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Relationship Between A Bunch Charge Distribution and
The Time Profile of a Transition Radiation Flash

E.D. Gazazyan, M.1. Ivanyan, E.M. Laziev
Yerevan Physics Institute

ABSTRACT
A relationship between a bunch charge distribution function and the time dependence of a
transition radiation flash is determined. It is shown that in the optical frequency band this
relationship allows one to determine the bunch longitudinal profile. The possibility of
determination of the charge distribution in transverse section is considered as well. -
In the present paper we have shown how the time profile of the transition radiation flash
1s related to the particle distribution along the bunch length. It is amply evident that the
transition radiation intensity at a given instant of time and at a given point of space (with account
of time delay) depends on the number of particles traversing the interface of two media at a given
‘time moment. This circumstance, points out the possibility of determining the longitudinal
component of the bunch particle distribution function by measuring the time dependence of
transition radiation intensity. ‘
For simplicity we will assume that the radiation takes place on a vacuum - ideally
conductive surface boundary. ‘

1. TRANSITION RADIATION OF A SINGLE CHARGE
Let a point-like charge q moving uniformly at a velocity V = V, along the Z axis
traverses normally the plane (x,y) which is a vacuum - ideal conductor interface (Fig. 1).
The "backward” radiation field - in the opposite direction to motion - can be written as a
Fourier integral /1/:

00 oo oo

E(r.y.zit)= L ji By (z)e"("x"Kw-%'")dK,dK,d-‘\"—’/(27:)3 L)

where Ej ‘ x (2) is a Fourier-transformed image of the radiation field with respect to time and

[

transverse coordinates:

Eoy x (Z)=iea(K,.K,)- E(Kx,Ky)e-fsz”c’-Ki-K,’ . 12)




In (1.2) by a (K,,K,) we denote:

4rp

a(K,.K,)= T(s—l)S(Kx,Ky)- 1% (1.3)

where in turn

a:(l— B2 —_ﬁJe—ae2)
(1-—B2 +[32&2)(1+ﬂ«/£—a32)(\/e-—a32 +8«/1—a:2)

_c / )
&——Z; Kx+Ky

S(K..Ky) =

1.4)

Further in (1.2)
i(K.K,)==E-g1-a? (1.5)
Vector g locates in the plane (x,y) at angle ¢ to the x axis: |
g =XxcosQ+ysing | (1.6)
Integral (1.1) is simplified in the "far zone" - for large values of R=+/x2 +y2 +Z2 . In this

case its 'asymptotic value can be obtained by the stationary phase method or by the saddle-point
method /2/. With account of our assumed ideal conductor model and at R >>1 for (1.1) we have

E°(x,y,z;t) = E°(R,0;L) = U(6;R)5(L)z, 1.7)

where

eﬁ2 sin
VOB =" 1-p% cos® 6 ' (1.8)

defines spatial distribution of transition radiation field amplitude in the far zone. The angle
between the negative direction of the Z axis and the observation direction - 6 together with the




azimuthal angle @ and radius-vector R characterize the observation point in the spherical
coordinate system (Fig. 1). The unit vector &, is the polar unit vector of this coordinate system.

Parameter L introduced in (1.7) has a dimensionality of length:
L=pR-w : (1.9)

At L =0 the radiation, which according to (1.7) has a character of an instantaneous pulse
emitted at the moment the charge traverses the interface, reaches the observation point.

