200 (0.0980) 

DWI 0.8519 (0.0559) 0.8000 (0.0567) 0.8857 (0.1400) 0.7455 (0.1564) 

PWI + DWI 0.9100 (0.0583) 0.8889 (0.0703) 0.8000 (0.1265) 1.0000 (0.0000) 

Table 5-4. Deep learning model performance on CT cross-validation folds. 

Series ROC-AUC Accuracy Sensitivity Specificity 

NCCT 0.6925 (0.1340) 0.7260 (0.1053) 0.7533 (0.0859) 0.7118 (0.1577) 

CTA 0.6704 (0.0684) 0.6650 (0.0539) 0.5905 (0.1871) 0.7474 (0.1610) 

NCCT + CTA 0.7928 (0.0894) 0.8430 (0.0571) 0.8333 (0.1394) 0.8442 (0.0885) 

Table 5-5. Deep learning model performance on prospective CT test set. 

Series ROC-AUC Accuracy Sensitivity Specificity 

NCCT 0.7154 (0.0890) 0.7314 (0.0596) 0.7470 (0.1566) 0.7200 (0.1492) 

CTA 0.7347 (0.0325) 0.7378 (0.0356) 0.7868 (0.0913) 0.6993 (0.1120)  

NCCT + CTA 0.8120 (0.0650) 0.8233 (0.0582) 0.7861 (0.1210) 0.8339 (0.0830) 

5.3.4 Deep Learning Model Performance 

The classification performance of the deep learning model as compared to radiomics 
methods are summarized in Table 5-6. This includes comparison to the aforementioned 
MRI-based radiomics model and an annotation-based radiomics model proposed by 
Hofmeister et al.148 When applied to MRI series, the deep learning model achieved an 
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average ROC-AUC of 0.9100, with an accuracy of 0.8889 on the prospective test set. 
The model outperformed the previous method, notably achieving near-perfect specificity 
across experimental replicates while maintaining high sensitivity. In the prospective CT 
evaluation set, the deep learning method performed slightly worse, yielding a mean 
ROC-AUC of 0.8120 and accuracy of 0.8233. When compared to literature, this model 
achieved slightly lower average accuracy, though with a substantially smaller confidence 
interval. While the accuracy was slightly lower, the model achieved a balanced 
sensitivity and specificity of 0.7861 and 0.8339, respectively, compared to the previous 
model that achieved high specificity at the expense of very low sensitivity. 

Table 5-6. Performance of our current model benchmarked against results from literature as well as 
previously published models applied to this cohort. 

Modality ROC-AUC Accuracy Sensitivity Specificity 

MRI 0.9100 (0.0583) 0.8889 (0.0703) 0.8000 (0.1265) 1.000 (0.0210) 

Zhang et al.149 0.7429 (0.0680)  0.7533 (0.1516) 0.6992 (0.0253)  0.8059 (0.0229)  

CT 0.8120 (0.0650) 0.8233 (0.0582) 0.7861 (0.1210) 0.8339 (0.0830) 

Hofmeister et 
al. 135 0.88 0.8510 (0.717–

0.938) 
0.5000 (0.211–
0.789) 

0.9710 (0.851–
0.999) 

5.4 Discussion 

Successful recanalization has been shown to correlate with better outcomes for AIS 
patients. Establishing a reliable predictive relationship between pretreatment imaging 
and final mTICI/FPE is crucial for better EVT strategy planning. In this study, we 
aimed to explore the capacity of pretreatment imaging to predict the likelihood of 
recanalization or FPE during EVT using a deep learning approach. To our knowledge, 
this study represents the first attempt to explore automated prediction of FPE across 
multiple imaging modalities and methods. The use of deep learning algorithms in this 
study provides several advantages over traditional methods. Firstly, our approach does 
not require manual segmentation of the clot, which is a time-consuming process and can 
delay valuable treatment time. Instead, our model automatically learns to identify 
relevant features from the input images without requiring manual intervention. 
Secondly, our models do not require advanced imaging techniques, such as perfusion 
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imaging, to achieve high performance in predicting successful recanalization. Such 
advanced imaging has a long acquisition time and may not be available in all stroke 
triage settings.  

One interesting finding is that the models using MRI consistently achieve higher 
performance than both previous methods as well as the same model applied to CT 
series. This is unsurprising, given that MRI series contain more substantial and 
complementary information. However, the CT model was still able to achieve balanced 
performance without advanced imaging, which may be more relevant for the vast 
majority of healthcare workflows that utilize CT for AIS patient admission. There is 
important information from standard diffusion and perfusion MR images before 
treatment that is directly related to EVT recanalization, leading to a potential new path 
of investigation in pre-treatment MR imaging and thrombectomy outcome.  

Our machine learning performance results produce a few findings. First, we 
demonstrated that the RF feature selector combined with the RF model achieved the 
best performance. Based on the 95% Confidence Interval for 100 times repeated 
experiments, RF and LR models both show stable performance with minimal variation 
when shuffling the training data. RF models have been illustrated to be robust across 
many iterations, and moreover, have proven to achieve high classification performance 
for other radiomics tasks. Other tasks have found optimal performance using other 
classifiers, however, so more testing is needed to evaluate these models at a broader 
scale. A second finding is that our automated region extraction method yielded 
benchmark performance comparable to those generated from manually segmented 
regions on CT images. A machine learning model that doesn't require manual 
segmentation can provide significantly faster inference time, as manual annotation can 
be labor intensive, particularly to segment small regions within the brain such as a clot 
thrombus. Given the time-sensitive nature of stroke treatment decisions, this fully 
automatic method can quickly provide a model with the relevant stroke region without 
sacrificing performance. Additionally, a model that requires no segmentation is not 
prone to subjectivity of manual segmentations or variability among segmentation 
models.  

Several studies have sought to predict recanalization for AIS patients, which 
achieved moderate performance using clinical variables,36,150 while others relied on 
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handcrafted or statistical features extracted from manually segmented regions on CT 
imaging.134,151–153 For example, Hofmeister et al utilized radiomics features in a machine 
learning model to predict FPE from CT, achieving high specificity but low sensitivity.154 
The method proposed here, in contrast, requires no manual segmentation and achieves 
balanced sensitivity and specificity with comparable accuracy. The radiomics and deep 
learning approaches proposed in this work were developed and evaluated on cohorts who 
received either MR or CT imaging before treatment, thereby carrying wider 
applicability to clinical stroke workflows. 

