Lawrence Berkeley National Laboratory

Recent Work

Title

A CCMPUTATIONAL MODEL FOR CRITICAL FLOW THROUGH INTERGRANULAR STRESS CORROSION CRACKS

Permalink https://escholarship.org/uc/item/1ck4t3gn

Author

Schrock, V.E.

Publication Date 1986-08-01

-91910-JUBL-JUBL-

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA RECEIVED

Engineering Division

OCT 2 1986

LIBRARY AND DOCUMENTS SECTION

A COMPUTATIONAL MODEL FOR CRITICAL FLOW THROUGH INTERGRANULAR STRESS CORROSION CRACKS

V.E. Schrock. S.T. Revankar, S.Y. Lee, and C.-H. Wang

August 1986

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. A Computational Model for Critical Flow Through Intergranular Stress Corrosion Cracks

Ьy

V. E. Schrock, S. T. Revankar, S. Y. Lee & C-H Wang

Report submitted to the Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, D.C. 20555

University of California Lawrence Berkeley Laboratory Engineering Division Berkeley, California 94720

This work was supported by the Nuclear Regulatory Commission through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

CONTENTS

Abs	tract			iii				
111	ustra	tio	ns	iv				
Nom	encla	tur	e	v				
1.	Intro	odu	ction]-]				
2.	Char	act	eristics of Flow Through IGSCC	2-1				
3.	Mode	11i	ng and Computation Method	3-1				
	3.1	As	sumptions of the Present Model	3-1				
	3.2	Governing Equations						
	3.3	De Go	3-4					
	3.4	Co	mputer Code (SOURCE) Logic	- 3-10				
4.	Resu	4-]						
	4.1	1 Farametric Study of BCL Data						
	4.2	2 Generalized Prediction of Equivalent Friction						
	4.3	Quality and Pressure Profiles						
5.	Conc	lus	ions	5-1				
6.	Refe	ren	ces	6-1				
Арр	endix	А	Application of Generalized Friction Factor Methodology to BCL Test Sections	A-1				
Appendix B SOURCE Flow Chart								
Appendix C SOURCE Program Listing								
Арр	endix	D	Subroutine STEAM	D-1				
Appendix E Predicted Quality and Pressure Profiles								

ii

ABSTRACT

The presence of intergranular stress corrosion cracks (IGSCC) in thermal stressed zones in stainless steel piping and associated components is of much concern in reactor safety. The prediction of leak rates through the cracks is important in assessing the plant reliability. An analytical model has been developed to predict flow rates of initially subcooled or saturated water through these cracks. The model assumes the flow in the crack to be homogeneous and in thermal equilibrium. The crack geometry was idealized as a convergent straight slit of constant gap thickness. The fluid is assumed to enter the crack without separation. The one dimensional model accounts for the changing cross sectional area in the flow direction. The effects of wall friction, expansions/contractions and tortuosity of the actual flow path are lumped into an equivalent friction. The numerical scheme developed for the model solution has been programed into a Fortran computer code called SOURCE. A companion subroutine STEAM provides the saturated fluid properties. Inputs to SOURCE are the upstream stagnation pressure and temperature, the crack geometry specification, and the equivalent friction factor.

SOURCE has been assessed against the experimental data obtained in the Battelle Columbus Laboratories (BCL) study using actual crack specimens. From a parametric study of the BCL data using SOURCE, a subcooling correction factor was developed to modify source predictions. A general methodology was developed for predicting a lumped friction factor (includes effects of bends, contractions and expansions) for use in SOURCE. Corrected SOURCE predictions using the general friction factor methodology agree well with BCL data. This method is recommended for estimating leak rates and assessing the leak-before-break criterion.

ILLUSTRATIONS

Figure		Page
2.1	Illustration of BCL IGSCC Test Sections	2-2
2.2	Photomicrographs of Typical IGSCC in Weld Sensitized Type 304 Stainless Steel	2-6
3.1	Idealized Geometry of the Crack	3-2
4.1	Subcooling Correction for SOURCE	4-3
4.2	Corrected SOURCE Predictions (Based on Optimum Friction Factor) Compared with BCL Data	4-10
4.3	Corrected SOURCE Predictions (Based on Friction Factor from Generalized Method) Compared with BCL Data	4-16
4.4	Chexal et al. [16] Predictions Compared with BCL DATA.	4-17

NOMENCLATURE

Symbol	Description	Dimension
А	Cross-sectional area of crack	L ²
a .	Half of entrance crack width	L
С	Subcooling Correction Factor	-
с	Half of exit crack width	L
D	Equivalent hydraulic diameter	L
Ε	Modulus of elasticity	$ML^{-3}t^{-2}$
f	Friction factor	-
^g c	Gravitational conversion factor	Lt ⁻²
G	Mass flux	ML ⁻² t ⁻¹
h	Specific enthapy	Lt ⁻²
K	Pressure loss coefficients	
L	Depth of crack	L
l	Surface crack length	L
М	Mach number	
ń	Mass flow rate	Mt ⁻¹
Р	Pressure	$ML^{-3}t^{-2}$
Pm	Wetted perimeter	L
Т	Temperature	Τ
t	Equivalent slit thickness	L
v	Specific volume	L ³ M ⁻¹
۷	Fluid velocity	Lt ⁻¹
W	Local width of crack	L
x	Thermodynamic quality	
z	Length variable along crack channel	L

۷

Greek Letters

δ	Average crack thickness (Figure 3.2)	L
Δ	Difference	
ε	Surface roughness of crack wall	L
θ	Percentage tolerance	
ρ	Density	L ⁻³ M
Σ	Summation	-
σ	Tangential stress	$ML^{-3}t^{-2}$
σy	Yield stress	ML ⁻³ t ⁻²
τ _w	Wall shear stress	ML ⁻³ t ⁻²

Subscripts

0	Stagnation
1	Entrance
a	Sound speed
С	Choking condition
е	Crack exit
f	Saturated liquid
fg	Saturated liquid-vapor difference
f]	Evaluated at flashing plane
g	Saturated vapor
i	Grid point
٤	Liquid or flashing point
S 1	Evaluated at constant entropy
Т	Total
sat	Evaluated at saturation condition corresponding at the local pressure
sub	Subcooling

Superscripts

- Average

.

vi

•

Ú,

1. INTRODUCTION

The presence of intergranular stress corrosion cracks (IGSCC) in the weld heat affected zones of types 304 and 316 stainless steel piping and associated components of commercial boiling water reactors (BWR) and steam generator tubes in pressurized water reactors (PWR) has attracted considerable attention over the past several years. [1,2]. Because of economic and safety considerations, it is highly desirable to determine if the failure of the piping system will occur in a 'leak-before-break' mode. Leak-before-break is demonstrated by leak detection methods before such cracks reach a critical size to cause unstable fracture. The ability to predict the leak rates through the cracks in piping and generator tubes before-break.

Most reports on the critical two-phase flow are related to flow in pipes, nozzles and orifices and there is little direct literature available on a flow rate of two-phase flow through tight cracks (crack width of less than 1 mm). Agostinelli et al.[3] studied flows of flashing water and steam through smooth annular passages of hydraulic diameters with constant area in the range of 0.15 mm to 0.43 mm. Test data were obtained with stagnation conditions of pressure ranging from 3.50 to 20.51 MPa and fluid subcoolings from 9.3° C to 67° C. Hendricks et al.[4] made a qualitative study of radially inward flow through 0.076 mm annular clearance between two glass plates using liquid nitrogen. In their experiments for inlet conditions with 10 K or larger subcoolings, flashing was seen to occur near the end of the 0.72 cm flow passage. Simoneau [5] carried out an experimental study of two-phase nitrogen flow through a rectangular slit. The test section used was 2.54 cm in length and width, with an opening dimension which was nominally 0.292 mm. He concluded that a uniform two phase flow pattern existed in most of the test runs and that vaporization was occurring at or near the exit plane, for the tests carried out with stagnation pressures up to 6.8 MPa and for four different subcoolings in the range 0.84 < T_R < 1.03, T_R = T_o/T_c . Amos and Schrock [6]

carried out experiments on constant area rectangular slits 20 mm in width and opening dimension range nominally from 0.127 to 0.318 mm. Stagnation pressure ranged between 4.1 and 16.2 MPa and water subcoolings from zero to 65° C. The length-to-hydraulic diameter ratios (L/D) of slits were between 83 and 400, with flow direction dimension fixed at 6.35 cm. Their study strongly suggested that the frictional effects are predominant in two-phase critical flows with large L/D.

More recently an experimental and analytical research program to study IGSCC associated with BWR piping was carried out at Battelle Columbus Laboratories (BCL) by Collier et al. [7] under the joint sponsorship of the Electric Power Research Institute (EPRI) and the BWR Owners Group. The experiments were carried out in two phases. In the first phase, simulated cracks were used. For simulated cracks, the ratio L/D and the surface roughness could be controlled. In the second phase, actual

IGSCC in stainless steel pipes were utilized. An analytical model to predict two-phase flow through cracks was developed [8] based on the non-equilibrium model suggested by Henry [9]. The model was developed by extending the Henry model to account for wall friction, flow area change and bends in the flow path. Further modifications were made to this model by Abdollahian and Chexal [10] to improve its agreement with Both versions of this model, coded into programs LEAK and the data. LEAK 01 respectively, assumed that flashing always begins at an L/D of 12 and that the quality varies linearly with distance along the flow path. Quality was evaluated assuming an isentropic process in LEAK and an isenthalpic process in LEAK 01. The calculations were done by separately calculating channel pressure drop due to momentum and friction based upon length averaged conditions rather than solving the equations in a marching method to obtain the distribution of pressure and quality along the crack length (flow direction).

The present study, aimed at developing a computational scheme for steady state two-phase critical flow through IGSCC, takes account of more realistic assumptions in modelling the flow through cracks. From the theoretical and experimental study by Amos and Schrock [6] it was observed that the predictions of critical two-phase flow through simulated cracks of large L/D using the homogeneous equilibrium model (HEM) agreed fairly well when compared with their experimental measurements (with deviations less than 20%). As the IGSCC have large L/D ratios, in the present study the HEM (with account of wall friction, area change and tortuosity) is used with a correction factor dependent upon upstream subcooling. The computational scheme is coded into a Fortran program called SOURCE. The inputs to the program require stagnation conditions and specifications of crack geometry. A properties subroutine, STEAM, is provided to the SOURCE code to calculate the fluid thermodynamic properties. The STEAM subroutine was developed using the equations for water given by Ishimoto et al.[15]. In the following sections the development of the computational scheme and the prediction of BCL tests are presented. A method of estimating the crack equivalent friction factor is also presented along with predicted results using these friction factors. The SOURCE flow chart and listing are presented in Appendices B and C, respectively.

2. CHARACTERISTICS OF FLOW THROUGH IGSCC

The BCL tests [7] on actual IGSCC were carried out on two stainless steel pipes which contained approximately 90 percent through-the-wall circumferential cracks. The crack depths were not actually uniform and an electric potential technique was used to locate the deepest section. At this location a portion of the pipe surface was machined away to expose the tip of the IGSCC. Progressively deeper cuts were made to obtain various L/D ratios. Figure 2.1 shows a sketch of the crack used by BCL. The exit to entrance area ratio for cracks was determined by inspection of the flow surface convergence following the experiments. The measured leak rates and the test parameters are given in Table 2.1.

From the stress analysis [11] the crack cross sectional area, A, can be related to the surface crack length, l, as

 $A = \frac{\sigma}{2E} \ell^2 F(\frac{\sigma}{\sigma_y})$ (2.1)

Here the function F is of order unity. All the symbols are defined in the nomenclature.

For a typical stress of $\sigma = 8 \times 10^3$ psi and E = 26 x 10^6 psi, the area A is given as A $\approx 5 \times 10^{-4} \ell^2$. Hence the equivalent slit thickness t Figure 2.1 is given as

(2.2)

 $t = 5 \times 10^{-4} \ell$

Equation (2.2) gives an idea of crack width to length ratio. As indicated earlier it is important to define the margins for "leak-before-break" (LBB) i.e., the leak rate through a crack before failure of the pipe with events such as burst or break. With an assumed typical critical mass flux $G \sim 3900 \ \text{lb}_m/\text{ft}^2 \text{sec.}$, the estimations [12] of the crack length that will give the observable flow rate of 5 GPM and the critical crack length before break are given in Table 2.2 for different pipe sizes.

Usually the non circular flow cross sections are modelled by defining an equivalent diameter and using the correlations developed for round tubes. The crack width in BCL experiments was between 0.02 mm and 0.2 mm, the ratio of the crack opening length to width was between 30 and 150 and the L/D varied from 50 to 475. When the pipes were destructively tested after the BCL phase II tests, the flow path was found to have a number of turns.

Figure 2.1 Illustration of BCL IGSCC Test Sections

	Stagnal	tion Condi	tions		Measured				
Test No.	P _o (MPa)	T₀ (°C)	∆T Subcooling (°C)	Nepth L. (mm)	Width 6 (mm)	Length 2c (mm)	Area Ratio <u>AR</u>	Opening Area A (m ^{n 2})	Leak Rate W (kg/s)
1	7.316	272.8	18.4	19.27	0.074	3.63	0.1	0.268	1.02 x 10-3
2	7.316	272.8	18.4					-	
3	8,667	267.2	34.2						1.10 x 10-2
4	9.412	260.6	46.H		-		-		-
5	9.412	260.6	46.8		-			-	-
6	9.322	267.8	38.8		-			-	-
1	9,301	284.4	22.1	18.63	0.0220	0.74	0.04	0.0162	5.49 x 10-5
Ř	9,446	281.7	25.9		0,0218		**	0.0161	6.66 x 10-5
9	9.467	278.3	29.4		0,0216	**		0.0159	3.08 x 10-5
10	5.702	273.3	.1	**	0.0208	**		0.0153	3.08 x 10-5
11	5.971	262.8	13.6	*	0.0201			0.0148	1.34 x 10-5
i2	5.868	260.0	15.2		0.0199	•	*	0,0146	1.09 x 10-4
13	5.854	268.3	6.7	-	0.0205	•	*	0.0151	1.51 x 10-4
14	5.868	272.8	2.4	н	0.0208		•	0.0153	1.01×10^{-4}
15	3.523	251.7	-7.1		0.0190		•	0,0140	9.30 x 10-5
16	3.379	241.1	1.1		0.0183			0.0135	1.05 x 10-4
17	5.681	278.9	-5.7		0.0212		•	0.0156	1.01 x 10-4
18	7.081	260.0	27.6	•					6.21 x 10-5
19	7.309	273.9	15.8	19.27	0.108	9.53	0.13	1.026	3.04 x 10-2
20	7.309	282.2	7.4						2.90 x 10-2
21	9,005	280.0	24.2	•	•				4.85 x 10-2
22	9,005	273.3	30. A		•		-		4.62 x 10-2
23	8.964	256.7	39.3			*			4.52 x 10-2
24	8.888	256.7	36.3	•		μ.	•	•	4.44 x 10-2
25	7.164	256.1	32.2	*	•			•	3.67 x 10-2
26	7.164	256.7	31.7		-	*	٠	•	3.59 x 10-2
27	5.571	260.6	11.4			•	•	•	2.51 x 10-2
28	5.626	267.8	4.8		**		48		2.35 x 10-2
29	5.592	241.7	30.5	M	•		•	•	3.01 x 10-2
30	5.592	243.9	28.3	м	*	*			2.98 x 10-2
31	7.219	242.8	46.1	•	*	-		•	3.96 x 10-2
32	7.219	238.3	46.6		•			•	3.94 x 10-2
33	8,812	241.7	60.9				8	H	4.51 x 10-2
34	8.812	235.0	67.6						4.73 x 10-2
35	7.129	226.1	61.9	•		-	*	*	3.84 x 10-2
36	7.129	222.8	65.2		-	•		• •	3.92 x 10-2
37	5.592	220.0	52.2	•	•	*		•	3.84 x 10-2
38	5.44	223.2	47.1	м					2.97 x 10-2
39	3.937	230.6	20.3	•	•	.	•	•	2.62 x 10-2
40	3.937	232.8	18.1			*	•		1.57 x 10-2

Table 2.1 Test Parameters for BCL Phase II Experiments

Ĺ

τ,

	Stagnal	tion Condi	tions		(r	ack Genmet	ry .	<u></u>	Measured
			۵T	Nepth	Width	Length	Area	Opening Area	Leak Rate
Test No.	Pn (MPa)	(⁸ C)	Subcooling (°C)	L. (mm)	6 (nm)	2c (mm)	Ratio AR	^A	W (kg/s)
					A AF AF		0.00	0.0940	1 91 - 10-3
41	7.309	278.9	10.8	18.63	0.0535	1.04	0.09	0.0849	1 98 2 10-3
42	8,060	2/1.2	14.2		0 0535			0.0850	2.19 x 10-3
43	8./22	2/0./	25.6		0 0533	-	*	0.0847	2.37 x 10-3
44	9.3//	279.9	32.0	-	0.0534		/ m	0.0848	3.62 x 10-4
45	7.35	278.3	11.4	-	0.0530			0.0842	5.26 x 10-4
46	8.067	2/5.0	21.4	-	0.0530			0.0845	3.91 x 10-3
4/	8.757	275.0	2/.2		0.0630	60		0.0841	4.37 x 10-3
48	9.432	276 1	12.0		0.0530		-	0.0841	3.22 x 10-3
49	/.35	270.1	20.3		0.0520		•	0.0840	3.59 x 10-3
50	6.007	2/4.4	20.5	-	0 0490			0.0778	2.51 x 10-3
51	5.213	250.5	22 1		0 0497	•		0.0773	3.54 x 10-3
52	0.923	203.9	JC.1	-	0 0491			0.0779	4.11 x 10-3
53	6 212	256 7	11 1		0.0487	ea		0.0773	2.20 x 10-3
24	6 002	254 4	31.4		0.0488			0.0775	2.61 x 10-3
55	9 6 4 6	253 3	47 9		0.0492	*		0.0781	3.17 x 10-3
67	3.413	233.9	8.9	•	0.0438		•	0.0696	7.57 x 10-4
57	5.171	232.8	34.5	•	0.0442			0.0711	9.03 x 10-4
59	6.923	231.1	54.9		0.0445	•	۳	0.0706	1.50 x 10-3
60	R. 646	228.9	72.4		0.0446			0.0708	1.85 x 10-3
61	8.646	231.7	69.6	•	0.0451	•		0.0717	1.75 x 10-3
62	7.033	228.3	58.0	•	0.0440	80		0.0698	1.76 x 10-3
63	5.206	225.0	42.7	•	0.0428	•		0.0679	1.53 x 10-3
64	3.448	222.8	20.6	•	0.0415			0.0663	1.33×10^{-3}
65	3.461	235.0	8.6		0.0441		-	0.0700	1.84 x 10-3
66	5.185	232.2	35.3	-	0.0441	-	•	0.0700	2.32 x 10-3
67	6.895	230.0	55.8	•	0.0443		•	0.0703	2.69 x 10-3
68	8.646	228.3	71.8	•	0.0445	64	-	0.0707	2.69 x 10-3
69	8.626	241.7	59.4	19.27	0.235	27.89	0.21	6.547	1.51×10^{-1}
70	6.936	236.8	49.5	-	0.227		•	6.338	1.39×10^{-1}
71	6.861	236,7	4P.8	-	0.227	-	•	6.334	1.57×10^{-1}
72	8,536	241.1	59.3	•	0.234	-		6.528	1.75 x 10-1
73	5.109	252.8	13.7		0.178	-		4.952	1.41×10^{-1}
74	6.861	253.9	31.6	-	N. 243	•	۳	6.787	1.69×10^{-1}
75	8.605	254.4	46.5	•	0.247	*	*	6.882	1.91×10^{-1}
76	8.598	250.6	50.3		0.243			6.779	2.00 x 10-1
77	6.861	248.3	37.1		0.238	-	•	5.641	1.78 x 10-1
78	5.192	246.1	21.4		0.173	-	-	4.828	1.51 x 10-1
79	3.937	240.6	10.3		0.144	-		4.024	1.28 x 10-1
80	5.089	236.1	30.2	-	0.166	~		4.033	1.55 X 10-1
81	6.771	237.2	47.3	-	0.228		-	0.345	1./0 X 10-1
82	8.577	7.14.4	66.3		0.228			0.322	1.33 X 10"1

.

able 2.1	(continued)
----------	-------------

. .