Actually the measuring device that detects the transition radiation flash has a restricted
frequency band @, - Q2 < w <@, + 2. In this case the field can be written as

,+802 . @
_ v . o sin—L
E°(R.6:1)=U(6:R), | e'de-;=29U(e;R) L" et (1.10)
@,~2
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In the case of oblique entrance of the charge the transition radiation field has a more
complicated form /3-5/ - along with the component E, usually denoted by E" because it lies in

the plane of the "bunch geometrical reflection” from the boundary, there also arises a component
E' perpendicular to this plane. | ,
When studying the properties of radiation in the oblique incidence case a spherical
coordinate system 6, @ is used, the axis of which coincides with the direction of "geometro-
optical" reflection (Fig. 2). Itis shown /3,5/ that at low values of polar angle (9" << 1) and in the

ultrarelativistic case(y >>1—1¥ relativistic factor) the transition radiation field of the point-like
charge in the far zone can be presented in the form:

E"(RO,¢";t)=U"(6",0";R)x(L), E*(R,6",0";t)=U"(6",0";R)x (1.11)
where
U'(6".9";R)=U(6";R)cosp",U'(6",¢";R) = U(6";R)siny" | (1.12)
Note that U(6"; R) is defined according to (1.8),

x(L)=8(L) (1.13)




at detection of the total emitted spectrum, and

sing- L

.0,
x(L)= LV eVt : (1.14)

at detection of radiation in the frequency band @, - 2< 0 < w, + Q.

2. THE BUNCH TRANSITION RADIATION FIELD FOR THE

NORMAL ENTRANCE CASE

Now we assume that a bunch of charged particles strikes normally the boundary surface.
We believe that velocities of all the particles are identical and equal to V. For definiteness,
assume that the bunch is shaped as a cylinder with arbitrary cross-section. The cylinder generant
is parallel to the Z axis (Fig. 1). Let & denote the cylinder length, and a denote the maximum
distance from the Z axis to the cylindrical surface generant. Following Ref. /3/ we will assume
that the longitudinal Z and transverse (z,$) coordinates of particles in the bunch are independent.
In this case the bunch particle distribution function f (r,z,q":) can be presented as a product of the
longitudinal Z(z/d) and transverse R(r,$) distribution functions

f(r.z.0) = Z(z/ d)R(r,p) 2.1)
which are normalized as follows
oo 00 21T
2z dydz =1, [ [R(r.@)rdrap =1 (2.2)
~oc0 o 0 )

Let at instant 7 =0 the boundary is traversed by the bunch middle. Then the radiation
from the particle being at a distance Z from the boundary reaches the observation point with a
delay z/v. Taking into account the fact that the distance from the point of intersection of the
boundary by an arbitrary particle in the bunch cross-section to the observation point in the wave
zone can be written in the form

R=R-f, p=jp where ji=rsin6cos(p—@) (2.3)

then the detected radiation field may be presented as




E(z, r,Q;R, 0, L) =

o [Q

Z(z/ d)R(r,@)x(L— p1— 2)U(6; R)2, (2.4)

where g is total charge of the bunch. Function x(L— 1~ z) is defined by relation (1.13) at

detection of the total radiation spectrum, and by relation (1.14) at detection in frequency band
0, -Q<o<o,+L.

Having integrated (2.4) with respect to the bunch volume we obtain total radiation field

' o a2m
E(R6,0;L) = -‘elU(e, R) [ [ [Z(z! D)R(r.p)X(L ~ = 2)rdrdipdzz, 2.5)

In case the total radiation spectrum is detected, we obtain from (2.5) with account of (1.13):

azir

E(R,6,0;L) =%U(9;R) [] z(i;—“)k(r, &)rdrd e, (2.6)

If radiation is detected in frequency band @, — 2 < @ < @, + 2 we will have

. Q
_ o q2% — sin—z o,
E(R,6,¢;L)=~Z-U(6;R) j I z(—l-‘—fi-—‘i)k(r,;b) z" e irdrdpdze,  (2.7)
—o 0 0

As can be seen from (2.6) and (2.7), the radiation field in the general case represents a
convolution containing longitudinal and transverse distribution functions. The longitudinal
distribution function is feasible to extract from (2.6) and (2.7) if parameter g in the argument of

longitudinal distribution function is assumed small. It is evident that

|_/1_|S afisinf —e

d d 8

i.e., parameter & can be considered small at smallness of the ratio of transverse dimension to
longitudinal one. In the ultra-relativistic case (8 — 1) a peak of transition radiation intensity

falls at direction 8 = /1— 82 when angle 0 in (2.8) can be considered small, too. Hence for the

ultrarelativistic bunches the longitudinal distribution function also can be defined at
commensurability of transverse and longitudinal dimensions.




