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by, e.g. testing for differential expression on a gene-by-gene
basis via a two-sample (-test not assuming equal variances.
However, one may soon find oneself left with few significant
differences after compensating for hundreds or thousands of
multiple tests. Should one wish to 'borrow' power for testing
from other genes by using an ANOVA model, non-constancy
of variance quickly becomes an obstacle.

A common approach for determining differential expres-
sion is to examine the ratio ZT /zc, or its logarithm In(ZT /zc).
However, Durbin et al. (2002) show that In(z) has a greatly
inflated variance for IL close to O. Due to this non-constancy
of variance, a log ratio that is statistically significant for one
pair of true expression values (IL T, ILC) may not be signific-
ant for a different pair of values, even if the log ratio itself
remains the same. Therefore, log ratios do not appear to
provide an optimal means of determining differential expres-
sion. Extending previous work on one-color arrays (Rocke
and Durbin, 2003), we present three different families of
transformations as alternatives to log ratios.

ABSTRACT
Motivation: Authors of several recent papers have independ-

ently introduced a family of transformations (tlr,e generalized-

log family), which stabilizes the variance of microarray data

up to the first order. However, for data from nvo-color arrays,

tests for differential expression may require that the variance of

the difference of transformed observations be 'constant, rather

than that of the transformed observations themselves.

Results: We introduce a transformation within l:he generalized-

log family which stabilizes, to the first order, the variance of

the difference of transformed observations. WI~ also introduce

transformations from the 'started-log' and I,og-linear-hybrid

families which provide good approximate variance stabiliza-

tion of differences. Examples using control-control data show

that any of these transformations may provid.~ sufficient vari-

ance stabilization for practical applications, and all perform

well compared to log ratios.

Contact: bpdurbin@ucdavis.edu

1 INTRODUCTION
A number of recent papers have addressed the importance of
constant variance in the analysis of gene-expression micro-
array data (Durbin et al., 2002; Huber et al., 2002; Munson,
2001; Hawkins, 2001; Rocke and Durbin, 2003). These
authors have generally approached variance stabilization in
the context of one-color arrays or a single chalmel from a two-
color array. However, variance stabilization is also crucial for
comparison of pairs of samples from two-color microarrays.
Because two observations from the same spot on a two-color
array will be correlated, techniques intended for statistically
independent data (such as for comparison of one-color arrays)
will not always apply in the two-color case.

A key purpose of a two-color microarra:y experiment is
the comparison of two samples in order to determine which
genes are differentially expressed. As with many statistical
techniques, hypothesis tests for differential expression may
be more effectively performed on data that have been trans-
formed so that they have constant variance. Of course, one
could attempt to circumvent the issue of non-constant variance

2 THE TWO-COMPONENT ERROR MODE:L
FOR TWO-COLOR ARRAYS

Our choice oftransfonnation in each family will be motivated
by a model describing the variance-<:ovariance structure of a
pair of observations from the same spot on a two-color array.
This error structure can be modeled by an extended version of
the two-component error model of Rocke and Durbin (2001).
Now, in a two-color microarray experiment, mRNA from two
different biological samples is reverse-transcribed and labeled
with two different fluorescent dyes, usually Cy3 and Cy5. The
two samples are then hybridized to the same spotted cDNA
array, resulting in two correlated measurements for each spot.
This correlation requires the case of two-color arrays to be
treated differently from, say, data from a pair of one-color

arrays.
Rocke and Durbin (200 I) model this pair of treatment and

control observations for a single spot as

(1)
'To whom correspondence should be addressed.

YT = aT + JLTe'1s+//T +SS + ST.

YC = aC + JLce//s+'1C + Ss + Sc.
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where Yr and Yc are the raw signal intensities for the control
and treatment samples, respectively, J.Lr and IllC are the true
expression levels of the gene in question, TIS and ES are spot-
specific multiplicative and additive error terms shared by Yr
and Yc, and Tlr, 1/C, Er and EC are multiplicative and additive
error terms unique to control and treatment. Each error term is
assumed to have mean 0 and to be stochastically independent
from the others, with its own variance.