Limitations of this study include study cohort bias, imaging limitations due to 
retrospective collection, and small sample size. As patients were only included in the 
cohort if they underwent EVT as part of the study design, this model may be subject to 
treatment bias introduced during treatment decision-making. An additional source of 
bias is that the target variables rely solely on the assessment of the 
neurointerventionalist performing the procedure. There is substantial discourse 
surrounding the use of TICI scores and correlations with outcome, which undoubtedly 
introduces variability in the expert assessment depending on their training. This cohort 
was assessed using the mTICI score. This evaluation is inherently subjective; while there 
is a high degree of reliability for patients scored mTICI 2c and 3, there is high inter-
reader variability for patients scored mTICI 2b.155 This is likely due to the large range 
of patients within a score class, as patients with 2b can experience anywhere from 50%-
89% recanalization. This scoring metric has undergone several augmentations since its 
proposal in 2005, both because of this variability and poor correlation with functional 
outcomes. Even with the proposed new categories, mTICI 2b comprises a large spectrum 
of recanalization rates. The Highly Effective Reperfusion Evaluation in Multiple 
Endovascular Stroke (HERMES) trial sought to further delineate these categories.47 The 
results from the HERMES trial established a 7-point scale known as the extended 
thrombolysis in cerebral infarction (eTICI) score.156 Even so, this scale provides 
moderate correlations with functional outcome.157 Future studies could involve 
reassessing these patients using their procedural imaging taken during EVT to stratify 
the mTICI 2b patients into more granular quantification of recanalization.   

There are further data biases introduced due to routine clinical imaging protocols 
that preclude a direct comparison of imaging series inputs across modalities. The current 
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MR stroke protocol generates an angiogram with partial coverage of the brain, excluding 
lateral portions of the head in the field-of-view. Similarly, the CT protocol optimized for 
patients presenting within 18 hours of onset acquires perfusion imaging with an 
incomplete field-of-view in along the superior/inferior axis. Both series were unable to be 
registered with the image processing pipeline that was optimized for speed, given 
current treatment paradigms. There are more advanced image registration techniques, 
including those that leverage deep learning, that may be able to perform partial 
registration. However, preliminary experiments indicated that these operations would 
perform at a time scale that would not be feasible in a real-world use case. Scanners at 
other institutions may be able to capture full field-of-view angiography and perfusion 
imaging for both MR and CT studies. Cohorts with full coverage across all series would 
be able to demonstrate the utility of standard and advanced imaging for prediction of 
EVT success. Finally, this is a proof-of-concept study from one institution, and the 
architecture has many parameters. The training and evaluation cohorts were split to 
maximize evaluation capacity, and two cohorts with different imaging modalities were 
used, but they still only comprise one institutional dataset. External validation is 
required to determine the applicability of these models to other hospitals and 
institutions. 

5.5 Conclusion 

We have presented a fully automatic, end-to-end method to predict treatment 
response to EVT. On a dataset of patients who received either MR or CT prior to 
treatment, we have demonstrated that the volume-based deep learning network can 
distinguish whether a patient will be successfully recanalized in one attempt or fewer, 
achieving peak accuracies of 88.80% using MR imaging and 82.33% using CT image 
series. This method outperformed previously published methods without requiring 
manual thrombus segmentation, illustrating the capability of deep learning algorithms 
to inform treatment planning for AIS patients. 

There are a few areas of future research direction this study provides. Our analysis 
and modeling were conducted from a single center with images acquired retrospectively 
over eight years. A multi-center prospective study with a larger sample size is needed in 
the next step. In this study, we only examined several popular feature selection methods 
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and machine learning algorithms. Many other feature selection methods and ML 
classification should be examined in future study. A reliable automated stroke lesion or 
thrombus segmentation algorithm is expected to provide more accurate radiomics 
features for use. By incorporating more accurate 3D image features, stratification by the 
type of EVT technique, and clinical factors as features into the machine learning model, 
the model performance can be improved. 
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CHAPTER 6 

Leveraging Intra-Procedural Imaging During 
Endovascular Therapy to Inform Treatment Decision-

Making 

6.1 Overview 

Endovascular therapy (EVT) has become the gold standard treatment for eligible 
patients presenting with acute ischemic stroke (AIS). Despite recent advancements in 
thrombectomy tools and protocols, there remains a risk of procedural complications and 
poor functional outcomes, even among patients deemed eligible under the strictest 
clinical trial criteria.67,68 While a first pass retrieval is the optimal treatment target, if 
recanalization is not achieved in one attempt, the stroke team must decide the next step 
in a short time window. Options may be to proceed with another retrieval attempt, 
perform an adjunct therapy, or stop the procedure altogether. While there remains 
debate about pretreatment decision-making, a neurointerventional radiologist can deploy 
adjunctive techniques in real time, such as rescue stenting or intra-arterial thrombolysis 
(IA-tPA) to decrease the likelihood of adverse outcomes, though both come with 
substantial risk of post-procedural complications.  

Among patients for whom EVT was truncated due to procedural difficulties, 20% 
still experience moderate outcomes and limited disability.66 The decision to pursue 
adjuvant options is reliant on several factors, many of which cannot be ascertained prior 
to the procedure. Imaging plays an essential role in decision-making during EVT. Digital 
subtraction angiography (DSA) enables neurointerventionalists to guide devices to the 
site of occlusion and attempt to remove the clot through either retrieval or direct 
aspiration techniques.37 It is also used to assess recanalization after every retrieval 
attempt and to quantify compensatory collateral flow.  



79 

Collateral flow refers to the flow of blood through alternative vessels in the brain 
that can compensate for a blocked or narrowed vessel. In the context of ischemic stroke, 
collateral flow can provide an alternative supply of blood to the affected brain tissue, 
thus mitigating the damage caused by the blocked vessel. Intrinsic collaterals refer to 
the blood vessels within the brain that can provide alternative blood flow, such as the 
pial, leptomeningeal, and deep penetrating collaterals. Extrinsic collaterals refer to blood 
vessels outside the brain that can provide alternative blood flow, such as the circle of 
Willis and the external carotid artery collaterals.132,158 The presence of adequate 
collateral flow can have significant clinical implications in stroke patients. Patients with 
good collateral flow have been shown to have better outcomes following treatment, 
including higher rates of recanalization, lower rates of symptomatic intracerebral 
hemorrhage, and better chances of functional recovery.9,11 However, the volume and 
extent of collateral flow varies from person to person and is impacted by a variety of 
parameters such as age, blood pressure, and the existence of underlying cardiovascular 
disorders.  

Previous work has demonstrated the value in using imaging informatics and machine 
learning techniques to extract insights from DSA series, but these studies have been 
preliminary in nature.159–161 Recently, vision transformers have been shown to be 
effective for a wide range of medical image understanding tasks, including disease 
medical image registration, disease diagnosis, and semantic segmentation.99,162 One 
potential advantage of vision transformers for medical image analysis is their ability to 
process images of arbitrary size without the need for resizing or cropping. This ability is 
useful as medical images often have different sizes and aspect ratios depending on the 
modality and the specifics of the imaging acquisition hardware. 