Expand the longitudinal distribution function in mtegrals (2.7) and (2.8) into a series in
parameter [1/d and preserve two first terms of the expansion. In the first case with respect to

(2.2) we obtain

= L ZLId)| .., Glo).
E(R,6,0;L)=LU(0:R)Z(L1 d)]1- 2L 2) i A2 :
( ¢ ) eU( )Z( ){ Z(L/d)}ﬁsme 7 e (9
where
alrx
G() = [ [r*cos(p - B)R(r, ¢ )rdrdp (2.10)
evidently
alrw
Glo)< af [ R(r.®)rdrdp (2.11)

from which for (2.9) we have

E(R.6,p;L) = -Z—U(B;R)Z(L/d){l i ((If// j)) }e 212)
where
d y!
In the second case we obtain
E(R.6;0;L) = %U(G;R)Z(L/d){ z ((L// ;)) }ee (2.13)
and
Z(L/d)= j (ﬁz-z-)smm 22z (2.14)




Thus, in the case of detection of the total radiation spectrum the transition radiation field
reproduces longitudinal distribution function Z(L/d) (at smallness of parameter ). In the case
of a signal detection in the band @, — 2 < ® < @, + £2 the function Z(L/d) is reproduced.

Now we show that at large values of @,/v and 2 const <<1 function Z(L/d) is
o

identical to longitudinal distribution function Z(L/d).
We present function Z(L/d) in the form

. sin{&(1+—Q-]Z}-—sin{gl(l-ﬁ)z}
Z(L/d)="‘Z(L;Z) v - a, 1% a, 4z

z (2.15)
. O,
sm—Z
VA
With respect to asymptotic equality
5x) = sinax L e oo
()= T/x 2
we obtain for &>> 1 and —Q—<< 1:
v a,
Z(L1d)=2(LI ) —221%e (2.16)
1-(Q/w,)

Equality (2.16) corroborates the above statement.

Hence in the case with infinitely wide band detection as well as with detection of a signal
in limited frequency band the transition radiation field reproduces the bunch charge longitudinal
distribution function with an error not exceeding the quantity

Z(Lid)

AD=Za®

(2.17)

which along with parameter & also depends on the degree of "smoothness" of the distribution
function.




Now we'll illustrate what is stated above on a few examples. For simplicity, we will
restrict ourselves to an axially symmetric bunch for which there is no dependence on & in
transverse distribution function.

Example 1. The longitudinal and transverse distribution functions are uniform. Then
the longitudinal distribution funcuon has the form
z 1/d at |9<d/2
Zl <= 2.
(d) {O at |4<d/2 (2.18)

and the transverse one can be written as

1 <
R(r)={7gz ® 730 (2.19)
0 atr>a

In the considered (axially symmetric) case parameter a is a radius of the cylinder.
As can be seen from (2.18), function Z(z/d) is constant on the section lz§< d/2; hence

(see (2.17)) the distortions at its recovery are to arise in the edge region of the bunch Z ~ d/2.
Indeed, when substituting (2.18) and (2. 19) into (2.6), for the radiation field component Ey we

obtain
.EG(R,G;L) —u(6 R)- F(L) (2.20)

(1 at 0SL<d/2-=d

1)z .(L—d/Z) L—-d/2\/ (L—d/2)2
—~<{——arcsin — 1-
F(L)={7|2 zd &d zd (2.20)

at dI2—ad<L<d/2+=2d

|0 at L>d/2+=d

From (2.20) it follows (see Fig. 3) that at smallness of & the detected signal reflects well
the genuine longitudinal function of particle distribution in the bunch.