For the purposes of the following discussion, it will be
more convenient to work with Zr and Zc ~lther than with
Yr and Yc, where Zr = Yr -aT. This prestlntes that suffi-

cient background correction and normalization have already
been applied to the data so that, foru'lc' U'lT aI1ld U'l5 all small,
E(zr )';'J.L rand E(zc ),;,J.Lc. Preprocessing of1he data prior to
transformation should be limited to addition or subtraction of
constants, as other changes have the potential to obscure the
variance structure of the data. I

in the null case, i.e. no differential expression. Therefore, for
each of these families of transformations we will focus on the
behavior ofVar[tJ.h(ZT,zc)] when JLT = JLC = JL.

The approximate variance of tJ.hA(ZT,ZC) for an unspe-
cified parameter A may be determined using the mul-
tivariate delta method. We may approximate the variance
of tJ.hA (ZT, zc) by taking its first-Taylor expansion and
evaluating the variance of the expansion. However, since
tJ.hA(ZT, ZC) is a function of the six independent random vari-
ables rJs, I7T, rJc, ES, ET and EC, we use an expansion in
six variables rather than one, as would be the case with the
univariate delta method. [The interested reader is referred to
Chapter 7 of Ferguson (1996) for details.]

Once we have calculated the delta-method variance, ~'e may
solve for lambda such that AV/lC=/lT=/l[tJ.hA(ZT,ZC).! does
not vary with JL, adopting the notation AV(X) to denote the
delta-method approximated variance of a random variable X.

Using this technique we find that

JL2(0"2 + 0"2 ) + 0"2 + 0"2
AV[tJ.hA(ZT,ZC)] = liT IIc ET EC (3)

IL2 + A

3 THE GENERALIZED-LOG
TRANSFORMATION

Durbin et al. (2002), Huber et al. (2002) and ]Munson (2001)
independently introduced the application to gene-expression
microarray data of a transformation that stabilizes, to the first
order, the variance of a random variable z satisfying

Var(z) = a2 + b2J1,2,

where J1, = E(z). (By 'to the first order' we mean that the first-
order Taylor expansion of the function has constant variance
not depending on J1,.) This transformation maLY be written in
several equivalent forms but we will use

I r::;-:-;-'
z + v z2 + AO

hAo = In I (2)2

At 11. = 0 this becomes (U;T + U;c)/A, and as 11. -+ 00,

AV[Ah).(zr,zc)] -+ U;T + u;c'

If the variance is to be constant, at the very least it should be
equal at 11. = 0 and as 11. -+ 00. Setting

2 2
UET+UEC 2 + 2=U U

A 1/T 1/c'

and solving for A yields the candidate value

u2 + u2
A* = -f-f-. (4)

U'IT + u1/c

Inserting this value into (3) we find that

AV[Ah..o(zr,zc)]=U;T+U;c' (5)

which does not depend on 11.. This member of the family of
transformations

where AO = a2/b2. This transfonnation converges to In(z)
for large z and is approximately linear at 0 (Durbin et al.,
2002). The transfonnation and its inverse are monotonic func-
tions with derivatives of all orders. Because its behavior for
large values of tL is identical with the natural logarithm, and
following Munson (2001), we will call this tJ-ansfonnation a

generalized logarithm.
Since, there exist transfonnations of the family h).(z) =

In[(z + .JZ"2+I)/2] that stabilize the variances of ZT and Zc
individually, it seems reasonable to search within this family
for a transfonnation h). ( .) such that

hA(z) = In (.:..:!:~:: ~) ,

exactly stabilizes the delta-method variance of hA (ZT) -
hA (zc), allowing meaningful hypothesis tests to be perfonned
on the differences. One may compare (4) with the expression
for one-color arrays of the optimal transfonnationparameter
). = 11; /11; (Durbin et al., 2002).

~h..(ZT,ZC) = h..(ZT) -h..(zc),

has constant variance. For the purpose of testing for differen-
tial expression, we need to know the variance ,of a test statistic

4 THE STARTED-LOG TRANSFORMATION
While the generalized-log transformation of Section 3 is the
exact delta-method variance-stabilizing transfonnation for

lor course, further nonnalization may be perfonned on the data follow-
ing ~fonnation. For example, the loess nonnalizatiorl procedure of Yang
et al. (2002) could be perfonned on data that have beeJ.1 ~fonned via a
generalized-log transfonnation (2) rather than a log traru;formation.
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data with a quadratic variance structure, transfonnations that
only approximately stabilize the delta-metho,d variance may
occasionally be more convenient to use. In particular, log
ratios are occasionally touted as providing better interpretab-
ility than alternatives, despite their inherent problems with
inflation of the variance of low-level observations. However,
one problem with log ratios that is more difficult to ignore
is that of negative observations. When /kT or /kT is near 0,
ZT or Zc will often be negative, in which casc~ the log ratio is
not defined. An ad hoc solution is simply to discard data for
which ZT or Zc is less than zero; however, this approach can
result in the loss of valuable biological inforrnation.

