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Summary

1. Phenological events – defined points in the life cycle of a plant or animal – have been regarded
as highly plastic traits, reflecting flexible responses to various environmental cues.
2. The ability of a species to track, via shifts in phenological events, the abiotic environment
through time might dictate its vulnerability to future climate change. Understanding the predictors
and drivers of phenological change is therefore critical.
3. Here, we evaluated evidence for phylogenetic conservatism – the tendency for closely related spe-
cies to share similar ecological and biological attributes – in phenological traits across flowering plants.
We aggregated published and unpublished data on timing of first flower and first leaf, encompassing
~4000 species at 23 sites across the Northern Hemisphere. We reconstructed the phylogeny for the set
of included species, first, using the software program Phylomatic, and second, from DNA data. We
then quantified phylogenetic conservatism in plant phenology within and across sites.
4. We show that more closely related species tend to flower and leaf at similar times. By contrasting
mean flowering times within and across sites, however, we illustrate that it is not the time of year
that is conserved, but rather the phenological responses to a common set of abiotic cues.
5. Our findings suggest that species cannot be treated as statistically independent when modelling
phenological responses.
6. Synthesis. Closely related species tend to resemble each other in the timing of their life-history
events, a likely product of evolutionarily conserved responses to environmental cues. The search for
the underlying drivers of phenology must therefore account for species’ shared evolutionary histories.

Key-words: climate change, flowering times, phenology, phylogenetic conservatism, plant–climate
interactions, plasticity, spring indices

Introduction

In plants, the timing of seasonal events, such as flowering
time, is highly sensitive to climate, making phenology one of
the most variable plant traits (Chuine 2010). Along with*Correspondence author. E-mail: j.davies@mcgill.ca
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climate and photoperiod, key phenological drivers include dis-
turbance (e.g. drought or fire), the identity of co-occurring
species, competition (Rathcke & Lacey 1985; Ollerton &
Lack 1992) and local abiotic conditions (Chuine 2010).
Highly variable traits such as these might be expected to
show little or no relationship with phylogeny because their
expression is, for the most part, environmentally determined.
However, high variation in flowering time among species
occupying similar environments indicates that phenological
responses may be additionally mediated by intrinsic species
attributes such as life form, habit, dispersal mode and pollina-
tion (e.g. Olsson & �Agren 2002; Bolmgren & Cowan 2008;
Jentsch et al. 2009; Davis et al. 2010; Sun & Frelich 2011),
which may in turn be phylogenetically conserved (Chazdon
et al. 2003; Swenson & Enquist 2007; Kraft & Ackerly
2010). Previous work suggests some evidence for phyloge-
netic conservatism in phenological traits, including flowering
times (e.g. Kochmer & Handel 1986; Bolmgren & Cowan
2008; Willis et al. 2008; Davis et al. 2010), at particular
locations. To date, the strength of this phylogenetic compo-
nent to phenological variation has not been evaluated at broad
spatial and taxonomic scales.
Phylogenetic conservatism has attracted much attention

recently (Wiens et al. 2010), although its precise definition
has proven somewhat problematic. Ackerly (2009) recognized
two axes of conservatism: phylogenetic signal and evolution-
ary rate. Phylogenetic signal captures the tendency for closely
related species to resemble each other more closely in their
biological characteristics than expected by chance. The evolu-
tionary rate component describes the rate of phenotypic diver-
gence along the branches of the evolutionary tree – low
evolutionary rates might be interpreted as trait conservatism.
Here, we focus on the former, although we use the terms
‘conservatism’ and ‘signal’ interchangeably. Importantly, if
phenology is phylogenetically conserved, such that closely
related species share similar life-history attributes, then spe-
cies cannot be regarded as statistically independent, and the
search for correlates and predictors of phenological traits must
account for species phylogenetic relationships (Harvey &
Pagel 1991; Harvey et al. 1995). Additionally, strong conser-
vatism in mean timing of phenological events may be of
practical benefit in allowing the prediction of phenological
schedules for species for which we have information only on
evolutionary relationships (Brooks, Mayden & McLennan
1992; Mazer et al. 2013).
Whilst there are reasons to expect phylogenetic conservatism

in phenological traits, observations for weak conservatism have
at least three possible explanations. First, errors in phylogenetic
reconstructions or measured traits might scramble potential sig-
nal. Second, phenological schedules may evolve in a manner
that is not well predicted by phylogeny, for example, when
local adaptation or similar directional selective force is strong
and dictates evolutionary trajectories. Third, phenology may
reflect a flexible response to environment that is more or less
independent of taxonomic membership (i.e. phenological plas-
ticity), such that phenological schedules for species and popula-
tions are largely determined by the environmental conditions

(e.g. temperature, precipitation and photoperiod) in which they
grow. Absence of phylogenetic conservatism might then sug-
gest that species have rapidly shifted timing of life-history
events in response to changing climates historically. In turn,
phylogenetic conservatism in phenological plasticity – if we
consider plasticity as a quantitative trait potentially under selec-
tion (De Jong 2005) – might be more important for predicting
the impacts of future climate change on particular taxa (Mate-
sanz, Gianoli & Valladares 2010), but rarely has it been esti-
mated directly (Pigliucci 2005).
Here, we explore phylogenetic conservatism in Northern