Example 2. The case of uniformly longitudinal and Gaussian radial distributions
Let the longitudinal distribution is expressed again by (2.18), and the radial one has the
form: ‘




1 _,2,2
R(r)=-1_;2-e T at 0<r<e (2.21)

In this case the integral (2.6) reduces to the form

Eo(R.6;L)=2u(g;R)- @ F(L),
€ (2.22)
F(L) =lerfL+d/2 ——l—erf L-d/2
2 ad 2 ad
where 16l
27 2
erf(x)=—=\]e " dt 2.23
f (x) ﬁf (2.23)
and at x — oo the asymptotic equality takes place 16l
e‘“r2
erf(x)=1- (2.24)
2x

Let us examine expression (2.22). Assuming parameter 1/22 sufficiently lafge, using
the asymptote (2.24) we obtain forat 0< L<<d/2

F(L=1) (2.25)

Now we put L~d/2~2=zd. In this case the first term in (2.22) again satisfies the
conditions of asymptotic (2.24), while the argument of the second term is -2 at which the value
of function —erf(x) practically is 116l. At L=d/2 the second term in (2.22) vanishes, and the
first one satisfies the asymptotic condition (2.24): at this point the function F(L) is half the

maximum value of l'(le—) =1/2. At L=d/2+=d the first term in (2.22) is equal to 1/2, while

the second-term argument equals 2, i.e., the function F(L) at this point practically vanishes. At
L>d/2+2=&d the function of interest takes on positive values smaller than at the point
L=d/2+2=d, i.e., vanishes again. So long as function F(L) is even, the same regularities
take place at L <0 too. Thus the behavior of function F(L) differs from the initial distribution

only in the intervals




+d/2-2@d<L<+d/2+2@d

which at & <<1 means practically undistorted restoration of the initial distribution function (Fig.
4).

Example 3. The longitudinal and transverse distributions are Gaussian. The
longitudinal distribution is described by the expression

2
Z(LId)=e™""" gt mco<z<oo (2.26)

and the transverse one - by formula (2.21).
The substitution of (2.21) and (2.26) results in the following expression for the field

Eo(R.6;L) =-§U(9;R)F(L) 2.27)
where
F(L) = (1"—4 ) - 2.28
=g 2 2, 1y = e o —— .
d du) H 72 (= d)2 (2.28)

Evidently, the resulting distribution also is Gaussian with the effective longitudinal
dimension D=d/ \/1—4/d2u. At ®<<1 parameter u equals ll(aad)2 which means that
D=d. ' ,

Thus we have made sure on this example too that the detected signal reproduces the
shape of longitudinal bunch particle distribution practically without distortion.

Summarizing what is stated above we can assert that the detection of transition radiation
field or its intensity enables one to restore practically without distortion the shape of longitudinal
bunch particle distribution by a detector with finite frequency band if our assumed conditions

2<<1, £2>>1and Q/w, <<1 hold.
\%

Now we refer again to the relation (2.7) that describes transition radiation field in
frequency band @, — Q2 < @ < @, + £2 and perform in it the change of variables £ = L —z — p1:

10




_ = ar £ sing(L-—,u—f) o,
ERre.o:L)=Lu@R [ [ [ Z(;)R(r,rb) LTy gz, (229)

—-—00 0 O

Written in such a form expression (2.29) contains a part fast-oscillating over angular
coordinates 8 and ¢ that enter into parameter [ (see (2.3)) and are stipulated by finite
transverse dimensions of the bunch.
sin % (L-p-¢)

L-p-¢
the first two terms of the expansion. Then expression (2.29) will take the form

Now we expand function

in a Taylor series of parameter u preserving

. 0
sm;—(L -£) 2 (1t

oo g2
Eg(R,‘G,(o;L)=§U(G;R) j j j Z(éJR(r’é)TE_—e’d'd‘f’dé

d
-0o 0 O

2.30
a (2.30)

a2z 4| sin=(L-¢§) i2e(L-p-¢)
o[ [T A5 Jre0) | it

The first integral in (2.30) can be written as a product of function Z(L/ d) (see (2.13))

and the integral containing the transverse distribution function. The second integral contains the
function

