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Abstract

Oscillatory Neural Systems

by

Connor Bybee

Doctor of Philosophy in Computation Biology

University of California, Berkeley

,

Professor Friedrich T. Sommer, Co-chair
Professor Haiyan Huang, Co-chair

The brain, while being small, low-power, and robust, performs complex computations that we
cannot yet replicate or fully understand. Oscillatory signals are ubiquitously observed in the
brain across multiple scales, e.g., from individual neural membranes to large-scale averages
measured in electroencephalograms. Explaining the computational function and generation
of brain oscillations is an active area in neuroscience. Computation with oscillatory signals
is also interesting from an engineering standpoint in the field of analog computing. Digital
computing represents objects with discrete, Boolean variables. In contrast, analog computing
investigates how to use the continuous dynamics of physical systems to perform fast, energy-
efficient computing. The potential advantage of analog computing has been hard to realize
due to the challenges of working with analog systems and competing with rapid advances in
digital computing. Recently, neuromorphic computers and coupled oscillator networks have
shown potential as efficient analog computers for certain applications. Thus, motivated by
neuroscience as well as engineering, here we explore computations in oscillatory systems that
efficiently perform specific functions. Our results demonstrate that models of computation
using oscillator neural networks can be used as tools for neuroscience and as the basis of
efficient analog computers. Specifically, we investigate inference in feedforward deep neural
networks, the analog implementation of associative memories, and optimization performed
through the dynamics of coupled oscillator networks.

Presumably, the function of a brain critically relies on a combination of continuous and dis-
crete signals, e.g., membrane voltages in neurons and their averages, local field potentials,
and action potentials or spikes. Neuromorphic computers that use this combination of signal-
ing are emerging as alternatives to traditional computers for certain tasks. How information
is encoded by spiking neural activity can impact key efficiency metrics, such as the number of
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transmitted spikes required to perform a calculation. Chapter 2 proposes an efficient coding
method for implementing deep artificial neural networks in which the times of spikes encode
the phase in an ongoing rhythm. The proposed phase code is advantageous because it uses
significantly fewer spikes per neuron for each calculation than a rate code, the most common
encoding method in neuromorphic computing. In addition, we present results obtained from
an implementation of phase-coded deep neural networks on neuromorphic hardware.

Networks of coupled oscillators are being investigated for efficient implementation of machine
learning and artificial intelligence algorithms, such as associative memory. Chapter 3 presents
new models of associative memories implemented in networks of coupled oscillators using
discretized Q-state phase codes. We show that the memory capacity for 3-state phase codes
is significantly higher than for traditional binary 2-state codes. Further, we present a new
oscillator model that is capable of implementingQ-state and continuous associative memories
with sparse activity patterns.

The use of Ising machines, i.e., large networks of interacting 2-state elements, have been pro-
posed as a way for finding near-optimal solutions to combinatorial optimization problems.
We argue that current Ising machines are limited due to a focus on second-order, or pair-
wise, interactions. Chapter 4 explores new methods for finding solutions to combinatorial
optimization problems through the use of oscillator Ising machines with higher-order inter-
actions, referred to as higher-order oscillator Ising machines. We present results comparing
second-order oscillator Ising machines to higher-order oscillator Ising machines from solv-
ing benchmark optimization problems. We show that for benchmark satisfiability problems,
higher-order Ising machines require fewer optimization variables and network connections.
In addition, we show that higher-order Ising machines find solutions that satisfy a greater
fraction of problem constraints compared to existing methods.
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Chapter 1

Introduction

This thesis is motivated by an interest in neuroscience, machine learning, and engineering.
Therefore, it focuses on the use of analog oscillatory neural networks for efficient compu-
tation. This topic is interesting from a neuroscience perspective because oscillations are
ubiquitously observed at multiple scales in the brain. Not all oscillatory behavior has been
explained and characterized, and the understanding of many oscillations is lacking. By ex-
amining the computational properties of oscillatory systems, insight may be gained into the
functional role of oscillations in the brain. Oscillatory systems are also interesting from an
engineering perspective. Coupled oscillator networks are being investigated for the efficient
implementation of certain machine learning algorithms. Also, at the heart of almost every
radio and digital computer, you will find an oscillator. Oscillations can act to synchronize
circuits, coordinate computation, and serve as a carrier for information transfer. Motivated
by these facts, this thesis aims to show that networks of coupled oscillators can perform
computations that are interesting to both neuroscientists and engineers. We show that a
variety of functions can be implemented through the dynamics of coupled oscillator net-
works including feedforward inference in artificial deep neural networks, error correction in
attractor neural networks, and optimization of hard combinatorial problems. By proposing
new models and providing new empirical and theoretical results, this dissertation suggests
potential advantages of analog computation based on coupled oscillator networks compared
to existing systems.

1.1 Spiking neural networks

Information representation is a key aspect of efficient computing systems. For real-world
applications and biological systems, the way signals are represented and manipulated can
significantly impact energy consumption and the time required to perform a calculation. The
brain appears to represent some information in the form of action potentials, also known
as spikes, which are fast changes in the electric potential of the neural membrane. There
is also interest in the construction of low-power, low-latency brain-inspired or neuromorphic
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computers based on the same computational principles of the brain. Potentially, there exists
efficient phase codes, inspired by the brain, that could improve neuromophic computers.
Therefore, chapter 2 examines feedforward inference in deep artificial neural networks that
have been efficiently implemented in networks of spiking oscillator neurons.

Neuromorphic computers, such as spiking neural networks, are being considered for the
low-power and low-latency implementation of deep artificial neural networks. The particular
way information is encoded as spikes has an important impact on power consumption and
the time required to perform a calculation. Additionally, in neuroscience, characterizing the
way information is represented as spikes is an active area of research. A common strategy
for understanding the relationship between a stimulus or input and the observed neural
activity is through the idea of neural codes. Well-studied neural codes include rate codes,
timing codes, phase codes, and population codes. In rate codes, information is coded as the
number or instantaneous rate of spikes. In timing codes, information is coded by the timing
of individual spikes. In phase codes, information is coded as the timing of spikes relative to
an ongoing oscillation. Lastly, in population codes, information is coded as the coordinated
activity of multiple neurons.

This study examines efficient neural codes representing the phase of an oscillation with
the time of a spike relative to a background oscillation. In contrast to rate codes where a
signal is encoded by multiple spikes, oscillatory neural codes or phase codes encode a signal
that can be represented by a single or few spikes. To illustrate this concept Figs. 1.1 and
1.2 present examples of a rate-coded neuron. Figs. 1.1 shows that a real-valued variable can
be encoded into the spike rate, R, of an abstract neuron measured in spikes per second. In
this example, there is a linear relationship between the encoded variable and the spike rate.
In rate codes, there is a trade-off between the precision or accuracy with which a variable
can be represented and the number of spikes or integration time. Fig. 1.2 shows an example
of this trade-off. In order to increase the precision or accuracy, either the maximum spike
rate, Rmax, can be increased or the integration period can be increased. The plot on the
left shows a membrane potential encoded into spikes accumulated over a 1sec interval. The
figure on the right shows the same range of values accumulated over 100msec. There is a
loss of information compared to the longer integration period. Larger ranges of membrane
potentials map to the same spike rate. Phase coded neurons are able to present the phase
of an oscillation with the time of spikes, see Fig. 1.5. Motivated by these findings, we
present results demonstrating the efficient implementation of deep artificial neural networks
in phased coded spiking neural networks where neural activity can be robustly represented
in a few spikes.

1.2 Oscillator associative memories

Associative memories are data structures used for the storage and robust retrieval of high-
dimensional patterns. Chapter 3 examines autoassociative memories based on complex-
valued representations, phasors, and their implementation in coupled oscillator networks.



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Rate-coded neuron. Left) A plot of a real-valued scale variable, activity,
encoded linearly into a spike rate. Middle) An abstract point neuron with three real-valued
inputs. The output is a linear sum of the inputs. Right) An abstract point neuron receives
inputs as a series of spikes.

Figure 1.2: Tuning curve. Left) A tuning curve for a leaky integrate-and-fire neuron
measured over 1000ms time window. Right) A tuning curve for a leaky integrate-and-fire
neuron measured over 100ms time window.

Studies of associative memories have largely focused on units with binary activity even
though it has been shown that units with multi-state activity have useful properties including
increased pattern capacity and information content. Multi-state units can be efficiently
represented by phasors. We present empirical results validating predictions made by mean-
field theory on the capacity and information content of Q-state phasor associative memories.
In addition, we report new results on the capacity and information content for larger values
of Q. Finally, we propose a novel model for Q-state phasor associative memories with sparse
pattern activity.

The efficient implementation of associative memories in hardware is an active area of
research. Most methods for implementing autoassociative memories with phasor neural net-
works have used discrete-time iterative update dynamics in digital computers. Implementing
associative memories in analog systems, e.g., networks of biological neurons or electrical com-
ponents with continuous-valued states, may provide advantages over digital computers, but
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(a) (b)

Figure 1.3: Linear and nonlinear oscillators. a) Real part of the complex-valued variable
and magnitude of the complex-valued variable for a linear oscillator with two different gain
coefficients. b) Real part of the complex-valued variable and magnitude of the complex-
valued variable for a nonlinear limit-cycle oscillator with two different initial conditions.

also introduces new challenges. Specifically, the functional properties of analog systems must
be shaped in order to make the stored patterns fixed points of the continuous-time dynami-
cal system. Oscillators are a promising choice for the analog implementation of associative
memories because phasors map naturally to the oscillatory signals. In addition, oscillators
are a promising candidate for use in analog computers because they can be manufactured
at a large scale with current technologies, operate at high frequency, and have low power
consumption. Therefore, we present a coupled oscillator network model capable of imple-
menting Q-state associative memories that successfully recalls stored patterns in the presence
of noise. We present new empirical results on the basins of attraction around stored patterns
for different values of Q.

There are several oscillator models to choose from. We choose an oscillator model that
has stable limit-cycle behavior and can synchronize to input. Figs. 1.3 and 1.4 demonstrate
the concepts of limit-cycles oscillations and synchronization, respectively. Fig.1.3a presents
a linear oscillator with damped behavior and unstable growth. Fig.1.3b presents a nonlinear
oscillator that gives rise to stable limit-cycle oscillators. The introduction of nonlinearities
to the oscillator dynamics allows for a greater richness of behavior.

An oscillator network can synchronize to phase-locked states, i.e., the relative phase
of each oscillator remains constant and there is a fixed phase shift between oscillators. Of
particular interest are the cases when the phase shift between oscillators takes specific values,
e.g., zero for all oscillators. Fig. 1.4 presents an oscillator network where all the oscillators
synchronize to phase-locked states.

Spiking neurons can also be used to construct limit-cycle oscillators that phase-lock to
inputs. Fig. 1.5 presents results from a simulation of a neuron model that produces oscillatory
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Figure 1.4: Synchronization in a simple kuramoto model.

spiking behavior. Fig 1.5a shows the membrane potential over time. Fig.1.5b shows the phase
space of the two dynamic parameters. The state of the two parameters traces out a stable
orbit in phase space. Fig. 1.5c shows the phase response curve (PRC) for the neuron model.
This particular type of PRC allows the neuron to phase-lock to input.

Finally, an important class of associative memories is one that stores patterns with sparse
activity, i.e., the individual units in the network may either be active or inactive. To date, it
is unknown how to implement sparse associative memories in networks of coupled oscillators
with continuous coupling. We present a novel oscillator model that successfully implements
a sparse associative memory.

1.3 Optimization with oscillator networks

Finding optimal or near-optimal solutions to combinatorial optimization problems has im-
portant applications in many disciplines. Much of the existing work solving combinatorial
optimization problems has focused on search-based or heuristic methods. Recently, there has
been growing interest in Ising machines, i.e., methods which use the inherent parallel dynam-
ics of physical systems to find solutions to combinatorial optimization problems extremely
fast and with low power consumption. Chapter 4 examines solving combinatorial optimiza-
tion problems with coupled oscillator networks. Among these methods, many of the systems
being investigated make use of pair-wise or second-order interactions. Many combinatorial
optimization problems naturally contain higher-order interactions between the optimization
variables. Therefore, mapping combinatorial optimization problems to hardware requires
converting the higher-order objective function to second-order. This conversion introduces
auxiliary variables. In effect, the required resources, in terms of the number of variables
and connections between variables, increases. This study examines solving combinatorial
optimization problems with higher-order objective functions directly with coupled oscillator
networks. We find that not only do higher-order formulations of combinatorial optimization
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(a) (b)

(c)

Figure 1.5: Spiking neuron oscillator. a) Oscillations emerge from a neuron with spikes
occurring at a constant frequency. b) The phase space for the two parameter dynamical
system describing the neuron. The horizontal axis represents the membrane voltage. The
vertical axis represents the potassium channel activation. c) The phase response curve for
the neuron oscillator. The horizontal axis represents the phase difference between the input
phase and the current phase. The vertical axis represents the phase shift resulting from the
input.

problems result in fewer network resources (in terms of the number of variables and their
connections), but also the optimization with the higher-order Ising machine results in solu-
tions to the combinatorial optimization problem that satisfy a greater fraction of problem
constraints.
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Chapter 2

Spiking Phasor Deep Neural Networks

Spiking Neural Networks (SNNs) have attracted the attention of the deep learning commu-
nity for use in low-latency, low-power neuromorphic hardware, as well as models for under-
standing neuroscience. Of particular interest are strategies that efficiently encode informa-
tion into the timing of action potentials, also known as spikes. In this paper, we introduce
Spiking Phasor Neural Networks (SPNNs). SPNNs are based on complex-valued Deep Neu-
ral Networks (DNNs), representing phases by spike times. In our model, a complex-valued
neural network is trained and then mapped to a SNN. The phases of the complex-valued
neurons are represented using spike times in the SNN. We train SPNNs on CIFAR-10, and
demonstrate that the performance exceeds that of other timing-coded SNNs, approaching
results with comparable real-valued DNNs.

