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Inferring knowledge of properties from judgments of similarity
and argument strength

Sean Stromsten (sean s@mit.edu)
Department of Brain and Cognitive Sciences

Massachusetts Institute of Technology
Cambridge, MA 02139-4307 USA

Abstract

Psychological similarity has been invoked to ex-
plain many phenomena, including judgments of
the strength of inductive arguments (Osherson et
al., 1990). The present work follows the sugges-
tion of Tenenbaum and Griffiths (2001) that judg-
ments of similarity and judgments of argument
strength cohere because they are essentially judg-
ments of the same kind, which consult the same
knowledge of properties of objects or classes. I
work backward from people’s judgments of argu-
ment strength and similarity to the knowledge of
properties–specifically, knowledge of probable prop-
erty extensions–that might explain the coherence
among those judgments. I show that the knowl-
edge inferred can be used to predict other such judg-
ments. I then examine this knowledge for structural
properties such as taxonomic organization.

Induction, or generalization from examples, is a
central cognitive capacity in need of two kinds of ex-
planation: (1) What representations and processes
underly induction? (2) Why do we have those repre-
sentations, and carry out those processes? That is,
to the degree that they work, what relation to right
reason explains their success? I focus here on the
second question, and with respect to just one much-
studied inductive task, category-based induction.

To illustrate this task, consider the following in-
ductive argument (after Osherson, et al. , 1990)

Chimpanzees require biotin for hemoglobin synthesis.
Gorillas require biotin for hemoglobin synthesis.

Mammals require biotin for hemoglobin synthesis. (1)

Horizontal lines separate conclusions from their
premises. The premises assert facts about categories
of objects, and the conclusions do not (in general)
follow deductively.

Osherson et al. collected extensive judgments of
the strength of such arguments–that is, the sub-
jective probability of the conclusions, given the
premises. The arguments contained various mix-
tures of ten species of mammals in the premises,
but all conclusions were about either ‘horses’ or ‘all
mammals’ (the set of all mammals is approximated,

in all models discussed here, by the set of ten mam-
mals used in the arguments)1.

In order to study argument strength, rather than
particular knowledge of predicates, the premises
and conclusion assert so-called ‘blank’ predicates of
species, about which experimental participants will
not have direct knowledge. The biological sound of
the predicates, and the fact that they are asserted
to be true of all members of one or more species, are
clues that they are biological properties. The inten-
tion, then, is that participants have no choice but to
fall back on categorical biological knowledge.

Osherson et al. propose the similarity-coverage
model, which predicts the judged strength of these
arguments as a function of judgments of pairwise
similarity among the species of animals in them. The
strength g(X, Y ) of a conclusion, according to this
model, is a weighted sum of (1) the similarity of
the premise categories X to the conclusion category
Y , and (2) the degree to which the diversity of the
premise categories ‘covers’ the lowest superordinate
category S including both the premise categories and
the conclusion category:

g(X, Y ) =
α max

i
sim(Xi, Y ) +

(1− α)
∑

j

max
i

sim(Xi, Sj).

1In what follows, in addition to the 81 judgments
studied by Osherson et al. , I use data on 28 addi-
tional judgments, collected by Sanjana and Tenenbaum
(2003). They designed these additional generalization
judgments to demonstrate effects which their Bayesian
model could explain, but which the Osherson et al. model
could not. Again, ‘horse’ was the only species in the con-
clusions. The innovation was repeated examples of the
same species, which required a cover story that makes
such examples reasonable. Participants observed a set
of example animals–individual animals–with a particu-
lar disease, and were then asked to judge the probability
that horses could get the disease. Trusting that par-
ticipants assume that disease susceptibility is a species
property, I aggregate these data with the Osherson et al.
data.
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Osherson et al. test their model against a number
of robust qualitative patterns in the way the plau-
sibilities people assign to such arguments relate to
the similarities of the categories used. A few exam-
ples of these patterns will illustrate the utility of the
similarity and coverage terms. The argument

Chimpanzees require biotin for hemoglobin synthesis.

Gorillas require biotin for hemoglobin synthesis. (2)

is stronger than the argument

Chimpanzees require biotin for hemoglobin synthesis.

Dolphins require biotin for hemoglobin synthesis. (3)

because gorillas are more like chimpanzees than dol-
phins are. The argument

Chimpanzees require biotin for hemoglobin synthesis.
Dolphins require biotin for hemoglobin synthesis.