In Figure 2.2 photomicrographs of typical IGSCC in weld sensitized type 304 stainless steel are shown. These pictures reveal the tortuous and irregular nature of the channel with many expansions and contractions along the passage.

Pipe ID in.	Pipe Wall Thickness, in.	[£] 5GPM in.	^l crit, in.	^l 5GPM ^l crit
4	0.3	4.5	6.5	0.69
10	0.7	6.9	16 .	0.43
24	1.0	7.0	36	0.20

Table 2.2 Leak Before Failure Criterion $G_c = 3900 \ lb_m/ft^2$ sec. Assumed.

It should be noted that the BCL method of measuring the average crack thickness δ was not documented. Inconsistencies may be noted between some mass flowrate data and crack opening areas given in Table 2.1. It seems likely that this may be due in part to the difficulty in measuring δ . Another source of discrepancies may be the non-uniformity of δ and possible plugging of some cracks by small solid particles. These difficulties are real and impact the predictive capability of any model.

IGSCC IN WELD HEAT AFFECTED ZONE - 8X

HIGHER MAGNIFICATION - 125X

Figure 2.2 Photomicrograph of Typical IGSCC in Weld Sensitized Type 304 Stainless Steel

3. MODELLING

In the models developed by Collier [7] and by Abdollahian and Chexal [10] it was assumed, similar to Henry's model [9], that the flow was homogeneous and the non-equilibrium effects were taken into account through the empirical parameter, N, which is a function of equilibrium quality and the flow path length to diameter ratio L/D. In addition to these assumptions the critical flow model developed and coded in the program LEAK included friction and acceleration pressure drops within the flow path and the pressure drop at entrance (sharpedged entrance was assumed). In the code LEAK 00 the quality in the crack duct was assumed to vary linearly along the flow direction and was evaluated with assumption of isentropic flow. The friction pressure drop was calculated with the mass flux evaluated as the average of inlet and outlet mass flux. The surface roughness was taken as ε = 0.00178 mm and six 45 degree turns in the flow path were assumed to determine the friction pressure drop. In a subsequent code, LEAK 01, the quality was evaluated from an isenthalpic assumption. which is more nearly correct thermodynamically. The average mass flux was evaluated with the assumption of linearly varying cross-sectional area of the crack duct. For the friction pressure drop evaluation, a surface roughness of ε = 0.0051 mm and twenty 45-degree turns in the flow path were assumed.

In actual pipe IGSCCs the entrance to the crack duct does not represent sharp-edged geometry. The crack L/D ratios are large (>50) hence the homogeneous equilibrium assumption with a rounded entrance seems more appropriate. The values for L/D beyond which homogeneous equilibrium assumptions can be made have been reported in the literature. These values vary from 1.5 for reactor scale pipe breaks [13] to 25 for 4 mm diameter tubes with sharped entrance geometry. In the model of the LEAK code the flashing of the liquid in the crack channel is assumed to occur at Z = 12D irrespective of crack dimensions and thermodynamic properties of the upstream fluid. In the present work, the more realistic assumptions are made in modelling the critical flow through IGSCC as described in the next section.

3.1 Assumptions of the Present Model

The actual flow channel in an IGSCC (as shown in Figure 2.1) is approximated with a one dimensional convergent slit as shown in Figure 3.1. The convergence of the channel is determined by the specifications of inlet to exit area ratio and crack depth. Thus the flow area is assumed to vary linearly along the z-direction with the flow channel, while the slit gap is taken as uniform in transverse and in flow directions. As mentioned earlier, the fluid is considered homogeneous and in thermodynamic equilibrium. The entrance region is assumed to be smooth, hence frictionless. The gravitational effects

Figure 3.1 Idealized Geometry of the Crack

3-2

€

£

are neglected and the control surface of the geometry considered is assumed to be adiabatic. The flow is considered in steady state.

For subcooled stagnation conditions, the flow in the channel is divided into two regions, single phase and two-phase. The two phase region is assumed to begin at the plane where the liquid reaches the saturation pressure at T_0 . Both single phase and two phase frictional pressure losses are calculated by assuming a single equivalent friction factor. Evaluation of the equivalent friction factor, which accounts for the tortuosity (bends, contractions, expansions) of the channel, is a key element in the modelling. In section 4.1 we present a parametric study of the BCL data to obtain optimized friction factors for each test section. In section 4.2 we present a generalized approach for estimating friction factors for IGSCC. This method is applied to the BCL test sections in Appendix A and the resulting friction factors used in an independent prediction of the BCL critical flow data.

3.2 Governing Equations

The continuity equation is

$$\frac{d}{dz}(\rho VA) = 0 \tag{3.1}$$

where $\dot{m} = \rho VA$.

The momentum equation is

$$-\frac{dP}{dz} = \rho V \frac{dV}{dz} + \frac{\tau_w P_m}{A} \qquad (3.2)$$

The first term on right hand side of momentum equation is the acceleration pressure drop and the second term is the friction pressure drop.

The energy equation is

$$\frac{d}{dz}\left(h + \frac{v^2}{2}\right) = 0 \quad . \tag{3.3}$$

The state equations are

i) for two-phase mixture

$$v = (1 - x)v_{f}(P) + x v_{g}(P) = v_{f}(P) + x[v_{g}(P) - v_{f}(P)]$$
(3.4)

$$h = (1 - x)h_{f}(P) + x h_{g}(P) = h_{f}(P) + x [h_{g}(P) - h_{f}(P)]$$
(3.5)

ii) for single-phase liquid

$$v_0 \simeq \text{constant} = v_f(T_0)$$
 (3.6)

$$h_{g} \simeq h_{f}(T_{o})$$
 (3.7)

Critical Flow Criteria

Homogeneous equilibrium sound speed criterion was used to determine when the flow was critical. This is given as

$$V = V_{a} = \left\{ \left(\frac{\partial P}{\partial \rho} \right)_{S} \right\}^{1/2}$$
(3.8)

at the channel exit.

Using equations (3.2) to (3.5), equation (3.8) becomes

$$V_{a} = v \left[-\left\{ (1-x) \frac{dv_{f}}{dP} + x \frac{dv_{g}}{dP} + (v_{g} - v_{f}) \left(\frac{\partial x}{\partial P} \right)_{s} \right\} \right]^{1/2}$$
(3.9)

where

$$\left(\frac{\partial x}{\partial P}\right)_{S} = \frac{\left(\frac{ds_{f}}{dP}\right)(1-x) + x\left(\frac{ds_{g}}{dP}\right)}{(s_{g} - s_{f})}$$
(3.10)

3.3 Development of Finite Difference Forms of Governing Equations

To achieve a numerical solution, the above equations are reduced to finite difference forms using a forward differencing scheme, which is numerically stable. The continuity and the energy equations, (3.1) and (3.3), are given in finite difference form as

$$\frac{\Delta}{\Delta z_{i}} \left(\rho A V\right)_{i} = \frac{\Delta \tilde{m}_{i}}{\Delta z_{i}} = 0$$
(3.11)

$$\frac{\Delta h_i}{\Delta z_i} + \frac{\Delta}{\Delta z_i} \left(\frac{1}{2} V^2\right)_i = 0 . \qquad (3.12)$$

Here $\Delta z_{i} = z_{i+1} - z_{i}$, $\Delta h_{i} = h_{i+1} - h_{i}$,

and
$$\Delta \left(\frac{1}{2} V^2\right)_i = \frac{1}{2} V_{i+1}^2 - \frac{1}{2} V_i^2$$

The momentum equation (3.2) can be written as

$$-\left(\frac{dP}{dz}\right) = \frac{\hbar^2}{A^2} \left(\frac{dv}{dz}\right) - \frac{\hbar^2 v}{A^3} \left(\frac{dA}{dz}\right) + f\left(\frac{P_m}{A}\right) \frac{\hbar^2 v}{2A^2}$$
(3.13)

where f is an equivalent friction factor including effects of bends, contractions and expansions.

In equation (3.13) the first term on the right hand side is the pressure gradient due to phase change, the second term is the pressure gradient due to area change and the third term is pressure gradient due to friction in the crack channel. Equation (3.13) is integrated along the flow path to evaluate the overall pressure drop across the crack. The channel region is divided into two regions: a) entrance region; and b) main channel region.

a) Entrance region

i) Single phase entrance. (High stagnation subcooling)

With ideal flow assumed, the single phase pressure drop for flow between stagnation region and entrance region is obtained by using the Bernoulli equation (special case of equation (3.13))

$$\frac{P_{0}}{\rho_{0}} = \frac{P_{1}}{\rho_{1}} + \frac{V_{1}^{2}}{2}$$

or

$$P_{o-1} = \frac{1}{2} \rho_0 V_1^2 = \frac{\tilde{m}^2 V_0}{2A_1^2} . \qquad (3.14)$$

This case corresponds to $P_1 > P_{sat}(T_0)$. For the case with $P_1 = P_{sat}(T_0)$, there will be flashing at the entry. The entrance pressure drop is then

$$\Delta P_{o-1} = P_o - P_{sat}(T_o) . (3.15)$$

ii) Two phase entrance

In the case of very low stagnation subcooling the liquid may start to flash before entering the channel. In such cases the entrance pressure drop is calculated by the use of thermodynamic relationships for isentropic flow, i.e., both entropy and stagnation enthalpy remain constant. Thus we have

$$s_{o} = s_{1} = s_{f1} + x_{1} s_{fg1}$$
 (3.16)
 $h_{o} = h_{f1} + x_{1} h_{fg1} + \frac{v_{1}^{2}}{2}$ (3.17)

and continuity

$$\dot{m} = \frac{A_1 V_1}{V_1}$$
(3.18)

where

With known values of A_1 , \dot{m} , s_0 , and h_0 equations (3.16), (3.17) and (3.18) determine P_1 , x_1 and V_1 .

b) Main channel region.

i) Single phase flow

The single phase region ends at the point where the flashing occurs. The pressure drop between the entrance plane and the plane of flashing (where $P = P_{sat}$) is obtained from equation (3.13) neglecting the compressibility of the liquid, as

$$P_{1} - P_{sat} = \frac{\dot{m}^{2}}{2} v_{0} \left(1 + \frac{\delta f}{\eta}\right) \left(\frac{1}{A_{fl}^{2}} - \frac{1}{A_{l}^{2}}\right) + \frac{\dot{m}^{2} f v_{0}}{\delta \eta} \left(\frac{1}{A_{fl}} - \frac{1}{A_{l}}\right) \quad (3.19)$$

where $\eta \doteq \frac{2\delta}{L}(a-c)$.

Hence the flashing location is obtained in terms of the flashing area ${\rm A}_{\rm f}$

$$A_{f\ell} = \frac{1 + \left[1 + (\delta^2 \eta^2 + \delta^3 \eta f) / (\dot{m}^2 f^2 v_0)\right] C_1}{(\delta \eta / (\dot{m}^2 f v_0)) C_1}$$
(3.20)

where

$$C_1 \doteq 2(P_1 - P_{sat}) + \frac{\dot{m}^2 v_0}{A_1^2} (1 + \frac{\delta f}{\eta}) + \frac{2\dot{m}^2 f v_0}{\delta \eta A_1}$$

ii) Two-phase region

Now the pressure drop between two local points $z_{\mbox{$i$+1$}}$ and $z_{\mbox{$i$}}$ in the channel can be written as

$$\Delta P_{(i+1-i)} = P_i - P_{i+1} = -\int_{z_i}^{z_{i+1}} \left(\frac{dP}{dz}\right) dz \qquad (3.21)$$

From equations (3.13) and (3.21) we have the pressure drop between two local points $z_{i+1}^{}$ and $z_i^{}$ as

$$\Delta P_{i+1-i} = m^2 \int_{v_i}^{v_{i+1}} \frac{dv}{d^2} - m^2 \int_{A_i}^{A_{i+1}} \frac{v}{A^3} dA + \frac{m^2}{2} \int_{z_i}^{z_{i+1}} f\left(\frac{P_m}{A}\right) \left(\frac{v}{A^2}\right) dz \quad (3.22)$$

Here

$$v_i = v(z = z_i)$$

 $v_{i+1} = v(z = z_{i+1})$
 $A_i = A(z = z_i)$
 $A_{i+1} = A(z = z_{i+1})$

Now, the first integral in equation (3.22) is evaluated as follows

$$\dot{m}^{2} \int_{v_{i}}^{v_{i+1}} \frac{dv}{A^{2}} = \frac{\dot{m}^{2}}{\bar{A}_{i}^{2}} (v_{i+1} - v_{i})$$
(3.23)

where

$$\bar{A}_{i}^{2} = \frac{1}{2} (A_{i}^{2} + A_{i+1}^{2})$$

and the second integral is approximated by

$$\dot{m}^{2} \int_{A_{i}}^{A_{i+1}} \frac{v}{A^{3}} (-dA) = \frac{\dot{m}^{2} \bar{v}_{i}}{2} \left(\frac{L}{A_{i+1}^{2}} - \frac{1}{A_{i}^{2}} \right)$$
(3.24)

where

$$\bar{v}_{i} = \left(\frac{v_{i} + v_{i+1}}{2}\right) \,.$$

In order to evaluate third integral we have to evaluate ($P_{/A}$) for the convergent crack geometry. A linear change in area of the crack channel is assumed in the present model. The local area A(z) is given as

$$A(z) = A_1 - \eta z$$
 (3.25)

where

$$A_{1} = 2a\delta$$
 and $n \doteq \frac{2\delta}{L}(a-c)$.

Hence

$$(P_{\rm m}/A) = \frac{2}{A} \left(\frac{A}{\delta} + \delta\right) = 2\left(\frac{1}{\delta} + \frac{\delta}{A_{\rm l} - nz}\right)$$
(3.26)

Using equations (3.25) and (3.26) we have after simplifications

$$\frac{\dot{m}^{2}}{2} \int_{z_{i}}^{z_{i+1}} f\left(\frac{P_{m}}{A}\right) \left(\frac{v}{A^{2}}\right) dz = \frac{\dot{m}^{2} f \bar{v}_{i}}{\delta \eta} \left[\left\{ \frac{1}{(A_{1} - \eta z_{i+1})} - \frac{1}{(A_{1} - \eta z_{i})} \right\} + \frac{\delta^{2}}{2} \left\{ \frac{1}{(A_{1} - z_{i+1})^{2}} - \frac{1}{(A_{1} - \eta z_{i})^{2}} \right\} \right] (3.27)$$

Using equations (3.22), (3.23), (3.24) and (3.27) we have after some rearrangement

$$(\Delta P)_{i+1-i} = \frac{\hbar^2}{\bar{A}_i^2} (v_{i+1} - v_i) + \frac{\hbar^2 v_i}{2} \left(1 + \frac{\delta f}{\eta}\right)$$

$$(3.28)$$

$$x \left\{ \frac{1}{(A_1 - \eta z_{i+1})^2} - \frac{1}{(A_1 - \eta z_i)^2} \right\} + \frac{\hbar^2 f \bar{v}_i}{\delta \eta} \left\{ \frac{1}{(A_1 - \eta z_{i+1})} - \frac{1}{(A_1 - \eta z_i)} \right\}$$

The total pressure drop through the crack is then given as

$$(\Delta P)_{T} = (\Delta P)_{0-1} + (\Delta P)_{1-e}$$
 (3.29)

The solution must simultaneously satisfy the continuity, energy and state equations.

The state equations (3.4) to (3.7) are given in difference form as

i) for two-phase homogeneous mixture

$$v_{i} = v_{f}(P_{i}) + x_{i}[v_{q}(P_{i}) - v_{f}(P_{i})]$$
(3.30)

$$h_{i} = h_{f}(P_{i}) + x_{i}[h_{g}(P_{i}) - h_{f}(P_{i})]$$
 (3.31)

ii) for single-phase liquid

$$v_{\rho} = v_{\rho}(T_{\rho}) \simeq \text{constant}$$
 (3.32)

$$h_{\ell} = h_{\ell}(T_0) \tag{3.33}$$

Using equations (3.30) to (3.31) the energy equation (3.12) becomes

$$h_{o} = h_{f}(P_{i}) + x_{i}[h_{g}(P_{i}) - h_{f}(P_{i})] + \frac{\hbar^{2}}{2A_{i}^{2}} [v_{f}(P_{i}) + x_{i}[v_{g}(P_{i}) - v_{f}(P_{i})]^{2}$$
(3.34)

Equation (3.34) can be rearranged to give the quality at mode i as

$$x_{i} = -C_{2} + \left[C_{2}^{2} - \frac{2A_{i}^{2}(h_{g} - h_{f})}{\hbar^{2}(v_{g} - v_{f})} + \left(\frac{v_{f}}{v_{g} - v_{f}}\right)^{2}\right]^{1/2}$$
(3.35)

where

$$C_2 = \left[\frac{v_f}{v_g - v_f} + \frac{2A_i^2(h_g - h_f)}{\dot{m}^2(v_g - v_f)} \right] \text{ and } h \text{ and } v \text{ are evaluated}$$

at P_i .

3.4 Computer Code (SOURCE) Logic

The difference equations presented in section 3.3 were programmed into a Fortran code called SOURCE. The logic of the code method is described in a SOURCE flow chart given in Appendix B. The SOURCE program listing is given in Appendix C. A brief description of the key features follows.

The governing steady equations are solved interatively marching downstream from the upstream stagnation region using an assumed mass flowrate. This develops the location of incipient flashing and the distribution of pressure and quality in the flow direction. At each node point the converged value of fluid velocity is compared with the HEM sound speed calculated for the local state. The marching procedure continues until either, a. the exit plane is reached at a subcritical flow state or b. a critical flow state is reached at a position upstream of the exit. In the first instance the assumed flowrate was too low, in second instance it was too high. The mass flowrate is adjusted systemmatically until a critical flow state is found at the exit plane within a small tolerance.

In principle any first guess flowrate will do, however, to reduce the number of iterations a simple approximate method of estimating the flowrate was built into SOURCE. The method uses the IHEM nozzle results tabulated by Hall [17] with a multiplier deduced from the BCL data. The multiplier is a linear function of L/D with subcooling as a parameter. As programmed this estimate may be made for stagnation temperature $480K \leq T_0 \leq 550K$ and stagnation pressure $3 \leq P_0 \leq 10 \text{ MP}_a$.

The location of incipient flashing is found precisely using equation (3.20) for the case of incipient flashing within the channel. When flashing is initiated upstream of the channel equations (3.16) - (3.18) give the pressure and quality at the entrance. These results identify the region of two phase channel flow. Because the pressure gradient, in friction dominated critical flow, increases rapidly as the critical location is approached, a non-uniform axial discretization was chosen. Each successive distance $Dz(i) = (z_{i+1} - z_i)$ in just half the preceding one such that $Dz(i) = (DzT)2^{N-i}$. With the total two phase length given by $zTP = \sum_{i=1}^{N} Dz(i)$ the number of nodes N is fixed by the requirement that $DzT \le 10^{-7}$ m.

The first node in the two phase region used a subroutine GUESS for an estimate of the pressure gradient, which changes stepwise at incipient flashing in the HEM model. GUESS uses the single phase pressure gradient to estimate the pressure P_{i+1} by forward extrapolation. This pressure is in turn used to evaluate an approximate quality x_{i+1} from equation (3.34). This quality is then used to evaluate the two phase

friction multiplier with the aid of a linear fit to the result of Martinelli and Nelson [18].

$$\phi_{10}^2 = 1.20 \ (v_{fg}/v_f)(1.42 - 1.67 \times 10^{-4} P) \ x^{0.9} + 1$$
 (3.36)

A second estimate of P_{i+1} is then obtained by extrapolating the two phase pressure gradient. The second estimate of x_{i+1} is then the first guess for iterative solution of equations (3.28) through (3.35).

For subsequent axial nodes the last evaluated pressure gradient is extrapolated forward to obtain a first estimate of P_{i+1} . Use of the energy equation (3.34) then gives the first guess x_{i+1} for iterative solution of equations (3.28) through (3.35).