Should one insist on using log ratios to detc~nnine differen-
tial expression, a modified version of the logarithm, called
the 'started logarithm' by Tukey (1964, 1977), can mitig-
ate some of the problems with negative observations. This
transfonnation takes the fonn

constancy is

qC = 2i74-;:

The minimized maximum deviation of the variance from
constancy is

2 {;; 2

~-r2=r2v2-r ,
c2

and the ratio of the SD at 0, which is 21/4r, to the limiting
SD r is about 1.2. For one-color arrays, the optimal shift
constant is

(12E

c=~

which has the same structure as the optimal constant for dif-
ferencesbutwithq replacedbyu, andr replaced bYUrj (again,
see derivation in Rocke and Durbin, 2003).

(6)hc(z) = In(z + c),

where c > O. The delta-method variance of

5 THE LOG-LINEAR-HYBRID
TRANSFORMATION

A third class of transfonnations that may prove useful in the
analysis of microarray data is the log-linear hybrid (Holder
et al., 2001). As described in Rocke and Durbin (2001), for
11- close to 0, the untransfonned data have approximately
constant variance, and for 11- large, In(z) has approximately
constant variance. This suggests that we might use a lin-
ear transfonnation for small z and a log transfonnation for

large z.
Let

under the null hypothesis JLc + JLT = JL is

,,2( 0-2 + 0-2 ) +0-2 + 0-2
...Flc I/T £c £TAV/J.T=/J.C=/J.[fJ.hc(ZT,ZC)] =

(iJ. + C)2
(7)

q2 + JL2,2
(JL + C)2 ' (8)=

(9)
where

q = 1;;2"+-;;2V uir T uic'
If we choose c and d so that hk(Z) is continuous with con-
tinuous derivative at k, we get c = Ilk and d = In(k) -1,

yielding
and

= 10-2 + 0-2
V liT IIc

hk(Z) = { zIt + In(k) -

In(z),

, z ~ k
z > k.

While no member of this family will exactly stabilize the delta-
method approximated variance, we may ask fj)r the choice of c
that minimizes the maximum deviation of tlile variance from

constancy. As ~ -00,

(10)

It remains to choose k to minimize the maximum deviation
of the variance of

AV[8hc(ZT,ZC)] ~ ,2,

(11)6.hk(ZT,ZC) = hk(ZT) -hk(ZC),which does not depend on c, so we will focus on the deviation
of the variance from this limiting value. Following a lengthy
derivation [which is exactly as in Rocke and Durbin (2003),
and thus is not reproduced here], we find that the value of
the shift constant minimizing the maximUlTI deviation from

from constancy. The delta method variance of (11) takes
four different forms, depending on the values of ZT and
zc relative to the splice point k. Therefore, under the null
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hypothesis JLT = JLC = JL,

AV[~hk(ZT,ZC)]

,,2 «(12 + (12 ) + (12 + (121'" I)T I)c £T £C
ZT,ZC :5k

zr.zc>k

=

a2

"c

"k2""
ZT > k, Zc ~ k

6 COMPARISON OF ONE- AND
TWO-COLOR CASES

As we pointed out above, the optimal transformation in each
family has the same structure as that of the optimal trans-
formation for one-color data. We will show that this occurs
because, under the null hypothesis J1-c = J1-T = ~, the
variance of the transformed observations exhibits a similar
structure. However, this similarity between variances in the
one- and two-color cases does not hold in the case where
J1-c #oJ1-To

Now, if we assume (as in Rocke and Durbin, 2001), that a
single untransformed microarray observation has variance

Var(z) = J1-20'; + 0';,

u'" + U22 U2 ET EC
'11+ 'Ic+ 2'

Jl. 2(1 Jl.)2 2 2 Jl. 2
-k Ul)s + U'I1 + "i"2uI)C(1 1)2 u2

+ ---u2 + -!L +
Jl. k Es Jl.2

1Jl. 1)2 2 Jl.2 2 2
'k -Ul)s + "i"2U'I1 + U'lc

" ,'\ 2 U 22 E1 '
UES + ~ +

2~
+ (i-;)