Mammals require biotin for hemoglobin synthesis. (4)

is stronger than argument (1), which may be ex-
plained by the greater ‘coverage’ of the set of mam-
mals by ‘chimpanzees and dolphins’ than by ‘chim-
panzees and gorillas’.

It may strike the reader that these intuitions re-
quire more than purely psychological, ad hoc expla-
nations, for surely they are correct. If so, they re-
quire normative (Bayesian) explanation. This point
has been addressed by several authors, beginning
with Heit (1998).

There are a number of other reasons for dissat-
isfaction with an explanation of judgments of argu-
ment strength in terms of judgments of similarity,
having nothing to do with the degree of predictive
success of the similarity-coverage model. The most
obvious, perhaps, is that similarity and argument
strength are judgments of equal status, equally in
need of explanation. Another objection is that the
judged similarity of x to y is not a stable, context-
free property of the pair (Tversky, 1977). If judg-
ments of similarity must be computed on-the-fly,
as judgments of the strength of arguments presum-
ably are, then whatever knowledge is consulted when
computing similarities could be consulted when com-
puting argument strengths, without computing sim-
ilarity as an intermediary. This is, in essence, the
kind of explanation proposed in the Bayesian mod-
els of Sanjana and Tenenbaum (2003) and Kemp and
Tenenbaum (2003). For purposes of direct compar-
ison, they predicted argument strengths from simi-
larities, just as Osherson, et al. did, but did so by
way of inferring taxonomic knowledge presumed to
underly both similarity and argument strength judg-
ments.

Bayesian generalization
Before discussing the details of particular proposals,
I will briefly review the notion of category-based in-
duction as Bayesian generalization, as formulated by
Tenenbaum and colleagues. We assume that:

• The premise categories are random samples from
the set c of categories having the target ‘blank’
property.

• Prior to receipt of any examples, the generalizer
has a hypothesis space H, where each hypothesis
h ∈ H is a possible extension for the target prop-
erty. The generalizer also has a probability distri-
bution over H, which represents the prior degree
of belief that each candidate is the extension of
the target property. This prior distribution may
itself be sensitive to (conditional on) other infor-
mation, for instance, about the kind of property
being generalized.

The probability that a category y is a member
of the set c, given a set of n examples x drawn at
random from c , can be found by summing over hy-
potheses:

P (y ∈ c|x ∼ c, ξ) =∑
h

P (y ∈ c|c = h)P (c = h|x ∼ c, ξ).

Here x ∼ c means that the examples x are random
draws from c, and ξ represents background informa-
tion. The first term is 1 if y ∈ h, and 0 otherwise.
The second term can be re-written in an enlighten-
ing form by Bayes rule:

P (y ∈ c|x ∼ c, ξ) =∑
h3y P (x ∼ c|c = h)P (c = h|ξ)∑
h′ P (x ∼ c|c = h′)P (c = h′|ξ)

.

The terms P (x ∼ c|c = h) represent the prob-
ability of seeing just the examples x in n draws
from h. Assuming that items in h are drawn with
equal probability, then the probability of drawing
any particular item in a single draw is 1/|h|. Then
P (x ∼ c|c = h) is |h|−n, if h contains all the exam-
ples in x, and zero otherwise. The likelihood term
P (x ∼ c|c = h) depends only on the examples and
the contents of h, so we see now that ξ represents
information we may have, prior to seeing the exam-
ples, about the probability of the various possible
extensions. In what follows, I suppress this term to
make the notation simpler.
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Further abbreviating P (c = h) to P (h), we can
re-write the above as

P (y ∈ c|x ∼ c) =

∑
h⊃y∪x |h|−nP (h)∑
h′⊃x |h′|−nP (h′)

. (1)

Note that the sum in the denominator can be bro-
ken into two sums: one is the same as that in the
numerator, and the other is over those hypotheses
that contain the x but not y. Generalization, then,
depends on two weighted sums: one over the prop-
erties common to both x and y, and another over
those distinctive to x. Each summand is weighted
by both its prior plausibility and its likelihood or
‘fit’ to the examples.

The two terms have different jobs to do. The fit
for extension h–that is, |h|−n–gives an advantage to
smaller extensions, which is exponential in the num-
ber of examples. Without a likelihood term sensi-
tive to the number of examples, we miss an impor-
tant phenomenon: given that examples are consis-
tent with two extensions, increasing the number of
examples ought to shift weight to the more specific
extension. For instance, suppose our prior gives high
weight to the classes ‘mammal’ and ‘rodent’. Then,
given ‘mouse’ as an example of a species with prop-
erty P , either class is quite plausible. But adding
the further examples ‘gerbil’ and ‘hamster’ ought,
intuitively, to give a strong advantage to ‘rodent’,
because the selection of three rodents from the larger
class is highly coincidental. The likelihood term cap-
tures this focusing effect.