After downstream marching is terminated by reaching a critical flow state or the channel exit, the flowrate is then corrected accordingly. When the exit is reached at a Mach number M < 1.0, the flowrate is corrected by

 $\dot{m}_{new} = \dot{m}_{old} M^{-0.05}$ and a new solution is generated. If again the flow is subcritical at the exit the same correction is applied. This procedure is repeated until the new flowrate results in a critical flow state upstream of the exit. The desired solution is then bracketed by the last subcritical flow \dot{m}_1 and the last supercritical flow \dot{m}_2 . The flowrate correction

 $\dot{m} = \frac{\dot{m}_1 + \dot{m}_2}{2}$ is then used. If this flowrate gives a critical flow state upstream of the exit, it becomes the new \dot{m}_2 . If instead it gives a subcritical flow at the exit it becomes the new \dot{m}_1 . Successive corrections then converge rapidly and the solution is accepted when, for $M_e < 1$, $(1-M_e) \le 10^{-3}$ or when a critical flow state is reached at a position $\le 10^{-7}$ m upstream of the exit.

Thermodynamic properties of saturated liquid and vapor are evaluated using a subroutine STEAM which is described in Appendix D. This subroutine is very fast running and contributes to the efficiency of the numerical calculations.

The code was found to be very fast running. A typical computation required about 22 flowrate corrections and was completed in about 3 seconds of CPU time on an IBM 3081.

4. RESULTS

4.1 Parametric Study of BCL Data

Table 2.1 gives data of BCL phase II experiments carried out on IGSCC. In order to establish appropriate friction factors for the actual cracks all the BCL data except 21 were studied with SOURCE. These 21 tests (numbers 7, 8, 9, 10, 11, 13, 18, 41, 42, 43, 57, 58, 59, 60, 61, 62, 63, 73, 78, 79 and 80) were disqualified for the paramatric study, because they showed inconsistent measured mass flow rates in relation to the stagnation conditions, when compared with the main body of experimental data for their respective test sections. For initial SOURCE runs, certain values of friction factor were tried for each crack size so that the predicted mass flowrates compared well with the measured data. This process required running SOURCE least three friction factor values for each experimental test condition. Then an optimum value of friction factor was obtained for each crack size. This involved a graphical interpolation procedure. The optimum values of friction factor for each test section are given in Table 4.1. From the table we find that for the test section used for runs 1-6, the friction factor so obtained is quite high. For these test numbers the mass flow rate is in the range of 10^{-3} kg/s. The opening area of the crack was 0.268 mm which is quite high compared with the test section used for test numbers 41 to 68, for which the measured mass flow rates were in the range of 10^{-3} kg/s as well. Comparing the mass flow rates and crack geometry for tests 1-6 with other test sections, it is concluded that either the crack channel was blocked by particles during experimental measurements, as observed in destructive tests of pipes following BCL experiments, or the geometry of the crack is not properly given.

Once the optimum equivalent friction factor was obtained it was used again to run SOURCE for each test condition. When these results were compared it was apparent that a systematic deviation existed between the prediction and the measured data that was dependent upon the stagnation subcooling. It was found that the higher value of friction factor was necessary for smaller subcooling than at higher subcooling. This is physically plausible since at lower subcooling the two-phase region is longer than that with higher subcooling, and hence the effective friction factor for the case with longer two-phase region. The subcooling for the BCL tests varied from 0.1C to 78C. A correction factor was developed to account for the subcooling effects. The subcooling correction factor is given by

$$C = 1.3015 - 5.3075 \times 10^{-3} \Delta T_{sub} \text{ for } \Delta T_{sub} < 60^{\circ}C$$

= 1.0 for $\Delta T_{sub} > 60^{\circ}C$ (4.1)

Test Numbers	δ mm Average	L mm	A _e mm ² Average	m⊤ Kg∕s Range	f
1 - 6	0.074	19.27	0.268	10 ⁻³	9.0
7 - 18	0.0205	18.63	0.0151	10 ⁻⁴	0.8
19 - 40	0.108	19.27	1.026	10 ⁻²	0.07
41 - 68	0.0488	18.63	0.0777	10 ⁻³	0.02
69 - 82	0.220	19.27	6.133	10 ⁻¹	0.30

\$

*5*0

Table 4.1 BCL Friction Factors from Parametric Study

Figure 4.1 Subcooling Correction for SOURCE

4-3

ŝ

ď

In Table 4.2, the calculated mass flow rates, pressure and quality at the exit plane using SOURCE are presented for all the BCL phase II tests. These calculated values of mass flow rates when multiplied by the correction factor C, to account for the subcooling effect, then become the predicted mass flow rates. The predicted mass flow rates for 61 test numbers have been compared with BCL measured date in Figure 4.2. The comparison is remarkably good with standard deviation of 1.35%. When all the total 82 test number predictions were compared with BCL data, the standard deviation was 6.45%. Considering the evident lack of coherence in the basic BCL data, these comparisons show that the predictive method developed here offers an excellent capability to predict crack flows if the geometry is known.

4.2 Generalized Prediction of Equivalent Friction Factors

Choice of the optimum friction factor used to predict the results given in Table 4.2 was based on the parametric study of BCL data. For general use of SOURCE a methodology to estimate the equivalent friction factor from global features of IGSCCs is required. In this section we present a methodology which has been tested against the results of the parametric study of the BCL data in Appendix A.

The friction pressure drop in equation (3.13) was presented by an equivalent friction factor in the form

$$\left(\frac{dp}{dz}\right)_{F} = f\left(\frac{P_{m}}{A}\right) \cdot \frac{\dot{m}^{2}v}{2A^{2}}$$
(4.2)

and

 $f = f_p + D \sum_{i} n_i K_i$ (4.3)

where f_p represents "pipe" friction and the K_i represent the loss factors for specific effects such as bends, contractions, expansions and tortuosity and the n_i represents the number per unit length in the flow direction of the type i.

Assigning i = 1, for bends, i = 2 for contraction and i = 3 for expansions. The respective loss coefficients per unit length are given by [14].

For bends
$$n_i K_1 = (n_i - \frac{1}{L})(0.25 f_p \cdot \pi \cdot (\frac{r}{D}) + 0.5 K') + K'/L$$
 (4.4)

when n_1 is number of bends per unit length, r is the radius of the bend D is the hydraulic diameter, f_D is the tube friction factor, and

Test Number		Stagnation Conditions		Measured	Present Predictions			
		P _o , MPa	T ₀ , C	₼ Kg/sec	₫ Kg/sec	×e	P MPa e	
	1	7.316	272.8	1.02×10^{-3}	8.129×10 ⁻⁴	2.297x10 ⁻¹	0.762	
	2	7.316	272.8	1.02×10^{-3}	8.129x10 ⁻⁴	2.297x10 ⁻¹	0.762	
	3	8.667	267.2	1.10x10 ⁻³	1.025×10^{-3}	1.984×10 ⁻¹	1.005	
	4	9.412	260.6	1.10x10 ⁻³	1.153x10 ⁻³	1.840×10 ⁻¹	0.952	
	5	9.412	260.6	1.10x10 ⁻³	1.153x10 ⁻³	1.840x10 ⁻¹	0.952	
	6	9.322	267.8	1.10x10 ⁻³	1.000x10 ⁻³	1.806x10 ⁻¹	1.278	
4	7	9.301	284.4	5.49x10 ⁻⁵	1.636x10 ⁻⁴	2.495x10 ⁻¹	0.837	
์ บา	8	9.446	281.7	6.66x10 ⁻⁵	1.676x10 ⁻⁴	1.542×10^{-1}	2.371	
	9	9.467	278.3	3.08x10 ⁻⁵	1.706x10 ⁻⁴	1.420x10 ⁻¹	2.433	
	10	5.702	273.3	3.08x10 ⁻⁵	8.809x10 ⁻⁴	1.735×10^{-1}	1.604	
	11	5.971	262.8	1.34x10 ⁻⁴	1.052×10^{-4}	1.415×10^{-1}	1.674	
	12	5.868	260.0	1.09×10^{-4}	1.043×10^{-4}	1.426×10^{-1}	1.525	
	13	5.854	268.3	1.51×10^{-4}	6.286×10^{-5}	4.817×10^{-1}	1.327	
	14	5.868	272.8	1.01×10^{-4}	9.394×10^{-5}	1.799×10^{-1}	1.445	
	15	3.523	251.7	9.30x10 ⁻⁵	6.226×10^{-5}	1.560×10^{-1}	1.051	
	16	3.379	241.1	1.05x10 ⁻⁴	5.483x10 ⁻⁵	1.498×10^{-1}	0.858	
	17	5.861	278.9	1.01×10^{-4}	6.736x10 ⁻⁵	3.503x10 ⁻¹	5.321	
	18	7.081	260.0	6.21x10 ⁻⁵	-	—	-	

Table 4.2 SOURCE Predictions Using Friction Factors from BCL Parametric Study

ċ

7

á

Test Number		Stagnation	Conditions	Measured	Present Predictions			
		P ₀ , MPa	т ₀ , с	₼ Kg/sec	ṁ Kg∕sec	×e	Pe MPa	
	19	7.309	273.9	3.04x10 ⁻²	2.506×10^{-2}	2.985x10 ⁻²	4.998	
	20	7.309	282.2	2.90x10 ⁻²	2.252×10^{-2}	6.109x10 ⁻²	4.830	
	21	9.005	280.0	4.85x10 ⁻²	3.120×10^{-2}	1.202x10 ⁻²	6.070	
	22	9.005	273.3	4.62×10^{-2}	3.479×10^{-2}	0.0	5.796	
	23	8.964	256.7	4.52×10^{-2}	4.200×10^{-2}	0.0	4.448	
	24	8.888	256.7	4.44×10^{-2}	4.165×10^{-2}	0.0	4.448	
	25	7.164	256.1	3.67×10^{-2}	3.285×10^{-2}	0.0	4.404	
	26	7.164	256.7	3.59×10^{-2}	3.255×10^{-2}	0.0	4.448	
4-	27	5.571	260.6	2.51×10^{-2}	2.155×10^{-2}	2.011×10^{-2}	3.967	
თ	28	5.626	267.8	2.35×10^{-2}	1.805×10^{-2}	5.524×10^{-2}	3.852	
	29	5.592	241.7	3.01x10 ⁻²	2.931×10^{-2}	0.0	3.449	
	30	5.592	243.9	2.98x10 ⁻²	2.833×10^{-2}	0.0	3.584	
	31	7.219	242.8	3.96×10^{-2}	3.850×10^{-2}	0.0	3.516	
	32	7.219	238.3	3.94×10^{-2}	4.003×10^{-2}	0.0	3.249	
	33	8.812	241.7	4.51×10^{-2}	4.640×10^{-2}	0.0	3.449	
	34	8.812	235.0	4.73×10^{-2}	4.819×10^{-2}	0.0	3.074	
	35	7.129	226.1	3.84×10^{-2}	4.317×10^{-2}	0.0	2.603	
	36	7.129	222.8	3.92×10^{-2}	4.402×10^{-2}	0.0	2.447	
	37	5.592	220.0	3.84×10^{-2}	3.686×10^{-2}	0.0	2.320	
	38	5.440	223.2	2.97×10^{-2}	3.506x10 ⁻²	0.0	2.465	

.

Table 4.2 (continued)

4

Ì.

ж,

٧,

Test Number		Stagnation Conditions		Measured	Present Predictions		
		P ₀ , MP _a	т ₀ ,ос	ṁ Kg∕sec	ṁ Kg∕sec	×e	Pe MPa
	39	3.937	230.6	2.62x10 ⁻²	2.224x10 ⁻²	0.0	2.827
2 1	40	3.937	232.8	1.57x10 ⁻²	2.010x10 ⁻²	0.0	2.944
	41	7.309	278.9	1.81x10 ⁻³	2.344x10 ⁻³	2.439x10 ⁻²	5.586
	42	8.060	277.2	1.98x10 ⁻³	3.049×10^{-3}	0.0	6.153
	43	8.722	276.7	2.19x10 ⁻³	3.553x10 ⁻³	0.0	6.103
	44	9.377	274.4	2.37x10 ⁻³	2.334×10^{-3}	0.0	5.895
	45	7.350	278.3	3.62x10 ⁻⁴	2.405x10 ⁻³	1.912x10 ⁻²	5.676
	46	8.067	275.0	5.26x10 ⁻⁴	3.161x10 ⁻³	0.0	5.950
	47	8.757	275.0	3.91x10 ⁻³	3.658x10 ⁻³	0.0	5.950
	48	9.432	272.2	4.37×10^{-3}	4.207×10^{-3}	0.0	5.950
	49	7.350	276.1	3.22×10^{-3}	2.510×10^{-3}	0.0	6.051
	50	8.067	274.4	3.59×10^{-3}	3.197×10^{-3}	0.0	5.895
	51	5.213	258.3	2.51x10 ⁻³	1.689×10^{-3}	0.0	4.566
	52	6.923	253.9	3.54×10^{-3}	3.257×10^{-3}	0.0	4.246
	53	8.646	252.8	4.11×10^{-3}	4.260×10^{-3}	0.0	4.169
	54	5.213	256.7	2.20×10^{-3}	1.777×10^{-3}	9.473×10^{-3}	4.203
	55	6.902	254.4	2.61×10^{-3}	3.229×10^{-3}	0.0	4.282
	56	8.646	253.3	3.17×10^{-3}	4.256×10^{-3}	0.0	4.204
	57	3.413	233.9	7.57×10^{-4}	1.166×10^{-3}	9.002×10^{-3}	2.817
	58	5.171	232.8	9.03×10^{-4}	2.706x10 ⁻³	0.0	2.944
	59	6.923	231.1	1.50x10 ⁻³	3.644×10^{-3}	0.0	2.855

Table 4.2 (continued)

4-7

37

ŕ

in the second

.

k

Test Number	Stagnation Conditions		Measured	Present Predictions		
	P ₀ , MP _a	T ₀ , oc	ṁ Kg∕sec	ṁ Kg∕sec	×e	PeMPa
60	8.646	228.9	1.85×10^{-3}	4.414x10 ⁻³	0.0	2.742
61	8.646	231.7	1.75x10 ⁻³	4.420×10^{-3}	0.0	2.886
62	7.033	228.3	1.76x10 ⁻³	3.708x10 ⁻³	0.0	2.712
63	5.206	225.0	1.53x10 ⁻³	2.810x10 ⁻³	0.0	2.550
64	3.448	222.8	1.33x10 ⁻³	1.672×10^{-3}	0.0	2.447
65	3.461	235.0	1.84x10 ⁻³	1.171×10 ⁻³	1.050x10 ⁻²	2.844
66	5.185	232.2	2.32×10^{-3}	2.688×10^{-3}	0.0	2.913
67	6.895	230.0	2.69x10 ⁻³	3.640x10 ⁻³	0.0	2.797
68	8.646	228.3	2.69x10 ⁻³	4.418×10^{-3}	0.0	2.712
69	8.626	241.7	1.51x10 ⁻¹	1.797×10 ⁻¹	0.0	3.449
70	6.936	236.8	1.39x10 ⁻¹	1.455x10 ⁻¹	0.0	3.163
71	6.861	236.7	1.57x10 ⁻¹	1.440×10 ⁻¹	0.0	3.158
72	8.536	241.1	1.75xi0 ⁻¹	1.741x10 ⁻¹	0.0	3.413
73	5.109	252.8	1.41x10 ⁻¹	5.656×10^{-2}	7.546x10 ⁻²	2.447
74	6.861	253.9	1.69x10 ⁻¹	1.339x10 ⁻¹	2.205x10 ⁻²	3.709
75	8.605	254.4	1.91x10 ⁻¹	1.731x10 ⁻¹	0.0	4.282
76	8.598	250.6	2.00x10 ⁻¹	1.747x10 ⁻¹	0.0	4.018
77	6.861	248.3	1.78x10 ⁻¹	1.371×10^{-1}	1.995×10^{-3}	3.818
78	5.192	246.1	1.51x10 ⁻¹	6.733x10 ⁻²	5.056x10 ⁻²	2.606
79	3.937	240.6	1.28x10 ⁻¹	3.762x10 ⁻²	6.916x10 ⁻²	1.985
80	5.089	236.1	1.55x10 ⁻¹	6.793x10 ⁻²	2.330x10 ⁻²	2.643

¥

Table 4.2 (continued)

4-8

42

¥

.
Table 4.2 (continued)

Test Number	Stagnation Conditions		Measured	Present Predictions		
	P ₀ , MP _a	T ₀ , oC	⋔ Kg/sec	ṁ Kg∕sec	×e	PeMPa
81	6.771	237.2	1.76x10 ⁻¹	1.422x10 ⁻¹	0.0	3.186
82	8.577	234.4	1.99x10 ⁻¹	1.777x10 ⁻¹	0.0	3.030

14.

taran dan salah salah

s.

.

Figure 4.2 Corrected SOURCE Predictions (Based on Optimum Friction Factor) Compared with BCL Data

4-10

 $K' = 15 f_p$ for 45^0 bends $K' = 30 f_p$ for 90^0 bends.

For contractions
$$n_2 K_2 = (0.8 \sin \frac{\alpha}{2} (1-\beta^2))n_2$$
 (4.5)

For expansions
$$n_3 K_3 = (2.6 \sin \frac{\alpha}{2} (1-\beta^2)^2) \cdot n_3$$
. (4.6)

Here n_2 , n_3 are respectively, number per unit length of contractions and expansions, α is the angle of convergence, and β is the ratio of lower to higher diameter.

Close observation of photomicrographs of the IGSCC reveals that the bends, contractions and expansions each appear in the crack channel at intervals of approximately 10δ . For evaluating the loss coefficients K_i , the bends in the crack were approximated on the average as 45° bends. The ratio r/D was approximated a constant 0.60. Then the loss coefficient K_1 for bends can be calculated as

$$K_{l} = 8f_{p} + \frac{7f_{p}}{n_{l}L_{l}}$$
 (4.7)

To evaluate the loss coefficient due to contraction and expansions, the angle of convergence was approximated to be 45 degrees and $\beta = 0.5$ was used.

The number of bends per unit length was evaluated as the

$$n_1 = \frac{1}{10\delta}$$
(4.8)

The number of contractions or expansions per unit length was evaluated as

 $n_2 + n_3 = \frac{1}{10\delta}$ with $n_2 = n_3$. (4.9)

The method of evaluating the equivalent friction factor involves determining the friction f_p for the crack and then the loss coefficients are determined using equations (4.5) through (4.7). Then using the equation (4.3) the equivalent frcition factor f is determined.

To determine the friction factor f_p , Reynolds number has to be evaluated. As the inlet and outlet area are different the Reynolds number was taken as the average value of the Reynolds numbers at inlet and outlet plane of the crack. The surface roughness was taken as $\varepsilon = 1.78\mu$. This value for surface roughness was used in the BCL LEAK 00 code. Depending on the relative surface roughness ε/D and Re the friction factor was determined from the standard charts.

The above methodology was applied for all the test cases of BCL test sections to evaluate the equivalent friction factor (see Appendix A). Using these values of equivalent friction factor the mass flow rate predictions were obtained for the 61 tests. SOURCE predictions using these friction factors, corrected for subcooling, are compared with BCL data in Table 4.3 and in Figure 4.3. Except for the prediction for Tests 1-6, the results compare well with BCL data, with a standard derivation of 15.90%. These predictions appear to be better than the prediction by Chexal et al.[16] with LEAK-O1, which is shown in Figure 4.4.

As already noted, the test section used for Test 1-6 was evidently partially plugged probably during the machining. As a result the friction factor given by the generalized method does not represent that test section and the predicted flow rate is about 4 times the measured value. Although there is no conclusive evidence, it seems unlikely that such extensive plugging value, could occur in an actual IGSCC. If it does, the extent of the crack would be under-estimated by the observed leak rate. Further experimental investigation is needed using improved techniques to produce test cracks.

4.3 Quality and Pressure Profiles

SOURCE calculations develop predictions of the profile of fluid state along the flow path, including the state (critical state) at the point of choking, as well as the critical flow rate. In Appendix E we present graphs of the quality and pressure profiles predicted for 20 of the BCL test conditions. Negative quality characterizes the subcooled liquid region so that flashing starts at the point where x = o.

The very steep slopes at the exit point up the need for very fine noding near the exit to avoid error in the numerical computations.