2.1 Introduction

The highest classification accuracy on image recognition tasks has been achieved by real-
valued deep neural networks with floating point precision. Recent efforts have attempted
to reformulate deep learning into formats more suitable for hardware acceleration and low-
energy edge computing. This work aims to demonstrate the benefits of using spike timing
codes in a way that can advantage deep learning acceleration according to specific metrics,
especially energy efficiency and latency.

Implementation of DNN algorithms on next-generation computing platforms, such as
neuromorphic computer architectures and networks of coupled oscillators, is promising and
may prove to be more energy-efficient and faster than current hardware based on the Von
Neumann architecture [83, 68, 21]. SNNs are typically challenged by a non-differentiable
objective function, which prohibits direct training with backpropagation. Successful meth-
ods include training artificial neural networks with the purpose of converting them to SNNs,
using spiking versions of backpropagation compatible with spike timing-dependent-plasticity,
and the other learning rules [56, 64]. In addition, when mapping DNN neurons to SNNs,
the machine learning and neuroscience community have largely focused on the use of rate
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codes [42, 56, 79, 74]. Rate codes represent a single real-valued scale with multiple spikes.
Some timing codes, e.g., latency codes, improve upon rate codes by representing real-valued
variables with a single spike but are less robust to noise. This paper presents a method for
using spike events to represent complex-valued neural states, which can easily be differen-
tiated in the complex domain. In addition, the phase code presented in this work robustly
represents real-valued phases with a few spikes, achieving a balance between rate codes and
latency codes.

In a rate code, a stimulus feature is represented by the firing rate of a neuron measured
by the count of spikes in an extended time window. Conversely, in a spike timing code,
a feature is represented by the precise timing of a single spike. Potential benefits of spike
timing codes include (i) efficiency in terms of the number of spikes per computation, and (ii)
computation speed, since the duration of a step of neural update with a rate code cannot be
shorter than the integration window required for estimating the lowest rate. On the other
hand, spike timing codes are often regarded as brittle and not suited for implementing robust
computations [58].

Recently, Thresholding Phasor Associative Memories (TPAM) were introduced [25] that
illustrate how a complex-valued neural state can be directly mapped to a spike timing code.
Essentially, relative to an ongoing oscillation, the timing of the spike can be used to indicate
the phase of a complex-valued number. This was shown to provide robust spike timing codes
in the context of attractor neural networks. Here, we extend this timing code to feedforward
deep networks and show how backpropagation-based learning can be applied in the complex
domain and robustly mapped to SNNs. Motivated by that aim, this paper demonstrates
deep learning in spiking phasor networks on benchmarks MNIST [55] and CIFAR-10 [52].

2.1.1 Spiking backpropagation

Supervised learning of spike timing codes was explored in [64]. In [64], neurons are trained
to integrate input and fire at a precise time upon crossing a threshold. Training is performed
by first determining the set of input spikes leading to an output spike, called the causal
set. Parameter updates are then calculated by backpropagating through the causal set. Our
work presents a method to train a spike timing coded SNN without the need to calculate a
casual set.

A method for converting real-valued ANNs to timing coded SNNs was introduced in
[80]. It demonstrates on a simple machine learning task (MNIST) that spike timing codes
are more efficient than rate codes and real-valued DNNs when considering the number of
operations needed to perform a computation. Our paper extends spike timing coded SNNs
to CIFAR-10.

2.1.2 Neuroscience

In theoretical neuroscience, it is an open question how a network of spiking biological neurons
can precisely coordinate spikes over time and space. Izhikevich proposed a spiking network
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Figure 2.1: An illustration of a feed forward PNN with normalizing activation
function or Spiking PNN (SPNN).

that creates “polychronous” spiking patterns, as a model for describing neural dynamics in
brain circuits [45]. Polychronization means that neurons exhibit time-locked spiking patterns,
but with arbitrary spike timing and not perfectly synchronous spiking. The spiking patterns
we propose are also polychronous patterns, but these are generated by different mechanisms.

Precise spike timing patterns are observed in multiple brain regions and cell types. The
electrical properties of the neuron membrane give rise to sustained intrinsic spike oscillations,
subthreshold oscillations, and membrane resonance [44]. Neuron morphology and localized
genetic expression patterns of membrane ion-channels can create compartments with specific
electrical properties [7, 61]. Rate and timing codes have been explored as a method of
mapping ANNs to models of biological plausible neural networks [82, 81, 64, 74]. Inspired
by these observations, this study develops SNNs with spike timing codes based on oscillator
neural networks.

2.2 Methods

2.2.1 Spiking Phasor Neural Networks

Complex-valued neural networks have been explored in several contexts. Noest [72] in-
troduced phasor neural networks (PNN) with applications as an associative memory and
suggested use with backpropagation. Complex domain backpropagation was introduced in
[26] and [34]. Recent developments have been made with deep neural networks [89]. We
provide a concrete example of a feed forward PNN trained with backpropagation to imple-
ment spike timing codes. This paper refers to PNNs with the thresholding phasor associative
memory activation function [25] as Spiking PNNs (SPNNs).

In PNNs, neurons are represented by complex-valued phasors si ∈ C. Where si =
rie

iθi = ri cos θi + iri sin θi = ui + ivi. Here, i =
√
−1. Phasors are restricted to the unit

circle with the use of a non-linear activation function that preserves phase information.
|si| = 1,∀i ∈ {1, .., Ns}

The network units typically consist of a set of input, output, and hidden variables,
s = {x,y,h} ∈ CNs . The synaptic weights and neuron biases, Wij ∈ C and bi ∈ C, act
as attenuating or amplifying phase shifters.
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We present a two-layer network with layer units h(l) ∈ CNh , l ∈ {1, 2}. Input units can
be real-valued but are transformed to unit length complex-valued vectors whose phase is a
function of the real-valued input. xi = eiθi , where θi = gx(x̃i), x̃i ∈ R. Where gx : R → [0, π].
The output of the network is mapped to phases similar to binary phase shift keying. yi = eiθi ,
where θi = gy(ỹi), ỹi ∈ {0, 1} and gy : {0, 1} → {0, π}.

Inference proceeds by propagating activity from the input layer to the output layer:

h(l) = f(W(l)h(l−1) + b(l),Θ) (2.1)

The vector h(l) is the activity of hidden layer l, and for computing the activity in the first
hidden layer, equation (2.1) is applied to the input vector, i.e., h(0) = x. The element-wise
thresholding and normalizing function is given by:

f(zi,Θ) =


zi
|zi|

if |zi| −Θ > 0

0 otherwise
(2.2)

where Θ is a trainable thresholding parameter.
The objective is to minimize the phase difference between the network output and targets.

In supervised learning tasks, it is common for the softmax with cross-entropy loss to be used
with the target variables encoded as one-hot binary vectors. Here, we encode class labels
onto the unit circle. Positive class labels are encoded to lead negative class labels in phase.
A classification is successful when the phase of the positive class leads the phase of all other
outputs. The class targets are binary variables encoded onto the unit circle, similar to binary
phase shift keying. Positive and negative classes are out of phase by 180◦ or π radians. The
loss function is given by:

L =
1

2
∥y − ŷ∥22 = Ny −

Ny∑
i=1

cos(θi − θ̂i) (2.3)

Where θi are the target phase angles and θ̂i are the estimated phase angles. Minimizing the
objective corresponds to phase aligning the output and targets:

∂L

∂θ̂i
= sin(θi − θ̂i) (2.4)

As we will show in the results, PNNs with the TPAM activation function can be trained
with the backpropagation algorithm to minimize equation 2.3.

2.2.2 Complex domain backpropagation

In [26], complex domain backpropagation was derived for the activation function below.
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y = f(z)

=
z

c+ 1
r
|z|

= u+ iv

Where, z = a+ ib ∈ C, {a, b} ∈ R and |z| =
√
a2 + b2. The partial derivatives are

∂u

∂a
=

{
r(b2+cr|z|)
|z|(cr+|z|)2 if |z| > 0
1
c

if |z| = 0

∂u

∂b
=

{
− rab

|z|(cr+|z|)2 if |z| > 0

0 if |z| = 0

∂v

∂a
=

{
− rab

|z|(cr+|z|)2 if |z| > 0

0 if |z| = 0

∂v

∂b
=

{
r(a2+cr|z|)
|z|(cr+|z|)2 if |z| > 0
1
c

if |z| = 0

Considering the case where Θ = 0 and |z| > 0, the SPNN activation function is found by
setting r = 1 and in limc→0. The partial derivative can be written in the complex domain
by adding together the individual terms.

(
∂u

∂a
+
∂v

∂a
) + i(

∂u

∂b
+
∂v

∂b
) =

(b2 − ab) + i(a2 − ab)

(a2 + b2)3/2

2.2.3 Spiking neuron model

The continuous-valued phasor network can be mapped to discrete spiking events in time. For
a given choice T for the length of a cycle, the each phase angle, θi ∈ [0, 2π] can be mapped
to a time ti = θi ∗ T/2π.

We first consider a network where all layers are phase-locked to the input layer. The real-
valued inputs are mapped to unique phases on the unit circle. This creates an ambiguity
between the largest and smallest values since 2π is equivalent to 0. Therefore, we limited
the values to [0, π]. We chose this option since it is simple and is sufficient for demonstration
purposes. Each input phasor can also be assigned a fixed, random phase shift.

In the first cycle, the input units spike and each synapse is activated with magnitude
|Wij| after a delay of θij ∗ T/2π. Each neuron integrates the information from the current
cycle and spikes after the appropriate delay during the subsequent cycle. Therefore, each
cycle propagates signals to adjacent layers, see figure 2.4.

2.2.4 Circuit Model

We simulate a circuit model to demonstrate that SPNNs can be implemented by simple
electrical components and are robust to noise induced by numerical simulation and changing
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Phasor Representation Network LayerInput

Activation Function LearningOutput

Figure 2.2: Parts of a feed-forward PNN with normalizing activation function.

input. A change in soma membrane potential is driven by a leakage current and combined
input from dendrites:

dVm
dt

=
gl(Vl − Vm) + gc(Vd − Vm − V d)

Cm
dV d

dt
=

(Vd − V d)

τd

Vm is the membrane potential, gl is the conductance of the leak channel, Vl is the leak
reversal potential, gc is the conductance of between the soma and dendrite, Vd is the dendrite
potential, V d is the average dendrite potential, τd is average dendrite potential time constant,
and Cm is the membrane capacitance. To correct for bias around the threshold voltage, the
average dendrite potential is subtracted from the instantaneous dendrite membrane potential.
Dendrites integrate current from synapses which generate membrane potential oscillations
after a spike arrives:

Vd =
∑
i

wiVs,i

dVs,i
dt

=
−Ws,i

Cm
dWs,i

dt
=
Vs,i
L

− Ws,i

τs
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Figure 2.3: Illustration of a spiking phasor neural network implemented by leaky
integrate-and-fire neurons.

Vs,i is the potential at synapse i, wi is the synaptic weight. Ws,i are activation parameters
which act to generate membrane potential oscillations at a specific frequency, L is a constant
used to tune the membrane potential frequency, and τs is the synaptic time constant which
controls oscillation damping. A spike resets the synapse parameters such that Vs,i = 0 and
Ws,i = Wspike. The neuron spikes when the soma membrane potential cross a threshold. The
refractory period is maintained until the soma membrane potential becomes negative.

2.3 Results

For visualization purposes, we train a fully connected SPNN on MNIST, 784-512-512-10.
We unroll the network activity in time to demonstrate how signals propagate (Fig. 2.4 -
left panel). The spike times represent a stable limit cycle. For demonstration purposes, we
add a fixed, random phase shift to each component of the input while maintaining correct
classification (Fig. 2.4 - right panel). A system that has yet to reach the limit cycle will have
a settling time (transient settling dynamics visible later in Fig. 2.8).

Convolutional SPNNs are trained on MNIST and CIFAR-10. The convolutional networks
consist of two layers of convolution without padding followed by three fully connected layers,
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(a) (b)

Figure 2.4: Raster plot of SPDNN.The first three cycles of inference for a feedforward
SPNN trained on MNIST. The network is phased-locked to the input signal. Each cycle
allows information to propagate to the next layer. Each line in the vertical axis is a neuron.
The input, hidden, and output layers are colored red, blue, and green, respectively. The
output neurons are accurately separated in phase. The input pixel amplitudes are mapped
to phase angles inversely proportional to the magnitude. 2.4a: Similar input amplitudes are
phase locked. 2.4b: For demonstration, each input can have a fixed phase shift while still
maintaining performance.

conv(6,3x3)→conv(16,3x3)→FC128→FC128→FC10. No normalization or pooling is used.
We train using Pytorch [76]. The Adam optimizer [50] is used with default parameters and
a learning rate of 0.001. We train small networks compared to state-of-the-art for simulation
purposes. Future work will investigate the performance of SPNNs on more difficult tasks
and with larger networks.