Without prior preferences for some extensions
over others, the likelihood or ‘fit’ term will always
favor the extension consisting of just the examples,
and will have no preference among larger extensions
of the same size. For example, given ‘mouse’ and
‘gerbil’ as examples of species with some property,
generalization to ‘turtle’ will be just as strong as
that to ‘hamster’. A prior favoring the natural class
‘rodents’ over ‘rodents minus hamsters, plus turtles’
prevents this bizarre behavior.

Similarity as a function of generalization
probabilities Tenenbaum and Griffiths (2001)
have argued that the similarity of x to y is a func-
tion of the probability of generalizing from x to y, or
vice-versa, or both. This move gives the infamously
slippery notion of similarity some solid footing on
the ground of reason, because generalization has a
normative foundation in Bayesian statistics. They
also show how this view rationalizes earlier work on
formalizing similarity and generalization.

For present purposes, we need not delve deeply
into the question of just how generalization proba-

bilities determine similarities. I assume, as Osherson
et al. do, that similarity is symmetrical, and, further,
that it has this particularly simple form:

sim(x, y) ≡ (2)
P (y ∈ c|x ∼ c) + P (x ∈ c|y ∼ c)

2
.

Intuitively, this definition says that two items are
similar to the degree that one is likely to have a
property that the other exemplifies.

Previous work on Bayesian modeling of
category-based induction
Various restrictions on the form of the prior could be
entertained. For instance, each species might corre-
spond to a location in a low-dimensional Euclidean
‘psychological space’, with higher priors assigned to
sets contained by convex or connected regions. The
restricted families of priors investigated by Tenen-
baum and colleagues are based on binary trees, with
species at the leaves. The sets with highest priors
are those corresponding to single subtrees, but some
probability is assigned to sets picked out by multi-
ple subtrees. Sanjana and Tenenbaum use a generic
method for assigning probabilities to disjunctions of
a basis set of hypotheses (in this case, single sub-
trees), while Kemp and Tenenbaum define a simple
‘mutation’ process that can generate arbitrary hy-
potheses, but assigns lower probability to those that
require many mutations, or mutations over short
branches.

The proponents of these tree-based priors stress
that taxonomic trees are not just another restricted
family of priors; they are also an independently-
motivated theory of the domain. People around
the world seem to organize creatures into ‘folk tax-
onomies’ (Atran, 1995), and the geneology of species
does, indeed, form a tree. This kind of theory may
be applicable in domains besides biology: even arti-
fact kinds are often the result of a process of copying
and modifying earlier designs.

One obvious way to compare various proposed
families of priors is to compare predictive accura-
cies: fit the parameters (for instance, the locations
of the points in a metric-space model, or the topol-
ogy and branch lengths of a tree) to subsets of the
judgments and see how well each model predicts the
rest.

Rather than competing with previous models on
data fit, I take a complementary, ‘empirical Bayes’
approach (see, for instance, Gelman, et al. , 1995):
I place no constraints on the form of the prior, find
priors that do a good job predicting the data, and
then examine those priors for structural properties.
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This strategy has an obvious pitfall: an unre-
stricted search for a prior that makes the data prob-
able may over-fit the accidental properties of the
training data, especially, as in this case, when there
are many more parameters than data points. Before
examining the prior for interesting structural prop-
erties, therefore, I demonstrate that the model is not
over-fitting so badly as to be uninformative.

Computing a prior from judgments
For any given hypothesis space and prior, Bayesian
generalization yields point estimates for a set of sim-
ilarities and/or argument strengths. To accommo-
date noisy human data, I take these point estimates
to be central tendencies.

In what follows, I refer to the model’s prediction
of the ith judgment, given a prior, θ, as jm

i (θ) (this
is given by either equation 1 or equation 2, above).
The actual human judgment I denote jh

i . A simple
noise model that respects the constraint that both
generalization probabilities and similarities must be
between 0 and 1 assumes that

log

(
jh
i

1− jh
i

)
∼ N

(
log

(
jh
i

1− jh
i

)
, σ2

)
.