Test Number	Stagnation P _o , MPa	<u>Conditions</u> T _o , C	Measured ṁ Kg∕sec	Present Prediction ṁ Kg/sec
1	7.316	272.8	1.02×10 ⁻³	4.386×10^{-3}
2	7.316	272.8	1.02x10 ⁻³	4.386x10 ⁻³
3	8.667	267.2	1.10x10 ⁻³	4.785×10 ⁻³
4	9.412	260.6	1.10x10 ⁻³	5.005×10^{-3}
5	9.412	260.6	1.10x10 ⁻³	5.005x10 ⁻³
. 6	9.322	267.8	1.10x10 ⁻³	4.895×10^{-3}
12	5.868	260.0	1.09x10 ⁻⁴	1.482×10 ⁻⁴
14	5.868	272.8	1.01x10 ⁻⁴	1.343×10^{-4}
15	3.523	251.7	9.30x10 ⁻⁵	9.486x10 ⁻⁵
16	3.379	241.1	1.05x10 ⁻⁴	8.715×10 ⁻⁵
17	5.681	278.9	1.01x10 ⁻⁴	1.020×10^{-4}
19	7.309	273.9	3.04x10 ⁻²	2.067×10 ⁻²
20	7.309	282.2	2.90x10 ⁻²	1.682×10^{-2}
21	9.005	280.0	4.85x10 ⁻²	2.619x10 ⁻²
22	9.005	273.3	4.62x10 ⁻²	2.910x10 ⁻²
23	8.694	256.7	4.52x10 ⁻²	3.026x10 ⁻²
24	8.888	256.7	4.44×10^{-2}	2.931x10 ⁻²
25	7.164	256.1	3.67x10 ⁻²	2.312x10 ⁻²
26	7.164	256.7	3.59x10 ⁻²	2.297×10^{-2}
27	5.571	260.6	2.51x10 ⁻²	1.456x10 ⁻²
28	5.626	267.8	2.35x10 ⁻²	1.245×10^{-2}
29	5.592	241.7	3.01x10 ⁻²	2.062×10^{-2}
30	5.592	243.9	2.98x10 ⁻²	1.996x10 ⁻²
31	7.219	242.8	3.96x10 ⁻²	2.853x10 ⁻²
32	7.219	238.3	3.94x10 ⁻²	2.916x10 ⁻²
33	8.812	241.7	4.51x10 ⁻²	3.382×10^{-2}
34	8.812	235.0	4.73×10^{-2}	3.263×10^{-2}
35	7.129	226.1	3.84x10 ⁻²	2.957×10^{-2}
36	7.129	222.8	3.92x10 ⁻²	2.942x10 ⁻²

12

Table 4.3 SOURCE Predictions Using Friction Factors from Generalized Methodology

Test Number	Stagnation P _o , MPa	Conditions T _o , C	Measured m Kg/sec	Present Prediction m Kg/sec
37	5.592	220.0	3.84x10 ⁻²	2.573x10 ⁻²
38	5.440	223.2	2.97x10 ⁻²	2.435x10 ⁻²
39	3.937	230.6	2.62x10 ⁻²	1.546x10 ⁻²
40	3.937	232.8	1.57x10 ⁻²	1.316x10 ⁻²
43	8.722	276.7	2.19x10 ⁻³	1.664x10 ⁻³
44	9.377	274.4	2.37x10 ⁻³	1.848x10 ⁻³
47	8.757	275.0	3.91x10 ⁻³	1.603x10 ⁻³
48	9.432	272.2	4.37x10 ⁻³	1.857x10 ⁻³
49	7.350	276.1	3.22x10 ⁻³	1.385x10 ⁻³
50	8.067	274.4	3.59x10 ⁻³	1.436x10 ⁻³
51	5.213	258.3	2.51x10 ⁻³	0.978x10 ⁻³
52	6.923	253.9	3.54x10 ⁻³	1.451x10 ⁻³
53	8.646	252.8	4.11x10 ⁻³	1.891x10 ⁻³
54	5.213	256.7	2.20x10 ⁻³	0.910x10 ⁻³
55	6.902	254.4	2.61x10 ⁻³	1.409×10 ⁻³
56	8.646	253.3	3.17x10 ⁻³	1.933x10 ⁻³
62	7.033	228.3	1.76x10 ⁻³	1.487x10 ⁻³
63	5.206	225.0	1.53x10 ⁻³	1.117x10 ⁻³
64	3.448	222.8	1.33x10 ⁻³	0.731x10 ⁻³
65	3.461	235.0	1.84x10 ⁻³	0.717x10 ⁻³
66	5.185	232.2	2.32x10 ⁻³	1.206x10 ⁻³
67	6.895	230.0	2.69x10 ⁻³	1.614x10 ⁻³
68	8.646	228.3	2.69x10 ⁻³	2.313x10 ⁻³
69	8.626	241.7	1.51x10 ⁻¹	2.219x10 ⁻¹
70	6.936	236.8	1.39x10 ⁻¹	1.876x10 ⁻¹
71	6.861	236.7	1.57x10 ⁻¹	1.931×10 ⁻¹
72	8.536	241.1	1.75x10 ⁻¹	2.275x10 ⁻¹
74	6.861	253.9	1.69x10 ⁻¹	1.690x10 ⁻¹
75	8.605	254.4	1.91x10 ⁻¹	2.421×10 ⁻¹
76	8.598	250.6	2.00x10 ⁻¹	2.344x10 ⁻¹

J

2

Table 4.3 (continued)

4-14

Test Number	<u>Stagnatic</u> P _o , MPa	on Conditions T _o ,C	Measured ṁ Kg/sec	Present Prediction m Kg/sec
77	6.861	248.3	1.78x10 ⁻¹	2.344×10 ⁻¹
81	6.771	237.2	1.76x10 ⁻¹	1.901×10 ⁻¹
82	8.577	234.4	1.99x10 ⁻¹	2.328x10 ⁻¹

Table 4.3 (continued)

Figure 4.3 Corrected SOURCE Predictions (Based on Friction Factor from Generalized Method) Compared with BCL Data

Figure 4.4 Chexal et al.[16] Predictions Compared with BCL Data

4-17

5. CONCLUSIONS

A computer code (SOURCE) has been developed to estimate leak rates through IGSCC cracks. The basis of the code is the steady state Homogeneous Equilibrium Model with friction and area change. A general method was developed to estimate the equivalent friction factor, lumping the effects of wall friction, tortuosity of the flow path and expansions and contractions, from physical features of IGSCC. Experimental results of Collier et al. (BCL) were used to develop a subcooling dependent correction factor to apply to SOURCE critical flow predictions. Using optimum friction factors deduced from BCL data for each test section, corrected SOURCE predictions agree with the BCL measured flowrates for 61 qualified tests with a standard deviation of 1.35% and for all 82 tests with a standard deviation of 6.5%. Using the independently estimated friction factor (from the generalized method) the predictions agree with qualified data with a standard deviation of 15.9%. This is an improvement as compared with Chexal's method.

The code SOURCE is very fast running and should be adaptable to large systems codes without significant sacrifice in cost. The method developed is recommended for estimating leak rates through IGSCC.

6. REFERENCES

- Walker, W. L. and Higgins, J. P., "Performance of 304 Stainless Steel Structural Components in General Electric Company Boiling Water Reactor," Paper No. 103, NACE Corrosion Conference, Anaheim, CA, 1973.
- Klepfer, H. H., et al., "Investigation of Cause of Cracking in Austenitic Stainless Steel Piping," General Electric Report NEDO-21,000, July 1975.
- 3. Agostinelli, A., Salemann, V. and Harrison, N. J., "Predictions of Flashing Water Flow Through Fine Annular Clearances," ASME Transactions, Vol. 80, 1958, pp. 1138-1142.
- 4. Hendricks, R. C., Simoneau, R. J. and Hsu, Y. Y., "A Visual Study of Radial Inward Flow of Subcooled Nitrogen," in: Advanced in Cryogenic Engineering, Vol. 20, K. D. Timmehaus, ed., Plenum Press, New York, p. 370, 1975.
- 5. Simoneau, R. J., "Two-Phase Choked Flow of Subcooled Nitrogen Through a Slit," NASA Lewis Research Center, NASA TM-71516, 1974.
- 6. Amos, C. N. and Schrock, V. E., "Critical Discharge of Initially Subcooled Water Through Slits," NUREG/CR-3475, LBL-16363, 1983.
- Collier, R. P., Stulen, F. B., Mayfield, M. E., Pope, D. B. and Scott, P. M., "Two-Phase Flow Through Intergranular Stress Corrosion Cracks and Resulting Acoustic Emission," EPRI Final Report NP-3540-LD, RP-T118-2, 1980.
- 8. Mayfield, M. E., et al., "Cold Leg Integrity Evaluation Final Report," NUREG/CR-1319, Battelle Columbus Laboratories, 1980.
- 9. Henry, R. E., "The Two-Phase Critical Discharge of Initially Saturated or Subcooled Liquid," Nuclear Science and Engineering Vol. 41, p. 336, 1970.
- Abdollahian, D. and Chexal, D., "Calculation of Leak Rates Through Cracks in Pipes and Tubes," EPRI Final Report NP-3395 RP-1757-19, December 1983.
- 11. General Electric Report NEDC-24750-4.
- 12. S. Ranganath, G. E. San Jose, private communication (1984).
- 13. D. Abdollahian, et al., "Critical Flow Data Review and Analysis," EPRI Report NP-2192, January 1982.
- 14. Engineering Div. of Crane Co., "Flow of Fluids Through Valves Fittings and Pipe," Crane Co. Technical Paper No. 410, 1976.

- 15. Ishimoto, S., Uematsu, M., Tanishita, I., "New Equations for the Thermodynamic Properties of Saturated Water and Steam," Bulletin of the JSME, Vol. 15, No. 88, p. 1278, 1972.
- 16. Chexal, B., Abdollahian, D., Norris, D., "Analytical Prediction of Single Phase and Two-Phase Flow Through Cracks in Pipes and Tubes," AIChE Symp. Series-Heat Transfer, Niagara Falls, 236, Vol. 80, p. 19, 1984.
- 17. Hall, D. G. and Czapary, L. S., "Tables of Homogeneous Equilibrium Critical Flow Parameters for Water in SI Units," EGG-2056, September 1980.
- Martinelli, R. C. and Nelson, D. B., "Prediction of Pressure Drop During Forced Circulation Boiling of Water," Trans. ASME, Vol. 70, pp 695-702, 1948.

APPENDIX A

Here we estimate the equivalent friction factor for each BCL test section using the generalized method described in Section 4.2.

i) Test section with $\delta = 0.074$ mm:

the hydraulic diameter $D = \frac{4A}{P} = 0.145$ mm.

The grain sizes for thermally stressed steel pipes are around $\sim 2 \ \mu m = 2 \times 10^{-3} \ mm$. This grain size is taken to yield surface roughness $\epsilon = 1.78 \ \mu = 1.78 \times 10^{-3} \ mm$. Hence the relative roughness is

$$\epsilon/D = 1.78 \times 10^{-3} / 0.145 = 0.0122$$

The Reynolds number at the exit is 5.4×10^5 . Here we have evaluated the hydraulic diameter and the relative surface roughness at the exit. According to the present modelling of the crack geometry with constant δ , these parameters will be the same throughout the crack channel. However, the Reynolds number is smaller at the upstream of the crack exit. Hence an average Reynolds number is used. For relative surface roughness of 0.0122 the friction factor f is independent of Reynolds number and is given as

$$f_{\rm p} = 8[2.46 \ln(D/\epsilon) + 3.22]^{-2}$$

Hence for G/D = 0.0122 we have f = 0.048.

Now we evaluate the loss coefficients K_{in} for various bends and expansion along the crack channel.

For this test section, $\delta = 0.074$, we have an average number of bends, 1.35 per mm and the average number of contraction and expansion, each of 0.67 per mm.

Hence for 45° bends
$$K_1 n_1 = 0.535/mm$$

for contraction $K_2 n_2 = 0.135/mm$ and
for expansion $K_3 n_3 = 0.272/mm$.
 $\therefore f = f_p + D \sum_i K_i n_i$
 $= 0.184$

ii) Test section with δ = 0.022 mm:

Hydraulic diameter D = 0.041 mm. Relative roughness ε/D = 1.78x10⁻³/0.041 = 0.043. Reynolds number range 2x10⁵ to 2x10⁴.

 $f_{\rm D} = 0.07$

Loss coefficients: Here $n_1 = 4.87$ $n_2 = n_3 = 2.43$. $K_1 n_1 = 2.75/mm$ $K_2 n_2 = 0.476/mm$ $K_3n_3 = 0.989/mm$ $\therefore f = f_p + D \sum_i K_i n_i$ = 0.243iii) Test section with $\delta = 0.108$ Hydraulic diameter D = 0.212Relative roughness $\epsilon/D = 1.78 \times 10^{-2} / 0.212 = 0.0084$. Exit Reynolds number range 8.7x10⁶ to 2.7x10⁶ Hence friction factor $f_p = 0.038$ Loss coefficients: Here $n_1 = 0.925$ $n_2 = n_3 = 0.46$ $K_1 n_1 = 0.303/nm$ $K_2 n_2 = 0.098/mm$ $K_{3}n_{3} = 0.203/mm$ Hence $f = f_p + D \sum_i K_i n_i$ = 0.166 iv) Test section with $\delta = 0.048$ mm: Hydraulic diameter D = 0.092Relative roughness $\varepsilon/D = 0.0193$ Exit Reynolds number range 5×10^6 to 1×10^6 Hence friction factor $f_{D} = 0.05$ Loss coefficients: Here $n_1 = 2.08$ $n_2 = n_2 = 1.04$ $K_1 n_1 = 0.851/mm$ $K_2 n_2 = 0.203/mm$ $K_3n_3 = 0.423/mm$ Hence $f = f_p + D \sum_{i} K_i n_i$ = 0.186

v) Test section with $\delta = 0.22$ mm:

Hydraulic diameter D = 0.441 Relative roughness $\epsilon/D = 0.00403$ Exit Reynolds number range: 1×10^7 to 2×10^7 . Hence friction factor $f_p = 0.030$ Loss coefficients: Here $n_1 = 0.45$ $n_2 = n_3 = 0.227$ $K_1 n_1 = 0.119/mm$ $K_2 n_2 = 0.045/mm$ Hence $f = f_p + D \sum_i K_i n_i$ = 0.143

Table A.1 compares the friction factors obtained from the present generalized method with those obtained from parametric study.

Ta	b1	е	А	

					f	,
(mm)	D(mm)	Re (average)	f _p	D∑K _i n _i	Generalized Methodology	Parametrić Study
0.074	0.144	5.483x10 ³	0.048	0.136	0.184	9.0
0.022	0.041	1.684x10 ³	0.070	0.173	0.243	0.80
0.108	0.212	6.675x10 ⁴	0.038	0.128	0.166	0.07
0.048	0.092	1.476x10 ⁴	0.050	0.136	0.186	0.02
0.22	0.441	9.550x10 ⁴	0.030	0.113	0.143	0.30

Comparison of friction factors calculated based on generalized methodology with those from parametric study

- ;

C •			+S01100010
2			SULAAAAAA
ž	T 1		50000020
ž		113 13 A SUURCE FRUGRAM	50000030
C			50000040
-	PRUG	(AM SOURCE	S0000050
C			SOUØØØ6Ø
С			-SOU00070
С	PURPOSE		S0UØØØ8Ø
С	THE PROG	RAM CALCULATES THE CRITICAL MASS FLOW RATE THROUGH A INTER-	SOUØØØ9Ø
С	GRANULAR	STRESS CORDSION CRACKS ON PIPES SUCH AS FOUND IN THE	S0U00100
Ċ	PRIMARY	DOLANT SYSTEM OF NUCLEAR REACTOR PIPES.	S0U00110
č			-50100120
č			501100120
	TMPL		50000130
		A FOR ETTNE ETTON	50000140
	REAL!	A ECFO SETIME, ETCFO	50000150
	CHAR/	CIER+23 DAILIM	50000160
	DIME	NSION_A(55),DP(55),P(55),P1(65),G(8,71),H(55),S(55),T(55),	S0UØØ17Ø
	&DZ (5	5),X(55),V(55),Z(55)	SOUØØ18Ø
С			SOUØØ19Ø
С			S0Uøø2øø
	COMM	DN/BLOCK1/VF.DVFDP.VG.DVGDP.HF.DHFDP.HG.DHGDP.SF.DSFDP.SG.	S0U00210
	&DSGDI		S0UØØ22Ø
	COMM	N/BLOCK2/M.VEL.ETA.DELTA.E.AEL.7EL.ND7.D7T.PEL.HEL	50000230
	OPEN	(10 ETLE-THEND DATA? STATUS-TOLD? FORM-TUNEORMATTED?)	50000240
c			501100250
ž	VA		50000230
2	*^	TABLES USED IN THE FRUGRAM	50000200
Č			-50000270
č	ANKINR	E DESCRIPTION	50000280
C			-SOU00290
С	A(I)	CROSS SECTIONAL AREA OF CRACK AT LOCATION Z(I)	50000300
С	AEN	ENTRANCE AREA	SOUØØ31Ø
С	AEX	EXIT AREA	SOUØØ32Ø
С	AAV	AVERAGE AREA BETWEEN TWO NODES	SOUØØ33Ø
С	A1	DUMMY AREA BEFORE ENTRANCE	SOUØØ34Ø
С	AR1	AREA RATIO AT TWO PHASE ENTRANCE A1/AEN	SOUØØ35Ø
č	AFL	AREA AT FLASHING	S0UØØ36Ø
č	AR	AREA RATTO AFY/A1	50000370
č	<u> </u>		SULIAA38A
2	C 2	TOLADANCE EOD LENTCH	500000000
2	C3	ICLARANCE FOR LENION	50000330
5	~ ~		50000400
č	54	HALF WIDTH OF CRACK CHANNEL AT ENTRANCE	50000410
Ç	SB	HALF WIDTH UF CRACK CHANNEL AT EXIT	50000420
С			S0U00430
С	DELTA	CRACK CHANNEL THICKNESS	S0U00440
С	DP	PRESSURE DROP BETWEEN TWO NODE POINTS	SOUØØ45Ø
С	DPEN	ENTRANCE PRESSURE LOSS	S0UØØ46Ø
С	DP1	DUMMY PRESSURE LOSS BETWEEN STAGN AND ENTRANCE	SOU00470
Č	DH	HYDRAULIC DIAMETER OF CRACK	SOUØØ48Ø
č	DPFEX	PRESSURE DROP FOR NO FLASH BEFORE EXIT	S0UØØ49Ø
č	DPEL	PRESSURE DROP BETWEEN ELASH AND STAGN	S0U00500
ř	NPEEN	PRESCUE DOD RETWEEN ELASH AND ENTRANCE TWO PHASE ENTRANCE	SOLIAASIA
ž		THESSORE DAVID DETWEEN FLASH AND ENTRANCE THE FIRSE ENTRANCE	SUIMAENA
ž	00004	SINGLE FRASE FRESSURE DRUF AT ENTRANCE	S0000520
5	05571	SINGLE FRASE FRESSURE UNUF DEIWEEN FLASH AND FIRSI GRID	50000530
C	UX	SIEP SIZE IN SINGLE IN SINGLE-PHASE REGIUN	30000540
Ç	DZ(I)	STEP SIZE AT ITH GRID	50000550
C	DT	SUBCOOLING OF LIQUID	50000560
С	DZT	TERMINAL GRID SIZE	SOUØØ57Ø
С			SOUØØ58Ø
С	ETA	AREA SLOPE	SOUØØ59Ø
Ċ			S0UØØ6ØØ

C-3

C	F	FRICTION FACTOR	SOUØØ61Ø
č			S0UØØ62Ø
č	G	MASS FLUX	S0UØØ63Ø
č	-		50000640
ř	HITY	ENTHAL PY AT COTO T	SUIIAASSA
2			SULARERA
Š			500000000
Č	HP	LIQUID SATURATED ENTHALPT	20000010
C	HG	GAS SATURATED ENTHALPY	20000680
С	HEN	ENTRANCE LOCAL ENTHALPY	20000690
С	HFL	ENTHALPY AT FLASH	SOUØØ7ØØ
С			SOUØØ71Ø
С	IJ	SPATIAL INDEX FOR SINGLE-PHASE REGION	S0UØØ72Ø
C	I	SPATIAL INDEX FOR CHANNEL STEPS	S0UØØ73Ø
C	-		S0UØØ74Ø
č	J	INDEX FOR ITERATION ON MOMENTUM EQN	S0UØØ75Ø
č	-		S0U00760
č	1	CHANNEL LENGTH	50000770
ř.	-		501100780
ř	м	MASS ELOW PATE ASSIMED	501100700
ř		CRITICAL MARE ELOW RATE	50000730
č	MC	CRITICAL MASS FLOW RATE	500000000
Š			50000010
č	NUZ	NUMBER UF SPATIAL STEPS	20000820
č	NI	IEST NUMBER	20000830
Ç			50000840
C	P(I) '	LOCAL PRESSURE AT GRID I	20000850
С	P0	STAGN PRESSURE	S0UØØ86Ø
С	PFL	PRESSURE AT FLASH	S0UØØ87Ø
C	PEX	PRESSURE AT EXIT PLANE	S0UØØ88Ø
С	PEN	PRESSURE AT ENTRANCE PLANE	S0UØØ89Ø
Ċ	PP	DUMMY LOCAL PRESSURE BEFORE ENTRANCE	S0UØØ9ØØ
ē	PHT	MARTINNELT-NELSON FRICTION MULTIFLIER	S0UØØ91Ø
č			S0UØØ92Ø
ē.	R	CHANGE FACTOR ON MASS FLOW RATE	S0UØØ93Ø
č	78	INTENDED CHANGE FACTOR ON MASS FLOW RATE	S0UØØ94Ø
ř			50000950
ř	5(1)	LOCAL ENTROPY AT CRID T	SULIAAGAA
ž	2(1)	CTACH ENTROPY	500000000
2	50		500000070
ž	556	ENTRUFT AT FLASH	50000980
č	55	SATURATED LIQUE ENTRUPT	S0000990
č	56	SATURATED GAS ENTRUPT	50001000
č			50001010
Ç	<u>T(I)</u>	LOCAL SAT. TEMPERATURE	50001020
ç	IFL	SATURATED TEMPERATURE	50001030
C	то	STAGN TEMPERATURE	50001040
С			20001050
C	ί.	LOCAL FLUID VELOCITY	20001060
С	UFL	FLUID VELOCITY AT FLASH	S0UØ1070
C	UA .	SONIC VELOCITY	S0UØ1Ø8Ø
č			S0UØ1Ø9Ø
č	V(T)	LOCAL SPECTETC VOLUME	SOUØ11ØØ
č	vn ⁻	STACH SP VOLUME	S0UØ111Ø
č	VE	SATURATED SP. VOLUME OF LIQUID	S0UØ1120
ř	VG	SATURATED CAS SPECIFIC VILLINE	S0UØ1130
ž			50001140
ž		SF TOLOME AT FLADA	50101160
ž	VEN	JE VULUME AT ENTRAINE ER VOLUME AT ENTR	50001100
5	VEX	2. ANCOME VI EXTI	50001100
	~ / 7 \	ANN TTY AT ADD T	500011/0
ç	<u>5(1)</u>	UDALITT AF GRID I	20001100
C	XEN	ENTRANCE WOALT IT	20001190
C	XEX	EXIT QUALITY	20001200

•

C-4

•

.