Training and test error rates with the convolutional SPNNs were measured for classify-
ing MNIST data (Fig. 2.6). Our results were obtained with 32-bit floating point precision,
and therefore should be regarded as an upper-bound of the performance SPNN hardware
implementations are expected to achieve using parameters from a trained model. The classi-
fication precision our model achieved surpasses the best results previously reported for SNNs
with spike timing codes [80]. Further, SPNNs approach the performance level of compara-
ble DNNs, our model comes within 0.02% compared to the error rate of the DNN used for
conversion to a SNN. Last, our network outperforms previous methods for directly training
SNNs with spike timing codes [64].

When trained on CIFAR-10. To our knowledge, there is no previous reports of performing
supervised learning and inference with spike timing codes on CIFAR-10. However, due to
the rather small network size we used, our results on training and test error rates do not
reach the state-of-the-art (Fig. 2.6). It is promising that SPNN approach the performance
of real-valued DNNs on CIFAR despite minimizing the mean-squared error opposed to the
softmax with cross-entropy loss.
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Figure 2.5: Results for a SPNN on MNIST. The lowest test error rate previously
reported for SNNs with spike timing codes and the ANN used for conversion to the SNN
is 1.43% and 1.04%, respectively [80]. The lowest test error rate previously reported for
supervised training of spike timing codes is 3.03% [64]. SPNNs achieve a test error rate of
1.06%.

(a) (b)

Figure 2.6: Training and test accuracy on CIFAR-10. The minimum test error rates
for the relu network and the SPNN network are 30.73% and 34.09%, respectively.

We performed simulations of convolutional SPNNs implemented with Brian2 [28], an
open-source simulator for spiking neural networks. The simulations of SPNNs in the circuit
are modeled at time scales and firing rates relevant to spiking biological neurons, but the
simulation time scale is arbitrary. For the parameter values, gl = πCm/T , gc = 60πCm/T ,
Vl = 0mV, Cm = 10pF, L = 1

(2π/T )2Cm
, Wspike = .3pA, τd = 0.8T , and τs = 0.0T . Simulations

are for 300ms. The cycle period, T , is 10ms with a frequency of 100Hz. Numerical integration
is performed with forward euler. The time step is 0.025ms. The period to time step ratio
is approximately 400 to 1. The first example is presented for 15 cycles or 150ms (Fig. 2.8).
The second example is then presented for 15 cycles. The output prediction is calculated
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as the unit which is furthest out of phase with respect to the other output units within a
3 cycle window, argmaxi Etspike,i 12(|tnext spike,j ̸=i − tspike,i| + |tlast spike,j ̸=i − tspike,i|). Here, the
expectation is taken with respect to the spike times of each component i, within a three-cycle
window.

At this resolution, we notice a decrease in performance compared to the original SPNN.
Currently, simulating all MNIST and CIFAR test samples is prohibitively expensive. We
report qualitative results, leaving a quantitative analysis of the SPNN performance versus
numerical precision for future work. The performance gap decreases as the time step de-
creases relative to the cycle period and as the confidence in the output prediction increases.
It is promising that even at this resolution SPNN are robust to noise in the spike times.

The phenomenon of pipelining emerges in SPNNs as an effect of a changing input stimulus
(Fig. 2.8). Pipelining is a technique used for reducing the latency and increasing the resource
utilization of computing hardware by connecting processing elements in series and passing
the output of one unit to the input of the next unit in the pipeline. The signals propagate
similarly to traveling waves in one direction.

2.3.1 Spiking phasor neural networks on neuromorphic hardware

Loihi [21] is a neuromorphic computer designed for use with low-power, low-latency applica-
tions. We implemented SPDNNs on Loihi and demonstrate high-performance test accuracy
on the MNIST dataset. SPDNNs are implemented on Loihi using populations of excitatory
and inhibitory neurons. The complex-valued synaptic weights in SPDNNs are mapped to
positive-valued synaptic strengths and positive-valued spiking timing delays, Rij = |Wij|
and ∆Tij = arg(Wij) + π. Loihi implements neural dynamics using finite-precision values.
Specifically, the weights, delays, and membrane potentials are represented by fixed-point and
floating-point values. Up to 6-bit fixed-point values can be used to represent synaptic delays.
To test the sensitivity of test accuracy to mapping the high-precision synaptic weights to
lower-precision fixed-point values, we varied the precision of synaptic delays from 6 to 3 bits.
Fig. 2.7 presents test accuracy versus the number of cycles. 5 bits of synaptic delay are
required to maintain a high test accuracy.

2.4 Discussion

With the advent of powerful hardware solutions (TrueNorth [2], Loihi [21]) for spiking neu-
rons, the question arises how deep learning can be implemented with spikes. The current
approach is to implement real-valued activation values by spike rate [42, 56]. Some of these
approaches yield near state-of-the-art results, but require a large number of spikes and ex-
hibit rather long response latency (time to solution) due to the fact that the estimation of
small rates requires large integration windows. A potential remedy to this problem is to
compute with spike times [80]; however, current solutions are brittle and cannot be scaled
up to address challenging machine learning problems.
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Figure 2.7: Spiking phasor neural networks on Loihi.

Here, we present SPNNs employing spike timing codes and show them to be successful
at solving challenging machine learning tasks. In our SPNN model, spike times represent
phase angles of a complex number. Upon receiving input, the network computes robustly by
relaxing to a stable limit cycle of periodic spike trains, which is a fixed-point in the complex
domain. Our work is seemingly the first demonstration how a SNN employing a spike timing
code can learn the CIFAR-10 dataset.

Another problem that our model can address is how to implement gradient learning in
spiking neural networks using local signals. If deep learning is implemented by a rate code,
pre- and post-synaptic spikes need to be integrated to estimate the activity values required
in the gradient-based learning rule. In contrast, in the SPNN, the timing of spikes exactly
encode the continuous-valued phase variables, which are required in the learning rule.

Our model is based on a phasor network with a complex-valued normalizing activation
function, first proposed in [25], constraining the phasor variables to binary magnitude values
of 0 or 1. It may be possible to extend our model to combine rate and timing codes by
representing continuous-valued magnitudes of phasor variables in spike rates. In addition,
there is other recent work on deep learning in complex networks [89], proposing activation
functions different from the one used here. Future work should explore these other activation
functions in the context of SPNNs.

Our work has also interesting implications for neuroscience. As demonstrated in the
results, SPNNs exhibit time-locked, but not necessarily synchronous spiking. This phe-
nomenon is similar to polychronous spike patterns [45]. Therefore, SPNNs may serve as a
model for how to compute with such spike patterns, which also have been observed in neural
activity [88].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: Simulation of the circuit model SPNN. MNIST (left) and CIFAR (right).
Left: An example with label 5 is presented for 15 cycles or 150ms. Immediately following,
an example with label 8 is presented for 15 cycles. 2.8a: The membrane potential for a unit
in the output layer. The unit is unstable until cycle 7 when it beings to lock to the input
signal. 2.8b: Spike times for the output layer. 2.8e: Predicted class label over time. Right:
An example with label 0 is presented for 15 cycles or 150ms. Immediately following, an
example with label 3 is presented for 15 cycles. 2.8b: The membrane potential for a unit
in the output layer. The unit is unstable until cycle 9 when it beings to lock to the input
signal. 2.8d: Spike times for the output layer. 2.8f: Predicted class label over time.
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Chapter 3

Associative Memory in Recurrent
Oscillatory Neural Networks

Associative memories are important models for robust pattern storage and retrieval that
are relevant to many fields, such as neuroscience and artificial intelligence. Understanding
their efficient implementation in biological systems or electrical hardware, such as coupled
oscillator networks, is an area of active research. We present two novel coupled oscillator
models which implement associative memories. The first model implements a Q-state phasor
associative memory where each of the units in the associative memory can take one of Q
possible values. The second model implements a thresholding phasor associative memory
where each unit can have zero amplitude or take a continuous value on the complex-valued
unit circle. We validate predictions made by mean-field theory and present new results for
the pattern capacity and synaptic information of Q-state phasor associative memories. Ad-
ditionally, we present the first coupled oscillator model capable of implementing associative
memories with sparse pattern activity.

3.1 Introduction

Understanding computation in coupled oscillator networks is important to neuroscience,
computer engineering, optimization, and artificial intelligence. In Neuroscience, oscillations
are observed at multiple scales, from oscillations in the membranes of individual neurons to
global oscillations between brain regions. For example, models of coupled oscillations explain
auditory processing and the perception of music, rhythms, and language [54].

Recurrent neural networks (RNNs) are a class of neural networks with recurrent connec-
tions, i.e., the output of the network is fed back as input to the network. RNNs have been
used to implement content-addressable memory (CAM). Specifically, RNNs can be used to
implement an autoassociative memory. An autoassociative memory is a type of CAM where
the input is the same as the output; therefore, this maps nicely to RNNs. A key feature
of many autoassociative memories is that the retrieval of the output is robust to corruption
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or noise in the input. If the input pattern contains noise, the output will be a noise-free
pattern. In essence, the network performs error correction. We begin by introducing the
types of associative memories, then proceed to present how associative memories can be
implemented efficiently by networks of coupled oscillators.

3.1.1 Associative memories

Associative memories have been studied extensively as neural networks for robust pattern
storage and retrieval [86, 98, 75, 36]. Beyond real-valued and binary neural networks [36],
coupled phasor networks [73, 71] have been proposed for building associative memories.
Phasor neural networks are powerful units that allow for representing binary-valued, multi-
valued, or continuous-valued states. Another benefit of phasor neural networks is the ca-
pability to be implemented efficiently by special purpose hardware consisting of networks
of coupled oscillators [4, 40, 68, 53] or, as recently proposed, with networks of spiking,
neuromorphic neurons [24].

The key metrics for the efficiency of associative networks used in this study are storage
capacity ( M patterns

N dimensions
) and synaptic information ( bits

synapse
). The critical storage capacity mea-

sures how many patterns a network can retain for a given network size. Here, M is the
number of stored patterns and N is the number of units in the network or the dimensional
of the pattern vectors. The synaptic information measures the information content of the
network with respect to the number of parameters (synapses). As explained below, there is
a tradeoff between representation complexity and capacity.

3.1.2 Oscillator associative memories

Implementation of the binary-valued Hopfield associative memory in an analog system was
first proposed in [37]. The method maps bipolar {−1, 1} neuron activity to graded neuron
responses (−1, 1) that take a continuum of real values. Oscillators are interesting in both
engineering and neuroscience since they can be used as efficient electrical hardware capable
of representing a continuous value with phase and oscillations are found in many neural
systems, respectively. Therefore, in [41, 39], it was proposed to unit ideas in neuroscience
and engineering by implementing an analog associative memory in a network of coupled
oscillators. Instead of converging to fixed, binary values, the network converges to a limit
cycle. The binary values in the Hopfield network are represented by binary phases in the
oscillators (0, π). By synchronizing to phased locked states (in-phase, 180◦ out-of-phase),
the network recalls stored patterns.

In [70], it was shown that in most cases oscillator associative memories are unstable. I.e.,
the stored patterns do not correspond to fixed points or limit cycles of the dynamical system.
This is true for binary-valued, discrete-valued, and continuous-valued network states with
dense activity. There are a few special cases. When Q = 2, i.e., the standard Hopfield
network, the oscillator associative memory is unstable when the number of stored patterns
is greater than 2. When Q > 2, the oscillator network is stable when the pattern loading
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is less than a critical value of 0.038, though the recall is not perfect and there is a small
amount of error.

For Q-state associative memories, the oscillator network can be stabilized with the use
of higher-order harmonics. Specifically, two types of higher-order harmonics. The first type
involves higher-order harmonics between oscillators in the memory network. The second
type is sub-harmonic injection locking [29, 95] where an independent oscillator that is not
part of the memory network operates at a harmonic frequency of the memory network and
injects into the memory network. In [70], it was shown that a 2nd-order harmonic between
oscillators stabilized patterns for the case of Q = 2. Here, we generalize this method to
Q-state oscillator networks to include networks with Q > 2. Additionally, we propose the
use of sub-harmonic injection locking.

3.1.3 Hopfield associative memory

The classical Hopfield type associative memory [36] consists of a network of computational
nodes which store a set of binary patterns and perform a robust recall of the stored patterns
in the presence of noise through collective state computation. The Hopfield network stores
a set of patterns that have binary or spin states, ξk ∈ {−1, 1}N . Here, ξk is the kth pattern
of dimensionality N that is to be stored in the network. The Hopfield network with bipolar
spin variables originates from a model of ferromagnetic material, called an Ising model [43]
or spin-glass model.

The patterns are stored in the weights or synaptic connections of the network using a
Hebbian [32] type associative learning rule,

W =
1

M

M∑
k=1

ξkξkT . (3.1)

The learning rule is also referred to as the outer product learning rule since the weights are
a weighted sum of the outer product of the stored patterns. Therefore, the network weights
are a superposition of the stored patterns and the stored patterns are the eigenvectors of the
symmetric weight matrix.

The network dynamics act to minimize the energy function,

E(x) = −xTWx. (3.2)

Here, x ∈ {−1, 1} is the vector of network variables. The system dynamics proceed according
to a discrete-time iterative update, x(t+ 1) = f(Wx(t)). Here, x(t+ 1) is the state of the
network after the update at time t + 1, x(t) is the state of the network at time t, and
f(u) = sign(u) is activation function applied element-wise and return the sign of each
element in . Here, u = Wx ∈ R is the real-valued postsynpatic sum or preactivation.