Hemisphere plant phenology. We examine two key phenolog-
ical traits for vascular plants: timing of first leaf (FL) and, in
angiosperms, timing of first flower (FF). Our data set is com-
prised of >70 000 records, from 23 sites providing ~5000
unique site 9 species observations sampled from multiple
ecosystems, latitudes and climates, and across multiple years
(NECTAR: Wolkovich, Cook & Regetz 2012; Cook et al.
2012). The scale of our analysis poses numerous challenges.
The taxonomic breadth of our data set, spanning the plant
tree-of-life, makes comparisons across species difficult
because traits are not always comparable between evolution-
arily distant lineages. For example, the time of first flower is
not a relevant trait for non-angiosperm lineages. In addition,
many lineage effects are likely to be subtle and might be
detectable only within particular clades (e.g. Davis et al.
2010). Furthermore, as plants are found across the terrestrial
biome, they are subject to a great diversity of climatic condi-
tions and may attune to different cues in different environ-
ments (Mouradov, Cremer & Coupland 2002; Larcher 2003).
Last, phenological events are measured in calendar days,
which do not necessarily correspond seasonally in different
parts of the world; for example, spring occurs later at higher
latitudes and elevations (Schwartz, Ahas & Aasa 2006).
We use comparisons across and within sites to gain insights

into the abiotic drivers of phenology and the phylogenetic con-
servatism of species’ biotic responses. If phenology is largely
determined by environment, but phenological responses are
mediated by biological traits, we would predict that phyloge-
netic conservatism should be more pronounced within local
assemblages than across sites. Weak phylogenetic conservatism
across sites might reflect either strong directional selection,
resulting in rapid evolutionary adaptation to local climate con-
ditions, or phenological plasticity, which might mask the under-
lying similarity in phenological responses among more closely
related species when they occur in different environments. We
suggest that if phenotypic plasticity explains apparent lower
conservatism, then the strength of phylogenetic conservatism
across sites should converge on local estimates after correcting
for cross-site differences in timing of climate cues.

Materials and methods

PHENOLOGY DATA

We used the Network of Ecological and Climatological Timings
Across Regions (NECTAR) database on phenological traits for
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flowering plants (Cook et al. 2012; Wolkovich, Cook & Regetz
2012) and extracted information on day of year of first flower (FF)
and first leaf (FL) across 23 sites spanning the Northern Hemisphere
(Table 1). These sites encompass a cross section of temporal observa-
tions (1739–2010, with time series ranging from 5 to 184 years) and

represent a range of species richness (11–1822 species per site), taxa
(herbs, shrubs and trees) and biomes (northern temperate, tropical and
arid). For most sites, we have an estimate of FF, and for a subset, we
have FL, indicating the first recorded event for each species at each
site. Because each site represents an independently designed study,

Table 1. Data sets and site attributes (further details in NECTAR: Cook et al. 2012; Wolkovich, Cook & Regetz 2012)

Site code Data collected
Species richness*
(FL) Location Temporal span Taxa Habitat/Biome

Washington, D. C. FF, var(FF) 749 Washington, D. C. 1985–2007 Various
angiosperms

Metropolitan area

Fargo FF, var(FF) 655 Great Plains,
North Dakota &
Minnesota

1910–1961 and
2007–2010

Various
angiosperms

Temperate
grasslands

Chinnor FF, var(FF) 372 Oxfordshire,
England

1954–2000 Various
angiosperms

Temperate woodland
and grassland

Herms Ohio
and Michigan†

FF, var(FF) 11 Michigan & Ohio 1985–1989
(Michigan)
and 1997–2002
(Ohio)

Various
angiosperms

Botanical gardens

Soederstroem FF, var(FF),FL 140 (40) Karlskrona,
Sweden

1843–1877 Various
angiosperms

Sarmatic mixed
forest

Harvard FF, var(FF),FL 31 (28) Harvard Forest,
Massachusetts

1990–2009 Woody
species

Temperate woodland

Marsham† FF, var(FF) 11 Norwich, UK 1736–1810, 1834
& 1836–1958

Various
angiosperms

Temperate woodland
and grassland

Concord FF, var(FF) 612 Concord,
Massachusetts

1851–2006
(incomplete)

Various
angiosperms

Temperate woodland

WPS FF, var(FF) 34 Wisconsin 1962–2009 Various
angiosperms

Temperate woodland
and grassland

Gothic FF, var(FF) 109 Gothic, Colorado 1973–2009
(incomplete)

Various
angiosperms

Montane meadow

Konza FF, var(FF) 224 Konza Prairie,
Kansas

2001–2009 Various
angiosperms

Tall grass prairie

Luquillo FF, var(FF) 83 Luquillo
Experimental Forest,
Puerto Rico

1992–2000
and 2006–2007

Various
tropical species

Tropical forest

Arnell 1877 FF, var(FF),FL 26 (10) �Angermanland,
Sweden

1877–1916 Various
angiosperms

Taiga

Sevilleta FF, var(FF),FL 136 (245) Sevilleta National
Wildlife Refuge,
New Mexico

1991–1994
and 2000–2008

Various
angiosperms

Desert grassland
and shrubland

Mohonk† FF, var(FF) 18 Mohonk Lake,
New York

1928–2002
(incomplete)