.

~			COU/41 01 4
č	VL	THE HIGHEST MASS ELOW DATE END TTEDATION	50001210
2	VI.	THE NUMESI MASS FLOW RATE FOR TIERATION	50001220
2		THE LUWEST MASS FLUW RATE FOR TIERATION	50001230
2	7(7)	SPATTAL DISTANCE AT ODID I	50001240
2	2(1)	SPATIAL DISTANCE AT GRID I	50001250
Š	256	FLASHING LUCATION	50001260
Š			50001270
2	AL 1 115		-50001280
ç	ALL UN	ITS USED ARE IN STANDARD MKS AND TEMPERATURE IN DEG KELVIN	50001290
5			-50001300
2		C FLUY DATA	50001310
Ľ			50001320
	THE CONT		50001330
	THE CUNI		50001340
	J J I I I I		50001350
~	JJM=	30 Duit Daganeteds	50001360
C	REAU IN	IFUI FARAMEIERS	50001370
	REAU		50001380
		(C, T) AEN, AEA, DELIA, F	50001390
	TE ()	(5,7)/FLL	50001400
			50001410
			50001420
r	DOTAT 7	IFUFFL NDIT DADAMETEDE	50001430
C		INFUT FARAMETERS	50001440
	WOIT	E(0, 100) NT	S0001450
	WRTT		S0U01400
	WRTT		S0U01470
	PRTN		S0UØ1490
	100 FORM	AT (141 //125 'TEST NUMBER = ' 15 /)	S0UØ15ØØ
	101 FORM	AT (//T5 'PO=' F15 7 2X 'TO=' F15 7 2X 'DT=' F15 7)	S0UØ151Ø
	102 FORM	AT (1H+. T65. 'AEX='.E15.7.2X.'AEN='.E15.7.2X.'L='.E15.7)	S0UØ152Ø
	103 FORM	AT(/T30.' F ='.E15.7)	SOUØ153Ø
C	TO FIND	THE INITIAL QUESS VALUE OF M	S0UØ154Ø
-	TRE=	480.	SOUØ155Ø
	PRE=	2.900E6	SOUØ156Ø
С	FIRSTF	IND THE G(I,J)	SOUØ157Ø
	S1= (TO-TRE)/10.+0.5	SOUØ158Ø
	K1=1	FIX (S1)	SOUØ159Ø
	S2= (PD-PRE)/100000.+0.5	SOUØ16ØØ
	K2=1	FIX (S2)	SOUØ161Ø
	S3=0	(K1,K2)	SOUØ162Ø
С	FIND L/	DH AND THEN THE INITIAL GUESS M	SOUØ163Ø
	S4=L	/(DELTA+2.)	SOUØ164Ø
	S5=D	T/(T0-273.1)	SOUØ165Ø
	Q1=-	0.0013506	SOUØ166Ø
	Q2=-	0.0013663	SOUØ167Ø
	Q3=-	0.0018824	S0U01680
	IF (S	5.GT.0.2) THEN	50001690
	M≃53	+ALX+(U1+54+0.52)	50001700
	ELSE	LT (55.G1.0.1) (HEN	50001/10
	M=53	#ACX# (42#34+0.69)	50001/20
	ELSE		SUUDI/30
	M=53	#AEA# (43#34+0.3/) TE	50001/40
	TEAN	1 1 CT & \COTO 201	50001750
	1 F (N TE /L	I. U.I	S0U01700
	17° (N M_4	05_2	SOUØ1780
	F1 CC	TE (NT T 10) THEN	50001790
	M=1	ØF-4	S0UØ18ØØ

C-5

•

.

· •

,

S0UØ181Ø ELSE IF (NT.LT.41) THEN M=2.E-2 SOUØ182Ø ELSE IF (NT.LT.69) THEN S0UØ183Ø M=1.E-3 SOUØ1840 ELSE S0UØ1850 M=1.ØE-1 SOUØ186Ø END IF SOUØ187Ø 391 CONTINUE SOUØ188Ø RJS=Ø. SOUØ189Ø R=1. SOUØ19ØØ JK=Ø S0UØ1910 SOUØ192Ø 12 M=M+R ITERATION ON MASS FLOW RATE ADJUSTMENT GOES MORE THAN N TIMES IF C SOUØ193Ø č STOP SOUØ194Ø JK=JK+1 IF(JK.GT.35)GOTO 993 FIND THE FLASHING AREA ASSUMING SINGLE PHASE LIQUID AND HENCE FIND SOUØ195Ø SOUØ196Ø SOUØ197Ø С С UFL SOUØ198Ø Ĉ INITIALISE ALL THE ARRAYS SOUØ199Ø DO 5 I=1,55 \$0Uø2øøø A(I)=0. S0UØ2Ø1Ø DZ(1)=0. S0UØ2Ø2Ø SOUØ2Ø3Ø P(1)=0. Pi(1)=0. S0UØ2Ø4Ø V(I)=Ø. SOUØ2Ø5Ø X(I)=Ø. SOUØ2Ø6Ø 5 CONTINUE SOUØ2Ø7Ø С FIND THE THERODYNAMIC PROPERTIES AT FLASH PRESSURE SOUØ2Ø8Ø CALL STEAM (PFL) SET THE VALUES AT FLASH SOUØ2Ø9Ø С S0U@21@@ HFL=HF S0UØ211Ø VFL=VF S0UØ212Ø SFL=SF SOUØ213Ø AFL=(M++2.+V0+0.5/DPFL)++0.5 C COMPARE AFL WITH AEN TO SEE IF SINGLE PHASE ENTRANCE IF YES GO TO 11 SOU02150 IF (AFL.LT.AEN) GOTO 11 SOU02160 COMPARE THE TOLARENCE SOUØ217Ø C IF ((AFL-AEN)/AEN.LE.Ø.Ø1)GOTO 17 FIND PRESSURE DROP BETWEEN FLASH AND ENTRANCE SOUØ218Ø C SOUØ219Ø DPFEN= (M++2.+VFL+0.5/AEN++2.)+(1.-(AEN/AFL)++2.) DP1=DPFEN+0.9 S0UØ22ØØ S0UØ221Ø C SET FOR ITERATION AND FIND THERMODYNAMIC PROPERTIES AT PP S0UØ222Ø KK=Ø SOUØ223Ø 22 CONTINUE S0UØ224Ø PP=PFL-DP1 IF(PP.GT.1.013E5)G0T0 47 SOUØ225Ø S0UØ226Ø S0UØ227Ø RR=1./1.5 S0Uø228Ø R=RR GOTO 12 S0UØ229Ø **47 CONTINUE** S0UØ23ØØ S0UØ231Ø KK=KK+1 CALL STEAM(PP) X1=(S0-SF)/(SG-SF) V1=VF+X1+(VG-VF) S0UØ232Ø S0UØ233Ø SOUØ234Ø V1=VF+X1*(VG-VF) U1=(2.*(HFL-H1)*UFL**2.)**0.5 A1=M*V1/U1 S0UØ235Ø S0UØ236Ø S0UØ237Ø IF (KK-1) 42, 42, 44 S0UØ238Ø 42 CONTINUÉ S0UØ239Ø FIND SOUND VELOCITY S0UØ24ØØ C

C-6
	DX1DP=-((DSFDP) + (1X1) + X1 + DSGDP)/(SG-SF)	SOU02410
r	UA=V1+((-((1.+X1)+UVFDP+X1+UVGDP+(VG-VF)+DX1DP))++(-0.5))	SUUØ242Ø
C	TE ((14 , 11) (14 , ct σ $gg1$) (c) to 44	50002430
	AR=AEX/A1	S0U02450
С	REDUCE MASS FLOW RATE	S0UØ246Ø
	RR=U1 + (AR++.5) /UA	S0UØ247Ø
	R=RR++.5	S0UØ248Ø
	G0T0 12	S0UØ249Ø
~	44 CONTINUE	S0UØ25ØØ
C	ADI-AI/AEN	50002510
		50002520
	TF (ARR. LE. 0.01) GDT0 23	S0UØ254Ø
	DP1=DP1+(AR1++2.0)	S0UØ255Ø
	GOTO 22	SOUØ256Ø
	23 CONTINUE	SOUØ257Ø
С	SET THE ENTRANCE VALUES FOR THEY ARE NOW DETERMINED	SOUØ258Ø
	PENEPP	S0UØ259Ø
		50002600
		50002010
	XEN=X1	S0U02630
	SEN=SF+X1+(SG-SF)	S0UØ264Ø
	GOTO 86	S0UØ265Ø
С	THE FULLOWING CORRESPOND TO THE CASE OF FLASH AT ENTRANCE PLANE	S0UØ266Ø
	17 CONTINUE	S0UØ287Ø
	CALL SIEAM(PFL)	50002680
	FEN-HEI	50002090
		S0UØ271Ø
	SEN=SF	S0UØ272Ø
		S0UØ273Ø
	XEN=0.	S0UØ274Ø
_	66 CONTINUE	S0UØ275Ø
С	FIND THE SOUND VELOCITY AT ENTRANCE PLANE	S0UØ276Ø
	DXIDP=-((DSFDP) + (1XEN) + XEN+DSGDP)/(SG-SF)	50002770
c	CAUPADE LIEN WITH LIA TT'S TWO_DHASE ENTRANCE TE YES AN COTA 77	50002780
Ċ	TE ((UA-IFN) / UA GT 0 901) GOTO 77	S0UØ28ØØ
С	REDUCE MASS FLOW RATE	S0UØ281Ø
-	RR=UA+ ((AEX/AEN) ++0.5) /UEN	SOUØ282Ø
	R=RR	SOUØ283Ø
	G0T0_12	S0UØ284Ø
	11 CONTINUE	S0UØ285Ø
~	IF((AEN-AFL)/AEN.LE.0.01)GOTO 17	50002860
C	TD-A	50002870
c	FIND ENTRANCE LOSS	S0UØ289Ø
•	DPEN=M++2.+V0+0.5/AEN++2.	S0UØ29ØØ
	PEN=PO-DPEN	SOUØ291Ø
С	FIND PRESSURE DROP FOR NO FLASH BEFORE EXIT PLANE	S0UØ292Ø
	AEXS=AEN+AEX+AEX	50002930
	V1=2, +M+M+ (VFL-V0) / (AEXS)	50002940
	VZ=M+M+0.25+(VFL+VU)+(1.+F+UELTA/ETA)+(1./AEX++2.) V2=N+N+0.5+5+(VFL+VU)+(1./AEX.1./AEN)/(ETA+DELTA)	SUU02950
	▼J=m=m=0.J=F=(¥FL+▼U)=(1./AEA=1./AEN)/(EIA=VELIA) DPFFY=V1⊥V2⊥V3	S0U02970
С	CHECK FOR FLASH POSITION INSIDE CHANNEL IF YES GOTO 88	S0UØ298Ø
-	IF((PEN-(PFL+DPFEX))/PEN.LE.0.000)GOTO 88	S0UØ299Ø
C	INCREASE MASS FLOW RATE	S0UØ3ØØØ

		MO=M	SOUØ3Ø1Ø
		TE (LIN GT LIN) COTO 603	501103020
			00000020
		IF (JJN-JK)802,602,601	20003030
	6Ø1	CONTINUE	S0UØ3Ø4Ø
		PR-(/PO_PEL)//PO_PENI-DREEY)) ++ 9	COLIASAEA
		RR = ((FU - FFL))(FU - FEN + DFFEX)) = = .8	20003020
		R=RR	SOUØ3Ø6Ø
		YI = M0	50102070
			30003070
		GOTO 12	SOUØ3Ø8Ø
	802	CONTINUE	SUIMAN
			000000000
		TE (JUN'GI'''')W) COLO 2022	20003100
		RR=(1.+YH/MD)/(2.)	SOUØ311Ø
			C01/42104
			20002120
		YL=MO	SOUØ313Ø
		COTO 12	501102140
			30003140
	603	CUNTINUE	SUUØ315Ø
		IF (JJM+JK) 805, 805, 801	S0UØ316Ø
	PAE		C01/02170
	000	CUNTINUE	20003110
		RR = (1. + MP / MO) / (2.)	SOUØ318Ø
			SU102100
			30003130
			SOUØ32ØØ
	88	CONTINUE	S0UØ321Ø
-			00000210
C		ISH INSIDE THE CHANNEL	20003220
		AFF=2.+ (PEN-PFL)+M+M+VFL+(1.+DELTA+F/ETA)/AEN++2.+(2.+M+M+F+VFL/	SOUØ323Ø
			C01102040
		(ELATUEL (ATAEN))	30003240
		AFL=(1.+(1.+((ETA++2.+DELTA++2.+DELTA++3.+ETA+F)/(M+M+F+F+VFL))+	SOUØ325Ø
	2	AFENALG EN / () ETA + DEL TA / (M+M+E+VEL) N+AFEN	501103260
	-		00000200
		ZFL=(AEN-AFL)/EIA	50003270
C.	WR 1	TE ZEL AND AEL AT PEL	S0UØ328Ø
2	ETA		500000000
L	- P 10	D THE SUUND VELUCITY AND FEULD VELUCITY	20002530
		CALL STEAM(PFL)	SOUØ33ØØ
		YEL-0	501/03310
			00000010
		VFL=VF	50003320
		HFL=HF	SOUØ333Ø
			C01102240
		5r L=5r	30003340
		DXDP=-(DSFDP)/(SG-SF)	SOUØ335Ø
		IIA = VEI = (I = (DVEDB + (VG = VE) + DVDB)) + + (-9 = 5))	501103360
			00000000
		UFL=(M+VFL)/AFL	\$0003370
٢.	CON	IPARE THE SOUND VELOCITY AND THE ELUID VELOCITY	S0UØ338Ø
•			50042204
		1F (UA.GE.UFL) GUIU 90	20002230
		IF((UFL-UA)/UA.LE.0.001)GOTO 158	S0UØ34ØØ
		TE (ABS (/1 - 7EL) /L) LE & EE-7) COTO 180	SOLIAZATA
	-	The state st	
		YH=M	50003420
			\$0003430
			SOUG2440
		GUIU 141	30003440
	.40	CONTINUE	SOUØ345Ø
			501 02480
	141	CONTINUE	SQUØ347Ø
	-	TE((YH-YL)/YH LE 0 001)COTO 149	S0UØ348Ø
			501/02400
		GUID 128	30003490
	149	CONTINUE	SOUØ35ØØ
			SUIMAEIA
			30003510
			50003520
		ČOTO 157	50103530
			000000000
	159	CONTINUE	50003540
C	DEC	REASE THE MASS FLOW RATE	SOUØ355Ø
•			501102540
		JJM=JK	20002200
		MP=YH	50003570
		$PP = (1 \rightarrow NO (MP) / (2))$	SOURSERA
			00000000
		R=RR	20003590
		GOTO 12	S0UØ36ØØ
		WW ' W & B	

	169	CONTINUE	SOUØ361Ø
			SOUGSESS
			30003020
		MP=M	SOUØ363Ø
		RR=(UA/UEL) + 05	501103640
			000000040
		K=KR	20003650
		GOTO 12	S0UØ366Ø
	08	CONTINUE	S0102870
	30		30003070
		IF((UA-UFL)/UA.LE.0.001)GUTU 180	50003680
С	CHE	CK FOR LENGTH	S0UØ369Ø
-		$71 - (1 - 7E^{1})/(1 - 1)$	SOU 02700
			20003700
		1F(ZL.GI.Ø.5E-7)GOTO 99	SOUØ371Ø
			501103720
	00		00000720
	39	CONTINUE	20003130
		XMACH=U/UA	SOUØ374Ø
		TE(YH EQ.0) COTO 812	501103750
			00000100
		IF ((TH-TL)/TH.LE.0.001)GUTU /5/	20003/00
	812	CONTINUE	SOUØ377Ø
		YI =M	501103780
			30003780
		XMACH=U/UA	20003790
С	INC	REASE MASS FLOW RATE	SOUØ38ØØ
-	-	TE(11N-1K) 702 702 701	501/02910
			30003810
	701	CUNIINUE	SUUØ382Ø
		RR=(UA/U) + + Ø, Ø5	SOUØ383Ø
			SUIMAAN
			30003640
		G010 12	SUUØ385Ø
	7Ø2	CONTINUE	SOUØ386Ø
		PP = (1 + YH / YI) / (2)	S01162076
		nn = (1.7 n / 1 L) / (2.)	30003670
		R=RR	50003880
		GOTO 12	SOUØ389Ø
	767		50U#20##
	101		20003900
		MC=M	SOUØ391Ø
		IF(I,GT,Ø)GOTQ 758	S0UØ392Ø
		COTO 758	501182028
			30003930
Ç	CON	ITINUE FOR STEP 158	50003940
	160	CONTINUE	SOUØ395Ø
		$\mathbf{F}_{\mathbf{A}}(1_{-}7\mathbf{E}) \wedge 1 = \mathbf{F}_{\mathbf{A}}\mathbf{F}_{-}7 \wedge 0\mathbf{T}0$	SULAZORA
			30003900
		GOTU 159	SUUØ397Ø
	158	CONTINUE	SOUØ398Ø
r	ETC	ST CHECK END I ENCTH WHEATHED AT EVIT	501142004
	L. T.	ST CHECK FOR LENGTH WHEATHER AT EATT	30003990
		IF((L-ZFL)/L.GT.0.50E-7)GOTO 159	S0U04000
	657	I=Ø	S0UØ4Ø1Ø
	157		C01104020
-	10/		30004020
C	WRI	TE CHUKE EXACTLY AT EXIT AND FIND CRITICAL MASS FLOW RATE	50004030
		IF(I,GT,Ø)GDT0 156	SOUØ4Ø4Ø
			SUIMAGE
			30004050
	758	CONTINUE	SUU04060
		PRINTA, 'THE FINAL CRITICAL MASS FLOW RATE IS', MC	SOUØ4070
			C01184898
		r x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x	50004000
			50004090
		WRITE(6.113)L.AEX.PFL.MC	SOUØ41ØØ
	112	ENDWAT (///TOE PRICHT CONDITIONS ATTAINED AT EVIT ELASHING? //TE	SOUGAILO
	112	TURMAI (///120, ALUATI CUMULITUNS ALIAINED AL EALT FLASHING ,//10	50004110
		, 'Z(I)=',E15.7,'AEX=',E15.7,'PFL=',E15.7,2X,'MC=',E15.7)	50004120
С	FIND	THE PRESSURE DISTRIBUTION IN SINGLE-PHASE REGION	SOUØ413Ø
•			SOLIDA14A
			30004140
		N=NDZ+1	50004150
			S0UØ416Ø
			COUG4174
		د (۱) = ۳ . ۳	30004170
		A (1) = AEN	50004180
		P (1)=PEN	S0UØ4190
			COUG4060
		r(20)=rfl	20004200

÷

.