A Hopfield associative memory is also a type of attractor neural network. In attractor
neural networks, the state of the networks moves towards stable attractor states. In Hop-
field networks, the stored patterns act as stable fixed-point attractors. Attractors can be
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Figure 3.1: Conceptual energy landscape for a Hopfield associative memory. ξ1

and ξ2 represent patterns stored in the network. x̃1 and x̃2 are noisy inputs. The network
dynamics act to minimize the energy. Depending on the initial state of the input, the
network variables will converge to a basin of attraction corresponding to a stored pattern or
to a spurious state, corresponding to an recall error.

characterized by their basins of attractions. Fig. 3.1 presents a conceptual energy landscape
for a Hopfield network. Key features of the energy landscape are deep, wide basins of at-
traction located at stored patterns and shallow, local minimum at spurious states. A basins
of attraction for stored patterns should be wide and well separated in order to be robust to
noise.

3.1.4 Crosstalk interference

The capacity of the Hopfield network is limited by crosstalk interference. Crosstalk interfer-
ence arises from the fact that the stored patterns are not orthogonal. This can be understood
by separating the preactivation into a signal and noise component. For this analysis, we re-
define the learning rule so that weight matrix is scaled by the dimensionality instead of the
number of patterns, W = 1

N

∑M
k=1 ξ

kξkT . In practice, the weight matrix can be scaled by
any value.

Wx =
1

N

M∑
k=1

ξkξkTx (3.3)

= αξµ +
∑
k ̸=µ

βξk (3.4)

Here, ξµ corresponds to the pattern to be recalled, α ≈ 1 is the signal coefficient, and
β ≈ 1/

√
N is the magnitude of crosstalk interference component for the other patterns stored

in the network. Eq. (3.3) shows that the current state of the network, x, is compared to
every stored pattern by the inner product. The inner product is a measure of the similarity
between two vectors. In this case, it measures the similarity between the current state of
the network and each of the stored patterns. When the current state is similar to one of
the stored patterns, the inner product will be close to N . This is the signal component
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of the update. Any two random patterns are pseudo-orthogonal, i.e., close to orthogonal.
Therefore, there similarity is relatively small. For random patterns, the expected value of
the inner product is zero with variance N . After scaling and summing, the variance of the
crosstalk interference becomes M/N . By the central limit theorem, the noise will be normal
distributed with zero mean and variance equal to M/N . Fig. 3.2 provides an illustration of
the crosstalk interference and when an error is made.

Figure 3.2: Illustration of crosstalk interference in a Hopfield network. Top) The
upper part of the figure shows that the preactivation can be separated into a signal and a
noise component. Bottom) The lower part of the figure shows that the an error occurs when
the noise has magnitude greater than 1 and has sign opposite to that of the correct state.

3.1.5 Error correction

The Hopfield associative memory is able to perform recall of stored patterns in the presence
of noise in the input and crosstalk interference. Therefore, the network is able to perform
error correction. There are two types of error correction in the network dynamics. The first
is collective state computation, i.e., all of the network acts collectively to remove noise and
recall stored patterns. Even if several units have errors, there is redundancy programmed into
the network due to the outer product learning rule. The patterns are distributed between the
synaptic connections of the network. The state of each unit in a pattern is redundantly stored
in N − 1 connections and then placed in superposition with the other patterns. Therefore,
the outer product learning rule creates redundancy and distributes information across the
entire network. This allows the network to act collectively to remove errors.

The second type of error correction comes from the activation function that quantizes the
state of each unit at each iteration. The preactivation, Wx, will have analog values. The
preactivation can be thought of as a prediction or probability of a unit being −1 or 1. By
then quantizing the analog values, the network corrects noise or error when the prediction
is correct. If allowed to propagate through the network, the error would grow to cause
catastrophic failure.
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3.2 Results

3.2.1 Q-state phasor associative memories

As discussed in Section 3.1.3, spin-glass models have been used to construct associative
memories. E.g., the Ising model [43] was the basis for the Hopfield associative memory [36].
In addition, the Potts model [78] is the basis for associative memories where the individual
units can take one of Q possible states [48, 71]. Specifically, the units in a Q-state phasor
associative memory [71] take one of Q possible values distributed equally on the unit circle.
This representation maps naturally to complex-valued phasors. Here, we explore Q-state
phasor associative memories with varying levels of activation sparsity and present novel
empirical results on their capacity and information content.

A Q-state phasor associative memory [71] is a complex-valued phasor neural network
that stores a set of M N -dimensional phasor patterns with discrete phases. The state of
unit i for pattern k is ξki = aki e

i(2πqki /Q+ψi) ∈ CN , ∀k ∈ {1, ..,M} where the phases can have
one of Q discrete states qki ∈ {0, .., Q − 1}. Here, ψi is a fixed phase shift for unit i and
aki ∈ {0, 1} is a binary activity variable. The patterns are stored in the synaptic weights
using the complex outer product,

W =
1

N

m∑
k=1

ξkξk∗T , (3.5)

generalizing Hebbian learning in real-valued associative memories. Here, ξk∗T is the complex
conjugate transpose of pattern k. It is assumed the diagonal of the weight matrix is zero,
diag(W ) = 0 The energy,

E = −1

2
z∗TWz, (3.6)

governs the system dynamics that move the network state to stable, fixed-points in complex
space, corresponding to limit-cycle attractors in the time domain. Here, z ∈ CN is the
complex-valued vector representing the network state. The energy function is similar to that
of the Hopfield network except for the use of the complex conjugate transpose. Again, the
learning rule is similar but the complex conjugate transpose is used. Association is performed
through discrete-time iterative dynamics using the update rule zi(t + 1) = f(

∑
jWijzj(t)).

The activation function,

f(ui) = exp(i
2π

Q
argminq|ϕui −

2πq

Q
− ψi|)H(|ui| −Θ), (3.7)

quantizes the phase, ϕi, of the ith unit to the nearest value of 2πq
Q

+ ψi and either sets the

amplitude to one if |ui| > Θ, or zero, otherwise. The Heaviside function, H, acts to threshold
activity below the threshold value, Θ. Here, ui =

∑
jWijzj is the preactivation for unit i.

Q-state phasor neural networks generalize Hopfield networks to units which haveQ states.
As a consequence, the Hopfield network is a special case of the Q-state phasor neural network
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when Q = 2. For larger values of Q, the states are distributed equally on the unit circle.
Fig. 3.3 presents an example of a Q-state phasor for Q = 4. There are four states the phasor
can take. Here, the states are aligned with the real and imaginary axes, though, the four
states could be rotated such that the phase difference between states is π/4 and −π/4.

Figure 3.3: Example Q-state phasor. A Q-state phasor is presented for Q = 4. The unit
can take one of four possible states equally distributed on the unit circle. Here, the four
states are on the real and imaginary axes.

In [18], it was predicted that for Q-state phasor associative memories specific values of Q
exhibit greater pattern capacity and information content than binary associative memories
or phasor neural networks with continuous phase values for dense patterns, i.e. when every
unit is active in a pattern.

We compare the pattern capacity and synaptic information for several values of Q. The
pattern capacity is defined as the number of stored patterns divided by the dimensionality
of the network, C = M/N . In order to compute the capacity, we compare the similarity
between stored patterns and patterns after recall. The similarity is the coherence of the
recalled pattern to the stored pattern,

ρz,ξk =
|z∗Tξk|2

|z∗Tz||ξk∗Tξk| (3.8)

Here, z is the state of the network after recall, ξk is a stored pattern. The synaptic infor-
mation, Is, is defined as the number of bits stored in the network divided by the number of
synaptic connections,

Is = Ek[ρz,ξk ]MIp/Ns. (3.9)
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Here, Ip is the information in each pattern, Ns is the number of nonzero synaptic connections,
and Ek[ρz,ξk ] is the expected similarity taken over stored patterns. For Q-state phasor neural
networks, the information in each pattern, Ip = log2(Q)N , can be computed based on the
number of bits per state for a specific value of Q, log2(Q), and the number of units in the
network, N .

The capacity and synaptic information for dense patterns are presented in figure 3.4. The
results from simulations are consistent with previous findings [18]. Additionally, we present
new empirical results on the capacity and synaptic information for values of Q greater than
4. As predicted by mean-field theory, the greatest pattern capacity is found for Q = 3. Q = 2
and Q = 4 have the same pattern capacity. As Q increases the pattern capacity decreases.
In the limit as Q goes to infinity the pattern capacity approaches that of the continuous
phasor associative memory. Again, when Q = 2, the Q-state phasor associative memory is
equivalent to the binary Hopfield network [36]. The same pattern capacity and information
content are recovered, approximately 0.14.

The information is also greatest for Q = 3. Unlike the pattern capacity, the information
remains greater than the binary Hopfield network for Q < 7. Though, Q = 2 and Q = 4
have the same pattern capacity, Q = 4 has greater information since each unit has 2 bits of
entropy.

(a) (b)

Figure 3.4: Pattern capacity and synaptic information for Q-state phasor asso-
ciative memory networks a) The mean similarity is plotted as a function of the pattern
capacity. b) Information is plotted for varying values of Q.

The capacity and information results can be intuitively understood by examining the
trade-off between complexity and robustness in Q-state phasor representations and the com-
plex crosstalk interference. Q-state phasor representations trade-off complexity for robust-
ness. Fig. 3.5 provides an illustration of this effect. Two Q-state phasors are presented for
Q = 4 and Q = 8. The phasors have 2 bits and 3 bits of entropy for Q = 4 and Q = 8,
respectively. The boundaries between states are shown with dashed lines. Noise vectors are
displayed as red arrows with dashed red circles. For Q = 4, it can be seen that the noise
can have a greater magnitude before crossing the boundary between states. For Q = 8, the
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same noise would cause an error. The distance between nearest points, or minimum distance,
in Q-state phasors is given by the chord of a unit radius circle with angle equal to 2π/Q,
dmin = 2 sin(π/Q). Therefore, the closest point on the boundary between states is sin(π/Q).
The noise vector must be greater than this to cause an error.

Figure 3.5: Q-state phasor trade-off pattern complexity for robustness.

3.2.2 Basins of attraction

A key feature of Q-state phasor associative memories is the ability to perform recall in the
presence of noise. In essence, the network performs error correction. Here we characterize
the basins of attraction for Q-state phasor neural networks. Fig. 3.6 presents results from
simulations of Q-state phasor neural networks for different values of Q and pattern loading,
C =M/N . Each subfigure plots the initial similarity versus the final similarity for a different
value of C. The lines in each plot represent a network with a different value of Q. The black
line with a slope equal to one are the points where the initial similarity is equal to the final
similarity. At low pattern loadings, all networks can correct a large number of errors. As
the pattern loading increases beyond the critical pattern capacity for particular values of Q,
the networks fail to recall stored patterns. In agreement with the results in Fig. 3.4a, Q = 3
has the greatest capacity. Q = 2 and Q = 4 have the second greatest capacity.

3.2.3 Complex crosstalk interference

The increase in capacity by changing from Q = 2 to Q = 3 may seem counterintuitive. The
distance between states is less for Q = 3 than for Q = 2. Therefore, it may be expected
that 3-state phasors are more sensitive, or less robust, to noise. Intuition may be gained by
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Figure 3.6: Basins of attraction for Q-state phasor neural networks.

examining the crosstalk interference in Q-state phasor neural networks. For Q-state phasor
neural networks, the crosstalk interference is distributed in the complex plane.

Wz =
1

N

M∑
k=1

ξkξk∗Tz (3.10)

=
1

N
ξµ

N∑
j=1

ξ̄µj zj +
1

N

∑
k ̸=µ

ξk
N∑
j=1

ξ̄kj zj (3.11)

= αξµ +
∑
k ̸=µ

βξk. (3.12)

Here, α and β are complex-valued coefficients corresponding to the signal and noise
components, respectively. For the signal component, the complex dot product will be more
coherent when compared to the noise component, having a greater magnitude. The noise
component is complex normal distributed with an expected value equal to zero and an
isotropic covariance. For Q = 2, the noise resides on the real line. The magnitude of the noise
is half-normal distributed. For Q > 2, the magnitude of the noise is Rayleigh distributed.
Compared to the half-normal distribution, the Rayleigh distribution is more concentrated
around the mode and has a lower kurtosis. Therefore, the Rayleigh distribution has a lower
probability of extreme magnitude values.
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Fig. 3.7 presents a histogram of noise magnitudes and a scatter plot of preactivation
values for individual units obtained from simulations of Q-state phasor neural networks with
pattern loading of M/N = .14 for Q equal to 2, 3, and 4. The noise, n = ui−1, is computed
based on the difference between the preactivation and the target value of zi = 1. The
histogram shows that for Q > 2 the noise distribution has a larger mode but has a lower
probability of extremely large values. Q = 2, the scatter plot shows that the noise resides
on the real line. It can be seen that some of the preactivations are closer to -1 than to
1, indicating an error. This is expected since the pattern loading (0.14) is larger than the
capacity for Q = 2 (0.0.138). For Q > 2, the noise is distributed in the complex plane around
zi = 1. As shown in the plot on the left, there are fewer extreme values. As expected, for
Q = 3, almost all of the values lie within the radius of the circle since the pattern loading
(0.14) is less than the capacity (0.22). For Q = 4, values extend past the radius of the circle
indicating an error, Again, this is expected since the pattern loading (0.14) is greater than
the capacity (0.138).