In this work, we apply deep learning to automatically quantify collateral flow during 
EVT using DSA imaging. We developed an automatic arterial input function (AIF) 
localization algorithm for DSA images and used it to estimate hemodynamic perfusion 
parameter maps. Additionally, we implemented a time-series transformer network to 
classify collateral status. We compare this algorithm to previous work and demonstrate 
improved classification performance.  
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6.2 Materials and Methods 

6.2.1 Patient Cohort 

This study was based on a retrospective, single-cohort dataset of patients with AIS 
treated with EVT at the University of California, Los Angeles between 2011 and 2021. 
EVT was conducted by neuroradiologists with more than five years of expertise. The 
study's inclusion criteria were (1) the availability of biplane projection data (lateral and 
frontal, as per mTICI scoring recommendations), (2) a minimum DSA series length of 
five frames, (3) no radiopaque foreign body projections over the middle cerebral artery 
territory, and (4) no additional pathology such as dissection, subarachnoid hemorrhage, 
or aneurysm.163 

6.2.2 Collaterals Assessment 

On baseline pretreatment DSA runs, two interventional neuroradiologists with over six 
years of post-fellowship experience assessed the collaterals using the American Society of 
Interventional and Therapeutic Neuroradiology/Society of Interventional Radiology 
(ASITN/SIR) collateral flow rating method summarized in Table 6-1.164 The clinical 
information for each case was hidden from the neuroradiologists; if there was 
disagreement about the collateral assessment, the neuroradiologists established 
consensus via discussion. Patients were divided into two groups: those with adequate 
collaterals (ASITN/SIR grades 3 and 4) and those with insufficient collaterals 
(ASITN/SIR grades 0, 1, and 2). 
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Table 6-1. ASITN/SIR collateral grading scale.  
Score Definition 

0 No presence of collaterals 
1 Slow collateral flow to the peripheral vasculature surrounding the ischemic site 
2 Rapid collaterals with persistence of some flow defects  
3 Slow but complete angiographic blood flow to the ischemic bed in later venous phase 
4 Complete and rapid collateral blood flow to the entire ischemic territory 

6.2.3 Image Acquisition and Preprocessing 

A regular timed contrast-bolus passage approach was used to generate DSA images 
using a Philips biplane. Manual injection of Omnipaque 300 was conducted at a dilution 
of 70% (30% saline) such that 10 cc of contrast was delivered intravenously at a rate of 
about 5 cm3/s. Image acquisition settings differ across individuals. Frames are acquired 
in an interleaved form at two common views in the biplane acquisition setting: coronal 
(AP) and sagittal (lateral). The image sizes were all 1024x1024, however they were 
taken with various fields of view. 

Patient images were queried from the institutional picture archiving and 
communications system (PACS). Images were converted from the Digital Imaging and 
Communications in Medicine (DICOM) to Neuroimaging Informatics Technology 
Initiative (NIFTI) formats, using series descriptions from the DICOM header to 
determine the temporal order of lateral and frontal DSA series.  

6.2.4 Perfusion Angiography Map Generation 

Five perfusion parameter maps were generated for each lateral and frontal DSA pair: 
cerebral blood flow (CBF), cerebral blood volume (CBV), time to peak (TTP), mean 
transit time (MTT), and time to maximum (Tmax). Taken together, these 
hemodynamic calculations characterize the level of perfusion or lack thereof for a time-
series image. These operations rely on the initial assumption that the signal intensity 
𝐼(𝑡) in a DSA frame is inversely proportional to the amount of contrast within that 
location. Therefore, the concentration of contrast 𝐶(𝑡) at any given pixel (𝑥, 𝑦) can be 
represented as:  
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𝐶(𝑡)(𝑥,𝑦) = 𝑘
𝐼(𝑡)(𝑥,𝑦)𝜇𝜌(𝑥,𝑦)

 

Where 𝑘 and 𝜇 represent attenuation coefficients and 𝜌(𝑥,𝑦) denotes the thickness of 

the vessel wall at that location. This was used as the tissue level concentration curve 𝐶𝑢 
at any given tissue point, as well as the AIF 𝐶𝑎. Their relationship can be represented 
as a convolution ⨂ using the transit time distribution ℎ(𝑡) of the residue function 𝑅(𝑡). 

𝐶𝑢(𝑡) =  𝐶𝑎(𝑡) ⨂ ℎ(𝑡) 

𝑅(𝑡) =  1 −  ∫ ℎ(𝜏)𝑑𝜏
𝑡

𝜏=0
 

This is reliant on localizing a region of interest (ROI) to the artery within the image 
and computing the tissue concentration curve.165 The identification of the arterial ROI 
is based on the intuition that the AIF is most clearly represented in large cerebral 
vessels because there is minimal partial volume effect from surrounding tissues.166 To 
identify the largest vessel, we utilize the heuristics that the injection will pass through 
the arterial vessel in the first half of the DSA timesteps for a given series, and that the 
vessel can be identified on the image by finding the largest single contour with high 
contrast. ROI extraction for AIF localization was automatically performed via the 
following process:  

1. Crop each video to remove border and label artifacts and remove the second half 
of timesteps (1024x1024xT à 900x900x0.5T) 

2. Perform Otsu thresholding to identify the areas of highest concentration within 
the series, then binary opening on the thresholded masks. 

3. Find the timestep with the highest amount of contrast concentration. 
4. Within this timestep frame, identify the largest single region of high contrast. 
5. Perform binary opening and region growing to generate a final ROI. 
With this ROI, the tissue concentration curve was calculated by measuring the 

average amount of contrast concentration at each given timestep. Graphical 
representations of 𝐶𝑢, 𝐶𝑎, and 𝑅(𝑡) are summarized in Figure 6-1. This average contrast 
concentration curve was then fit to a mixture gamma distribution to account for 
multiple contrast passages at any given spatial pixel (x, y). The resulting AIF function 
was used to compute the residual function and the subsequent five perfusion parameter 
maps. To generate 𝑅(𝑡) , a Toeplitz matrix was computed for the AIF sorted in 
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descending order along the timepoints. The identity of the single value decomposition 
matrix was used as 𝑅(𝑡).  

 
Figure 6-1. Relationship between concentration functions and perfusion parameters. Performing 
deconvolutions between 𝐶𝑢 and the AIF 𝐶𝑎 (top) produces residue function 𝑅(𝑡) (bottom) Cerebral blood 
volume (CBV) is calculated as the integral of the tissue concentration curve Cu, and time to peak (TTP) 
is the time taken to reach the maximum value. The cerebral blood flow (CBF) is the maximum gradient 
of 𝑅(𝑡), and time to maximum (Tmax) is the time required for 𝑅(𝑡) to reach maximum concentration. 

The resulting 𝐶𝑢 , 𝐶𝑎 , and 𝑅(𝑡)  curves were used to generate hemodynamic 
parameters; the formulae used for each can be seen in Table 6-2. Briefly, CBF was 
calculated as the peak of 𝑅(𝑡) , and CBV was calculated as the quotient of the 
concentration curve integrals. MTT is the quotient of CBV divided by CBF. Finally, 
the TTP was computed as the time when peak concentration was achieved in tissue, 
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and Tmax was determined to be the time at which the residual function reached its 
peak. 