		7 (20) =1	SOUGA210
			50004210
		A (20) = AEX	SUUØ422Ø
		X (20) = 0 0	S01184238
			0000-230
		DU 19 1J=2,19	50004240
		7 (T !)=DX+(T =1)	S0U84258
			00004200
		A(1J)=AEN-E/A+Z(1J)	50004260
	10		S01184278
	1.5		50004270
		CALL STEAM(PEN)	SUUØ428Ø
		X(1)+(HO_HE)/(HO_HE)	SUIMADOM
			50004230
		M=MC	SUUØ43ØØ
		T (-1	501104210
	~~		50004310
	20	CONTINUE	50004320
			501104330
			00004000
		IF (IJ.GE.N) GUIU 969	50004340
		DP(T,I) = M + M + G = 5 + VO + (1 + DE T = 4 + E / ET = 1) + (1 + A (T,I) + 4 + 2 - 1) / A (T,I = 1) + 4 + 2)	50104350
			00004000
		&+M+M+F/(2.+DEL A+E(A)+(2.+VU)+(1./A(IJ)-1./A(IJ-1))	50004360
		P(T,I) = P(T,I-1) - DP(T,I)	S0104370
			COUG4000
		LALL SICAM("(IJ))	30004380
		X(IJ)=(HO-HF)/(HG-HF)	S0UØ439Ø
			C01104400
		TL(TT'EM'(M-T))0010 ST	30004400
		GOTO 20	SOUØ441Ø
	01	CONTINUE	COUG4400
	≪1		30004420
		WRITE(6.478)	S0UØ443Ø
	470	ENDINET / / / TR JTJ TY JT/TLJ 1EV JA /TLJ 1EV JD/TLJ 1EV JV/TLJL	COURAAAR
		PURMAI(///10, 1, 1/2, 7(1), 102, 8(1), 102, 7(1), 102, 7(1)	20004440
		DO 248 IJ=1.N	SOUØ445Ø
	940	WRITE (# 340) TI 7(TI) A(TI) R(TI) Y(TI)	C01104480
	240	MKTIE(0,249)T2'S(T2)'K(T2)'L(T2)'Y(T2)	20064406
	249	FORMAT(//6X.12.4(2X.E15.7))	SOUØ447Ø
	040	CONTINUE	C01104490
	303	CUNTINOE	30004400
		CALL DATETM (DATTIM.23.VCPU.CTIME.TCPU)	S0UØ449Ø
		WETTE (8 991) DATTIN VCPU CTINE TCPU	SUIMAEMA
		WRITE (0, 001) DATTIM, VCFO, CTIME, TCFO	30004500
		GOTO 999	50004510
	1.56		501104520
	1.00	CONTINUE	30004320
		MC=UA+AEX/V(I)	50004530
	768	CONTINUE	
	100		SOUGAEAG
			S0UØ454Ø
		WRITE(6,114)I,P(I),I,X(I),I,V(I),MC	SOUØ454Ø SOUØ455Ø
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC EORMAT(//T25 'PIGHT CONDITIONS ATTAINED AT EXIT PLANE' //T5 'P(')	S0UØ454Ø S0UØ455Ø S0UØ456Ø
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(',	S0UØ454Ø S0UØ455Ø S0UØ456Ø
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7)	S0UØ454Ø S0UØ455Ø S0UØ456Ø S0UØ457Ø
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', \$12,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT. 'THE FINAL CRITICAL WASS FLOW RATE IS' MC	S0U04540 S0U04550 S0U04560 S0U04570 S0U04580
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', &I2,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC	S0UØ454Ø S0UØ455Ø S0UØ456Ø S0UØ457Ø S0UØ458Ø
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', &I2,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT+,'************************************	S0U04540 S0U04550 S0U04560 S0U04570 S0U04580 S0U04590
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'	S0U04540 S0U04550 S0U04580 S0U04570 S0U04580 S0U04590 S0U04600
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'+++++++++++++++++++++++++++++++++++	S0U04540 S0U04550 S0U04560 S0U04570 S0U04580 S0U04590 S0U04600
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'HE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN	S0U04540 S0U04550 S0U04560 S0U04570 S0U04580 S0U04590 S0U04600 S0U04610
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT•,' PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477)	S0U04540 S0U04550 S0U04560 S0U04570 S0U04580 S0U04580 S0U04690 S0U04600 S0U04610 S0U04620
	114	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(//T0,IT, TX, IT, IEX, A(T), IEX, PD(T), IEX, V(T), IOX, I	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04590 S0U04600 S0U04610 S0U04620
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,' PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,'	S0U04540 S0U04550 S0U04560 S0U04570 S0U04570 S0U04590 S0U04690 S0U04690 S0U04600 S0U04630
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'+++++++++++++++++++++++++++++++++++	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04610 S0U04620 S0U04620 S0U04640
	114 1 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)',12X,'H(I)') 7(1)-7E	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04590 S0U04600 S0U04610 S0U04630 S0U04630 S0U04640
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT*,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT*,' 2***' PRINT*,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04690 S0U04620 S0U04630 S0U04630 S0U04650
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04590 S0U04600 S0U04610 S0U04620 S0U04630 S0U04630 S0U04650 S0U04650
	114 1 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL DC 660 KWC-0 N	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04690 S0U04630 S0U04630 S0U04650 S0U04650 S0U04650 S0U04650
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL D0 662 KKK=2,N	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04630 S0U04630 S0U04640 S0U04650 S0U04650
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.**(FLOAT(N-KKK))	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04590 S0U04690 S0U04620 S0U04630 S0U04640 S0U04650 S0U04660 S0U04660 S0U04680
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=7Z(KKK)=7Z(KKK))	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04590 S0U04600 S0U04610 S0U04620 S0U04620 S0U04650 S0U04650 S0U04660 S0U04670 S0U04680
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=Z(KKK-1)+DZ(KKK)	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04690 S0U04690 S0U04620 S0U04630 S0U04650 S0U04650 S0U04650 S0U04670 S0U04680
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT+,' 2***' PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA+Z(KKK)	S0U04540 S0U04550 S0U04550 S0U04580 S0U04590 S0U04590 S0U04600 S0U04620 S0U04620 S0U04620 S0U04650 S0U04650 S0U04660 S0U04680 S0U04690 S0U04700
	114 477	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA+Z(KKK)	S0U04540 S0U04550 S0U04550 S0U04590 S0U04590 S0U04590 S0U04600 S0U04600 S0U04620 S0U04630 S0U04650 S0U04650 S0U04680 S0U04680 S0U04690 S0U04710
	114 477 662	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=ZT•2.••(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK)	S0U04540 S0U04550 S0U04550 S0U04580 S0U04580 S0U04590 S0U04690 S0U04620 S0U04620 S0U04620 S0U04650 S0U04650 S0U04650 S0U04680 S0U04690 S0U04690 S0U04710 S0U04710
	114 477 662	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N	S0U04540 S0U04550 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04630 S0U04630 S0U04630 S0U04650 S0U04650 S0U04650 S0U04670 S0U04670 S0U04710 S0U04720
	114 477 662 246	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I Z(I) A(I) P(I) V(I) X(I) H(I)	S0U04540 S0U04550 S0U04570 S0U04580 S0U04590 S0U04590 S0U04690 S0U04630 S0U04630 S0U04640 S0U04650 S0U04650 S0U04680 S0U04680 S0U04680 S0U04710 S0U04720 S0U04720
	114 477 662 246	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2x(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.++(FLOAT(N-KKK)) Z(KKK)=AEN-ETA+Z(KKK) A(KKK)=AEN-ETA+Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I)	S0U04540 S0U04550 S0U04570 S0U04580 S0U04590 S0U04690 S0U04610 S0U04620 S0U04620 S0U04650 S0U04650 S0U04650 S0U04670 S0U04690 S0U04690 S0U04720 S0U04720 S0U04730
	114 477 662 246 247	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N D2 (KKK)=DZT•2.••(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA•Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//8X,I2,6(2X,E15.7))	S0U04540 S0U04550 S0U04570 S0U04570 S0U04590 S0U04690 S0U04620 S0U04630 S0U04630 S0U04650 S0U04650 S0U04650 S0U04670 S0U04710 S0U04710 S0U04730 S0U04740
	114 477 662 246 247	<pre>WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', &I2,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT*,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT*,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORWAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT*2.**(FLOAT(N-KKK)) Z(KKK)=ZT*2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//8X,I2,6(2X,E15.7)) IE(7(1)/L CE 0,2)COTO 301</pre>	S0U04540 S0U04550 S0U04580 S0U04580 S0U04590 S0U04590 S0U04600 S0U04600 S0U04620 S0U04620 S0U04640 S0U04650 S0U04650 S0U04680 S0U04680 S0U04690 S0U04700 S0U04720 S0U04730 S0U04750
	114 477 662 246 247	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT•,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT•,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(I)',12X,'H(I)') Z(I)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT*2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E15.7)) IF(Z(1)/L.GE.0.2)GOTO 301	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04690 S0U04620 S0U04620 S0U04630 S0U04640 S0U04650 S0U04650 S0U04650 S0U04650 S0U04690 S0U04690 S0U04700 S0U04720 S0U04720 S0U04720
	114 477 662 246 247	<pre>WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', &I2,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' &X(I)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E15.7)) IF(Z(1)/L.GE.0.2)GDTO 301 GOTO 919</pre>	S0U04540 S0U04550 S0U04580 S0U04580 S0U04580 S0U04590 S0U04600 S0U04600 S0U04620 S0U04620 S0U04650 S0U04650 S0U04650 S0U04650 S0U04680 S0U04690 S0U04720 S0U04720 S0U04720 S0U04750 S0U04760
c	114 477 6662 246 247 FTNI	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ(KKK)=DZT+2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E16.7)) IF(Z(1)/L.GE.0.2)GOTO 301 GOTO 919 D THE PRESSURE DISTRIBUTION IN SING! E-PHASE REGION.	S0U04540 S0U04550 S0U04550 S0U04570 S0U04570 S0U04590 S0U04690 S0U04620 S0U04630 S0U04630 S0U04650 S0U04650 S0U04650 S0U04670 S0U04770 S0U04750 S0U04770 S0U04770 S0U04770
c	114 477 6662 246 247 FINI	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25, 'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT*,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT*,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(//T8,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ (KKK)=AZT*2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E15.7)) IF(Z(1)/L.GE.0.2)GOTO 301 GOTO 919 D THE PRESSURE DISTRIBUTION IN SINGLE-PHASE REGION.	S0U04540 S0U04550 S0U04580 S0U04580 S0U04580 S0U04590 S0U04690 S0U04620 S0U04620 S0U04620 S0U04620 S0U04650 S0U04650 S0U04650 S0U04690 S0U04690 S0U04720 S0U04720 S0U04750 S0U04750 S0U04770
c	114 477 6662 246 247 FINI 301	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL D0 662 KKK=2,N D2 (KKK)=DZT+2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E15.7)) IF(Z(1)/L.GE.0.2)GOTO 301 GOTO 919 D THE PRESSURE DISTRIBUTION IN SINGLE-PHASE REGION. CONTINUE	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04690 S0U04620 S0U04620 S0U04630 S0U04630 S0U04650 S0U04650 S0U04650 S0U04690 S0U04700 S0U04770 S0U04750 S0U04770 S0U04770 S0U04780
c	114 477 6662 246 247 FINI 301	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25, 'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT*,'THE FINAL CRITICAL MASS FLOW RATE IS',MC PRINT*,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(//T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)',12X,'H(I)') Z(1)=ZFL A(1)=AFL D0 662 KKK=2,N DZ (KKK)=AZT*2.**(FLOAT(N-KKK)) Z(KKK)=Z(KKK-1)+DZ(KKK) A(KKK)=AEN-ETA*Z(KKK) CONTINUE D0 246 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E16.7)) IF(Z(1)/L.GE.0.2)GOTO 301 GOTO 919 D THE PRESSURE DISTRIBUTION IN SINGLE-PHASE REGION. CONTINUE ND7=14	S0U04540 S0U04550 S0U04580 S0U04580 S0U04580 S0U04590 S0U04690 S0U04690 S0U04630 S0U04630 S0U04650 S0U04660 S0U04660 S0U04680 S0U04680 S0U04700 S0U04710 S0U04750 S0U04760 S0U04770 S0U04770 S0U04790
c	114 477 662 246 247 FINI 301	WRITE(6,114)I,P(I),I,X(I),I,V(I),MC FORMAT(//T25,'RIGHT CONDITIONS ATTAINED AT EXIT PLANE',//T5,'P(', 212,')=',E15.7,'X(',I2,')=',E15.7,'V(',I2,')=',E15.7,'MC =',E15.7) PRINT+,'THE FINAL CRITICAL WASS FLOW RATE IS',MC PRINT+,'DPEN=',DPEN,'PEN=',PEN WRITE(6,477) FORMAT(///T6,'I',7X,'Z(I)',15X,'A(I)',15X,'P(I)',15X,'V(I)',12X,' 2(1)=ZFL A(1)=AFL D0 662 KKK=2,N D2(KKK)=DZT+2.++(FLOAT(N-KKK)) Z(KKK)=AEN-ETA+Z(KKK) A(KKK)=AEN-ETA+Z(KKK) CONTINUE D0 248 I=1,N WRITE(6,247) I,Z(I),A(I),P(I),V(I),X(I),H(I) FORMAT(//6X,I2,6(2X,E15.7)) IF(Z(1)/L.GE.0.2)GOTO 301 GOTO 919 D THE PRESSURE DISTRIBUTION IN SINGLE-PHASE REGION. CONTINUE NDZ=14 N=NET.	S0U04540 S0U04550 S0U04550 S0U04570 S0U04590 S0U04590 S0U04600 S0U04610 S0U04620 S0U04620 S0U04650 S0U04650 S0U04650 S0U04650 S0U04680 S0U04680 S0U04700 S0U04710 S0U04750 S0U04750 S0U04750 S0U04750 S0U04750 S0U04750 S0U04750

DX = (Z(1))/14. S0UØ481Ø P(15) = P(1)S0UØ482Ø P(1)=PEN S0UØ483Ø A(15) = A(1)S0UØ484Ø A(1)=AEN S0UØ485Ø Z(15) = Z(1)S0UØ486Ø Z(1)=0.0 S0UØ487Ø X(15)=Ø.Ø S0UØ488Ø CALL STEAM (PEN) S0UØ489Ø X(1) = (HO-HF)/(HG-HF)S0UØ49ØØ DO 39 IJ=2,14 S0UØ491Ø Z(IJ) = DX * (IJ-1)S0UØ492Ø A(IJ) = AEN - ETA + Z(IJ)S0UØ493Ø 39 CONTINUE S0UØ494Ø M=MC S0UØ495Ø IJ=1 S0UØ496Ø **4Ø CONTINUE** S0UØ497Ø IJ=IJ+1 S0UØ498Ø IF(IJ.GE.N)GOT0 919 S0UØ499Ø DP(IJ)=M+M+0.5+V0+(1.+DELTA+F/ETA)+(1./A(IJ)++2.-1./A(IJ-1)++2.) 2+M+M+F/(2.+DELTA+ETA)+(2.+V0)+(1./A(IJ)-1./A(IJ-1)) P(IJ)=P(IJ-1)-DP(IJ) S0U05000 S0UØ5Ø1Ø S0UØ5Ø2Ø CALL STEAM(P(IJ)) X(IJ)=(H0-HF)/(HG-HF) S0UØ5Ø3Ø S0UØ5Ø4Ø IF(IJ.EQ.(N-1))GOTO 25 S0UØ5Ø5Ø GOTO 40 S0UØ5Ø6Ø 25 CONTINUE 50005070 PRINT+,'++THE FOLLOWING ARE THE PRESSURE AND QUALITY DISTRIBUTION SOU05080 &IN SINGLE-PHASE REGION++' SOU05090 WRITE(6,478) S0U05100 D0 48 IJ=1,N 48 WRITE(6,249)IJ,Z(IJ),A(IJ),P(IJ),X(IJ) 919 CONTINUE S0UØ511Ø SOUØ512Ø SOUØ513Ø C WRITE CPU TIME FOR THE CALCULATIONS SOUØ514Ø CALL DATEIM (DATTIM,23,VCPU,CTIME,TCPU) WRITE(6,801)DATTIM,VCPU,CTIME,TCPU 801 FORMAT('DATE/TIME:',A23/,'VCPU=',F10.3,'SEC.','CONNECT TIME=',F &10.3,'SEC.','TCPU=',F10.3,'SEC.') GOTO 999 S0UØ515Ø S0UØ516Ø S0UØ517Ø S0UØ518Ø S0UØ519Ø CONTINUE FOR SINGLE PHASE CALCULATIONS FROM STEP 92 TO 99 С S0UØ52ØØ 99 CONTINUE DIVIDE THE CHANNEL IN GRIDS S0UØ521Ø С S0UØ522Ø C3=0.01E-5 S0UØ523Ø IF((L-ZFL).GT.C3)GOT0 966 S0UØ524Ø NDZ=1 SOUØ525Ø SOUØ528Ø DZT=(L-ZFL) **GOTO 96** S0UØ527Ø 966 CONTINUE S0UØ528Ø IF(ZL.GE.Ø.Ø1)GOTO 511 S0UØ529Ø NDZ=15 S0UØ53ØØ GOTO 398 SOUØ531Ø **511 CONTINUE** SOUØ532Ø NDZ=25 S0UØ533Ø 398 CONTINUE S0UØ534Ø DZT=(L-ZFL)/(2.**(FLOAT(NDZ))-1.) IF(DZT.GT.C3)GOTO 98 S0UØ535Ø S0UØ536Ø NDZ=NDZ-1 S0UØ537Ø SOUØ538Ø **GOTO 398** 96 CONTINUE S0UØ539Ø SUBROUTINUE GRID DOES THE DIVISION OF GRIDS INTO NDZ GRIDS WITH A(I) SOU05400 C