Perennial
angiosperms

Temperate woodland

OPG FF, var(FF) 19 Ohio Phenological
Gardens, Ohio

NA Various
angiosperms

Phenological gardens

Gunnar FF, var(FF) 22 T€arnsj€o, Sweden 1934–2006 Various
angiosperms

Sarmatic mixed
forest

Wauseon† FL 26 Wauseon, Ohio 1883–1912 Trees Temperate woodland
UWM FL 24 Saukville, Wisconsin 2000–2009 Woody

plants
Temperate wetlands

BCI FF 102 Barro Colorado
Island, Panama

NA Tropical
mixed woody
plants

Tropical forest

Robertson FF 409 Carlinville, Illinois NA Various
angiosperms

Mesic temperate
woodland

Arnell FF 553 Uppsala, Sweden 1873–1919 Various
angiosperms

Sarmatic mixed
forest

Kochmer FF 1822 North and South
Carolina

NA Complete
flora

Mixed subtropical,
temperate and
boreal habitats

*Following taxonomic synonymization.
†Excluded from site-level analysis because of low species richness after synonymization.

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1520–1530

1522 T. J. Davies et al.



data collection protocols differed among them. In the temperate and
arid sites, data on FF and FL were generally recorded by direct obser-
vation; in tropical sites, direct observation is usually impossible (due
to high canopies and low population densities), so phenology was
recorded instead using litter trap collections of leaves and flowers
(Wright & Calderon 1995).

We used FF and FL to describe species phenology. Because both
FF and FL might also be influenced by population size – a simple
sampling effect would predict that first flower would tend to be
recorded earlier in larger populations – it has been argued that peak
flowering time might be a better measure (Miller-Rushing, Inouye &
Primack 2008). Unfortunately, we did not have sufficient data to esti-
mate peak flowering for the majority of our sites. However, we sus-
pect that variation in populations size among species would reduce
signal in the data; thus, our evaluation of phylogenetic signal is prob-
ably conservative.

PHYLOGENY RECONSTRUCTION

First, we constructed a phylogenetic tree for the complete set of taxa
using the software program Phylomatic (Webb & Donoghue 2005),
which matches a taxon list against a backbone phylogeny of plant
family and genus-level relationships and returns a trimmed ‘megatree’
phylogeny for the group. For this analysis, we used a recent hypothe-
sis from the Angiosperm Phylogeny Working Group (APG tree
R20081027, archived at http://svn.phylodiversity.net/tot/megatrees/) as
our backbone. Unresolved relationships between genera and all spe-
cies within genera were treated as polytomies; given the very large
number of taxa in our study, practical constraints precluded their
manual resolution. We used the BLADJ algorithm in the program
Phylocom (Webb, Ackerly & Kembel 2008) to make the branch
lengths of the phylogeny proportional to time and known ages of
plant fossils (Wikstr€om, Savolainen & Chase 2001) as calibration.
We refer to this topology as the Phylomatic tree.

Second, to evaluate sensitivity of our results to tree topology, we
constructed an alternative phylogeny directly from DNA sequence
data. For practical reasons (i.e. aligning a multigene DNA matrix
across many thousands of taxonomically disparate species is a compu-
tationally challenging task, and many species are missing sequence
data), we resolve the tree to genera and include species as polytomies,
as in the phylomatic tree. The phylogeny was assembled using
RAxML (Stamatakis, Hoover & Rougemont 2008) and a GTR+G
model for each of the seven DNA regions analysed. The support of
the resulting tree was assessed using 100 bootstrap replicates. Finally,
branch lengths were calibrated in millions of years by enforcing a
relaxed molecular clock and multiple fossil calibrations in the soft-
ware BEAST (Drummond et al. 2012). Further details of tree recon-
struction are provided as Supporting Information. We refer to this
topology as the ML tree. The two trees therefore differ in branch
lengths and resolution above the genus level.

Subsequent analyses were performed using the ‘ape’ (Paradis,
Claude & Strimmer 2004) and ‘picante’ (Kembel et al. 2010) libraries
in R (http://www.R-project.org; R Development Core Team).

EVALUATING PHYLOGENETIC CONSERVATISM

First, for each species, we determined the mean day of year for FF
and FL across all available years for the global data set, first averag-
ing FF and FL within sites and then averaging across sites. Second,
we calculated the variance in flowering times as the standard devia-
tion in FF between years for species with ≥5 observations

(species 9 year) at a given site and also averaging across sites. Site
data (Table 1) vary in both duration (number of years) and time
period (historical sampling dates), and it is therefore possible that
climate change in recent decades may have impacted some data sets
more than others. Although comparison among species within sites
should be unaffected, comparisons among species occupying different
sites could be more sensitive (see Discussion).