Table 6-2. Perfusion parameter calculations. CBF, cerebral blood flow; CBV, cerebral blood volume; 
MTT, mean transit time; TTP, time to peak; Tmax, time to maximum. 
Parameter Definition Equation 

CBF 
Cerebral blood flow denoting the flux at a particular pixel; 
computed by identifying the maximum level of contrast 
identified in the residual function. 

𝑟𝐶𝐵𝐹 = max 𝑅(𝑡) 

CBV 
Amount of blood contained within a given amount of brain 
tissue; calculated via integration of concentration curves and 
typically reported as a local, relative metric. 

𝑟𝐶𝐵𝑉 = 
∫ 𝐶𝑢(𝑡)𝑑𝑡∞
𝑡=0

∫ 𝐶𝑎(𝑡)𝑑𝑡∞
𝑡=0

 

MTT 
Ratio of blood volume to blood flow; local, pixel-level metric 
that refers to the average time a red blood cell requires to 
traverse through a vessel.  

𝑀𝑇𝑇 = 𝐶𝐵𝑉
𝐶𝐵𝐹

 

TTP 
Time taken for the tissue to reach the maximum concentration 
of contrast tracer agent. Reflects the time required for the 
contrast to be delivered to the tissue; does not depend on AIF.   

𝑇𝑇𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝐶𝑢 

Tmax 
Time at which the concentration of a tracer or contrast agent 
reaches its maximum value in a particular ROI. Delay is 
associated with acute ischemic stroke infarct. 

𝑇𝑀𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑅(𝑡) 

6.2.5 Deep Learning Models 

For our subject cohort, the model task was to binarily classify collateral status. In this 
study, we utilized three different temporal models to analyze the given time series data. 
The first model was a Gated Recurrent Unit (GRU)-based encoder, which consists of 
multiple GRU layers that process temporal input data and encode it into a compact 
representation, capturing the underlying temporal dependencies in the data. The second 
model was the Video Swin Transformer, which is an extension of the Transformer 
architecture designed specifically for temporal data using non-overlapping multi-head 
self-attention. We also employed the TimeSformer architecture that leverages a 
Transformer-based encoder-decoder architecture, where the encoder processes the input 
data to extract relevant features, and the decoder uses this information to make 
predictions for future time steps.  

All three models were randomly initialized and trained for 200 epochs with preset 
hyperparameters outlined in their original publications on the first biplane pair of 
images acquired prior to the first EVT pass. For ease of training, the most lightweight 
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variation of each (i.e., that with the fewest parameters) was chosen for comparison. The 
binary classification performance was measured using five metrics: ROC-AUC, accuracy, 
sensitivity, specificity, and precision. The models were evaluated in five-fold stratified 
cross-validation. 

6.2.5.1. Gated Recurrent Unit-based Encoder 

To evaluate the temporal transformer networks for binary collateral classification, we 
generated baseline performance metrics using a method already applied to DSA 
images.159,167 Nielsen et al. proposed a spatiotemporal network to automatically score 
thrombolysis in cerebral infarction (mTICI). This model utilized both planes of the DSA 
image series as input. For each stack of a sagittal and coronal frame, the model utilized 
a pretrained EfficientNet-B0 as a feature extractor and encoder. A gated recurrent unit 
(GRU) generates frame-level predictions, which are then aggregated into a final series-
level prediction via a classification head containing swish and linear layers. A GRU is a 
type of recurrent neural network (RNN) that uses two gate mechanisms, the update 
gate and the reset gate, to regulate information flow in the network. A GRU operates on 
an input sequence 𝑥𝑡 and the hidden state ℎ𝑡−1 at the previous time step. The update 
gate 𝑧𝑡 and the reset gate 𝑟𝑡 are computed as follows: 

𝑧𝑡 =  𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 
𝑟𝑡 =  𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) 

𝑊   and 𝑈   are weight matrices, 𝑏  is a bias vector, and σ is the sigmoid activation 
function. At each step, 𝑧𝑡 determines the proportion of information to be incorporated 
from 𝑥𝑡 and 𝑟𝑡determines the proportion of information to be preserved from ℎ𝑡−1. The 
next hidden state, ℎ𝑡   is then calculated: 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡 ∗ tanh[𝑥𝑡 + 𝑈ℎ(𝑟𝑡⨀ℎ𝑡−1) + 𝑏ℎ] 
The combination of the update and reset gates enables the GRU to effectively manage 
the balance between the preservation of information from the previous hidden state and 
the incorporation of new information from the current input. 

6.2.5.2. Vision Transformers 

Two transformer-based architectures were chosen for their suitability for time-series 
data. A vision transformer architecture typically consists of multiple layers of self-
attention, which allow the model to focus on different parts of the input data at 
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different times, allowing it to effectively process input sequences of any length.92,168 An 
image is divided into a grid of small image patches, which are then treated as a 
sequence of tokens transformed into a set of "queries," "keys," and "values," which are 
used to compute the attention mechanism.90,169 These linear transformations are 
achieved through matrix multiplication. The attention mechanism itself is then 
computed using dot products between the queries, keys, and values. Specifically, the dot 
product between the query and key matrices is computed, and this is used to compute 
weights that determine how much each element of the value matrix should be weighted. 
The weighted sum of the value matrix is then computed using these weights, resulting 
in a new matrix that represents the attended-to elements of the input data. The output 
of the attention mechanism is then typically passed through a classification network, 
which outputs a final segmentation or classification. 

These models process video frames in a sequential manner, using the attention layers 
to focus on relevant parts of the frames as they progress through a sequence of data. 
Proposed by Bertasius et al., TimeSFormers involve computing global self-attention in 
the space and time dimensions in immediate series, generating three-dimensional 
embeddings that represent both dimensions.170 This divided space-time attention works 
to compute self-attention, first in the temporal dimension and then the spatial 
dimension to reduce computational complexity. The approach proceeds as follows. 
Patches are generated in the temporal dimension, creating key/query/value sets 
{𝑊𝐾𝑡𝑖𝑚𝑒

(ℓ,𝑎) , 𝑊𝑄𝑡𝑖𝑚𝑒
(ℓ,𝑎) , 𝑊𝑉 𝑡𝑖𝑚𝑒

(ℓ,𝑎) }. After linear embedding into a learnable matrix, the temporal 

self-attention 𝛼(𝑝,𝑡)
(ℓ,𝑎) can be computed for a single patch (𝑝, 𝑡): 

𝛼(𝑝,𝑡)
(ℓ,𝑎)𝑡𝑖𝑚𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

⎝
⎜⎜⎛

𝑞(𝑝,𝑡)
(ℓ,𝑎)

√𝐷
𝒜⁄

⊺

⋅ [𝑘(0,0)
(ℓ,𝑎) ⋅ {𝑘(𝑝′,𝑡′)