С	Z(I) DETERMINED	SOUØ541Ø
~	N=NDZ+1	SOUØ542Ø
C	ZEL THE FLASH AS THE ZERU PUINT	50005430
		50005440
		S0005450
	V(1)=VFL	S0UØ547Ø
	x(1)=0.	S0UØ548Ø
	H(1)=HFL	SOUØ549Ø
	134 CONTINUE	SOUØ55ØØ
	D0 6 IK=2,N	SOUØ551Ø
	DZ(IK) = DZI + 2. + (FLUAT(N-IK))	S0UØ552Ø
	2(1K) = 2(1K-1) + 02(1K)	SUU05530
		50005540
	A2=A(2)	S0UØ556Ø
С	GUESS DOES THE INITIAL GUESS FOR SPECIFIC VOLUME AT FIRST GRID POINT	S0UØ557Ø
	CALL GUESS (A2,0,Q)	S0UØ558Ø
	V(2)=0	SOUØ559Ø
	x(2)=Q	S0UØ56ØØ
~		S0UØ561Ø
C	THE STEP CUMING FRUM THE TWO PHASE ENTRANCE IS THE FULLOWING IE //	SUU05620
r	// CUNIINDE	SUU05030
C	ND7=15	S0UØ5650
	75 CONTINUE	S0UØ566Ø
	DZT=L/(2.++(FLOAT(NDZ))-1.)	S0UØ567Ø
	IF (DZT.GT.C3) GOTO 78	SOUØ568Ø
	NDZ=NDZ-1	SOUØ569Ø
	GOTO 75	S0UØ57ØØ
~	76 CONTINUE	SUU05/10
C	2(1)-a	50005720
	A (1) = AFN	S0U05740
		S0UØ575Ø
	P(I)=PEN	S0UØ576Ø
	X (1)=XEN	SOUØ577Ø
	V(2) = V(1)	SOUØ578Ø
	D0 7 11=2,N	S0UØ579Ø
	D((1) = D(1+2+(FLUAT(N-11)))	50005800
	$\mathcal{L}(11) = \mathcal{L}(11 - 1) + \mathcal{U}(11)$	20002210
		S0U05830
	132 CONTINUE	S0UØ584Ø
	N=NDZ+1	S0UØ585Ø
	, I=1	SOUØ586Ø
С	NOW START CALCULATING THE PRESSURE DROP FOR SUCESSIVE GRID POINT	SOUØ587Ø
	133 CONTINUE	S0UØ588Ø
~		S0U05890
č	TRINIA, 'I T', I STAR TE END RATHT TE REACHED	SUU06900
C	TETT TA NCATA GG	50005910
		50005930
С	LOOP FOR THE CONVERGENCE OF PRESSURE AT NEXT GRID POINT	SOUØ5940
	144 CONTINUE	\$0005950
	J=J+1	S0UØ596Ø
С	IF ITERATION GOES MORE THAN 35 TIMES THEN STOP	50005970
r	IF (J.GI.35)GUTU 991 ETND RESSURE DRAD USING TWO PHASE NOVENTUK FOUNTION	20082398
C	$\frac{1}{1} P(T) = 2 + M + M / (A(T) + 2 + A(T-1) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	SOU06000

		&V(I))*(1.+DELTA*F/ETA)*(1./A(I)**21./A(I-1)**2.)*M*M*F/(2.*DELTA	SOUØ6Ø1Ø
	- 1	k + ETA) + (V(I−1) + V(I)) + (1./A(I)−1./A(I−1))	SOUØ6Ø2Ø
Ç		PRINT*, 'DP(I) = ', DP(I)	S0UØ6Ø3Ø
С	FI	ND THE PRESSURE AT THE I TH GRID POINT	S0UØ6Ø4Ø
		P1(J) = P(I-1) - DP(I)	SOUØ6Ø5Ø
		IF(P1(J).GT.1.013E5)GOTO 313	SOUØ6Ø6Ø
С	REI	DUCE THE MASS FLOW RATE	SOUØ6Ø7Ø
			S0UØ6Ø8Ø
		RR = (1.+TL/TH)/(2.)	S0UØ6Ø9Ø
			50006100
	212		50006110
	313	CONTINUE	SUU06120
r	СНЯ	TE COLESSION AS	50000130
•	C	F(1) =	50000140
		TF(T_CT_N)G(TG_99)	SOU00150
		IF (I. FQ. N) GOTO 155	S0U00100
		YH=M	S0UØ618Ø
		RR=(1.+YL/YH)/(2.)	S0UØ619Ø
		R=RR	S0UØ82ØØ
		GOTO 12	S0UØ621Ø
	142	CONTINUE	SOUØ622Ø
С	SEE	FOR CONVERGENCE	SOUØ623Ø
		IF((P1(J)-P1(J-1))/P1(J).LE.0.001)GOTO 155	SOUØ624Ø
	143	CONTINUE	SOUØ625Ø
		IF(J-3)_333,333,600	SOUØ626Ø
	600		SOUØ627Ø
		IF (P1(J), EQ. P1(J-1)) GU(U 155	SUU06280
		IF((P1(J)-P1(J-1))/(P1(J-1)-P1(J-2)).L(.1.)GU(0.300)	SUU06290
		CALC SIEAM(FI(J))	50006300
		V_=(1)*(1)*(1)*(10-nr)/(W#M#(4G-4r)**2.) V_=VE/(VVE)	50006310
		VR-4(T) + (HC-HE) / (M+M+(VC-VE) + +2)	50006320
		X(I) = (VA + VB) + ((VA + VB) = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	S0U08340
		V(I) = VF + X(I) + (VG - VF)	S0UØ635Ø
		U=M+V(I)/A(I)	S0UØ636Ø
		DXDP = -(DSFDP + (1, -X(I)) + X(I) + DSGDP) / (SG-SF)	SOUØ637Ø
		$UA=V(I) \bullet ((-((1, -X(I)) \bullet DVFDP + X(I) \bullet DVGDP + (VG-VF) \bullet DXDP)) \bullet (-, 5))$	SOUØ638Ø
		XMACH=Ú/ÙÀ	SOUØ639Ø
		IF((U-UA)/UA.LE.0.001)GOTO 144	S0UØ64ØØ
C	REDU	JCE THE MASS FLOW RATE.	SOUØ641Ø
		YHEM	SOUØ642Ø
		IF (RJS_GE.1) GOTO 167	SOUØ643Ø
		IF (I.LT.N) GOTO 528	S0U08440
		IF((TH-TL)/TH.GT.0.001)GDT0 528	S0UØ645Ø
		KJS=KJS+1.	SUU06460
	500	IP (RJS.GE.I.) GUIU 530	50006470
	0 ∡0		SOUDEADD
			SUUGESOG
		R=R	S0U06510
		G0T0 12	S0UØ852Ø
	530	CONTINUE	S0UØ653Ø
		M=YH	SOUØ654Ø
		$DP(I) = 2. + M + M / (A(I) + 2. + A(I-1) + 2.) + (V(I) - V(I-1)) + M + M + \emptyset.25 + (V(I-1))$	SOUØ855Ø
	- 1	₩ (Î)) + (1.+DELTĂ+F/ETA) + (1./Å(I) + 21./Å(Ï-1) + 2.) + M+M+F/(2.+	SOUØ656Ø
	1	DELTA+ETA) + (V(I-1)+V(I)) + (1./A(I)-1./A(I-1))	SOUØ657Ø
		P1(J) = P(I-1) - DP(I)	SOUØ658Ø
		GOTO 155	50006590
	300	CUNTINUE	20006600

	IF(ABS((P1(J)-P1(J-1))/P1(J)).LE.0.001)GOTO 155	SOUØ661Ø
	333 CONTINUE	SOUØ662Ø
~	IF(PI(J), EQ, PI(J-1))GOTO 155	S0UØ6630
C	FIND THE VALUEES OF PROPERTIES AT NEW VALUE OF PI(J)	SUU06640
r	CALL STEAM(FI(J))	50000050
C	V(=A(1) + A(1) + (H) + HE) / (HaMa(VG-VE) = 2)	50000000
	VA=VF/(VG-VF)	S0UØ668Ø
	VB=A(I)+A(I)+(HG-HF)/(M+M+(VG-VF)++2.)	S0UØ669Ø
	X(I)=-(VA+VB)+((VA+VB)**2.+2.*VC-VA**2.)**(0.5)	SOUØ67ØØ
	V(I) = VF + X(I) + (VG - VF)	SOUØ671Ø
•	H(I) = HF + X(I) + (HG - HF)	S0UØ672Ø
C	FIND FEUID VELOCITY AND SOUND VELOCITY AT DRID POINTS	SUU06730
	0=M#V(1)/A(1) DYDP-(0SEDP+(1 -Y(1))+Y(1)+DSCDP)/(SC-SE)	50006740
	$ A = V(1) + (1 - X(1)) + DYEDP + (1) + DYGDP + (VG_VE) + DYDP) + (- 5)$	S0008780
	XMACH=U/UA	S0UØ677Ø
	IF((U-UA)/UA.LE.Ø.001)GOTO 144	S0UØ678Ø
С	REDUCE THE MASS FLOW RATE.	SOUØ679Ø
	YH=M	S0UØ68ØØ
	IF(RJS.GE.1.)G0T0 157	SOU06810
	IF (I.LT.N) G010 529	SUU06820
	P (C=P ((1-1)/11.G).9.9(1)G010 523	50005830
	TE (R.IS GE 1.) GOTO 530	S0U06850
	529 CONTINUE	S0UØ686Ø
	JN=JK	\$0UØ687Ø
	RR=(1.+YL/YH)/(2.)	S0UØ688Ø
	R=RR	S0UØ689Ø
	GOTO 12	S0006900
		20062316
	T(T)=T1(J) TF(P(T) GT_P(T-1))GOTO 899	S0006920
С	WRITE THE CONVERGED VALUES AT THIS GRID POINT.	S0UØ694Ø
č	FIND THE FLUID PROPERTIES	S0UØ695Ø
	CALL STEAM(P(I))	S0UØ696Ø
C	FIND THE QUALITY	S0U06970
	VC=A(I)+A(I)+(HO-HF)/(M+M+(VG-VF)++2.)	S0U06980
	VA=VF/(VG-VF) VP=4(T)=4(T)=(VC, VE)(VA=Ve(VC, VE)=e=2)	50006990
	$Y_{D=A(1)=A(1)=(n_{D-n_{D}})/(m_{D=a})/(n_{D-a})$	50007000
	V(1)=V(V)+V(1)=(VG-VF)	S0UØ7Ø2Ø
	H(I) = HF + X(I) + (HG - HF)	S0UØ7Ø3Ø
C	WRITE THE FLUID STATE AT THE GRID I	SOUØ7Ø4Ø
_	IF(RJS.GE.1.)GOTO 157	S0UØ7Ø5Ø
C	FIND SOUND VELOCITY AND FLUID VELOCITY	50007080
	U=M+V(1)/A(1)	50007070
	UAPY=(USPUP*(1X(1))*A(1)*USQUP/(USQUS))	50007080
	XMACH=U/UA	S0U07100
С	COMPARE THE SOUND AND FLUID VELOCITIES	SOU07110
	IF (UA.GE.U) GOTO 161	SOUØ7120
	IF((U-UA)/UA.LE.0.001)GOTO 162	S0U07130
	IF (RJS.GE.1.) GOTO 157	50007140
	IF (I.LI.N) GUIU 163 B (C.B.) (C.S.)	5000/150
	NJJ=NJJ+1. TF/RIS CF 1)COTO 530	S0U07170
	163 CONTINUE	S0UØ718Ø
C	DECREASE MASS FLOW RATE	SOUØ7190
-	YH=M	SOUØ72ØØ

	RR=(1.+YL/YH)/(2.)	SOUØ721Ø
	R=RR	S0UØ722Ø
	G0T0 12	50007230
	899 CONTINUE	50007240
		30007240
		50007250
	N=NDZ+1	SOUØ726Ø
	DZT=(L-ZFL)/(2.++(FLOAT(NDZ))-1.)	S0UØ727Ø
	G0TO 134	50107280
	161 CONTINUE	50007200
	$E = \frac{1}{100} $ $E = \frac{1}{100} $ $E = \frac{1}{100} $ $E = \frac{1}{100} $	50007290
~		50007300
Ç	CHECK FOR THE LENGTH	SOUØ731Ø
	IF(I.EQ.N)GOTO 98	SOUØ732Ø
	GOTO 133	50107330
C	CONTINUE FOR STEP 182	50107240
		50007340
~		50007350
C	FIRST CHECK FUR LENGTH WHEATHER AT EXIT	SOUØ736Ø
	IF(I.EQ.N)GOTO 157	SOUØ737Ø
	GOTO 183	SOUØ738Ø
	991 CONTINUE	S0U07390
	WRITE(8, 119)P1(1) P1(1-1) P1(1-2) P1(1-3) P1(1-4)	501107400
	$= \left\{ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	50007400
	TIS FORMAT (//TID, DUES NOT CONVERGE FOR THE GIVEN MASS FEUW RATE ,//,	5000/410
	25 (2X,E15./))	50007420
	993 CONTINUE	SOUØ743Ø
	PRINT+.'THE CALCULATION IS STOPPED DUE TO MANY ITERATIONS'	S0UØ744Ø
	999 CONTINÚE	50007450
	COTO 710	SOUG7480
		30007400
	720 CUNTINUE	50007470
	STOP	SOUØ748Ø
	END	SOUØ749Ø
С		S0UØ75ØØ
-		
č.	***************************************	S0UØ751Ø
č	***************************************	SOU07510
Č.	***************************************	SOU07510 SOU07520
	***************************************	\$0007510 \$0007520 \$0007530
	•••••••••••••••••••••••••••••••••••••••	\$0UØ751Ø \$0UØ752Ø \$0UØ753Ø \$0UØ754Ø
	THE FOLLOWING ARE SUBROUTINES	S0UØ751Ø S0UØ752Ø S0UØ753Ø S0UØ754Ø S0UØ755Ø
	THE FOLLOWING ARE SUBROUTINES	S0U07510 S0U07520 -S0U07530 S0U07540 S0U07550 -S0U07560
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA.C.D)	SOU07510 SOU07520 -SOU07530 SOU07540 SOU07550 -SOU07560 SOU07570
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT ETRST	+SOUØ7510 SOUØ7520 -SOUØ7530 SOUØ7540 SOUØ7550 -SOUØ7560 SOUØ7570
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST CPTD POTNT AFTER THE FIRST DE POTNT	S0U07510 S0U07520 -S0U07530 S0U07540 S0U07550 -S0U07560 S0U07560 S0U07580
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT	• SOUØ7510 SOUØ7520 - SOUØ7530 SOUØ7530 SOUØ7550 - SOUØ7550 SOUØ7570 SOUØ7570 SOUØ7570
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M)	\$0107510 \$0107520 \$0107530 \$0107530 \$0107540 \$0107560 \$0107560 \$0107570 \$0107580 \$0107590 \$0107590
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG,	\$0107510 \$0107520 \$0107530 \$0107540 \$0107540 \$0107560 \$0107560 \$0107570 \$0107580 \$0107590 \$0107690 \$0107610
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP	• \$0U07510 \$0U07520 - \$0U07520 \$0U07540 \$0U07550 - \$0U07560 \$0U07580 \$0U07580 \$0U07590 \$0U07600 \$0U07610 \$0U07620
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL.HFL	• SOUØ7510 SOUØ7520 -SOUØ7530 SOUØ7530 SOUØ7550 -SOUØ7560 SOUØ7570 SOUØ7580 SOUØ7680 SOUØ7610 SOUØ7630
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7530 SOUØ7540 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7580 SOUØ7590 SOUØ7690 SOUØ7610 SOUØ7640 SOUØ7640 SOUØ7640
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=MMM00 FAVEL+(1 +DFLTA+F(FTA)+(1 / AA+2) = 1 / AFL+2) AM+4F	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7540 SOUØ7560 SOUØ7560 SOUØ7560 SOUØ7610 SOUØ7610 SOUØ7620 SOUØ7630 SOUØ7640 SOUØ7640 SOUØ7640 SOUØ7640 SOUØ7640
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL+2.)+M+M+F	• SOUØ7510 SOUØ7510 SOUØ7520 -SOUØ7530 SOUØ7530 SOUØ7550 -SOUØ7560 SOUØ7570 SOUØ7580 SOUØ7690 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7640 SOUØ7640
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA, C, D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, &DSGDP COMMON/BLOCK2/W,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL)	SOU07510 SOU07510 SOU07520 -SOU07530 SOU07540 SOU07560 SOU07570 SOU07570 SOU07590 SOU07690 SOU07610 SOU07620 SOU07630 SOU07650 SOU07650 SOU07660
Cococo co c	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, &DSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=MM+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA+21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID	• SOUØ7510 SOUØ7510 SOUØ7520 -SOUØ7540 SOUØ7560 SOUØ7560 SOUØ7570 SOUØ7680 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7650 SOUØ7650
Cococc cc c c	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL+*2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1	• SOUØ7510 SOUØ7510 SOUØ7520 -SOUØ7530 SOUØ7550 -SOUØ7560 SOUØ7570 SOUØ7680 SOUØ7690 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7660 SOUØ7680 SOUØ7680
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7570 SOUØ7590 SOUØ7680 SOUØ7630 SOUØ7640 SOUØ7640 SOUØ7650 SOUØ7680
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=MH+00.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF (PS1.LT.100.)GOTD 10	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7550 SOUØ7560 SOUØ7560 SOUØ7570 SOUØ7600 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7660 SOUØ7660 SOUØ7660 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7690
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=MH+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1)	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7550 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7640 SOUØ7650 SOUØ7670 SOUØ7680 SOUØ7670 SOUØ7670 SOUØ7690 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7710
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTD 10 CALL STEAM(PS1) FIND QUALITY AT EXPECT CPID	• SOUØ7510 SOUØ7510 SOUØ7520 -SOUØ7530 SOUØ7550 SOUØ7570 SOUØ7570 SOUØ7570 SOUØ7690 SOUØ7610 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7670 SOUØ7670 SOUØ7790 SOUØ7790
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+88(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID	SOU07510 SOU07510 SOU07520 -SOU07530 SOU07550 SOU07560 SOU07570 SOU07570 SOU07590 SOU07690 SOU07610 SOU07630 SOU07640 SOU07650 SOU07650 SOU07650 SOU07650 SOU07650 SOU07670 SOU07690 SOU07790 SOU07710 SOU07720
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, &DSGDP COMMON/BLOCK2/W,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+00.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF)	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7550 SOUØ7560 SOUØ7560 SOUØ7570 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7660 SOUØ7670 SOUØ7680 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7720 SOUØ7730
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7680 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7630 SOUØ7680 SOUØ7680 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7690 SOUØ7780 SOUØ7720 SOUØ7740
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+88 (A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, &DSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTD 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7570 SOUØ7620 SOUØ7620 SOUØ7630 SOUØ7630 SOUØ7640 SOUØ7640 SOUØ7640 SOUØ7680 SOUØ7680 SOUØ7680 SOUØ7680 SOUØ7740 SOUØ7740 SOUØ7740 SOUØ7740 SOUØ7750
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA, C, D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/W,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M=M+00.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F A+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER PS1=PS1+1.45041E-4	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7550 SOUØ7560 SOUØ7560 SOUØ7670 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7670 SOUØ7650 SOUØ7670 SOUØ7670 SOUØ7750 SOUØ7710 SOUØ7720 SOUØ7740
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA, C, D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGOP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F 4 +VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER PS1=PS1+1.45041E-4	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7560 SOUØ7570 SOUØ7570 SOUØ7610 SOUØ7610 SOUØ7620 SOUØ7630 SOUØ7630 SOUØ7640 SOUØ7650 SOUØ7650 SOUØ7680 SOUØ7690 SOUØ7670 SOUØ7670 SOUØ7670 SOUØ7780 SOUØ7720 SOUØ7740 SOUØ7760 SOUØ7760 SOUØ7740 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7770 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760 SOUØ7760
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS (AA, C, D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, &DSGOP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER PS1=PS1+1.45041E-4 PHI-EYP((1 85E-10+PS1+A = 8 9E-7+PS1+A = 1 79E-2+PS1+A = 2)	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7570 SOUØ7570 SOUØ7570 SOUØ7620 SOUØ7630 SOUØ7630 SOUØ7640 SOUØ7630 SOUØ7730 SOUØ7730 SOUØ7750 SOUØ7760
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINES FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1.+AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER PS1=PS1+1.45041E-4 PHI=EXP((1.65E-10+PS1++48.9E-7+PS1++3.+1.79E-3+PS1++21.63+PS1+4.4)	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7560 SOUØ7560 SOUØ7600 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7650 SOUØ7670 SOUØ7670 SOUØ77700 SOUØ7720 SOUØ7740 SOUØ7740 SOUØ7750 SOUØ7750 SOUØ7760
	THE FOLLOWING ARE SUBROUTINES SUBROUTINE GUESS(AA,C,D) THIS SUBROUTINE DETERMINÉS FIRST GUESS VALUE FOR SP VOLUME AT FIRST GRID POINT AFTER THE FLASHING POINT IMPLICIT REAL+8(A,L,M) COMMON/BLOCK1/VF,DVFDP,VG,DVGDP,HF,DHFDP,HG,DHGDP,SF,DSFSP,SG, ADSGDP COMMON/BLOCK2/M,VFL,ETA,DELTA,F,AFL,ZFL,NDZ,DZT,PFL,HFL FIND SINGLE PHASE PRESSURE DROP BETWEEN FLASH AND FIRST GRID DPSP1=M+M+0.5+VFL+(1.+DELTA+F/ETA)+(1./AA++21./AFL++2.)+M+M+F &+VFL/ETA/DELTA+(1./AA-1./AFL) FIND PRESSURE AT FIRST GRID PS1=PFL-DPSP1 FIND PROPERTIES OF FLUID AT PS1 IF(PS1.LT.100.)GOTO 10 CALL STEAM(PS1) FIND QUALITY AT FIRST GRID X1=(HFL-HF)/(HG-HF) FIND MARTINELLI-NELSON FRICTION MULTIFLIER PS1=PS1+1.45041E-4 PHI=EXP((1.65E-10*PS1+48.9E-7*PS1+4.+1.79E-3*PS1+21.63*PS1+ &6.02E2)*X1)	 SOUØ7510 SOUØ7510 SOUØ7520 SOUØ7520 SOUØ7560 SOUØ7560 SOUØ7560 SOUØ7670 SOUØ7610 SOUØ7610 SOUØ7630 SOUØ7630 SOUØ7640 SOUØ7640 SOUØ7680 SOUØ7670 SOUØ7680 SOUØ7690 SOUØ7670 SOUØ7670 SOUØ7780 SOUØ7720 SOUØ7720 SOUØ7740 SOUØ7740 SOUØ7760 SOUØ7760 SOUØ7780