Because it is difficult to define precisely the start and end of the
growing season, particularly in aseasonal environments in the tropics,
we used a circular transformation to convert day of year to radians
and used the CIRCULAR R-library (Lund & Agostinelli 2011) to calcu-
late means and variance. For each metric, we then quantified the
strength of phylogenetic conservatism in the data using the K-statistic
from Blomberg, Garland & Ives (2003) as implemented in the PICAN-
TE R-library (Kembel et al. 2010). Because sample size of species for
which we had data on FF was much larger than for the set of species
with data on FL, we additionally estimated K for FF and FL on the
subset of species with matching data on both to control for variation
in sampling intensity when comparing traits. Next, we calculated the
equivalent metrics separately for species within sites, thereby obtain-
ing the mean for FF and FL, and standard deviation in FF for each
species (across years) at a given site. In the latter analysis, we include
only sites with >20 species because estimates of Blomberg’s K
derived from low sample sizes may be less reliable.

Blomberg’s K compares the observed distribution of tip data to
expectations derived from a Brownian motion model of evolution in
which species differences accumulate over time in a manner analo-
gous to a random walk, with expectation K = 1.0 for a Brownian
motion model, and K = 0 for absence of phylogenetic conservatism.
Because K is sensitive to tree resolution (Davies et al. 2012), we esti-
mated phylogenetic conservatism by first thinning the phylogeny to
one representative taxon per unresolved node, producing a maximally
resolved tree topology, and then generated a distribution of Kthinned

values by randomly resampling (n = 100) from the species subtending
each polytomy. Significance in phylogenetic conservatism was esti-
mated from the variance of phylogenetically independent contrasts
relative to tip shuffling randomization on the complete tree, as imple-
mented in the R-library PICANTE (Kembel et al. 2010).

Finally, to evaluate how data on one phenological event might help
predict timing of another, we explored correlations between FL, FF
and variance in FF using phylogenetic generalized linear models as
implemented in the CAPER R-library (Orme et al. 2012) with the
lambda parameter, which measures phylogenetic signal, set to its
maximum likelihood value (Freckleton, Harvey & Pagel 2002).

ADJUSTING FOR ONSET OF SPRING ACROSS SITES

The start of the growing season varies with climate, across latitudes
and between years. To correct for differences in the onset of spring
between sites, we used the Spring Indices (SI) first bloom model
(henceforth SI; Schwartz 1997; Schwartz, Ahas & Aasa 2006) to stan-
dardize times of FF (equivalent to first bloom) by subtracting the esti-
mated start of spring (first bloom) from observed FF dates in units of
calendar days. The SI were developed to define the onset of spring
using climate observations, which vary from year to year, instead of
calendar days, and were calculated separately for each site and year.
By standardizing by the SI, we effectively rescale time of FF relative
to the start of spring as defined by local climate. The various spring
indices are based on statistical models of phenology that require only
location (latitude) and observational data (daily Tmin and Tmax from
climate stations) as input. They can be computed anywhere daily
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climate data are available (even if phenological data are lacking), but
are currently only appropriate for temperature-limited temperate sites;
we therefore excluded the tropical and arid sites (Table 1) from our data
set and subsequent analysis. Whilst the various Spring Indices have
been largely developed using data from cloned lilacs, they have proven
useful for predicting phenology in related species (Schwartz, Ahas &
Aasa 2006; Schwartz, Ault & Betancourt 2012). We re-evaluated global
phylogenetic conservatism for the standardized SI FF values using
Blomberg’s K, as described above. Because sufficient quality climate
data were only available for a subset of sites (Fargo, Chinnor, Gothic,
Harvard, Konza and Mohonk) and taxa (n = 718) to calibrate SI
between years, for comparison, we also re-estimated the global K for
unstandardized FF across the taxa represented within this same subset
of species.

PHYLOGENETIC OVERLAP AMONG SITES

If species are phylogeographically clustered such that co-occurring
species tend to fall within one or a few clades, it is possible that phe-
nology might appear to be phylogenetically conserved even if largely
determined environmentally, because close relatives will be exposed
to the same suite of environmental cues. To evaluate phylogeographi-
cal structure, we first summed the phylogenetic distances among taxa
on the subtrees connecting species within each site. We then com-
pared these values with a null distribution generated from resampling
the equivalent number of species at random from the species pool of
all sites combined (n = 999). If species within sites are more closely
related than species among sites (phylogeographically clustered), we
would expect, on average, the observed sum of the branch lengths of
the subtrees for each site to be less than those obtained from the ran-
domizations. Importantly, in many sites, the sampled taxa represent
only a subset of the complete flora, and we do not have comprehen-
sive data on the pool of Northern Hemisphere angiosperms to evalu-
ate evidence for environmental filtering sensu Webb et al. (2002) or
phylogenetic niche conservatism sensu Wiens & Graham (2005).
Nonetheless, a significant signal for clustering might indicate a spatial
component in our estimates of global K.

Results

The Phylomatic phylogenetic tree for the composite data set
is 25% resolved and includes over 3800 taxa. The Newick
tree file is included as Supporting Information. The molecular
phylogeny is fully resolved and contained 1246 genera. The
ML tree and associated DNA matrix is archived in the Dryad
online data repository (http://dx.doi.org/10.5061/dryad.
td03p886). We focus here on results from the ML tree
because relative estimates of phylogenetic conservatism were
qualitatively similar for both the Phylomatic and ML topolo-
gies, where applicable matching results for the Phylomatic
tree are provided as Supporting Information.