Lo,
) oo d sm-;(L—é) ——iﬂ"—f i—w—"L
Z(Lid)= | 261d) 5| —f—— Vi o @31)

which after integration by parts will take the form

. Q
X L= sin—(L-¢&) i
Z(Lld)= Ejz(g/d)——‘t_?—e v ~dE
- (2.32)
L@, T : Sin_\-/—(L- ) —i—2£ iZer
—l-V—J' Z(¢/4d) L ¢ e ~dEle’,

11




At large values of parameter % » a8 was shown above (see (2.15) and (2.16)), expression

(2.32) can be presented as
2LId)~ :;-z' (L1d)=i22Z(L1d)=2°(L1d)
hence ex‘pression (2.30) under the same condition can be written as follows:
EG(R,G,(p; L)= —Z—U(B;R){Z(L/d)Gl(G,@ + Z"(L_/d)Gz(e,(p)}

where

azrn @
[ [ R(r-@)e ™~ #rdrd

o 0

Gy(6,9)

azr .,
_‘- f UR(r,@)e”*~ #rdrd

o o

G,(6.9)

It is evident that
|G,(6,0) < aBsin6|G, (6,9)|

With account of (2.36) expression (2.34) can be written in the form

Eo(R6,0;L) = fef’-zj(e;ze)z(flz)cl @, @{1 " (?Z-%%) - i—a:/—"djm ,u((p)}

where

= GZ(e’(P) <1

H(o)

It follows from (2.37) that its second term can be neglected if

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

12
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When

w,d _2rd __ Z(L/d)
v "B Z(Lid) (2.39)

which is the case if the bunch longitudinal dimensions multiply exceed the wavelength, and
@,
function Z(L/d) is a slowly varying one as compared with e"%, the condition (2.38) reduces

to

2masin@

i <<1 (2.40)

In other words, if the transverse dimensions of the bunch are of the order of the wavelength at
which the radiation is detected, then at small observation angles the second terms in (2.34) and
(2.35) can be neglected at spatial photometry of the transition radiation flash intensity spot: if
the condition (2.40) is satisfied, then the diffraction picture will be observed by which one can
obtain information about transverse dimensions of the bunch as well as about the character of the
particle transverse distribution function.

It is evident that at d >> A the condition (2.40) is more rigorous than the condition
& <<1 from which the relation (2.14) results. Thus the diagnosis of transverse particle
distribution is feasible not in all the cases the longitudinal profile can be determined.

3. TRANSITION RADIATION AT OBLIQUE ENTRANCE OF PARTICLES

In measurements of transition radiation intensity it is more convenient to use the monitors
which are placed at an angle to the charge trajectory (see Fig. 2).

Let us obtain expressions for fields of the bunch at oblique entrance through the vacuum -
ideal conductor boundary.

We introduce Cartesian coordinate systems x',y',z', X,y,z and x",y",z". The first of these
systems is connected with the bunch trajectory - the z' axis is in the direction of velocity V and
makes angle ¢, with the Z axis. The x' axis is in the plane of z and z'; the y' axis is normal to

this plane. z" is in the direction of "geometrooptical” reflection of particles from the boundary

13




surface - it lies in the plane of zz' and makes angle @, with Z. The x" axis also lies in the plane
of zz', and y" is normal to it. .

The expression for the field of the transition radiation bunch at oblique entrance can be
obtained similarly as in the case with the point-like charge /4/.