(ℓ,𝑎) }
𝑡′=1,…,𝑇

]
⎠
⎟⎟⎞ 

After computing self-attention for all temporal patches, the resulting attention 
vectors are fed into a multi-layer perceptron (MLP) layer to generate a new set of keys, 
queries and values for the spatial dimension {𝑊𝐾𝑠𝑝𝑎𝑐𝑒

(ℓ,𝑎) , 𝑊𝑄𝑠𝑝𝑎𝑐𝑒
(ℓ,𝑎) , 𝑊𝑉 𝑠𝑝𝑎𝑐𝑒

(ℓ,𝑎) }. In this way, 

the embeddings learned from the temporal patches are then used as patches for the self-
attention computations in the spatial dimension: 
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𝛼(𝑝,𝑡)
(ℓ,𝑎)𝑠𝑝𝑎𝑐𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

⎝
⎜⎜⎛

𝑞(𝑝,𝑡)
(ℓ,𝑎)

√𝐷
𝒜⁄

⊺

⋅ [𝑘(𝑝,𝑡)
(ℓ,𝑎) ⋅ {𝑘(𝑝′,𝑡′)

(ℓ,𝑎) }
𝑝′=1,…,𝑆

]
⎠
⎟⎟⎞ 

The resulting sequential attention embeddings are then fed into a final classification 
head to generate labels for the task of interest. This architecture carries several 
advantages over previous iterations: it can be applied to longer temporal data and is 
relatively faster than applying a space-time attention module in parallel.  

Global self-attention can be highly effective at localizing to salient regions but 
requires colossal amounts of computing time. Considering this weakness, Liu et al. 
proposed a local transformer mechanism based on the imaging-based nonlocal Swin 
Transformer,97,171 which has shown utility for several medical deep learning tasks.172–175 
The architecture works by partitioning an input into non-overlapping 3D windows, 
before applying multi-head self-attention (MSA) modules in sequence. Following a feed-
forward network consisting of two MLP layers and non-linear activation, this process 
then repeats, first merging the patches and then downsampling embeddings to create a 
new set of partitions with a shifted window. The entire network utilizes four sets of 
MSA and feed-forward networks in series, with the learned representations being fed 
into a classification head. Compared to TimeSFormers, this approach requires fewer 
attention computations and therefore requires less training time. For example, given an 
input 𝑇 × 𝑊 × 𝐻 with dimensions 8 × 8 × 8, and a window size of 4 × 4 × 4, attention 
would be computed for 2 × 2 × 2 = 8 windows; this contrasts with TimesFormer, which 
would require 8 × 2 × 2 =32 self-attention modules under the same paradigm. Video 
Swin transformers also inherently contain relative position embedding through cross-
window connections, which has been shown to improve performance on video 
classification and segmentation tasks.90,176  

6.3 Results 

6.3.1 Patient Characteristics 

A total of 122 patients were included based on treatment and imaging criteria. Clinical 
data is summarized in Table 6-3. This cohort was 59.02% female, with an average age of 
71.71 years. Median NIHSS at admission was 15. While most patients had a known 
onset time, with a median onset time of 165 minutes, about 40% of patients had an 
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unknown onset time, though they were known to be within 24 hours as is required by 
EVT inclusion criteria. One quarter of patients (31) received intravenous thrombolysis 
prior to undergoing EVT. Patients had on average 30 DSA images associated with the 
study in AP and lateral views. During the EVT procedure, 22% did not achieve 
successful recanalization, and 37% achieved successful recanalization in one attempt.  

Table 6-3. Demographic data of the patient cohort. 
 Parameter Measure (N = 122) 
ASITN/SIR Collateral Score - Good | Bad N | N 43 | 81  
Female N (%) 72 (59.02%) 
Age Mean ± SD 71.71 ± 15.18 
NIHSS Median (IQR) 15 (8-19) 
Received Intravenous thrombolysis N (%) 31 (25.41%) 
Stroke Onset Time     
Stroke onset to Image time (min) Median (IQR) 165 (120-244) 
Unknown N (%) 50 (40.98%) 
≤ 4.5 h N (%) 59 (48.36%) 
≤ 6 h N (%) 63 (51.64%) 
Thrombectomy Outcome     
Unsuccessful N (%) 27 (22.13%) 
mTICI 0 | 1 | 2a N | N | N 6 | 5 | 13 
Successful, 2+ Passes  N (%) 45 (36.89%) 
mTICI 2b | 2c | 3 N | N | N 30 | 9 | 6 
Successful, First Pass  N (%) 52 (42.62%) 
mTICI 2b | 2c | 3 N | N | N 26 | 10 | 16 

6.3.2 Hemodynamic Perfusion Parameters 

The hemodynamic estimation framework effectively processed 92% of the DSA images; 
instances were rejected during processing if there was inadequate acquisition time (i.e., 
the DSA acquisition did not cover the whole injection cycle) or insufficient number of 
frames. This workflow is visualized in Figure 6-2, and more representative patient 
images can be seen in Figure 6-3.  



89 

 
Figure 6-2. Example of a processed set of DSA images in the frontal view. The original DSA (top left) 
underwent the AIF localization method to create a ROI, seen in pink. Following this, the tissue 
concentration curve (CTC) was generated to create the arterial input function (AIF) seen in panel 3. 
From these, the CBV, CBF, Tmax, MTT, and TTP maps were generated (panels 4-8). 

6.3.3 Classification Performance 

The performance metrics of each time-series model are summarized in Table 6-4. The 
previous model tailored to DSA classification based on GRU modules achieved high 
sensitivity at the expense of specificity and precision, overall attaining moderate 
classification accuracy of  0.6927 (0.0402). In contrast, the two transformer-based 
architectures achieved better performance both with respect to overall accuracy as well 
as balanced sensitivity and specificity. In particular, the Video Swin model achieved the 
highest accuracy and ROC-AUC of 0.7507 (0.0622), and the TimeSformer achieved 
higher sensitivity of 0.7444 (0.1938) and specificity of 0.7537 (0.1885), as well as better 
precision of 0.6969 (0.1879). However, these performance metrics all had substantial 
variation across folds, preventing further statistical conclusions from being made about 
the increased performance. 
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Table 6-4. Classification performance of temporal deep learning architectures. 
 ROC-AUC Accuracy Sensitivity Specificity Precision 
Gated 
Recurrent 
Unit 

0.7286 (0.0479) 0.6927 (0.0402) 0.9333 (0.0889) 0.5684 (0.1226) 0.5429 (0.0655) 

Video Swin 
Transformer 0.7341 (0.0459) 0.7507 (0.0622) 0.7222 (0.1097) 0.7412 (0.1061) 0.6119 (0.0696) 

TimeS-
former 0.7083 (0.0287) 0.7343 (0.0382) 0.7444 (0.1938) 0.7537 (0.1885) 0.6969 (0.1879) 