PHYLOGENETIC CONSERVATISM IN F IRST FLOWER

AND FIRST LEAF

Globally, closely related species tend to have comparable phe-
nologies, flowering and leafing at similar times of year (Fig. 1).
Across sites, FL and the mean and variance of FF show

significant phylogenetic conservatism (all P < 0.001 from

randomizations, Table 2), but depart from strict Brownian
expectations (K < 1). Strength of phylogenetic signal in FL
was greater than for FF (Kthinned = 0.50 � 0.01 and 0.32 �
0.01; mean � SD for FL and FF respectively; Table 2); how-
ever, K-values converged when estimated across the matching
set of taxa with data on both FF and FL (Kthinned =
0.51 � 0.005 and 0.52 � 0.002; mean � SD for FL and FF
respectively, N = 137). In addition, there was a significant
positive relationship between FL and FF, although the corre-
lation strength was relatively weak (r2 = 0.07, t = 3.15, and
P < 0.01 on 123 degrees of freedom, k = 0.81, from the
regression of FL against FF for taxa matched by site and after
correcting for phylogenetic non-independence assuming the
ML tree topology). In some cases, correlations appeared
stronger when regressions were performed within sites
(r2 = 0.21 and 0.14, correcting for phylogenetic non-indepen-
dence for Harvard and Sevilleta, respectively), but the number
of sites with sufficient data on both FL and FF was limited,
and in a third site, Soederstroem, the relationship was not
significant (r2 = 0.01, P = 0.293 on 24 degrees of freedom,
correcting for phylogenetic non-independence). Across sites,
there was also a weak, but highly significant trend for late
flowering species to be less variable in flowering times than
earlier flowering species (r2 = 0.06, t = �10.12, P < 0.01 on
1621 degrees of freedom, and r2 = 0.06, t = �10.21,
P < 0.01 on 1621 degrees of freedom, k = 0.910 from the
regression of FF against variance in FF across species and
after correcting for phylogeny, respectively). On average, the
strength of the correlation was stronger within sites, particu-
larly high r-squared was found for Marsham (0.46), Herms
Ohio and Michigan (0.69), and Arnell 1887 (0.62), but sam-
ple sizes of species were relatively low (species number = 11,
11 and 26 respectively) and no significant correlation was
observed for Harvard (n = 31), WPS (n = 33), Gothic
(n = 80), Mohonk (n = 18) and OPG (n = 19).
Within sites, phylogenetic conservatism for species’ mean

phenology (FL and FF) was uniformly greater than observed
across the global data set, with the largest increase for FF
(Table 3; see also Table S1 in Supporting Information). At
the site level, K for FL and FF was similar (median
Kthinned = 0.62 and 0.77 for FL and FF respectively; Table 3);
however, whilst phylogenetic clustering for FF was significant
for the majority of sites, K for FL did not differ significantly
from random (with the exception of Sevilleta). The Harvard
site was notable in demonstrating much stronger conservatism
in FF (Kthinned = 1.42 � 0.065; mean � SD; see Fig. S1 in
Supporting Information) than any other site, but again phylo-
genetic signal in timing of FL was not significantly different
from random and sample size of species was low. Chinnor,
with larger sample size of species and high K, provides a use-
ful illustration of phylogenetic conservatism in FF (see Fig.
S2 in Supporting Information), but lacks data for FL. Signifi-
cance varied among sites, probably reflecting differences in
sample sizes of species, site ecologies and accuracy of the
underlying site-level phylogenetic trees. For example, Gunnar,
Sevilleta and Soederstroem demonstrated significant phyloge-
netic signal in FF on the Phylomatic tree but not the ML tree.

© 2013 The Authors. Journal of Ecology © 2013 British Ecological Society, Journal of Ecology, 101, 1520–1530
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In contrast, K for FF estimated on both the Phylomatic and
ML tree was not significant for BCI or OPG. Sampling of
species in OPG was relatively poor (n = 20), perhaps limiting
statistical power, but BCI includes records for over 100 spe-
cies and taxonomic breadth is large. BCI represents a tropical
biome, and it is possible that phylogenetic conservatism in
phenology may be harder to detect when the growing season
is less well defined, and phenologies can vary dramatically
among species (e.g. species may flower multiple times each
year or only supra-annually; Newstrom, Frankie & Baker
1994).
Contrasting with the global results, we observed only weak

evidence for significant phylogenetic conservatism in variance

in FF within sites. In addition, strength of phylogenetic
conservatism for variance in FF was lower (median
Kthinned = 0.55) than for mean FF values, and the increase in
K for variance in FF within sites relative to global K was less
than the equivalent increase observed for mean FF. It remains
possible that strength of phylogenetic conservatism in vari-
ance might itself vary along an environmental gradient, such
that variance is highly conserved in some environments, but
only weakly conserved in others, and that averaging across
sites masks this variation. Although we observe large varia-
tion in K-values for variance in FF between sites, only a few
sites depart significantly from random expectations (Table 3;
see Table S1).