A Fourier-transformed image in the considered case will be of the form

X1y

Ew =Eo s 1% =
2Kk (2) %’-,K,,K,(Z) PV.K,,K,(Z 0) (3.1)

here

- -~ s 2
B (2)=E°, e—zz,/coz Ic®~K2-K? (3.2)

';,_,Kx, y ';';nyKy

is a Fourier-transformed image of single charge transition radiation field for the oblique entrance

case; pv KKy @, is a Fourier image of the bunch charge density distribution function. Writing

the bunch charge density distribution in the coordinate system connected with the z' axis in the
form of

p(x.y .2 1) = gz(z ~)R(z.§) . 3.3)

we'll arrive at the following expression for the Fourier image:

@
oK (Z)=‘1’1( )’2(’%’( 3 (3.4)
vETY
where
= a?rw
@ z ), -i— '\ ,., —~17.'K cos(p-i-K squ)
11(-;)=__[°Z(d) Zdz’lz( y)"{ ,"; R(t erd‘rdq; (3.5)
Then

hrdihedihod Ky x+K,y——vt
{Kereiy-Sor)

p(x.y.2.1)= | jjll( ) 2K K)deKd_ (3.6)

—60 —00 —0c
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Using the relations
X' =xcos@, —sing,, y'=y, Z=xsing, +zcosp, 3.7

we turn in (3.6) to the coordinate system x,y,z:

_ oo oo oo @ L i{x(g)—sintpo+l{;cos¢o+z(9—-oos¢o—-K;sin(pa)+K;y-£vi)
p(x.y,z.1)= _L i i Il(v)lz(xx,xy)edx;d;;d% Y Y (38)

and write the expression for the Fourier image in coordinates x, y,vt:

a . @ .
PL K, K, (Z)=11(°V‘)Iz oosp K, el v cosg, ° (3.9)
o

Then'using (3.1) and (3.9) we present the transition radiation field as a Fourier integral
and passing with the help of the stationary phase or saddle-point method to the far zone we'll
obtain

E(R,0,0,t)=U°(6,0)F(6,0,L) (3.10)

where U-(8,9) is the amplitude of the transition radiation field for the point-like particle,

written in the coordinate system connected with the normal to the boundary. We do not present
here the amplitude's explicit form /3-5/ because of its awkwardness, while the function - the
bunch form-factor is defined as follows:

~ s 1) 2L, @
Fo,0.L)= | Il(—v—)IZ(Kz,K;)e'v d— (3.11)

where

o . o .
—sin@cosp ——sing, o
K=< L4 ,Ky =—sinBsing (3.12)
- cosQ, Y ¢

15




When turning to the spherical coordinate system related to the direction of
geometrooptlcal" reflection, we use the relations that establish connection between 6,9 and
6,0

sin@sin@ =sin@ sin (p"

. " . - (3.13)
sinfcosg = cosf sing, +sinf COSP, COSQP

From the first relation (3.13) it follows that quantity K)‘,’ when turning to the 0",(p"
system remains unchanged:

K = %sin 6 sing’ (3.14)
and quantity K takes the form
K? = 1 {w(cose sing, +sin@ cos@, cos )-Qsm } (3.15)
X COS¢0 [ ¢0 ¢ v ¢0 . .

Assuming for 8 <<1 in (3.15) cos@ =1, sin6 =0 we have

K= —-—1—-{(-0—) —E)Sin 0, +26" cos, cos (pn} (3.16)
c v c ’

In the ultrarelativistic case (3.16) has the form
K =26"cosg’ (3.17)
C

which coincides with the corresponding expression for normal entrance at replacements 6 — 6"
and ¢ — (p".

Thus the identity of form-factors for the both cases of normal and oblique entrances is
found for the directions close to the direction of "geometrooptical" reflection. For these
directions the amplitude components of field U°(6,p) are expressed in terms of (1.11) and

(1.12), and the intensity in the same direction has the form identical to the normal entrance case.

16




APPENDIX

4. DETERMINATION OF LONGITUDINAL PARTICLE DISTRIB UTION
FUNCTION BY A NARROW-BAND DETECTOR AT ARBITRARY FREQUENCY

1. Above we have shown that it is possible to determine the longitudinal bunch charge

distribution function via the measurement of the time profile of transition radiation flash using a
narrow-band detector only in the case when the condition W, >>1 is satisfied.
Now we'll investigate the possibility to determine this function at arbitrary @,42.