Figure 3.7: Crosstalk interference in Q-state phasor associative memories. Left)
Histogram of noise magnitudes for several values of Q. Right) Scatter plot of noise values
for several values of Q. The solid circle is a unit circle center at zero. Dotted circles are
plotted for Q = 2, Q = 3, and Q = 4. The dotted circles have radius equal to the half the
distance between nearest states. the In both plots the networks have capacity equal to 0.14.
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3.2.4 Continuous phasor neural networks

So far, we’ve introduced associative memories where each unit takes discrete states. For
Q-state phasor neural networks, as Q approaches infinity, the state of each unit approaches
a continuous value. A model for continuous phasor neural networks was originally proposed
in [73]. The associative memory is capable of storing continuous values compared to discrete
values in Q-state phasor associative memories. The ability to store continuous values is an
advantage. Though, this comes at a cost. The pattern capacity is less for continuous phasor
networks, M/N = 0.038.

Recently, it was found that the capacity of continuous phasor associative memories can
be increased if the networks store patterns with sparse activity [25]. Thresholding phasor
associative memories store sparse, continuous phasor patterns, ξki = aie

iϕi ∈ C. Here, ξki
is the ith element of the pattern vector, ai ∈ {0, 1}, and ϕi ∈ [−π, π]. The network stores
patterns using the same complex outer product learning rule as the for continuous phasor
neural networks [73] and Q-state phasor neural networks [71], W = 1

M

∑M
k=1 ξ

kξk∗T . At
each time step, t, each unit receives input and forms the preactivation u(t) = Wz(t). The
activation function creates sparse patterns by thresholding units when the preactivation
magnitude is less than a specific value Θ(t),

zi(t+ 1) = f(ui(t),Θ(t)) :=
ui(t)

|ui(t)|
H(|ui(t)| −Θ(t)). (3.13)

Here, H(x) is the Heaviside function. If |ui(t)| is less than Θ(t) the unit amplitude is set
to zero.

3.2.5 Sparse Q-state phasor neural networks

In this section, we present new results for sparse Q-state phasor neural networks. We show
the tradeoffs between sparsity and the number of states for each unit, Q. Fig. 3.8a displays
the similarity versus capacity for varying sparsity and Q. Each subfigure is computed with a
different value of Q and each line is computed for a different sparsity. Sparsity is the fraction
of inactive units in a pattern. E.g., sparsity equal to 0.99 corresponds to patterns where
0.01% of units are active. A sparsity of zero represents dense patterns, i.e., patterns where
every unit is active. For all values of Q, the highest capacity is achieved for the sparsest
patterns. For intermediate sparsity values, an interesting trend appears. For Q < 8, as the
sparsity increases from zero the capacity decreases until a point at which the capacity starts
to increase. For Q > 8, increase sparsity only increases the capacity.

Fig. 3.8b plot information versus sparsity for different values of Q. The results are like
those for similarity versus capacity. The greatest information is achieved for the sparsest
patterns. For Q < 8, there is a bimodal distribution. Information first decreases with
increasing sparsity until a critical values at which information increases. For Q >= 8,
increasing sparsity only increases the information.
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Figure 3.8: Effects of sparsity on capacity and information for Q-state phasor as-
sociative memories. Top) Similarity versus capacity with varying levels of Q and sparsity.
Bottom) Information versus sparsity for different values of Q.

3.2.6 Oscillatory associative memoires

The dynamics of Q-state phasor neural network are implemented in discrete time. There-
fore, analog implementations of Q-state associative memories require mapping phasor neural
networks to models of physical systems, such as oscillatory neural networks. Here, we con-
sider a continuous-time dynamical system consisting of a network of coupled oscillator that
is capable of implementing a Q-state phasor associative memory.

Original efforts [40] to map phasor associative memories to oscillator neural networks
resulted in low capacity and poor pattern retrieval. This results from the fixed points of the
dynamical system not corresponding to stored patterns. The issue can be resolved in several
ways.

The first method discussed uses sub-harmonic injection locking, where the frequency of
the harmonic injection signal is Q times the frequency of memory oscillators, Q = ωinj/ωmem.
This biases the phases of the oscillators in the associative memory towards discrete values.

The second method uses sparse pattern activity. Implementation of sparse phasor neu-
ral networks in oscillator neural networks requires a thresholding mechanism to inactivate
oscillators corresponding to phasors with zero magnitudes. We present a novel threshold-
ing oscillator model which takes advantage of the Hopf bifurcation in order to create two
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modes of behavior. One mode has zero magnitudes. The other mode produces limit cycle
oscillations with fixed, nonzero magnitudes.

3.2.7 Q-state oscillatory neural networks

We present two models that implement arbitrary Q-state phasor associative memories in
oscillator neural networks. A similar method was proposed in [69] but only implemented the
special case of binary patterns, or Q = 2. Our method can be seen as a generalization that
allows for pairwise higher-order harmonic coupling and sub-harmonic injection locking.

In the following section, we discuss the case of dense patterns, i.e., patterns where all units
are active. Then, we present models that implement sparseQ-state associative memories. For
the first dense oscillator neural network model, the system of ordinary differential equations
(ODE) is

dϕi
dt

= −ϵ
∑
j ̸=i

Rij sin(ϕi − ϕj − Φij)− hi
∑
j

sin(Q(ϕi + ψi)). (3.14)

Here, ϕi is the phase of the ith oscillator, ψi is the fixed phase shift for the ith oscillator,
Rij = |Wij|, Φij = arg(Wij), ϵ is a global coupling parameter, and hi is the strength of
harmonic infection for the ith oscillator. Rij represents the strength of coupling between
oscillators zi and zj. The coupling imposes a phase shift of Φij. The constants ϵ and h control
the relative strength of network coupling and sub-harmonic injection locking, respectively.
The system energy is composed of two parts determined by network interactions and sub-
harmonic injection locking,

Esystem(ϕ) = Enetwork(ϕ) + ESHIL(ϕ). (3.15)

The network energy,

Enetwork(ϕ) = −1

2

∑
ij

Rij cos(ϕi − ϕj − Φij), (3.16)

measures the similarity of network activity compared to stored patterns. The energy function
sub-harmonic injection locking dynamics,

ESHIL(ϕ) = − 1

Qω

∑
i

hi cos(Q(ϕi + ψi)), (3.17)

measures the deviation of the oscillator phase from one of the Qth roots of unity.
To demonstrate its effects on the coupled oscillator network we run simulations with and

without sub-harmonic injection locking. Fig. 3.9a plots phase versus time for oscillators in
a 3-state oscillator neural network without sub-harmonic injection locking. The states of
the oscillators are initialized to a stored pattern. As the network evolves, the oscillators
drift from their initial condition. Therefore, the stored patterns are not fixed points of the
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(a) (b)

Figure 3.9: Q-state oscillator neural network without sub-harmonic injection lock-
ing. a) Phase versus time for a 3-state oscillator associative memory. b) similarity versus
time.

dynamical system. Fig. 3.9b shows the similarity of the network state to the initialized
pattern versus time. The similarity starts at one since the network was initialized to the
stored pattern. As time increases, the similarity decreases.

Sub-harmonic injection locking uses signals from an oscillator or a set of oscillators that
operate at a harmonic of the memory oscillators. Alternatively, the network can be stabilized
by higher-order coupling between oscillators. For the second model, the system of ODEs is

dϕi
dt

= −ϵ
∑
j ̸=i

Rij sin(ϕi − ϕj − Φij)− hi
1

N

∑
j

sin(Q(ϕi + ψi − ϕj − ψj)). (3.18)

Here, ψi is the fixed phase shift for the ith oscillator. Eq. (3.18) model generalizes the model
proposed in [70] by allowing a fixed phase shift for each oscillator.

3.2.8 Stability of oscillator neural networks

As previously mentioned, in most cases without higher-order harmonics, the stored patterns
are not stable states of the oscillator network. We show how higher-order harmonics can act
to make stored patterns fixed points of the dynamical system. Fig. 3.10 is an illustration
of sub-harmonic injection locking. An oscillator, θ, with angular frequency ω received input
from another oscillator, γ, with an angular frequency that is a harmonic of ω. In this case,
the harmonic is 3ω. The phase of the γ oscillator is biased towards three angles (0, 2π/3,
and 4π/3).

A method for analyzing the stability of dynamical systems is by examining the maximum
eigenvalue of the Jacobian matrix. Fig 3.11 displays histograms of the maximum eigenvalue,
λmax(J) of the Jacobian matrix for Eq. (3.14). Let fi(z) be equal to Eq. (3.14). Then, an
entry in the Jacobian matrix is
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Figure 3.10: Example of sub-harmonic injection locking.

Jij =
∂fi
∂zj

. (3.19)

When λmax(J) > 0, the system is unstable and will drift from the current state. In all
subfigures in Fig. 3.11, values for λmax(J) are presented for three types of patterns, stored
patterns, patterns with errors, and random patterns. Figs. 3.11a and 3.11b plot histogram
values for λmax(J) in networks without sub-harmonic injection locking. For all three pattern
types, λmax(J) > 0. Therefore, the network is unstable. Introducing sub-harmonic injection
locking can act to stabilize the system for stored patterns. Figs. 3.11c and 3.11d plot λmax(J)
for networks with sub-harmonic injection locking. Now, for stored patterns, λmax(J) <= 0.
This results in stable network activity. I.e., the stored patterns are fixed points of the
dynamical system. For error patterns and random patterns, λmax(J) > 0. Again, the
network is unstable. For error patterns, the system will move towards a stored pattern.

We demonstrate how a network can retrieve a stored pattern from a corrupted pattern.
Fig. 3.12 presents the results from the decoding (recall) of a corrupted pattern in a 3-state
oscillator neural network. The oscillator phases versus time are plotted in Fig. 3.12a. The
network state is initialized to the corrupted pattern. The injection locking coefficient, h,
is increased linearly over the course of decoding. As h increases, the oscillator phases are
biased towards one of 3 possible states. It can be seen that some of the oscillator phases move
between phase states. At the end of decoding, all of the oscillator phases have locked into
one of the 3 possible states. Similarity versus time is plotted in Fig. 3.12b. Since the network
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Figure 3.11: Network stability. The distribution of the maximum eigenvalue of Jacobian
matrix is plotted for different types of patterns.

is initialized with a corrupted pattern, the initial similarity is low. The similarity approaches
one over the course of decoding, indicating error correction and successful decoding.

The extent to which associative memories can retrieve stored patterns depends on the
basins of attraction around stored patterns. If the state of a network starts within the basin
of attraction for a stored pattern, the network dynamics will move the state toward the
stored pattern. The size of the basin determines the amount of noise that can be introduced
before an error is made. Fig 3.13 presents results from an error analysis of Q-state oscillator
networks. Each subfigure plots the initial versus final similarity for different pattern loadings.
In each subfigure, the horizontal axis is the similarity between the stored pattern and the
initial network state. The vertical axis is the similarity between the stored pattern and the
final network state after simulation. The black line has slope one. Points above the black line
indicate error correction, i.e., the final network state is more similar to the stored pattern
of the initial network state. When the pattern loading is low, all values of Q correct a
significant number of errors. As the pattern loading reaches the pattern capacity, the ability
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(a) (b)

Figure 3.12: Successful decoding in a 3-state oscillator neural network. a) Phase
versus time is plotted for a 3-state oscillator neural network with sub-harmonic injection
locking. The injection locking coefficient, h, is increased linearly over the course of recall. b)
Similarity versus time. The network is initialized with a corrupted pattern. The similarity
increase to one over the course of recall.

of the network to correct errors decreases.

3.2.9 Thresholding oscillator model

In order to implement the thresholding phasor associative memory in a network of coupled
oscillators, the magnitude of the oscillators must be thresholded below a critical value. This
can be achieved in several ways depending on the mode. We consider two types of models.
One model is a phase-based model like the Kuramoto model that includes a dynamic am-
plitude variable. The other is a Hopf oscillator model with a dynamic variable that causes
a transition through the Hopf bifurcation. For the Hopf oscillator model, the system of
differential equations for the thresholding oscillator model is

żi = zi
(
g(αi) + iωi + β1|zi|2

)
+
∑
j

wijzj (3.20)

α̇i = g′(αi)
(
|
∑
j

wijzj| − αt
)
. (3.21)

Here, zi is the complex number representing ith oscillator, αi is a dynamics parameter
controlling the oscillator behavior of the ith oscillator, ωi is the center frequency for the
ith oscillator, β1 is the parameter for the nonlinear part of the oscillator dynamics, g(·)
is the hyperbolic tangent function, g′(·) is its derivative, and αT is the activity threshold
value. When the magnitude of the input to the ith oscillator, |∑j wijzj|, is greater than the
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Figure 3.13: Basins of attraction of Q-state oscillators networks with dense pat-
terns.

critical value of αT , αi increases. Stated another way, when the input is strongly coherent, αi
increases. When the magnitude of the input to the ith oscillator is less than αT , αi decreases.
The hyperbolic tangent and its derivative act to saturate keep αi between −1 and 1. The
bounds of −1 and 1 are chosen to keep the amplitude of the oscillators around zero and 1
respectively. Though, the amplitude can be adjusted by adding a constant to scale g(αi)
and adjusting β1.

The activity threshold value, αi, must be set below the lowest magnitude of the input for
active units and above the greatest magnitude of the input for inactive units. If these two
values overlap, then there will be errors during recall.