20.8 300.4

Gymnosperms
Magnolids

Euasterids I

Euasterids II

Basal Euasterids

Eurosids I

Monocots

Basal Eudicots

Myrtales

Eurosids II

Caryophyllales

0 0.9

50.9 221.7

(a) (b)

(c)

Fig 1. Phylogenetic distribution of day of year for (a) first flower (FF), (b) variation in FF and (c) first leaf (FL) on the ML tree topology for the
global data set. Branches are shaded in proportion to the weighted average of descendent tips, we present this figure for illustration only and cau-
tion against overinterpreting ancestral states. A high-resolution image with species names is included as Supporting Information (Fig. S4). Match-
ing illustrations for FF at Harvard and Chinnor are provided as supplementary Figs S1 and S2, respectively.
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ADJUSTING FOR ONSET OF SPRING ACROSS SITES

Contrary to predictions if phenotypic plasticity explains lower
conservatism across sites than within sites, we found that the
global FF standardized by SI shows weaker, not stronger,
phylogenetic conservatism than the unstandardized flowering
times (Kthinned = 0.75 � 0.019 versus 0.87 � 0.020 for stan-
dardized and raw FF, respectively, for the subset of species
with data on both mean and variance in FF).

PHYLOGENETIC OVERLAP AMONG SITES

The sum of the phylogenetic branch lengths within sites was
significantly less than from randomizations shuffling species

among sites (P < 0.05), indicating phylogeographical cluster-
ing of floras. The trend for clustering was also evident at the
individual site level, with most sites encompassing less phylo-
genetic diversity than median expectations based upon
sampling the same number of species at random from the
phylogeny although significance varied between sites (see
Fig. S3 in Supporting Information). Two sites were found to
show significant phylogenetic overdispersion: Washington,
D. C. and Kochmer. Phylogenetic overdispersion was unex-
pected. Both sites sample from a larger geographical extent
than the remaining sites; the Washington, D. C. data set rep-
resents an amalgamation of smaller sites from urban Washing-
ton, D. C. and the nearby neighbourhoods (and includes some
non-native flora), whereas the Kochmer data set contains
records from across North and South Carolina (Table 1). Per-
haps it is therefore unsurprising that these two sites might
also sample from a broader phylogenetic pool.

Discussion

Here, we have explored two key life-history traits in plants:
timing of first flower (FF) across >4000 species and first leaf
(FL) across ~200 species. We show that more closely related
species tend to flower and leaf at similar times of the year but
that timing of FL is only weakly correlated with time of FF.
Evidence for phylogenetic signal in plant phenological traits
has been reported previously (e.g. Kochmer & Handel 1986;
Bolmgren & Cowan 2008; Willis et al. 2008; Davis et al.
2010), but our study is the first to do so at such large taxo-
nomic and spatial scales. Significance and differences in the
relative strength of phylogenetic conservatism within and
across sites, and across phenological traits, were robust to dif-
ferences in reconstructed phylogenies using very different
methods.

PHYLOGENETIC CONSERVATISM OF PHENOLOGY:

TRA ITS OR GEOGRAPHY

We found significant phylogenetic conservatism in flowering
times when aggregating data from multiple sites spanning
temperate and tropical biomes, with some lineages, for exam-
ple, asters, flowering later in the year, and others, for exam-
ple, within Myrtales, flowering earlier in the year. Our results
are perhaps surprising because phenology is thought to be dri-
ven largely by external environmental cues: species within
different environments are therefore predicted to demonstrate
different phenologies; and even the same species might vary
in phenology if exposed to alternate cues (Wolfe et al. 2005;
Schwartz, Ahas & Aasa2006). However, genetically based
variation in flowering time has been well documented within
(e.g. Mazer 1987; Stinchcombe et al. 2004; Wilczek et al.
2009; Exner & Zabala 2010; Rhon�e et al. 2010) and among
populations (Tarasjev 1997; Chamorro & Sans, 2010; Kawai
& Kudo 2011), and among closely related taxa (e.g. Debus-
sche, Garnier & Thompson 2004; Brearley et al. 2007).
We suggest two broad explanations for phylogenetic con-

servatism in phenological traits at this gross spatial scale.

Table 3. Strength and significance of phylogenetic signal in times of
first flower (FF), first leaf (FL) and variance in first flower (var[FF])
within sites, estimated on the ML tree

Site
FF
Kthinned � SD

FL
Kthinned � SD

var(FF)
Kthinned � SD

Arnell 1877 1.018 � 0** 0.853 � 0
Arnell 0.659 � 0.025**
BCI 0.606 � 0.025
Concord 0.780 � 0.017** 0.477 � 0.010*
Fargo 0.738 � 0.014** 0.453 � 0.010
Chinnor 1.078 � 0.033** 0.545 � 0.013**
Gothic 0.533 � 0.019* 0.550 � 0.010
Gunnar 0.825 � 0.001 0.720 � 0.003
Harvard 1.415 � 0.065** 0.514 � 0 0.562 � 0.111
Kochmer 0.537 � 0.012**
Konza 0.951 � 0.024** 0.567 � 0.019
Luquillo 0.699 � 0.004* 0.520 � 0.005
OPG 0.903 � 0.016 0.846 � 0.009
Robertson 0.831 � 0.049**

Sevilleta 0.575 � 0.017 0.515 � 0* 0.487 � 0.007
Soederstroem 0.621 � 0.014 0.826 � 0 0.546 � 0.007
UWM 0.720 � 0
Washington,
D. C.

0.650 � 0.027** 0.480 � 0.010**

WPS 0.796 � 0.006* 0.812 � 0.023**

*K significant from random at P < 0.05, **K significant from random
at P < 0.01.