Three representative patients are shown in Figure 6-3. These three images show the 
angiographic variance of patients who experience partial recanalization (mTICI 2b), as 
well as the variance in model performance. The images in Figure 6-3A are from a 
patient who was correctly classified as having bad collateral flow. The parameter maps 
produced by our method demonstrate restoration of blood flow following the successful 
EVT pass. Despite this poor compensatory flow, this patient was successfully being 
recanalized after four attempts, did not experience large infarct growth, and had a 
favorable mRS score of 4 at 90 days post-discharge. Figure 6-3B shows a case that was 
also successfully classified by all three models. Here, the perfusion parameter maps 
indicate a successful restoration of partial flow, aligning with the mTICI 2b score 
assessed by the radiologist after one attempt. The model was able to correctly classify 
this patient despite motion artifacts seen on the perfusion maps. However, the model 
was not always successful in classifying collateral flow in images with motion artifacts; 
as seen in Figure 6-3, these images were acquired from a patient with a poor collateral 
score who experienced poor outcomes. The models classified this patient as having 
strong collaterals despite motion interfering with the visualization noted by the 
neuroradiologists during assessments. It is possible that the motion artifacts in this 
image series interfered with the model’s ability to localize to areas of high contrast 
across time points. 
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Figure 6-3. Perfusion parameters maps generated from DSA images. For each patient A-C, MRI – Pre 
and MRI – Post images represent a maximum intensity projection (MIP) of series taken pre- and post-
EVT, respectively: DWI, FLAIR, Tmax, MTT, CBV, CBF, and TTP. IR – Pre and IR Post are the first 
and last biplane pair of images taken during EVT, processed to generate the perfusion maps.  
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6.4 Discussion 

We found that the perfusion parameter maps provided utility when inspecting patients 
who experienced successful recanalization during EVT but went on to have large regions 
of infarcted tissue. Qualitative inspection revealed substantial variation between 
patients who were sedated and those who were not. Among patients kept awake during 
EVT, motion sometimes degraded the images such that the vessels could not be 
visualized on the parameter maps. Motion correction algorithms could be applied to 
these images prior to inference. Recent advances in video motion correction across other 
domains could increase the quality of these images, which could benefit both the 
interventionalist during the procedure and any downstream algorithms. For example, 
work by Ueda et al. utilized a U-net based deep learning model to perform motion 
correction and remove misregistration artifacts by generating a synthetic angiogram 
from dynamic DSA images.177 Further research on the validation of perfusion 
angiography for estimation of hypoperfusion volume and degrees of 
recanalization/reperfusion during endovascular interventions would be valuable. 

Our classification experiments also found that transformers are suited to utilizing 
DSA images for classification. There have been a small number of studies using EVT-
derived DSA image series in deep learning and machine learning applications. Nielsen et 
al. developed the GRU-based network to automatically classify EVT success from DSA 
during treatment; this model achieved moderate agreement and was used as the baseline 
comparison model for this study.159 Compared to this baseline, the Video Swin 
Transformer achieved better performance and required less computation time; in 
particular, the model achieved higher accuracy and a balanced sensitivity and 
specificity. The lowered computation time can be explained by the reduction in memory 
requirements used by Swin. Many RNN-based architectures including GRU-units require 
memory gate mechanisms, which must be computed in series (rather than in parallel). 
One of the significant advantages of Transformer architectures is that self-attention 
mechanisms can be computed in parallel, which offers two benefits: parallel processing 
significantly reduces both training and inference time, and the non-recurrent nature of 
the attention mechanism allows the model to maintain encodings of all time steps 
during the computation. This design helps to prevent information loss across time steps, 
which could enhance model performance. Additionally, the transformer allows for 
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concurrent consideration of both future and past elements, combining the benefits of 
bidirectional RNNs, without incurring the additional computational cost of duplicated 
computation.  

Neuroimaging plays a crucial role in providing neurologists and 
neurointerventionalists with information for guidance in clinical decision-making for 
stroke patients. These images are used before treatment to classify the stroke, during 
treatment for decision-making and beyond the acute phase for recovery and 
management. In the past year, DSA has been used for inputs for stroke detection and 
landmark detection models.160,178 To our knowledge, our work represents the first 
attempt to automatically classify collateral flow from DSA images. While the models 
achieve moderate accuracy utilizing these DSA images as input, there is largely room for 
improvement in performance. While a model with balanced sensitivity and specificity 
may more accurately identify patients’ collateral statuses, clinical paradigms may shift 
to favor a sensitive model (identifying those with strong collaterals) or a specific one. 
The latter may be most useful when considering patients for adjuvant and/or bridging 
therapies during EVT.  

Our approach was developed with several considerations toward the eventual clinical 
use case. The models and workflows were designed to require limited processing and 
inference time, to mimic the temporal requirements of neurointerventionalists during 
EVT. Additionally, the model relies solely on DSA imaging, not utilizing clinical 
parameters or even pretreatment imaging. This was done for two reasons: to minimize 
the parameters for an input modality with high dimensionality, and to reduce reliance 
on import/export features that may not be tenable in several EVT workflows. With 
these considerations in mind, it is still possible that inference time may still be too slow 
depending on the computation resources allotted to an angiography suite.  

There are several limitations to this study. The cohort used for these models was 
small and comprised patients from one institution. This means that the results may not 
be generalizable to other populations or institutions and may not be as accurate for 
patients who do not fit the characteristics of the patients in the study. The cohort is 
inherently biased towards those who qualify for EVT, as a patient would not undergo 
vascular imaging like DSA during a stroke unless their clinical treatment plan required 
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such imaging. Finally, the motion degradation of several images limited the ability to 
evaluate this method.  

6.5 Conclusion 

Our results indicate that DSA can be used as an input modality for deep learning tasks 
to aid in EVT decision support. Future technical adaptations could include adaptive 
learning algorithms that could integrate new information as the procedure progresses. 
These algorithms could also be refined to include multi-view encodings, which explicitly 
model the spatial information extracted from frontal and lateral DSA series. From a 
clinical perspective, further study is needed to assess the utility of such algorithms and 
how they would be deployed in a clinical workflow, which may involve reader studies 
during procedural simulations.  
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CHAPTER 7 

Conclusion 

7.1 Summary of Contributions 

The objective of this dissertation was to investigate the use of imaging techniques taken 
during routine clinical diagnosis and treatment of acute ischemic stroke (AIS) to 
characterize and predict patient response to various treatment modalities. The research 
focused on developing techniques that can be easily incorporated into the workflow of 
AIS, specifically, methods that utilize inputs acquired during standard clinical diagnosis 
and treatment, do not require time-intensive manual annotation or a significant amount 
of modeling or inferential time. The technical chapters of this dissertation present four 
scientific endeavors that have been undertaken to achieve the research goal. These 
chapters detail the contributions to science that have been made through these efforts.  