The behavior of the thresholding oscillator model can be understood through the prop-
erties of the Hopf bifurcation. When g(αi) > 0 and β1 < 0, the is a stable limit cycle with
amplitude

√
−g(αi)/β1. When g(αi) < 0 and β1 < 0, the system exhibits damped oscillator

behavior and the amplitude decays to zero in the absence of input.
Since the change in α depends on the magnitude of the input, we modify the learning

rule to make the magnitude of the input close the magnitude of the stored patterns. The
new learning rule is
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W =
M∑
k=1

ξkξk∗T

|ξk∗Tξk|2 . (3.22)

A key property of associative memories is the ability to recall stored patterns in the
presence of noise. In a thresholding phasor associative memory there can be several types of
noise. Two types of noise are considered in this study. One type of noise is cause by false
positives, or unit activity when there is non in the stored patterns, and by false negatives,
unit which are inactive but should be active. Another type of noise is variation in the phase
of the active units of a stored pattern. The two types of noise can be represented as a
combination of multiplicative and additive noise. The multiplicative noise adds phase noise
to active elements and can deactivate active elements. The additive noise introduces active
elements which are inactive in the stored pattern. The individual elements of the corrupted
pattern are ξ̃ki = ηpi ξ

k
i + (1 − |ξki |)ηai . Here, ξki is the ith element of the kth pattern, ηpi is

the ith element of the phase noise pattern, and ηai is the ith element of the amplitude noise.
The phase noise is multiplicative. The individual elements of ηp have unit or zero amplitude
with phase drawn uniformly from −π to π, i.e., ηpi = rpi e

iϕpi where ϕpi ∼ Uniform(−π, π) and
rpi ∼ Bernoulli(Pp). The probability of a unit being active is Pp. The individual elements of
ηa also have unit or zero amplitude with phase drawn uniformly from −π to π, ηai = rai e

iϕai

where ϕai ∼ Uniform(−π, π) and rai ∼ Bernoulli(Pa). Here, there is a different probability of
being active, Pa.

We demonstrate the ability of a thresholding oscillator neural network to implement a
thresholding phasor associative memory. Fig. 3.14 presents results from the simulation of
a thresholding oscillator associative memory recalling a stored pattern from a corrupted
pattern with both phase and amplitude noise. Fig. 3.14a displays the hyperbolic tangent
of the parameter controlling the transition through the Hopf bifurcation. αi is initialized
to zero for all oscillators. Over the course of the simulation, the αi parameters for units
with an input magnitude that is greater than the threshold parameter, αT , increase. The αi
parameters for units with an input magnitude less than the threshold parameter decrease.
In both cases, the change in αi tends towards zero as αi reaches the saturation regions of
the hyperbolic tangent. Fig. 3.14b displays the amplitude of each oscillator over the course
of the simulation. At the beginning of the simulation, αi = 0 ∀i. Therefore, the steady-state
amplitude of each oscillator is zero. At the beginning of the simulation, the amplitudes move
towards one for all oscillators. Then, for the oscillators which receive input with amplitude
greater than αT , the oscillator amplitude begins to increase, eventually reaching the steady-
state limit cycle with an amplitude approximately equal to one. The network of oscillators
was initialized with a corrupted pattern that had active units that are not active in the stored
pattern. For those units, the input amplitude is less than αT , As a consequence, for those
oscillators, the amplitude decays to approximately zero. Fig. 3.14c displays the oscillator
phase over time for those oscillators with amplitude greater than 0.1. The active oscillators at
the beginning of the simulation were initialized with phase noise. As the network converges
the phase of each oscillator reaches a steady value. Fig 3.14d displays the similarity of the
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Figure 3.14: Thresholding oscillator neural network recalling a stored pattern in
the presence of noise a) The magnitude of g(αi) plotted over time. b) The magnitude of
each oscillator plotted as a function of time. c) The phase of each oscillator is plotted as a
function of time. d) The similarity for each stored pattern plotted as a function of time.

network state to all stored patterns over time. Since the network was initialized with a
corrupted pattern, it can be seen that the similarity is higher for one pattern and low for the
rest of the patterns. As the network evolves, the similarity for the correct pattern increase,
indicating that the network correctly retrieved the stored pattern. Additionally, this shows
that the stored patterns are fixed points of the dynamical system.

3.2.10 Cross-frequency coupling

Cross-frequency coupling (CFC) is a phenomenon observed in neural recordings where cor-
relations exist between oscillations at two different frequencies. Two common types of CFC
are phase-amplitude coupling (PAC) and phase-phase coupling (PPC). In PAC, the phase
of one oscillation is correlated with the amplitude of another oscillation. In PPC, the phases
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(a) (b)

Figure 3.15: Emergence of cross-frequency coupling in coupled oscillator networks
with sub-harmonic injection locking. (a) Top - The raw signal measured from a popu-
lation of oscillators containing groups with different frequencies, gamma (γ) and theta (θ).
Bottom - Two signals were obtained after filtering at gamma and theta bands. (b) Top -
Gamma phase versus theta phase. Bottom - Gamma amplitude versus theta amplitude.

of both oscillations are correlated. CFC has been observed between θ and γ frequencies. θ
frequencies range from 4-10 Hz depending on the species and brain region. γ frequencies
range from 40-140 Hz.

We demonstrate how Eq. (3.14) can produce CFC in a network of coupled oscillators when
the harmonic injection coefficient is modulated by the phase of θ, h(ϕθ). Fig. 3.15 presents
results from simulations of 5-state oscillator neural networks consisting of two groups of
oscillators, θ and γ. Fig. 3.15a plots the normalized amplitude for the raw signal obtained
from summing the activity of all the oscillators in the network with additive white noise and
filtered signals at the θ and γ frequency bands. Fig. 3.15b plots the PPC and PAC between
the filtered θ and γ signals. Q-state oscillator neural networks exhibit PPC and PAC. Here,
Q = 5. Therefore, in the top plot of Fig. 3.15b, there are 5 bands corresponding to the ratio
of γ and θ. The bottom plot of Fig. 3.15b shows PAC between θ and γ.
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Figure 3.16: Channel rate for uncoded M-PSK signals. The bit error rate (BER) is
plotted as a function of the energy per bit over the noise power in dB (Eb/N0). Line represent
different values of M, or the number of states per symbol.

3.2.11 Communications

We considered if Q = 3 phasors would have useful properties for communicating information.
To test this, we computed the bit error rate (BER) for several types of M-ark phase shift
keying (M-PSK) sending information on the additive white noise channel (AWGN). It turns
out there is a close connection between phasor associative memories and communication of
information. The same representation is useful for both robust associative memories and
robust communication. Fig. 3.16 shows the results from simulations of sending symbols
modulated using M-ary phase shift keying (M-PSK) across the AWGN channel. Notice the
similarity to Fig. 3.8a. It appears that Q = 3 and M = 3 are both optimal. It fact, the
advantages of 3-PSK over BPSK and QPSK were discovered only recently [67].
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3.3 Discussion

This chapter presents new results for Q-state phasor associative memories and validated
predictions on the pattern capacity and information content made by mean-field theory. In
addition, we present new models for Q-state oscillatory neural networks that successfully
implement Q-state phasor associative memories. This work is also the first to present a
sparse coupled oscillator model for TPAMs using Hopf oscillators.
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Chapter 4

Efficient Optimization with
Higher-Order Ising Machines

A prominent approach to solving combinatorial optimization problems on parallel hardware
is Ising machines, i.e., hardware implementations of networks of interacting binary spin vari-
ables. Most Ising machines leverage second-order interactions although important classes of
optimization problems, such as satisfiability problems, map more seamlessly to Ising networks
with higher-order interactions. Here, we demonstrate that higher-order Ising machines can
solve satisfiability problems more resource-efficiently in terms of the number of spin variables
and their connections when compared to traditional second-order Ising machines. Further,
our results show on a benchmark dataset of Boolean k -satisfiability problems that higher-
order Ising machines implemented with coupled oscillators rapidly find solutions that are
better than second-order Ising machines, thus, improving the current state-of-the-art for
Ising machines.

4.1 Introduction

An Ising machine is a type of parallel computer utilizing energy relaxation in a network
of interacting binary variables. Ising machines have been proposed as efficient methods for
finding optimal or near-optimal solutions to hard combinatorial optimization problems [38,
77, 23, 22, 90, 62]. For a given combinatorial optimization problem, the network interactions
are shaped so that the energy minima correspond to the problem solutions. For mapping a
given combinatorial optimization problem to a network, a common strategy is to formulate
the objective as the energy function of an Ising model, an abstract network of coupled bipo-
lar variables originally proposed to model ferromagnetic material. The Ising model can then
be implemented on hardware, referred to as an Ising machine. Ising machines implemented
on quantum computers promise optimal solutions [30, 85, 23, 31]. However, due to the
challenges of constructing them, Ising machines based on classical physics are reemerging
and new technologies are being developed. There is a large variety of possibilities for im-
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plementing classical Ising machines, including coupled electrical oscillators [95, 16, 91, 62],
optical parametric oscillators [97], stochastic circuits (probabilistic bits) [13], and neuromor-
phic hardware [38, 47, 20]. Here, we focus on classical Ising machines for approximately
solving combinatorial optimization problems at scale and extremely fast.

Casting a combinatorial optimization problem as an Ising model usually takes two or
three steps. The first step is to express the combinatorial optimization problem objective
as a polynomial in the binary variables. The second step is mapping the polynomial to the
energy function of an Ising model. For many combinatorial optimization problems, step
one results in a higher-order polynomial [77, 12, 9, 5, 46, 10], i.e., a polynomial with terms
that contain products of more than two binary variables. However, most Ising machines
utilize second-order polynomial interactions between variables. In this case, a third step,
called quadratization [77, 12, 9, 11, 3, 46, 19, 93], is applied for reducing higher-order
terms in the polynomial to second-order. The resulting second-order polynomial represents
the energy function of a classical Ising model, i.e, a second-order network in which each
interaction just couples a pair of variables [59]. Quadratization increases the network size by
adding auxiliary variables and it requires increased precision and range of the second-order
interaction coefficients compared to higher-order interactions [9, 5].

Higher-order Ising models – models that include polynomial interactions of a degree
greater than two – have received little attention because the possible number of interactions
grows exponentially with the interaction order. Thus, the training and implementation
of higher-order Ising models seemed intractable and impractical [84]. Here, we propose
to skip the step of quadratization and instead use higher-order Ising models that directly
implement the higher-order polynomials describing the combinatorial optimization problems.
Although this proposal seems daunting at first glance, we show that for important classes of
combinatorial optimization problems, the corresponding higher-order Ising machines require
fewer variables and connections than the second-order Ising machines resulting from the
quadratization approach.

Among the proposed Ising machines, coupled electrical oscillators are promising for com-
binatorial optimization problems in terms of solution quality [94], and the ability to leverage
existing technologies such as complementary metal-oxide-semiconductor (CMOS) ring os-
cillators [96, 65]. To build an oscillator Ising machine, the continuous phases of oscillator
variables have to be biased towards two anti-symmetric states, for example, by sub-harmonic
injection locking [29, 70, 94]. To demonstrate a concrete higher-order Ising machine, we in-
vestigate a network of coupled Hopf oscillators with sub-harmonic injection locking, referred
to as a higher-order oscillator Ising machine. Results from our simulations show that the
higher-order oscillator Ising machine not only uses fewer network resources compared to
the second-order oscillator Ising machine but, importantly, achieves better solutions. All
told, our results suggest that, against common beliefs, optimization with higher-order Ising
machines can outperform traditional Ising model approaches.
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4.2 Results

4.2.1 Mapping constraint satisfaction problems to Ising models

A broad class of combinatorial optimization problems are constraint satisfaction problems,
including invertible logic circuits, Boolean satisfiability (SAT) problems, and Boolean maxi-
mum satisfiability (MaxSAT) problems. SAT solvers have many direct applications in areas,
such as artificial intelligence [17], electronic design automation [92], cryptography [60], and
many more. Many Boolean constraint satisfaction problems naturally map to higher-order
polynomials [77, 12]. The most common approach for solving constraint satisfaction prob-
lems with Ising machines has been first to apply quadratization for translating problems
to second-order polynomials, and then use second-order Ising machines to solve them effi-
ciently [77, 9, 5, 11, 59, 19]. However, optimization can also be performed in higher-order
Ising machines without quadratization [10, 87, 15]. Here, we aim to construct higher-order
Ising machines for Boolean constraint satisfaction problems which are simple, yet, scale to
large problems and quickly find near-optimal solutions.

In Boolean constraint satisfaction problems, the Boolean variables must take a state
which satisfies a set of pre-defined constraints. For the hth constraint containing k variables,
the state space, Sh = {−1, 1}k, can be partitioned into two sets. Let Ch = {c ∈ Sh :
c = satisfied state} be the set of valid states, i.e., that satisfy the constraint, and C̄h =
Sh \ Ch = {c ∈ Sh : c = unsatisfied state} be the set of invalid states which do not
satisfy the constraint. Any logic function can be expressed by a constraint for which the set
Ch represents the truth table of the function. An objective or energy function of the hth
constraint, Eh, can be written as the characteristic function of its set of invalid states [77]:

Eh(s) =
∑
c∈C̄h

k∏
i=1

(1 + cisi)/2 (4.1)

or, equivalently (Methods 4.4.2), as one minus the characteristic function of its set of valid
states:

Eh(s) = 1−
∑
c∈Ch

k∏
i=1

(1 + cisi)/2. (4.2)

Thus, the sizes of the sets of valid and invalid states may determine which of the two
equations is preferable. Let NCh

= |Ch| and NC̄h
= |C̄h| denote the size of the set Ch

and C̄h, respectively. Then, Eqs. (4.1) and (4.2) contain a sum with NC̄h
and NCh

terms,
respectively. Note that both energies contain higher-order interactions of the order of the
size of the constraint.