When JL = 0,

q2 + q2
Sf Sc

k2
AV[Llhk(zr,zc)] =

-q2

-i"I'

where q = ~+~, as in Section 4. As IL -+ OC,

AV[Ahk(ZT,ZC)] -+ 0';1 +O';C

-2
-r,

that observation transfonned using an arbitrary function h ( " )

will have delta-method approximated variance

Var[h(z)J = h2(.tL).tL2U; + Ji2(.tL)u;" (13)

Compare this with the variance of the difference of two
transfonned observations, not assuming.tLT = .tLc:

"2 2 2"2 2 2Var[~h(ZT, zc)] = h (.tLC ).tLCU'1C + h (.tLT ).tLTU'1T (14)

+ [h(.tLc) -h(.tLT) r u;s

+ Ji2( 11 )u2 + Ji2u2,..,c "c FT
[ " " ] 2 2

+ h(.tLc) -h(.tLT) U"s"

When .tL T = .tLC, the second and fourth tenns become 0 and
the first and third combine to yield

Varp.c=p.1=p.[Ah (ZT. ZC)]

= Ji2(JL)JL2(0-2 + 0-2 ) + Ji2(/1.)(0-2 + 0-2 )
'Ic '11 t"'"C"1

= Ji2(JL)JL2q2 + Ji2(JL)r2.

which has the same structure as (13). However, when tlT ,=:
tlc (a setting that would be of interest for power calculations)
the spot-specific variances u;s and u;s fail to drop out and we
are left with the more complicated variance structure of(14).

where, = JU~T + u~c' also as in Section 4.
Notice that when IL = k, all four expression:s become

2 + 2 2
2 2 UST Usc 2 qUIlT + UIlC + k2 =, + j~'

It can be seen that the value of k that minimizes the maximum
deviation of the variance from constancy will be the one for
which the variance at 0 is as much below the limiting value ,2
as the variance at the splice point is above ,2, Setting

2 22 q 2 q 2, --=, +--,
k2 k2'

yields
q./2k=

7 EXAMPLES
We illustrate the perfonnance of these transfonnations with
additional data from Bartosiewicz et af. (2000). We will use
a small subset of the data presented in that paper, featuring
control versus control experiments, in order to detennine the
behavior of the transfonned data when there is no differential
expression. For these data, two groups of three mice were each
treated with 0.10 mg/kg of com oil. mRNA from the livers of
the mice was extracted, pooled and reverse-transcribed into
fluor-labeled cDNA, with one group labeled with Cy5 and
one group labeled with Cy3. Notice that this is not true self-
self data, since three different mice were used for each group.

,
With this value of k, the maximum deviation of the variance
from constancy is,2 /2, and the ratio of the SD of the differ-
ence at 0 to the limiting value, is about 0.7. For one-color
data, the optimal transformation parameter is

(1£ "fi
k=

0"1)

which has the same structure as the optimal splice parameter
for one-color data, with q replaced by 0"£ and r replaced by
0"1) (Rocke and Durbin, 2003).

663
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Fig. 1. Robustly estimated SD of differences of transformed observations versus robustly estimated mean expression. generalized-log
transformation. The solid line on the plot is a lowess smooth of the data.

The cDNA was then hybridized to a spotted array in which
each gene was replicated between 6 and 14 times. (We will
use the term 'replicate' to refer to replicated spots of the same
cDNA clone on the same array).

Parameters for the two-component model were estimated
as described in Rocke and Durbin (200 I). In this procedure,
a set of observations close to background for both samples
and a set of genes with replicated observations expressed
well above background in both samples is identified via an
iterative procedure. Now, according to (1), tile variance of a
control observation close to the expression background will
be approximately

2 2Var(zc) = O'ss + O'sc'

the variance of a treatment observation clos(: to background
will be

We may calculate the pooled sample variance for each color
for each of the genes in the near-background group and the
pooled sample variances of their differences in order to cal-
culate the variances above. The three equations may then be
solved for uic' uiT and UE2s. The same procedure is repeated

on logarithms of high-level data in order to calculate ur7c' U;T

and u;s. This method of estimating variance components may
yield a negative variance estimate when the true value is small.
By convention, negative estimates are set to 0 (Searle et al.,