In Chapter 3, we evaluated an automatic technique for determining TSS from 
imaging that does not require sub-specialist radiology expertise. Using an international 
dataset comprising patients from two institutions, we developed and externally 
evaluated a deep learning network for classifying TSS from MR images and compared 
algorithm predictions to neuroradiologist assessments of DWI-FLAIR mismatch. Models 
were trained to classify TSS within 4.5 hours and performance metrics with confidence 
intervals were reported on both internal and external evaluation sets. The deep learning 
method performed similarly to radiologists and outperformed previously reported 
methods. Our model achieved higher generalization performance on external evaluation 
datasets than the current state-of-the-art for TSS classification. This represents the 
largest evaluation of any TSS classification algorithm to date. These results demonstrate 
the potential of automatic assessment of onset time from imaging without the need for 
expertly trained radiologists. 
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In Chapter 4, we developed a novel method for detecting DWI-FLAIR mismatch in 
MRI scans of patients with AIS using TSS as a surrogate marker. The tailored semi-
supervised method was evaluated on an unseen dataset from an external institution. 
The framework was found to significantly improve the performance of the classifier in 
terms of both accuracy and model stability, and the method outperformed other state-
of-the-art semi-supervised learning methods. The findings suggest that incorporating 
proxy information within a semi-supervised learning framework can significantly 
enhance the performance. With more rigorous evaluation, this model could be  beneficial 
for AIS patients as it would provide an objective assessment of salvageable ischemic 
tissue. In the face of changing clinical guidelines, this detection model could provide 
verification of image assessments performed by neuroradiologists. 

In Chapter 5, we created and assessed algorithms for their ability to predict a 
patient’s potential response to endovascular thrombectomy (EVT). Specifically, we 
evaluated predictions of recanalization and first pass effect (FPE) from pretreatment 
imaging. We employed radiomics pipelines and deep learning networks with non-local 
and cross-attention modules to predict FPE on MR and CT imaging series. These 
results suggest that non-perfusion MRI and CT contain signals that can predict 
successful EVT FPE, and that time-consuming manual segmentation is not necessary to 
develop an automated method. This study represents the first classification of FPE from 
MRI alone and the first automated FPE classification method in CT; moreover, this 
effort is the first to evaluate prediction methods across both MRI and CT. This model 
could be useful for neurologists when deciding to perform EVT on patients when they 
are admitted for AIS.  

In Chapter 6, we assessed the potential of intra-procedural imaging to inform 
neurointerventionalist decision-making during EVT by developing visualizations and 
classification models informative to patient response. We utilize digital subtraction 
angiography (DSA) images to generate perfusion parameter maps. The distribution 
perfusion angiographic patterns following recanalization may offer additional clinical 
benefits beyond the evaluation of source angiographic images solely through visual 
assessment. We also evaluated transformer-based models for their ability to classify 
patient’s collateral flow from DSA. We demonstrated that these transformer-based 
models outperform previous temporal models applied to DSA, presenting methods to 
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rapidly quantify collaterals during EVT. These visualizations and classification models, 
taken together, supplement information gathered during EVT to provide 
neurointerventionalists with clinical biomarkers to provide the most optimal treatments 
possible to the patient in real time.  

These efforts sought to aid decision-making across a patient journey when being 
treated for AIS. The clinical use-case for each task influenced several aspects of the 
experimental design. The considerations toward minimizing time-to-treatment influenced 
the design of the models and pipelines for specific tasks. Given the low data and 
annotation paradigms faced, these approaches also demonstrated the utility of 
lightweight models with relatively small numbers of trainable parameters. We leveraged 
several common low-data techniques to improve model performance such as transfer and 
semi-supervised learning. With the former, we found that pretraining on out-of-domain 
images negatively impacted performance; in several cases, transfer learning from natural 
images (on which most off-the-shelf architectures are trained) was similar to or worse 
than random initialization. Models pretrained on medical images did improve 
performance, with the highest performance seen when a model was pretrained on 
neuroimaging datasets. We found that this only improved performance to a certain 
extent, likely due to variations in neuroimaging series used for other disease domains.  

An additional consideration was towards the training and evaluation of models for 
specific tasks. For some tasks, such as identifying patients within the thrombolytic 
treatment window, sensitivity was the preferred metric as the clinical application was to 
expand the pool of eligible patients. In contrast, when predicting successful EVT 
response, neurointerventionalists sought to focus on specificity, that is, identifying 
patients where the treatment would not be successful. This was based on the current 
treatment paradigm where those performing EVT tend to pursue treatment if inclusion 
criteria are met, and they would want a discerning predictor of unsuccessful 
recanalization. That said, evaluations placed highest emphasis on accuracy given the 
balance of labels within these tasks, both in the clinical setting and for our datasets 
specifically. Accordingly, models were trained to optimize for accuracy and ROC-AUC, 
where the evaluation focused on the specific metrics outlined by clinicians. 

A final design principle was that the model outputs needed to be readily understood 
by clinicians. We implemented several interpretability visualizations, ranging from post-
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hoc visualizations to trainable attention maps. We found that simple, singular 
visualizations proved the most utile for clinicians to accept the model predictions, rather 
than an expansive set of analyses, but that this suite of visualizations proved useful for 
dissecting model behavior during the development and evaluation phases of our study. 

Our studies demonstrated the effectiveness of lightweight models with low-data 
techniques, such as transfer and semi-supervised learning, to assist in decision-making 
during the treatment of AIS patients. We designed our models and pipelines with the 
goal of minimizing time-to-treatment in mind and optimized them to align with 
clinicians' preferred evaluation metrics. Additionally, we prioritized interpretability and 
included a range of visualization techniques to help clinicians comprehend our model 
outputs. These results show promise for enhancing the clinical management of AIS 
patients and offer a potential basis for future investigations. 

7.2 Future Work 

Machine learning has the potential to revolutionize the field of stroke management 
by providing faster, more accurate, and more efficient diagnosis and treatment of AIS. 
As machine learning algorithms continue to develop, they have the potential to 
transform the field of stroke imaging by enabling more precise and personalized 
diagnosis and treatment. With the ability to process vast amounts of data quickly and 
accurately, these algorithms can identify stroke patterns that may be difficult for human 
observers to detect.  

The primary research questions put forth in this study provided preliminary data 
supporting the use of imaging biomarkers for stroke triage and treatment decision-
making. There were several barriers encountered that provide the foundation for future 
study. First, the small amount of data that was able to be collected limited the ability 
to provide more granular model outputs; all of the tasks were trained for binary 
classification or prediction. For example, the potential extension of the time clock 
window for thrombolytic treatment is currently under active study through clinical 
trials, and thus, a model that could more effectively delineate between patients that are 
within three to 4.5 hours of onset vs. patients within 4.5 to six hours of onset could 
provide clinicians with information about their eligibility for treatment. In a similar 
vein, being able to discretely predict if a patient will experience unsuccessful 
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recanalization, successful recanalization in several attempts, or first pass effect could 
inform either the neurointerventionalist’s decision to perform EVT or other treatment. 
Larger datasets spanning multiple institutions with annotations from several experts 
could enable these types of predictions, as the current datasets were too small to achieve 
model stability on such tasks.  