In words, we apply a transform to each model pre-
diction that may (conveniently) take on any real
value, and assume that the similarly-transformed
human judgment is normally distributed around this
transformed prediction.

A bit of work (omitted here) reveals that the log-
likelihood (up to an additive constant) of a set of
judgments j is

P (j|θ) = (3)∑
i

log
(

jh
i

1− jh
i

+
1− jh

i

jh
i

+ 2
)

+

1
2σ2

(
log

(
jh
i

1− jh
i

)
− log

(
jm
i (θ)

1− jm
i (θ)

))2

.

The log likelihood of a set of judgments has a com-
plicated but readily-computed gradient with respect
to the prior, involving only the second term in equa-
tion 3, which can therefore be optimized by off-the-
shelf techniques. I used the method of conjugate
gradients, stopping whenever several iterations pro-
duced less than a set increase in the log likelihood of
the training data. The model was parameterized by
‘soft-max’ parameters z, where the prior probability
of extension i is given by θi = ezi∑

j ezj . On each run,
the z were randomly initialized such that the θ were
nearly uniform.

proportion correlations of model
used in training and data on remaining
args sims arguments similarities
0 1 .50±.026 n. a.
1 0 n. a. .88±.006
0.5 0.5 .61±.029 .77±.033
0.9 0.9 .80±.026 .72±.104
0 0.5 .29±.046 .60±.064
0.5 0 .54±.030 .67±.043
0 0.9 .41±.033 .79±.084
0.9 0 .67±.038 .82±.018

Table 1: Predictions of held-out data given various
training data. All rows show averages of ten runs,
with associated standard errors.

Predicting held-out judgments

Remarkably, this rather lavishly parameterized
model does a reasonable job of predicting randomly
held-out judgments when fit to the rest.

Tuned to the judgments of argument strength,
the model’s predictions of pair-wise similarity agree
strongly with the actual judgments, approaching a
correlation of 0.9. A number of experiments, us-
ing various proportions of each kind of judgment as
training data, are reported in table 1.

This model does relatively poorly on the task that
has been the focus of the previous work–predicting
the argument strengths, given the similarities. A
possible explanation for the deficit relative to the
other published fits is that the assumptions about
the form of the prior made explicitly by using a
tree with mutations (and perhaps implicitly in the
similarity-coverage model) are essentially correct, in
which case opening up the space of priors, as I have
done, can only reduce predictive accuracy. As fur-
ther evidence of over-fitting, early stopping would
usually have yielded better predictions, although I
could not find a single stopping rule that consistently
did so.

Given these results, we can expect that the pri-
ors converged to will reflect both the underlying
structure of people’s knowledge and, to some de-
gree, peculiarities of the data set fit by the over-
parameterized model. In the next section, I examine
the priors converged on for taxonomic structure.

The ‘shape’ of the prior

For the purpose of examining the structure of the
prior that best explains the data, I focus on results
obtained by optimizing the prior over the entire set
of judgments.

If we examine the hypotheses with highest priors,
certain patterns can be found by eye or statistical
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test. Table 2 lists the 10 sets with the highest aver-
age prior probability in a typical optimization run.

If the most probable sets are those correspond-
ing to sub-trees of a taxonomic tree, then we should
expect that most pairs of such sets will obey taxo-
nomic constraints: either one will contain the other,
or they will be disjoint. There are a suspiciously
large number of these containment relations among
the top-ranked sets–randomly generated collections
of sets have as many containment relations between
pairs as the top-ranked 100 sets only about 40 out
of 1000 times. There is an even more extreme num-
ber of disjoint pairs–exceeded not even once in 1000
random sets. Forcing the random sets to match the
top-ranked 100 in number of members makes no dif-
ference to these results.

However, there are also quite a few partially over-
lapping sets, which is not what we would expect
from a single, strictly-observed tree. The overlap
is notably non-arbitrary, however. For instance, the
sets ‘chimp, gorilla, mouse, squirrel’, ‘chimp, gorilla,
dolphin, seal’, and ‘mouse, squirrel, dolphin, seal’
are composed of just the three pair ‘dolphin, seal’,
‘chimp, gorilla’, and ‘mouse, squirrel’ (‘Mouse, squir-
rel’ is not shown here, but ranked 14th in this solu-
tion. ‘Horse, cow’, another pair one might expect, is
not far behind.).