Recall that if parameter ® is sufficiently small, then the radiation field detected in the
frequency band reproduces the function (2.13) which can be presented in the form:

@,+£

-~ A L4
Auid)= | (L)L - ko) @1

«,~£

\4

where Il(—a-)-) is a Fourier-transformed image of longitudinal distribution function. The Fourier

image of the detected field reproduces the Fourier image of distribution function in the frequency

band

o\ _ T -2 . |4 Q@ at
A== [ Eg(RO,L)eTrdL =1\ 4.2)
v/ 0 in other cases

So long as A(gj like any function characterizing the object's image is analytical (see,
v
e.g. /7)), it can be analytically continued outside the frequency band wherein measurements are

performed:

A(Q-) at 0,-Q<w<a,+2
") (4.3)

at O<w, -2, O>0,+2

17




~(WY . . S .
where A(;—) 1s analytical continuation of function A(ﬂ) beyond the limits of determination
v

(the detector band limits).
Thus, assuming

2 H(g) a-nve-
9 v )Ty a 0O < oo “4.4)

we obtain the distribution function
Z(L/d)= T q;(ﬂ)e"%’*dﬂ. 4.5)
o\ \%

2. Now we consider the limiting case of absolutely incoherent radiation induced when the
bunch crosses the boundary. In this case summation of intensities emitted by each particle of the
bunch takes place. According to (1. 10), the intensity emitted by the charge at the given instant of
time in the given point of space is expressed as follows:
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) sin“—L
T,(L.6) = V(0. R — 4.6)

Arguing in the same way as in Section 2, we can write the intensity emitted by the bunch

in the form
S ad i sin2%(L-y—Z) )
T(L00)=peRf | [] 22 )x(r.9) ez @)

where parameter u is determined by (2.3). It can readily be shown that at & << 1 for this case

the estimate (2.14) is valid, where now

_ o sinz'—f—(L~Z)
Z(L1d)= | Z(L/d)w—dz

—C0

(4.8)

This function, not containing frequency ®,, is reproduced by the measured intensity:
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T(L.6,¢) ~ Z(L/d) (4.9)

The Fourier image of the measured intensity will be expressed via the Fourier image of
longitudinal distribution function as follows:

£2)-4)()

where
o) T 2 T ;2

B(;.)z JT(L.6.9) VL, 1{%): [z(L1d)eTtaL (4.11)

( 0 at |2>2.Q/V

, 14

/\(2)=<-2£+-a—) at -——ZESQSO (4.12)

v v v vV v

0 0, o0 20

vV v

Thus in the frequency band -2 < @ < 2 the Fourier image of distribution function is

to be determined by the relation
11(—“1)= 3(9)/,\ (—“1) 4.13)
v vV v

Y. - : : : :
—a-)—)/ A (-——) is analytical in the inner region of some circle of radius
v

v
£, <24 on the complex plane, it can be continued outside this circle:

As far as function B(

B(Q-)/A (5"-) at lo|< Q,
¢(2) W)\ (4.14)
v (p(%) at )= Q,
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and the distribution function Z(L/d) can be expressed through the function (o(-al) with the use
%

of Fourier transformation:
: T (02 o
Z(L/d)= — k' id— .
(L/d) _{,"’(v} vid— (4.15)

As can be seen from (4.13)-(4.15), in the case of absolutely incoherent radiation the
long1tud1nal distribution function is expressed through the transition radiation flash intensity;
however this relauonshxp is nonlinear as distinct from the coherent radiation whose field is
linearly related to the bunch charge longitudinal distribution function.

SUMMARY

In the present work we have obtained relations on the basis of which one can realize the
method of determination of the bunch charge longitudinal distribution using the shape of the
transition radiation time profile the relations also allow one to estimate the occurring errors and
minimize them.
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