Table 2. Strength (mean � SD) and significance of phylogenetic sig-
nal in times of first flower (FF), first leaf (FL) and variance in first
flower (var[FF]) across sites, estimated on the ML and Phylomatic
trees, respectively

Kthinned(ML) P(ML)*
Kthinned

(Phylomatic)
P
(Phylomatic)*

FF 0.322 � 0.011† <0.001 0.246 � 0.011 <0.001
FL 0.502 � 0.001 <0.001 0.400 � 0.014 <0.001
var(FF) 0.395 � 0.004 <0.001 0.263 � 0.004 <0.001

*P-values estimated from the variance of phylogenetically independent
contrasts relative to tip shuffling randomization on the complete tree,
as implemented in the R-library PICANTE (Kembel et al. 2010).
†K for FF estimated on the matching set of taxa with data for both FF
and FL (N = 137) converges on estimates of K for FL (K � 0.51).
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First, genetically based trait conservatism – plant physiology
might dictate species sensitivity to particular cues, hence
closely related species that share a large portion of their
evolutionary history would be expected to also share similar
physiologies and sensitivities (Harvey & Pagel 1991). Second,
geographical conservatism – closely related species might be
more likely to co-occur because of phylogenetic niche conser-
vatism sensu Wiens & Graham (2005), environmental filtering
(Webb et al. 2002), or because of shared centres of origin
(Bremer 1992). Closely related species might then share
similar phenologies simply because they grow in – and are
adapted to – similar environments. We evaluated evidence for
phylogeographical patterns in species distributions by compar-
ing the phylogenetic diversity represented by species within
sites to a null model selecting species at random from the
species pool of all sites combined. Perhaps unsurprisingly, we
show that species within sites tend to be phylogenetically
clustered. Does our finding of phylogenetic conservatism in
phenology therefore simply reflect phylogeography and local
responses to environment? We addressed this question by
investigating the strength of phylogenetic conservatism in
flowering times for species within each site separately,
thereby removing the confounding effect of spatial location.
If phylogenetic signal were an emergent product of phylog-

eography and plastic responses to local environmental cues,
such as temperature, precipitation and photoperiod, we would
predict weak or no signal within sites. Species within each
site are exposed to the same suite of environmental cues,
although cues will of course vary across the growing season.
We observed considerable variation in strength of conserva-
tism between sites, possibly reflecting variation in taxonomic
membership (e.g. the Harvard plots included only woody
species, so much of the variation observed in other sites
across life forms was not included), data quality (e.g. ‘flower
baskets’ that catch falling blossoms versus observational data)
and ecological attributes. Nonetheless, in all cases, strength of
phylogenetic conservatism for mean FF was greater within
sites than observed globally, and in several cases, phyloge-
netic conservatism was several times greater within a site than
across sites. Our results suggest strongly intrinsic phyloge-
netic conservatism in phenological traits that is most apparent
when species are exposed to the same suite of extrinsic
environmental cues.
Species’ phenological schedules might be attuned to local

environmental conditions through either local adaptation or
phenotypic plasticity. There is increasing evidence that
evolutionary adaptation can occur over ecologically relevant
time-scales (e.g. Franks, Sim & Weis 2007; Schoener 2011);
nonetheless, at least for perennials, interannual variation in
flowering times within sites probably represents phenological
plasticity. Weaker phylogenetic signal in mean FF detected
across sites (relative to within sites) therefore suggests that it
is not the particular day of year that traits are expressed that
is phylogenetically conserved, but rather species’ responses to
environmental cues, which vary from site to site. In very dif-
ferent environments, we might then expect close relatives to
flower at very different times, but nonetheless still share simi-

lar responses to drivers. Thus, we suggest that phylogenetic
conservatism for FF tends to be weaker at larger spatial scales
because related lineages might have dispersed to different
climate or day-length regimes and subsequently converged
on different phenological optima better suited to their local
environments.
If our interpretation of phylogenetic conservatism in phe-

nology is correct and temperature is the dominant phenologi-
cal cue, then standardizing flowering times by the start of
spring should help align species’ phenologies between sites
(Schwartz 1997; Schwartz, Ahas & Aasa 2006). Therefore,
we predicted that phylogenetic conservatism in flowering
times standardized by the Spring Indices (SI) would be
greater than that observed for calendar days and should con-
verge on within-site estimates. However, we found that across
sites, standardized timings exhibited weaker phylogenetic con-
servatism when compared with uncorrected day of year. We
propose two explanations that might explain why controlling
statistically for among-site variation in the SI resulted in a
decrease in phylogenetic conservatism. First, a trend for
weaker phylogenetic conservatism across sites for the stan-
dardized flowering times is consistent with local adaptation –

species’ phenologies have evolved towards site-specific
optima that cannot be simply aligned by correcting for timing
of spring. Second, the SI models were designed to simulate
the response of species’ phenologies that are primarily driven
by temperature. Phenologies for species that respond to a
wider range of climate variables (e.g. snowpack, precipitation,
irradiance, etc.) or photoperiod will not be well modelled by
the SI. Thus, standardizing by SI across species with a broad
diversity of phenological drivers might not be appropriate.