The total energy for a constraint satisfaction problem is the weighted sum of the indi-
vidual constraints, Eq. (4.3):

E(s) =
∑
h∈Γ

whEh(s). (4.3)
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Eq. (4.3) generalizes our method to weighted MaxSAT problems, which have many applica-
tions [57]. In MaxSAT, each constraint is assigned a weight, wh, representing the relative
importance of satisfying the hth constraint. Here, Γ is the set of indices for the problem con-
straints, Eh is energy function for the hth constraint formulated according to either Eq. (4.1)
or (4.2).
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Figure 4.1: Mapping optimization problems to Ising models. Two example problems.
Left: XOR circuit. a, Circuit schematic for the XOR. The XOR gate has two inputs, s1 and
s2, and one output, s3. b, State table has eight lines. Four lines are input configurations for
valid/true output, the other four lines input configurations for invalid/false output. c, The
higher-order energy function for the XOR in both the factored and simplified form. d, Energy
and corresponding hypergraph of third-order XOR Ising network, variables nodes, depicted
as circles, connected by one interaction, depicted as a square. e, Energy and corresponding
graph of second-order XOR Ising network, resulting from quadratization. The graph contains
four variable nodes (one auxiliary variable), six second-order interactions and four first-order
interactions (biases). Right: SAT problem. f, SAT problem in CNF. The SAT function is
written with binary variables, xi ∈ {0, 1}, where x̄i denotes the variable negation. g, The
SAT problem in CNF has an equivalent circuit representation consisting of k-input OR gates
which output to one AND gate. h, The energy can be succinctly formulated with one term
per clause using Eq. (4.1).

Eq. (4.1) or (4.2) are higher-order interactions represented as factored polynomials. The
equations can be expanded to coincide with the common formulation of a higher-order Ising
model (Eq. 4.5 in Methods 4.4.1). Either the factored or expanded parameterization may be
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preferred depending on the problem and which form results in the fewest number of terms
in the energy. In general, the expanded energy may contain 2k − 1 terms or parameters.
However, for many practical problems each clause contains only a few literals, hence, k is
small. The factored representations require NCh

k and NC̄h
k parameters for Eqs. (4.2) and

(4.1), respectively. Thus, when k is large or the expanded form does not simplify to a few
terms, the factored representation is preferable.

The derivation of Ising models is first explained for two small examples of combinatorial
optimization problems, the exclusive OR (XOR) invertible logic gate, and a small SAT
problem. The XOR problem can be depicted by the XOR gate symbol (Fig. 4.1a), and its
state table (Fig. 4.1b). The expanded and simplified energy polynomial of XOR contains only
one interaction (Fig. 4.1c), resulting in a very simple hypergraph of the corresponding third-
order Ising network (Fig. 4.1d). The quadratization of the third-order XOR polynomial
produces a second-order Ising network with one additional auxiliary variable, six second-
order interactions, and four biases (Fig. 4.1e). The additional network resources required
after quadratization may be negligible for small problems but significantly change the scaling
behavior of required resources for larger problems (Fig. 4.2).

Any SAT problem can be written as the product (conjunction or AND) of clauses (con-
straints) where each clause is the Boolean sum (OR) of literals. A literal is a variable or its
negation. This form is known as conjunctive normal form (CNF). For a particular 3 clause
SAT problem, the CNF (Fig. 4.1f) corresponds to a logic gate circuit (Fig. 4.1g), and a
factored higher-order energy polynomial (Fig. 4.1h). The factored energy polynomial of a
SAT problem corresponds to Eq. 4.3 with wh = 1 ∀h. Therefore, any SAT problem in CNF
maps directly to a higher-order Ising model in which each higher-order interaction represents
a clause. The order of an interaction corresponds to the size of the corresponding clause.

4.2.2 Model scaling of higher-order and traditional Ising models

Quadratization of higher-order interactions introduces auxiliary variables and adds second-
order interactions (XOR example in Fig. 4.1), thereby potentially increasing the total re-
sources required by the corresponding Ising machine. To quantify this effect, Fig. 4.2 com-
pares the resource use of higher-order models versus second-order models on kSAT bench-
marks [35, 8]. kSAT is a SAT problem where each clause involves maximally k variables.
Quadratization of kSAT proceeds first by reducing a kSAT problem to 3SAT for k > 3,
which can always be done [49], and then quadratization of the 3SAT problem. We use the
D-Wave Ocean software package for quadratization (Methods 4.4.5), which accepts the min-
imum classical energy gap, ∆Emin, as an input parameter. ∆Emin is the difference in energy
between satisfied states and the lowest energy unsatisfied state. The choice of minimum
energy gap value influences the annealing time in quantum adiabatic annealing [23] and the
state acceptance probability in simulated annealing [51]. Increasing the minimum energy gap
for an Ising machine may improve the optimization, however, it tends to increase the number
of auxiliary variables and interactions required (Methods 4.4.5). We compare higher-order
to second-order models in terms of the number of variables in the energy function and the
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number of connections needed to implement all interactions. We consider second-order mod-
els with different minimum energy gap values. Nearby values of ∆Emin result in the same
quadratization, therefore, we investigate ∆Emin settings of 1, 5, 10, and 13 where 1, 2, 3,
and 5 auxiliary variables are introduced per clause, respectively. In addition, we found that
the method used to perform quadratization increases the required precision or resolution of
coupling coefficients from one bit for factored higher-order Ising models to at most six bits.
This is another significant difference in resource requirements, as hardware typically offer
limited resolution precision for representing interactions [65].
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Figure 4.2: Comparing second-order to third-order model parameters on bench-
mark kSAT problems. a, b, and d, The ratio between the number of second-order pa-
rameters to higher-order parameters are plotted as a function of the number of variables per
constraint in the kSAT problem and different values of ∆Emin. Colors represent reductions
with a different minimum energy gap, ∆Emin. The bars are grouped by k, the number of
variables per clause. a, The ratio of the number of variables required for second-order net-
works compared to higher-order networks. c, A higher-order interaction implemented with
all-to-all connectivity. e, A higher-order interaction is implemented with a computational
node for each constraint. b, d, The ratio of the number of connections required for second-
order networks compared to higher-order networks implemented with all-to-all connectivity,
c, and intermediate computational nodes, e.

To compare the resource use of interactions of different orders we consider the num-
ber of connections between nodes that are required for their implementation. The required
number of connections depends on the way a higher-order interaction is implemented, here
we compare two methods of implementation. The first method is bidirectional connections
between all variables participating in the higher-order interaction – a kth-order interaction
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requires k(k − 1) connections (Fig. 4.2c). The second method uses an intermediate compu-
tational node that receives input from all other variables participating in the interaction and
sends output back to all other variables – a kth-order interaction requires 2k connections
(Fig. 4.2e).

Our comparison shows that second-order models based on quadratization of higher-order
models require a much greater number of variables and connections compared to higher-
order models for kSAT benchmarks Fig. 4.2. In particular, second-order models require three
orders of magnitude more variables and one order of magnitude more connections compared
to higher-order models. In addition, the number of variables obtained from the D-Wave
Ocean software package for ∆Emin = 1 is the same as another method of quadratization
based on a circuit decomposition of SAT clauses [1] which introduces one auxiliary variable
per clause (Methods 4.4.5).

4.2.3 Solving SAT problems with a higher-order oscillator Ising
machine

To compare the computation performance of higher-order Ising machines with corresponding
second-order models, we use a concrete network model of coupled oscillators. In our higher-
order oscillator Ising machine, each oscillator is described by a complex variable zi ∈ C,
which evolves according to:

żi(t) = f(zi(t))− ri(t)
∂E(g(z(t)))

∂zi
+ qi(t) l(zi(t)). (4.4)

Here, zi represents the amplitude and phase of the ith oscillator. On the right-hand side, f(zi)

is the local oscillator dynamics, and ∂E(g(z(t)))
∂zi

the partial derivative of the Ising energy with
respect to oscillator zi, with time-dependent coupling coefficient ri(t), and optional element-
wise non-linearity, g(z(t)) = z(t)/|z(t)| for normalizing the amplitude of each oscillator.
Further, l(zi) = z̄i is the phase quantization signal driving the phase of oscillator zi to
discrete states, with time-dependent “annealing” coefficient, qi(t). The phase quantization
signal is equivalent to sub-harmonic injection locking (Methods 4.4.7).

We compared simulations of higher-order oscillator Ising machines and second-order os-
cillator Ising machines for solving kSAT benchmarks [35, 8]. Higher-order oscillator Ising
machines achieve better solutions than second-order oscillator Ising machines on all 3SAT
benchmark problems, as measured by mean energy at the solution points (Fig. 4.3a). Only
for the smallest problem instances (20 variables), the difference is small. For larger prob-
lems, a substantial gap in energy appears and increases with problem size. Interestingly,
even second-order oscillator Ising machines with large minimum energy gaps and, corre-
spondingly, high resource use cannot close the performance gap to higher-order oscillator
Ising machines. The performance gap amounts to about 0.75 percent of constraints satisfied
for the large 3SAT problems (Fig. 4.3b). Finding optimal solutions, i.e, states which satisfy
all the constraints, is a hard problem as there could be very few satisfying states in the entire
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Figure 4.3: Second-order versus higher-order networks when solving kSAT prob-
lems. a, The mean higher-order energy at the end of the simulation is plotted against the
number of problem variables for hard instances of 3SAT problems. As the problem size in-
creases, the difference in energy between the second-order oscillator Ising machines and the
higher-order oscillator Ising machines increases. b, The mean percent of constraints satisfied
at the end of simulation versus the problem size for 3SAT problems. c, The probability of
satisfying all constraints for different problem sizes and models for 3SAT problems. d, The
mean percent of constraints satisfied at the end of simulation versus the problem size for
higher-order oscillator Ising machines for 3SAT problems. e, The mean time to satisfy 95%
of constraints for higher-order Ising machines for 3SAT problems. d-e, Lines indicate differ-
ent linear annealing schedules for the sub-harmonic injection locking coefficients, qi. In all
plots, error bars represent the sample standard deviation computed over problem instances
and trial simulations. f, Comparing resources and solutions of 5SAT and 7SAT problems to
their 3SAT reductions. Reducing kSAT problems to 3SAT for k > 3 increases the number of
variables and connections (left two columns). The 5th-order and 7th-order Ising machines
find lower energy states corresponding to a greater fraction of constraints satisfied compared
to the 3rd-order Ising machine (right two columns).

state space. Nevertheless, for larger problems of the 3SAT benchmarks, higher-order oscilla-
tor Ising machines tend to find solutions that satisfy all constraints with greater probability
than the second-order oscillator Ising machines, Fig. 4.3c. In fact, the higher-order oscillator
Ising machine is the first reported Ising machine to find satisfiable solutions to the largest
3SAT problems (250 variables) since the previous efforts with second-order Ising machines
have been unable to find solutions satisfying all clauses [1], note the missing bars in Fig. 4.3c.

Annealing typically improves the quality of solutions found by Ising machines [46, 10,
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94, 1]. In both our higher-order oscillator Ising machine and existing second-order oscillator
Ising machines, a process analogous to adiabatic and simulated annealing is achieved by
gradually increasing the coefficient in the sub-harmonic injection locking term, qi [95]. We
investigated linear annealing schedules with different duration, measured by the number of
cycles of the resonant frequencies of the oscillators. The percentage of constraints satisfied
at the end of the annealing schedule improves with the duration of the annealing schedule
(Fig. 4.3d). The time-to-solution for reaching a fixed target of 95% of constraints satisfied
(TTS95) scales linearly with the slope in the annealing schedule (Fig. 4.3e). For large slopes,
the TTS95 can be a fraction of a cycle, consistent with previous findings that oscillator Ising
machines rapidly find low energy states [94]. In fact, higher-order oscillator Ising machines
can satisfy more than 95% in less than one cycle for all problems.

Many studies on solving kSAT problems for k > 3, first use an efficient method for
reducing the problem to 3SAT [49] and then focus on solving the resulting 3SAT problem.
Here, we use a benchmark dataset of 5SAT and 7SAT problems [33] to assess this strategy
for the higher-order oscillator Ising machine in terms of resource efficiency and solution
quality (Methods 4.4.4). First, we find that the reduction to 3SAT increases the number
of problem variables by one or two orders of magnitude, and there is approximately a 3
and 6 times increase in the number of clauses for 5SAT and 7SAT, respectively (left two
columns in Fig. 4.3f). Second, we observe that the direct solution of the 5SAT and 7SAT
problems satisfy a greater fraction of constraints compared to solutions of corresponding
3SAT reductions (right column in Fig. 4.3f). It would be interesting to compare the 5th-
and 7th-order oscillator Ising machines to second-order oscillator Ising machines but we
were unable to test second-order oscillator Ising machines on these problems due to the large
number of auxiliary variables introduced via quadratization.