Beyond label granularity, there are remaining questions about the utility of imaging 
biomarkers in conjunction with other standard clinical data. The technical 
advancements in the broader fields of machine and deep learning provide ample fodder 
for technological innovation, leveraging techniques most suited to medical data or 
clinical tasks. For example, the nascent field of modality fusion in deep learning refers to 
the integration of multiple data sources or modalities into a single model for better 
performance. For clinical tasks, different modalities such as imaging, molecular, and 
activity tracking data can provide complementary information that can improve the 
accuracy of diagnosis and treatment planning. Modality fusion in deep learning has the 
potential to enhance the effectiveness of medical imaging by combining information from 
multiple modalities to create a more comprehensive representation of the underlying 
anatomy or pathology. One promising approach is the use of machine learning to 
analyze pathology data from the retrieved clot, which can provide valuable information 
about the underlying cause of the stroke. By accurately identifying the underlying cause 
of the stroke, clinicians can choose appropriate treatments that are targeted to the 
specific subtype. Additionally, AI can be used to monitor and manage stroke patients 
after treatment. AI algorithms can analyze patient data, such as vital signs and 
medication adherence, and identify patients who are at high risk of complications or 
readmission. This information can be used to guide follow-up care and reduce the risk of 
adverse events. 

This dissertation focused on augmenting certain decision points in the patient 
workflow, but there are several potential research questions at other decision points 
both within and beyond the acute setting. For example, the use of imaging algorithms 
for prehospital detection and characterization of AIS is a promising approach for early 
triage and treatment planning. Recent work in AI for prehospital detection of stroke has 
focused on developing machine learning algorithms that can accurately and rapidly 
identify potential stroke patients based on prehospital data such as vital signs, 
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symptoms, and medical history. In particular, the use of portable imaging units can 
provide imaging at the site of discovery. These algorithms can be used to alert clinicians 
and emergency responders of a potential stroke patient before they arrive at the 
hospital, enabling them to prepare for the patient's arrival and provide timely and 
appropriate care. Rapid inference machine learning algorithms could identify EVT 
candidates for prehospital providers, thereby enabling more efficient routing to primary 
stroke centers and reducing time to treatment. There is also potential in utilizing 
imaging and other biomarker data to model long term outcomes. Once treated, AIS 
patients are at risk of not experiencing full functional recovery or experiencing a 
recurrent stroke within a year of their original incident. The mechanisms informing 
these kinds of responses remain unclear and should be an active field of study moving 
forward. Research questions include further elucidating the relationship between time 
clock and tissue clock to rapidly identify salvageable penumbral tissue in order to more 
rapidly route patients to facilities that can perform EVT. An additional mechanism 
worth further analysis is the reperfusion of tissue following recanalization. Up to 15% of 
patients do not experience restoration of oxygen to ischemic areas following treatment 
despite removal dissolution of clot thrombi. Understanding the biochemical and 
pathological changes in vessel architecture and inflammatory responses that could lead 
to this phenomenon could pave the path forward to algorithms that predict the 
likelihood of this and other complications that may preclude invasive treatments such as 
EVT.  

While there have been many promising developments in this field, the vast majority 
of studies and efforts (including those described in this dissertation) have been single 
pilot studies with small sample sizes. This has been a common issue in many fields of AI 
and machine learning, where the results of initial studies may not necessarily generalize 
well to larger and more diverse datasets. It is crucial to evaluate the performance of 
these methods in large, multi-center studies with diverse patient populations. Such 
studies can provide a more robust evaluation of the effectiveness and generalizability of 
machine learning methods across different medical settings and patient populations. The 
lack of standardized reporting makes it difficult to compare and evaluate the 
performance of different models, which can hinder the adoption and development of AI 
in various fields. Due to growing recognition of the need for standardized reporting of AI 
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models in scientific publications, several initiatives have been launched to establish 
reporting standards such PRISM for diagnostic tests, CONSORT for clinical trials, and 
TRIPOD for diagnosis and prognosis. These efforts have created checklists of items that 
should be reported in scientific publications, such as the study design, the patient 
population, the reference standard used, and the statistical methods used to evaluate the 
model's performance. These initiatives aim to promote transparency, reproducibility, 
and comparability of AI and machine learning studies; many journal publications now 
require self-reporting of the applicable checklist. In theory, these checklists will enable 
secondary analyses about the applicability of such models beyond the initial 
development and evaluation contexts. 

Deploying ML algorithms in the healthcare setting can be challenging due to several 
barriers. One of the main barriers is the need for large amounts of high-quality data to 
train and validate ML models. To achieve high performance, ML models need to be 
trained on large, diverse, and representative datasets that accurately reflect the 
population of patients for which the model will be used. ML models that perform well 
on small, homogeneous datasets may not perform well on larger, more diverse datasets. 
This is because the models may not be able to generalize to new patients or may be 
biased towards certain subgroups of patients. Therefore, it is important to evaluate ML 
models on large, diverse, and representative datasets that accurately reflect the 
population of patients for which the model will be used. Complicating this is the fact 
that healthcare data is often siloed and not easily accessible, making it difficult to 
obtain the large amounts of data needed to train and validate ML models. Privacy and 
security concerns also pose a significant challenge in the deployment of ML algorithms 
in healthcare as the data contains sensitive information about patients. 

Additionally, the algorithms must be designed to integrate into existing clinical 
workflows and infrastructure, which can be complex and time-consuming. Furthermore, 
the performance of the algorithms must be rigorously tested and validated to ensure 
that they are accurate, reliable, and generalizable. Ethical challenges are related to the 
use of machine learning algorithms in medical decision-making. For example, there may 
be concerns about the potential for bias in the algorithms, particularly if they are 
trained on data that is not representative of the patient population being served. There 
may be concerns about the potential for the algorithms to be used to automate decisions 
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that should be made by human physicians, or about the potential for the algorithms to 
be misused or abused. Regulatory challenges include ensuring that the algorithms are 
developed and validated in accordance with relevant regulations and guidelines, 
obtaining appropriate approvals and certifications, and addressing issues related to data 
privacy and security. 

Despite these challenges, the potential benefits of using machine learning in stroke 
imaging are immense. Machine learning has the potential to reduce physician workload 
by automating many of the tedious and time-consuming tasks associated with stroke 
imaging, such as image processing and analysis. This can free up physicians to focus on 
more complex and nuanced aspects of stroke diagnosis and treatment, improving the 
quality of care that they are able to provide. Moreover, machine learning has the 
potential to improve patient outcomes by enabling earlier and more accurate diagnosis 
of stroke, which can be critical for successful treatment. By providing more personalized 
treatment plans based on patient data, machine learning can also help to improve 
treatment outcomes and reduce the risk of complications.  
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