What this might point to is a ‘mutation’ pro-
cess, as suggested by Kemp and Tenenbaum (2003).
While there are sets above that could only be ex-
plained by mutations, if a single tree is assumed,
they seem to be restricted to cases where the mu-
tations could occur over relatively long branches;
members of the very short subtrees, such as ‘dol-
phin, seal’, seem to be present or absent in tandem,
as predicted by the mutation process.

Another possibility is that the prior reflects uncer-
tainty over several taxonomies. Uncertainty about
just which taxonomy to consult may be of two kinds:
uncertainty about which taxonomy is correct ; and
uncertainty about which taxonomy is relevant to the
property under consideration. The first is a com-
monplace of probabilistic modeling, and quite intu-
itively understandable, in this case. If I perform
bottom-up, agglomerative clustering by eye, using
the two-dimensional multidimensional scaling solu-
tion in figure 1, I come up with the tree topology
used in both the Sanjana and Tenenbaum and the
Kemp and Tenenbaum papers. But only the lowest-
level clusterings are obvious. Is the ‘seal, dolphin’
cluster closer to the ‘gorilla, chimp’ cluster than the
‘mouse, squirrel’ cluster is? It is hard to tell.

The second kind of uncertainty is about which of
several trees is relevant. Even if some properties are

sealdolphin

gorilla
chimp

squirrel
mouse

cow
horse

rhino
elephant

Figure 1: A two-dimensional MDS solution for the
similarities of the ten mammals (Euclidean metric,
variance accounted for = .81)

distributed according to a particular tree/mutation
process, others are likely not to be. This is true
even if we restrict attention to biological properties
of the kind that are likely to be universal across a
species (and which therefore are sensible fodder for
the kinds of judgments we consider here). ‘Deep’
biological properties, such as having a certain or-
gan or metabolic process, are quite likely to respect
the ‘tree of life’–that representing the genealogy of
species. The distribution of other species properties,
such as what and how members eat, may be quite
random with respect to this tree, but might still re-
spect a different tree.

How might people come to have these
priors?

I proceeded above with no constraints on the form of
the prior over possible extensions of a new predicate.
People or machines asked to make these judgments,
however, have no such luxury. They must assume
that the extension of the new predicate is systemat-
ically related to some known predicate or predicates
(and, more generally, that predicates are likely to
have systematically related extensions), or have no
basis for generalization.

In addition to positing coherence among new
properties and old ones, real learners must learn
from the kind of data available in the real world.
Similarity-like data may sometimes be available, but
they are not necessary; people can observe objects
and their properties–for instance, that cows, horses,
elephants and rhinos all eat grass. Lists of such
properties are standard fodder for machine-learning
methods, including agglomerative clustering or more
sophisticated tree-finding methods. Several strate-
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rank contents
1 horse cow chimp gorilla mouse squirrel dolphin seal elephant rhino
2 dolphin seal
3 chimp gorilla mouse squirrel
4 mouse squirrel dolphin
5 chimp gorilla dolphin seal
6 horse cow gorilla squirrel elephant rhino
7 mouse squirrel dolphin seal
8 horse cow chimp gorilla mouse squirrel elephant rhino
9 chimp gorilla
10 horse cow rhino

Table 2: The 10 sets with the highest prior probability, on a single optimization over all judgments. There
are many instances of nesting, but they are not strictly compatible with any single taxonomic tree.

gies of tree-learning from such data have been ap-
plied to a number of standard machine-learning
datasets in Kemp et al. (2003).

Summary and discussion

I have suggested a novel technique of general utility
for fitting a Bayesian model to a set of judgments. I
applied this technique to a large collection of human
judgments. Without imposing a taxonomic form on
the prior, the prior of a Bayesian model optimized to
fit human judgments nevertheless shows significant
conformity to taxonomic constraints. It seems that
either participants have a bias, in the domain of ani-
mals, toward priors that respect the taxonomic con-
straints, or the raw facts about mammals have this
structure (which would, in turn, justify a taxonomic
bias).

The technique is not limited to the case of a struc-
tureless prior over a small set of possible extensions.
Any prior that has tractable derivatives with respect
to its parameters could be so optimized. In the case
of a larger number of categories, whose power set is
too large for enumeration, an approximate gradient
could be computed using a sample from the current
estimate of the prior.

A principled alternative to using held-out data
to check models, and to using null-distribution hy-
pothesis tests to look for structure in the prior, is
Bayesian model comparison: compare the marginal
likelihoods of various structures. For most interest-
ing structure classes, the sums or integrals involved
are intractable, but they can be approximated by
Markov Chain Monte Carlo or other methods.
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