PHYLOGENETIC CONSERVATISM IN VARIABIL ITY OF

FLOWERING TIMES

Our finding of stronger phylogenetic conservatism in flower-
ing times within sites than across sites suggests that species
are responding to site-specific cues through local adaptation
and/or phenological plasticity (Wilzcek et al. 2010). We show
also that variance in flowering time is conserved on phylog-
eny, such that closely related species tend to demonstrate sim-
ilar variability in flowering times. However, conservatism for
variance in flowering time within sites (which we cautiously
interpret here as indicative of phenotypic plasticity) was for
the most part non-significant and only marginally greater in
magnitude than the strength of conservatism observed across
the global data set (which might reflect adaptation and/or
plasticity). Further, we find support for predictions that early-
season species’ phenologies should be more sensitive to abi-
otic cues, for example, because costs of mistimed phenology
may be higher (Pau et al. 2011) and therefore demonstrate
greater variance in flowering times.
The importance of phenotypic plasticity is well recognized

in plant phenology (reviewed in Sultan 2004), and it is per-
haps the most relevant indicator of sensitivity to climate
change (e.g. Willis et al. 2008). Although variance in flower-
ing times might be a product of local adaptation and/or plastic
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responses, we found that the strength of covariation with
phylogeny was relatively weak (in comparison with first
flower). We suggest other factors, such as the period within
the growing season that a species flowers (Pau et al. 2011),
and local adaptation to alternate environmental cues might
have greater direct influence on species variability than
taxonomic membership. Identifying the factors that determine
phenological plasticity remains a major challenge.

CORRELATIONS BETWEEN LEAF ING AND FLOWERING

We explored evidence for covariation between FF and FL,
controlling for the shared evolutionary history of taxa (Felsen-
stein 1985) and found a significant positive correlation
between them. Perhaps it is unsurprising that species that
flower early should also leaf early. Both FF and FL have been
shown to advance (occur earlier) in response to increasing
temperatures when evaluated together (e.g. Wolfe et al. 2005;
Gordo & Sanz 2009) and are considered to represent similar
functional responses to climate (Parmesan & Yohe 2003; Root
et al. 2003; Cleland et al. 2007). However, as far as we are
aware, their linked evolutionary responses have not been eval-
uated previously. If shifts in the timing of FF and FL capture
similar responses to climate, then the two might be more or
less interchangeable. Usefully, FL can be indexed using
remote sensing data on ‘green-up’ derived from the normal-
ized difference vegetation index (NDVI) (Zhou et al. 2001;
but see White et al. 2009; Schwartz & Hanes 2010), providing
an approach for describing plant responses at much larger geo-
graphical scales than possible using site-specific observations,
which are required for FF. However, we find that the strength
of the correlation between FF and FL may vary among differ-
ent locations. It is possible that FF and FL might demonstrate
qualitatively different responses to climate change because
they are responding to cues in different parts of the season.

Conclusion

We have shown that the timing of life-history events covaries
with phylogeny such that more closely related species tend to
flower and leaf at similar times. Critically, any search for
drivers of phenological events must therefore consider
phylogeny because species cannot be treated as statistically
independent. To date, there have been only few phylogenetic
comparative analyses of phenological traits (see Jia et al.
2011 and Lessard-Therrien, Davies & Bolmgren 2013; for
two recent examples). Last, evidence of significant phyloge-
netic conservatism in species flowering times indicates that
the shape of the response curve linking phenology to environ-
ment might be evolutionarily constrained. Whilst our study
highlights the large potential for climate tracking through
phenological plasticity or rapid adaptive evolution, significant
phylogenetic conservatism suggests that there may be some
limits to plant responses (Wiens et al. 2010). It is possible
that phylogenetic conservatism might inhibit species from
evolving appropriate phenological responses to new climate
landscapes as species approach their phenotypic limits defined

by standing genetic variation, potentially destabilizing the
tight network of species interactions and trophic links that
define ecological communities (Parmesan 2006; Thackeray
et al. 2010; Burkle, Marlin & Knight 2013).
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Data S1. Construction of phylogeny from molecular sequence data.

Table S1. Strength and significance of phylogenetic signal in times
of first flower [FF], first leaf [FF] and variance in first flower (var
[FF]) within sites, estimated on the Phylomatic tree.

Figure S1. Phylogenetic distribution of day of year for FF at
Harvard. Branches are shaded in proportion to the weighted average
of descendent tips (contrast with Figure 1 and S2).

Figure S2. Phylogenetic distribution of day of year for FF at Chin-
nor. Branches are shaded in proportion to the weighted average of
descendent tips (contrast with Figure 1 and S1).

Figure S3. Histograms illustrating phylogeographic clustering of flo-
ras within sites. Vertical red lines indicate the observed phylogenetic
diversity (summed phylogenetic branch lengths) captured by the set
of species within each site. Frequency histograms represent expected
phylogenetic diversity from re-sampling the same number of species
at random from the global dataset (1000 randomisations). Analyses
conducted using the ML phylogenetic topology.

Figure S4. High resolution image of the complete species-level
ML phylogenetic tree with species names shaded by day of year
of FF; red values indicating events occurring towards the start of
the year and violet indicates events occurring towards the end of
the year.
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