4.3 Discussion

Much of the existing literature on optimization with Ising machines have focused on second-
order Ising networks. Such models were first proposed in [77] for solving constraint sat-
isfaction problems. The authors in [77] originally proposed mapping a SAT problem to a
higher-order polynomial but then applied quadratization to map to a second-order Ising
model. Our first contribution is to directly compare the resource use of second- and higher-
order Ising models for solving SAT problems. Defying common intuition, the comparison
reveals that higher-order Ising machines are more resource-efficient than second-order Ising
machines for solving large combinatorial optimization problems. The resource efficiency of
higher-order models results from the fact that no auxiliary variables are required and many
combinatorial optimization problems map to polynomials which correspond to a very sparse
higher-order interaction graph. Thus, the savings in higher-order models are in the number
of Ising variables, as well as in the number of connections (Fig. 4.2).

Our second contribution is to build a resource-efficient higher-order Ising machine with
coupled oscillators and test it on benchmark datasets of SAT problems. Motivated by other
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recent work [10, 87, 15, 6], we investigated the implementation of a higher-order oscillator
Ising machine in a coupled oscillator network. Our model resembles the one in [6], but still
differs in several ways. First, we use Hopf oscillators which include amplitude dynamics and
capture the dynamics of oscillator hardware [68] more closely than the oscillators modeled
by the Kuramoto model in [6]. Second, we introduce a form of annealing, specifically, the
gradual increase of the sub-harmonic injection locking coefficient following a linear annealing
schedule. Third, our model uses the simplest energy function resulting from the mapping
method in [77] (Eqs. (4.1) or (4.2)), a sum of all constraint terms where each constraint term
is a product of binary values. In principle, the mapping method specifies an entire family
of valid energy functions in which the products in the constraint energy are raised by any
positive exponent before summing them. For example, in [22, 6] the constraint terms are
squared before summing. Our model choice results in gradient computations with the lowest
possible complexity, and, moreover, achieves better solutions on the benchmark problems
than a model with squared constraints (Methods 4.4.8).

Higher-order oscillator Ising machines converge to optimal or near-optimal solutions
in very few cycles, and importantly, convergence time does not increase with problem
size (Fig. 4.3e). In some practical cases, solutions are reached in less than one cycle. Further,
higher-order oscillator Ising machines outperform second-order Ising machines in solution
quality and in some cases find optimal solutions to Boolean constraint satisfaction prob-
lems. To our knowledge, this study is the first to report an Ising machine that finds optimal
satisfiable solutions for the large 3SAT problems in the benchmark dataset (Fig. 4.3c).

It has to be emphasized that our study focuses on optimization methods with a basic Ising
model whose only dynamic variables are the spin variables. These methods are extremely fast
and resource-efficient, but they sometimes find only near-optimal solutions. Another type of
Ising machine with higher-order interactions implements the Lagrange method [66, 22, 63],
consisting of two types of dynamic variables, spin variables and Lagrange multipliers. In
these models, each constraint term in the objective function is multiplied with a nonnegative
variable, the Lagrange multiplier. If a constraint is unsatisfied, the corresponding Lagrange
multiplier grows dynamically, until the constraint is satisfied [66, 22, 63]. In theory, the
Lagrange models can find optimal solutions in polynomial time but the multipliers can grow
exponentially large as a function of time [22]. Further, the time to solution in Lagrange
models increases with problem size [22, 63]. The systematic comparison of Lagrange methods
with higher-order versus second-order interactions is an interesting topic for future research.

The reported benefits of higher-order Ising machines, and higher-order oscillator Ising
machines, in particular, are practically relevant because today many technologies exist for
their realization. For example, higher-order interactions require the multiplication of the
variables involved in the interaction. The multiplication of coupled electrical ring oscillator
voltages can be implemented in the analog domain using existing CMOS technologies [14].
Further, the kth-order interactions of electrical oscillators can be implemented in log2(k)
stages using a cascade of two-input multipliers or in one stage by a sequence consisting of
element-wise log transform, summation, and anti-log transform. Another interesting technol-
ogy is translinear electronic circuits which make use of the translinear principle [27]. Finally,
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existing methods for implementing real-valued analog higher-order interactions [99] may be
modified for use in higher-order oscillator Ising machines.

4.4 Methods

4.4.1 Mapping optimization problems to higher-order Ising
models

The energy function of the generalized Ising model, which includes higher-order interactions,
is:

E(s) = −
(
J (0) +

∑
i1

J
(1)
i1
si1 +

∑
i1<i2

J
(2)
i1i2
si1si2 + ...+

∑
i1<...<ik

J
(k)
i1...ik

si1 ...sik + ...+
∑

i1<...<in

J
(n)
i1...in

si1 ...sin

)
. (4.5)

Here, the real-valued variable J (k) represents the k-th order interaction between k spin
variables and n is the total number of spin variables in the Ising model. The three groups
of terms with 0th to 2nd order interactions on the RHS of (4.5) form the energy function
of the traditional Ising model. Note that Eqs. (4.1) and (4.2) can be expanded and reduced
into the form of (4.5).

In order to express the objective function of a combinatorial optimization problem as
the energy function of an Ising model, binary variables in the optimization problem must be
mapped to the spins of the Ising model. In this study, the transformation between problem
variables, xi ∈ {0, 1}, and spins, si ∈ {−1, 1}, uses the standard transformation: si = 2xi−1.

4.4.2 Equivalence of higher-order Ising energy formulations

It is easy to see that Eqs. (4.1) and (4.2) are equivalent. For constraint h, the corresponding
sets C̄h or Ch partition the state space. Therefore, any state, s, is an element of one of the
two sets and we have: ∑

c∈C̄h

k∏
i=1

(1 + cisi)/2 = 1−
∑
c∈Ch

k∏
i=1

(1 + cisi)/2,

with Eq. (4.1) on the LHS and Eq. (4.2) on the RHS. The product terms evaluate to 1 when
s = c and 0 otherwise. If s ∈ C̄h, both sides equal 1, if s ∈ Ch, both sides equal 0. Therefore,
Eqs. (4.1) and (4.2) represent the same objective function and can be used interchangeably.

4.4.3 Derivatives of higher-order Ising energy functions

The partial derivatives of Eqs. (4.1) and (4.2) with respect to a complex variable, zi, can be
efficiently computed as:
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∂Eh(z)

∂zi
= −

∑
c∈C̄h

ci
∏
j ̸=i

(1 + cjzj)/2. (4.6)

and

∂Eh(z)

∂zi
=

∑
c∈Ch

ci
∏
j ̸=i

(1 + cjzj)/2 (4.7)

4.4.4 Method for reducing kSAT to 3SAT

In this study, we also investigate a polynomial-time method [49] to reduce kSAT to 3SAT
when k > 3. The method works as follows. Let ∨, ∧, and ∼ denote the logical OR, AND, and
NOT operations, respectively. Consider a clause with 5 binary variables, (x1∨x2∨x3∨x4∨x5).
Introduce auxiliary variables y1 and y2. Introduce new clauses and insert auxiliary variables
as:

(x1 ∨ x2 ∨ ỹ1) ∧ (x3 ∨ x4 ∨ ỹ2) ∧ (y1 ∨ y2 ∨ x5).
The problem is 3SAT as no clause has greater than 3 variables. Reducing one 5SAT clause
to 3SAT form results in 3 clauses and 7 variables.

Consider a clause with 7 variables, (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6 ∨ x7). Introduce auxiliary
variables y1, y2, and y3. Introduce new clauses and insert auxiliary variables:

(x1 ∨ x2 ∨ ỹ1) ∧ (x3 ∨ x4 ∨ ỹ2) ∧ (x5 ∨ x6 ∨ ỹ3) ∧ (x7 ∨ y1 ∨ y2 ∨ y3).

The last clause contains 4 variables so it has to be reduced further. Introduce auxiliary
variables l1 and l2. Introduce new clauses and insert auxiliary variables:

(x1 ∨ x2 ∨ ỹ1) ∧ (x3 ∨ x4 ∨ ỹ2) ∧ (x5 ∨ x6 ∨ ỹ3) ∧ (x7 ∨ y1 ∨ l̃1) ∧ (y2 ∨ y3 ∨ l̃2) ∧ (l1 ∨ l2).

The problem is 3SAT as no clause has greater than 3 variables. Reducing one 7SAT clause
to 3SAT results in 6 clauses and 12 variables.

4.4.5 Excess resource use by different quadratization methods

Numerous quadratization methods have been proposed for reducing objectives with higher-
order interactions to energy functions of second-order Ising energies [77, 12, 11, 19, 1]. In
general, the number of auxiliary variables introduced by quadratization depends on the
particular combinatorial optimization problem and the method of quadratization. In this
study, quadratization was performed with the D-Wave Ocean software package 1. With the
quadratization method in D-Wave Ocean one can adjust the minimum energy gap, ∆Emin,

1 D-Wave Ocean Software Documentation [online], 2022.–Available online: https://docs.ocean.

dwavesys.com/en/stable.
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for controlling the tradeoff between excess resource use and computation performance of the
resulting second-order Ising machine.

With the parameter choice of ∆Emin = 1, one auxiliary variable is introduced per 3SAT
clause, the same number as with some other quadratization methods [1]. Thus, the ex-
cess resource use of quadratization we report for this parameter choice generalizes to other
methods in the literature. In addition, we also assess the resource use with parameter set-
tings of ∆Emin > 1 in D-Wave Ocean. These results are specific to the D-Wave Ocean
quadratization method, but informative for exploring whether increased excess resource use
could potentially close the performance gap between second-order and higher-order oscillator
networks.

4.4.6 Benchmark datasets

We assess the performance of higher-order Ising machines on Boolean satisfiability (k-
satisfiability, kSAT) problems, a well-known class of hard combinatorial optimization prob-
lems. Specifically, the 3SAT problems used in our experiments were obtained from the
SATLIB collection [35]2. We selected instances of sizes 20, 50, 100, and 250 variables. The
first sixteen instances were selected from each problem size to run the simulations. The dy-
namic variables in the oscillator networks were randomly initialized for each trial simulation.
64 trial simulations were performed for each instance.

To demonstrate the performance of higher-order Ising machines on 5SAT and 7SAT
problems, we selected an instance of each problem from the 2018 SAT Competition [33]3.
The 5SAT and 7SAT problems were also reduced to 3SAT using the method described in
Section 4.4.4.

4.4.7 Oscillator model and simulation details

In higher-order oscillator Ising machines, each oscillator is represented by the complex Van
der Pol or Hopf oscillator as described in Eq. (4.8):

f(zi) = (λi + iωi)zi + ρizi|zi|2. (4.8)

Here, ωi is the center frequency for the ith oscillator, λi is a parameter determining the
oscillator quality, and ρi controls the degree of nonlinearity.

In our simulations, the network coupling, ri(t), was the same for all oscillators and was
held constant for the duration of the simulation. The center frequency was held constant at
zero for all oscillators, ωi = 0 ∀i. The parameters λi and ρi were set to produce limit-cycle
oscillations with unit amplitude. We used a linear annealing schedule, qi(t) = qmax

t
tend

. The

phase quantization signal, l(zi) is equivalent to sub-harmonic injection locking. We show

2 SATLIB - Benchmark Problems [online], 2022.–Available online:https://www.cs.ubc.ca/~hoos/
SATLIB/benchm.html.

3 SAT Competition [online], 2018.–Available online:https://satcompetition.github.io/2018/.
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this by representing each oscillator, zi, with a real and imaginary part (ai + ibi). By adding
the conjugate of zi to the dynamics, the real part grows and the imaginary part decays to
zero. The solutions to the dynamics for each uncoupled oscillator including the limit-cycle
dynamics, f(zi), are ai =

√
(hi + λi)/ρi

The results reported in Fig. 4.3 were obtained using a parameter search to find the
optimal values of λ, ρ, qmax, and r. The best candidates were selected based on the lowest
mean energy and the greatest mean probability of satisfying problem instances. The mean
energy and percent of constraints satisfied were computed based on the final state of the
network after simulation. The mean was computed across random network initializations for
all trail simulations across problem instances within each problem size. The error bars in
Fig. 4.3 represent the sample standard deviation. Integration of the dynamical system was
performed using an adaptive step-size RK4/5 method.4

4.4.8 Comparing higher-order constraint energy functions with
different exponents

For a kSAT problem, the objective for clause h in our method (4.1) simplifies to:

Eh(s) =
k∏
i=1

(1− cisi)/2. (4.9)

with ci = 1 if a literal is TRUE and ci = −1 if a literal is FALSE. Since Eh(s) evaluates
to either one or zero for all bipolar state vectors, s, an obvious generalization of the clause
objective (4.9) is to exponentiate the RHS by a positive number. In [22, 6], the objective
of kSAT problems with a higher-order energy function of this type was proposed, with the
specific setting of the exponent set to a value of two:

Eh(s) =
( k∏
i=1

(1− cisi)/2
)2
. (4.10)

We compared the solution quality of higher-order oscillator Ising machines implementing ob-
jective (4.9) vs. (4.10). Our experiments included parameter optimization for each method,
as described above (Section 4.4.7). Fig. 4.4 shows that networks based on (4.10) obtain
worse solutions (with greater energies) and satisfy only a smaller percentage of constraints
on benchmark 3SAT problems [35] compared to our method. The systematic analysis of
exponent settings in the generalization of our method is left to future research.

4 JAX: Autograd and XLA [online], 2022.–Available online:https://github.com/google/jax.
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Figure 4.4: Final energy on benchmarks 3SAT problems for the method proposed
in this paper using Eq. (4.9) and the method using the square of the constraint
energy (4.10) as in [22, 6]. a, Energy versus the number of variables for 3SAT problems.
b, The percent of constraints satisfied versus the number of variables for 3SAT problems.
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