1992).
This procedure yielded fiEc = 0.335, fiET = 0.0585,

fiEs = 0.0747, filJC = 0, filJT = 0.135 and filJS = 0.143. These

model parameters yield the transformation parameters
~ = 6.33 for the generalized-log transformation, i: = 2.12
for the started-log transformation, and k = 3.56 for the

log-linear-hybrid transformation.
Figures 1-3 show the robustly estimated replicate SD

of differences of transformed observations against the
robustly estimated mean expression for the generalized-log,
started-log and log-linear-hybrid transformations. The robust
mean was estimated for each gene from pooled raw treatment
and control observation using the S-Plus function location.m,

Var(ZT) = a;s + 0-;"

and the variance of the difference of paired low-level
observations will be approximately

2 2Var(ZT -ZC) = Usc + US1
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Fig. 2. Robustly estimated SD of differences of transfomled observations versus robustly estimated mean expression, started-log
transfomlation. The solid line on dIe plot is a lowe~s smoodt ofdte data.

Robust Standard Deviation of Replicate Differences, Log-Linear Hybrid Transformation

1.21

~.,
~
C5
-0
c
0

~
.5.,
0
"tJ

~
"tJ
C
to

U1
"tJ
S

.§
u;
U'
I
>-
~~
.0
0
II:

0.8

'0.61

" 0.4

0.2

,0
'.. 0000
!'o ..;" 0

~ 0 0' 000 0 0
0\,.. 0 0" '~~7 00 ',"
£(-/~, "": ".,

.: .0 " -, ',', ,',', ;
u-20 0 20 40 60 80 100 120 140 160 180

RobusUy-Eslimated Mean Expression Level by Gene
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Robust Standard Deviation of Replicate Differences. Log Transformation
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Fig. 4. Robustly estimated SD of differences of tJransformed observations versus robustly estimated mean expression, log transformation.

The solid line on the plot is a lowess smooth of the data.

and the robust SO of differences of transforml~d observations
was estimated using the S-Plus function scale.a. The solid line
on each plot shows a lowess smooth that was fit to the robust
means and SO.

In each case, the SO appears relatively constant when com-
pared with the mean expression. Furthermore, the three plots
look quite similar, indicating that each of th,ese transforma-
tions does an adequate job of stabilizing the variance of the
data. For comparison, Figure 4 shows the robustly estim-
ated SO of the log ratios of the data plotted against the
robustly-estimated mean expression. We reml:>ved 180 negat-
ive numbers (out of a total sample size of 2304) before taking
the log transformation. As the lowess smooth shows, the SO
increases as the mean expression decreases.

the data of Bartosiewicz et al. (2000) by taking the replicate
SD of differences of transformed observations for each gene
and looking at the mean absolute deviation from;: , the estim-
ated theoretical limiting SD. This procedure was repeated for
a number of different values of the shift constant c until the
minimum was found.

For these data, the minimum-mean shift constant is
C = 2.42, compared with c = 2.12 for the minimax trans-
formation. As the vast majority of observations are close to
the expression background, in the same region where the
theoretical maximum deviation from constancy occurs, these
two procedures are likely to yield similar transformation

parameters.

7.1 Minimizing the average deviatiol1l from

constancy
One alternative to a transformation that minimizes the the-
oretical maximum deviation from constancy is one that min-
imizes the mean deviation from constancy oj' the actual data.
The minimum-mean started log transformation was found for

8 CONCLUSIONS
We have presented three variance-stabilizing transformations
for gene-expression microarray data from two-color arrays,
one that exactly stabilizes the delta-method variance of differ-
ences of transformed observations, and two other transforma-
tions, the started-log and log-linear hybrid transformations,
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that provide approximate stabilization of the delta-method
variance. When applied to actual data, each of these trans-
formations appears to stabilize adequately the variance of
differences of transformed observations, and all these trans-
formations provide better variance stabilization than does the
log transformation.

It should be mentioned that the 'exactness' of the variance-
stabilization performed by the generalized-lo~: transformation
refers to its theoretical performance based O!JI an approxima-
tion to the variance of the transformed data. Therefore, the
other transformations in question, which are further approx-
imations to an initial approximation, may nolt be less 'exact'
in any meaningful sense. This can be seen in the equivalent
performance of the three transformations compared. As with
any theoretical result, the proof remains in th,~ application.
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