•. 1

	P2P=PHI+DPSP1	SOUØ781Ø
	PP2=PFI -P2P	50007820
r	ETNO ELLITO PROPERTIES WITH THIS VALUE OF PRO	50107920
C	FIND FLOID FROFERILES WITH THIS VALUE OF FF2	30007830
	CALL STEAM (PP2)	2000/840
	D=(HFL-HF)/(HG-HF)	SOUØ785Ø
	C=VF+D+(VG-VF)	S0UØ786Ø
C		50007870
~		COURT000
		30007880
	RETURN	20007890
	END	SOUØ79ØØ
С		S0UØ791Ø
ċ.		
č		50107020
	SUBRUUTINE STEAM (F)	50007930
	COMMON/BLUCKI/VF, DVFDP, VG, DVGDP, HF, DHFDP, HG, DHGDP, SF, DSFDP, SG,	5000/940
	A DSGSP	SOUØ795Ø
С		S0UØ796Ø
С		S0UØ797Ø
- ř	THIS IS A SUBBOLITINE TO CALCULATE THE THERMODYNAMIC PROPERTIES OF	50107080
ž	CATHDATED WATED AND THE TO CALCULATE THE THERMOST NAME THAT IS A SOUNDER THE TO CALCULATE THE DESTINATIVE OF SECTETS VALUES V	50007300
ç	SATURATED WATER AND STEAM AND THE DERIVATIVES OF SPECIFIC VOLUME V,	2000/990
С	ENTROPY, S, ENTHALPY H, ETC AS REQUIRED.	S0008000
С	THE UNITS WE ARE USING ARE FOR P KG/CM++2FOR T DEG. K . FOR V.	SOUØ8Ø1Ø
Ċ	CMAA3/GM FOR ENTHALPY H KCAL/KG AND FOR S KCAL/KG K.	S0UØ8Ø2Ø
ř	THE INDUIT AND OUTDUT FROM THIS SUBPOUTINE GIVE THE CALCULATED FLUTD	SUIMEMAN
2	THE INFOL AND DUFFUL FROM THIS SUBRUCTINE GIVE THE CAECOLATED FLOTD	50008030
ć	PRUPERTIES IN MRS UNITS	50008040
Ç۰		- SOUØ8Ø5Ø
С		S0UØ8Ø6Ø
С	DEFINE THE CRITICAL PRESSURE TEMPERATURE SPECIFIC VOLUME ENTHALPY	SOUØ8Ø7Ø
č	AND THE ENTROPY WITH THE UNITS AN READY SATD ABOVE	SUIMBABA
ž	AND THE ENTROPY WITH THE ONLY ALLEADY SHID ADDVE	50000000
C		30000090
	PC=2.211925607	20009100
	TC=647.27	SOUØ811Ø
	VC=3,1698D-3	SOUØ812Ø
	HC=2.107209D8	SOUØ813Ø
	SC-4 4427222D3	50108140
	55-7.772122205	COUG0140
		20069196
	Z=-ALUG(P/PC)	20008160
С	CONSTANTS FOR SATURATION TEMPERATURE	SOUØ817Ø
	A1=0.1295426849D0	SOUØ818Ø
	A2-0 4513602436D0	50008190
	A2-6 0100270428DA	501109200
	A3=0.21223/043000	50000200
	A4=-0.35814370980-2	20008210
	A5=0.9090316283D-4	S0008220
	A6=0.3338530622D1	SOUØ823Ø
	A7=Ø.1426558985D1	S0UØ824Ø
r	FOUNTION FOR SATURATION TEMPERATURE	50008250
6	EQUALUM FUR SHIONAIUM IEMFERNIORE	COURO260
	A8=1.+A6+Z+A/+Z+Z	50008260
	A9=A1+Z+A2+Z+Z+A3+(Z++3.)+A4+(Z++4.)+A5+(Z++5.)	SUU08270
	TA=TĆ+(AB/(AB+A9))	SOUØ828Ø
	THETA=TA/TC	S0UØ829Ø
C	DERTVATIVE DT/DP	S0UØ83ØØ
		50108210
	MIU-MUTEITMITE Ali-Alm Ali Mi AMAIII AAAAIIAIAAAAAAAAAAAAAAAAAAAA	50000010
	AII=AIU+AI+2, \$A282+3, \$A38282+2+4, \$A44 (2483,)+0, \$AD\$ (2884,)	20000320
	A12=A10/A8	20068336
	A13=A11/(A8+A9)	50008340
	DTDP=-TA+ (A12-A13) /P	\$0008350
С	CONSTANTS FOR SPECIFIC VOLUME OF WATER VE	S0UØ836Ø
		50008370
		50000070
	BZ=0.5538420569U/	30005380
	B3=0.1799772193D9	SUUØ8390
	B4=-0.4743843407D9	SOUØ8400

```
B5=Ø.2019749779D10
                                                                             SOUØ841Ø
      B6=-0.6258564009D10
                                                                             S0UØ842Ø
      B7=0.1230937510D11
                                                                             S0UØ843Ø
      88=-Ø.1351160480D11
                                                                             S0UØ844Ø
      B9=0.6353769714D10
                                                                             S0UØ845Ø
      B10=0.1163268984D5
                                                                             S0UØ846Ø
      B11=.7686775534D7
                                                                             S0UØ847Ø
      B12=0.3694089380D9
                                                                             S0UØ848Ø
С
                                                                             S0UØ849Ø
      Y=1.-THETA
                                                                             SOUØ85ØØ
C EQUATION FOR SPECIFIC VOLUME OF WATER VF
                                                                             S0UØ851Ø
      B13=1.+B1+Y+B2+Y+Y+B3+(Y++3.)+B4+(Y++4.)
                                                                             S0UØ852Ø
      B14=B5+(Y++5.)+B6+(Y++6.)+B7+(Y++7.)+B8+(Y++8.)+B9+(Y++9.)
                                                                             SOUØ853Ø
      815=813+814
                                                                             S0UØ854Ø
      B16=1.+B1Ø+Y+B11+Y+Y+B12+Y++3.
                                                                             SOUØ855Ø
С
                                                                             S0UØ856Ø
VF=VC+B15/B16
C DERIVATIVE DVF/DP
                                                                             S0UØ857Ø
                     : DVFDP
                                                                             S0UØ858Ø
      B17=B1+2.*B2*Y+3.*B3*Y*Y+4.*B4*Y**3.
                                                                             S0UØ859Ø
      B18=5.+B5+Y++4.+6.+B6+Y++5.+7.+B7+Y++6.+8.+B8+Y++7.+9.+B9+Y++8.
                                                                             S0UØ86ØØ
      B19=B17+B18
                                                                             SOUØ861Ø
      82Ø=819/815
                                                                             S0UØ862Ø
      B21=B1Ø+2.+B11+Y+3.+B12+Y+Y
                                                                             S0UØ863Ø
      B22=B21/B16
                                                                             S0UØ884Ø
С
                                                                             SOUØ865Ø
      DVFDP=-VF+DTDP+(820-822)/TC
                                                                             S0UØ866Ø
С
                                                                             S0UØ867Ø
C
                                                                             S0UØ868Ø
C CONSTANTS FOR THE SPECIFIC VOLUME OF STEAM VG
                                                                             S0UØ869Ø
      C1=Ø.4116876614D4
                                                                             S0UØ87ØØ
      C2=Ø.8824691596D6
                                                                             S0UØ871Ø
      C3=0.4332657100D7
                                                                             S0UØ872Ø
      C4=-0.2835427189D8
                                                                             S0UØ873Ø
      C5=Ø.3658875474D8
                                                                             S0UØ874Ø
      C6=Ø.1299835973D7
                                                                             SOUØ875Ø
      C7=-0.1729498423D8
                                                                             S0UØ878Ø
      C8=0.4780391119D4
                                                                             SOUØ877Ø
      C9=Ø.1436266862D7
                                                                             S0UØ878Ø
      C10=0.2732195974D8
                                                                             S0UØ879Ø
      C11=-Ø.8611392578D8
                                                                             S0UØ88ØØ
      C12=0.8981196903D8
                                                                             SOUØ881Ø
C EQUATION FOR THE SPECIFIC VOLUME OF STEAM VG
C13=1.+C8+Y+C9+Y+Y+C10+Y++3.+C11+Y++4.+C12+Y++5.
                                                                             S0UØ882Ø
                                                                             S0UØ883Ø
      C14=1.+C1+Y+C2+Y+Y+C3+Y++3.+C4+Y++4.
                                                                             SOUØ884Ø
      C15=C5+Y++5.+C8+Y++6.+C7+Y++7.
                                                                             S0UØ885Ø
                                                                             S0UØ886Ø
      C18=C14+C15
      C17=C16+THETA++6.
                                                                             S0UØ887Ø
С
                                                                             S0UØ888Ø
      VG=VC+C13/C17
                                                                             SOUØ889Ø
С
                                                                             S0UØ89ØØ
C DERIVATIVE DVGDP
                                                                             S0UØ891Ø
      C18=C8+2.+C9+Y+3.+C10+Y+4.+C11+Y++3.+5.+C12+Y++4.
                                                                             S0UØ892Ø
                                                                             S0UØ893Ø
      C19=C18/C13
                                                                             S0UØ894Ø
      C2Ø=C1+2.+C2+Y+3.+C3+Y+Y+4.+C4+Y++3.
      C21=5.+C5+Y++4.+6.+C6+Y++5.+7.+C7+Y++6.
                                                                             S0UØ895Ø
      C22=C2Ø+C21
                                                                             S0UØ896Ø
      C23=C22/C18
                                                                             SOUØ897Ø
С
                                                                             S0UØ898Ø
      DVGDP=VG+DTDP+(-6./THETA-C19+C23)/TC
                                                                             $0UØ899Ø
С
                                                                             S0UØ9ØØØ
```

C CONSTANTS FOR SPECIFIC ENTHALPY OF WATER HF S0UØ9Ø1Ø S0UØ9Ø2Ø D1=0.5035888418D4 S0UØ9Ø3Ø D2=0.8529880310D6 S0UØ9Ø4Ø D3=0.3975661294D7 S0UØ9Ø5Ø D4=-Ø.1321212174D8 S0UØ9Ø6Ø D5=0.7472567358D7 S0UØ9Ø7Ø D6=-0.1690034753D7 S0UØ9Ø8Ø D7=0.5288733377D4 S0UØ9Ø9Ø D8=0.9824212891D6 S0UØ91ØØ D9=0.7825906288D7 S0UØ911Ø D10=-0.4620228177D7 S0UØ912Ø S0UØ913Ø C EQUATION FOR SPECIFIC ENTHALPY OF WATER HF D11=1.+D1*Y+D2*Y*Y+D3*Y**3.+D4*Y**4.+D5*Y**5.+D6*Y**6. S0UØ914Ø S0UØ915Ø D12=1.+D7+Y+D8+Y+Y+D9+Y++3.+D10+Y++4. S0UØ916Ø HF=HC+D11/D12 S0UØ917Ø C DERIVATIVE DHF/DP ; DHFDP D13=D1+2.*D2*Y+3.*D3*Y*Y+4.*D4*Y**3.+5.*D5*Y**4.*6.*D6*Y**5. S0UØ918Ø SOUØ919Ø D14=D7+2.*D8+Y+3.*D9+Y+Y+4.+D1Ø+Y+*3. S0UØ92ØØ D15=D13/D11 S0UØ921Ø D16=D14/D12 S0UØ922Ø DHFDP=-HF+(D15-D18)+DTDP/TC C CONSTANTS FOR SPECIFIC ENTHALPY OF STEAM HG 50009230 S0UØ924Ø E1=0.4981303137D4 S0UØ925Ø E2=Ø.1557966611D7 E3=Ø.3218710689D8 S0UØ926Ø S0UØ927Ø E4=Ø.9584965114D7 50009280 E5=-Ø.4398959523D8 S0UØ929Ø E6=0.2724983908D8 S0UØ93ØØ E7=0.4802965641D4 S0UØ931Ø E8=0.1385876104D7 S0UØ932Ø S0UØ933Ø E9=Ø.2323566205D8 E10=0.8134541110D6 S0UØ934Ø C EQUATIN FOR SPECIFIC ENTHALPY OF STEAM HG S0UØ935Ø E11=1.+E1+Y+E2+Y+Y+E3+Y++3.+E4+Y++4.+E5+Y++5.+E6+Y++6. S0UØ936Ø E12=1.+E7*Y+E8*Y*Y+E9*Y**3.+E10*Y**4. S0UØ937Ø HG=HC+E11/E12 50009380 S0UØ939Ø C DERIVATIVE DHGDP E13=E1+2.+E2+Y+3.+E3+Y+Y+4.+E4+Y++3.+5.+E5+Y++4.+6.+E6+Y++5. S0UØ94ØØ E14=E7+2.*E8+Y+3.*E9+Y+Y+4.*E10+Y+*3. S0UØ941Ø E15=E13/E11 S0UØ942Ø S0UØ943Ø E16=E14/E12 DHGDP=-HG+(E15-E18)+DTDP/TC C CONSTANTS FOR SPECIFIC ENTROPY OF WATER SF S0UØ944Ø \$0UØ945Ø F1=0.5003614305D4 S0UØ946Ø F2=0.8273857898D6 S0UØ947Ø SOUØ948Ø F3=0.3893852407D7 SOU09490 F4=-Ø.1159686364D8 S0UØ95ØØ F5=0.3369640365D7 F6=0.1226506021D7 SOUØ951Ø S0UØ952Ø F7=0.5187295813D4 S0UØ953Ø F8=Ø.9168034019D6 S0UØ954Ø F9=0.6319591884D7 F10=-0.878264517D7 S0UØ955Ø SOUØ956Ø C EQUATION FOR THE SPECIFIC ENTROPY OF WATER SF SOUØ957Ø F11=1.+F1+Y+F2+Y+Y+F3+Y++3.+F4+Y++4.+F5+Y++5.+F6+Y++6. SOUØ958Ø F12=1.+F7+Y+F8+Y+Y+F9+Y++3.+F10+Y++4. 50009590 S0UØ96ØØ SF=SC+F11/F12

~		00000000
C	DERIVATIVE DSF/DP; DSFDP	20083618
	F13=F1+2.+F2+Y+3.+F3+Y+4.+F4+Y++3.+5.+F5+Y++4.+8.+F8+Y++5.	SOUØ962Ø
	F14=F7+2.*F8*Y+3.*F9*Y*Y+4.*F10*Y**3.	S0UØ963Ø
	F15=F13/F11	S0UØ964Ø
	F16=F14/F12	S0UØ965Ø
	DSEDP = -SF + (F15 - F16) + DTDP / TC	S0UØ966Ø
c	CONSTANTS FOR SPECIFIC ENTROPY OF STEAM SG	S0UØ967Ø
	G1=0 5922502679D4	50009680
	C2-0 2121506453D7	SULADEDA
	(2-a, 227)	50003030
		50009700
		50009710
	G5=-0.370624752508	50009720
	G6=0.4303459784D8	50009730
	G7=0.5782905801D4	SOUØ974Ø
	G8=0.1950840259D7	SOUØ975Ø
	G9=0.3351957025D8	SOUØ976Ø
	G10=-0.3604330231D8	SOUØ977Ø
С	EQUATION FOR THE SPECIFIC ENTROPY OF STEAM SG	S0UØ978Ø
-	G11=1.+G1+Y+G2+Y+Y+G3+Y++3.+G4+Y++4.+G5+Y++5.+G8+Y++8.	S0UØ979Ø
	G12=1.+G7+Y+G8+Y+Y+G9+Y++3.+G1Ø+Y++4.	S0UØ98ØØ
	SG=SC+G11/G12	S0UØ981Ø
r	DERIVATIVE DSC/DP + DSCDP	50009820
Č		501/49834
		SULAOBAA
		50003040
		20083038
		20003800
	DSGDP=-SG+(G15-G18)+DTDP/TC	20009870
	RETURN	20009880
	END	S0UØ989Ø

APPENDIX D

Pressure and Quality Profiles

In this appendix the pressure and quality profiles obtained with SOURCE for some BCL tests are given. The choice of test numbers is based on highest and lowest subcoolings for each of the five BCL crack test sections. Hence total of 10 test numbers are chosen for presentation. The test parameters associated with each test are illustrated in each figure.

z (mm) D-3

APPENDIX E

Thermodynamic Properties of Saturated Water and Steam

The code SOURCE uses the subroutine STEAM to calculate the thermodynamic properties of saturated water and steam. The input parameter to STEAM is pressure. For given value of pressure, STEAM first calculates the corresponding saturation temperature, and then uses this value of saturation temperature to calculate the other parameters, h_f , h_g , v_f , v_g , s_f and s_g . STEAM also calculates the derivatives of the saturation properties, enthalpy, specific volume and the entropy, with respect to pressure. For this calculation, the derivatives of each property with respect to the pressure are expressed in the following form, for example, for specific volume of water,

$$\frac{dv_{f}}{dp} = v_{c} \cdot \frac{d}{dp} (v_{f}/v_{c})$$
$$= v_{c} \cdot \frac{d}{dT} (v_{f}/v_{c}) \cdot \frac{dT}{dp}$$

The listing of the subroutine STEAM is included in the main program listing SOURCE. When subroutine STEAM is called upon in SOURCE with a pressure value, it returns the saturated values of specific volume, enthalpy and entropy and their derivation with respect to pressure for the input pressure value.

The thermodynamic properties equations are due to Ishimoto et al. [15] and are presented below.

1. Saturation temperature:

$$\frac{T_{c}}{T} = \left(1 + \sum_{i=1}^{5} A_{i} X^{i}\right) / \left(1 + \sum_{i=6}^{7} A_{i} X^{i-5}\right)$$

2. Specific volume of saturated water:

$$v_{f}/v_{c} = \left(1 + \sum_{i=1}^{9} B_{i} Y^{i}\right) / \left(1 + \sum_{i=10}^{12} B_{i} Y^{i-9}\right)$$

3. Specific volume of saturated steam:

$$v_c / v_g = \left(\frac{T}{T_c}\right)^6 \left(1 + \sum_{i=1}^7 C_i Y^i\right) / \left(1 + \sum_{l=8}^{12} C_i Y^{l-7}\right)$$

4. Specific enthalpy of saturated water:

$$h_{f}/h_{c} = \left(1 + \sum_{i=1}^{6} D_{i} Y^{i}\right) / \left(1 + \sum_{i=7}^{10} D_{i} Y^{i-6}\right)$$

E-1

5. Specific enthalpy of saturated steam:

$$h_g/h_c = \left(1 + \sum_{i=1}^{6} E_i Y^i\right) / \left(1 + \sum_{i=7}^{10} E_i Y^{i-6}\right)$$

6. Specific entropy of saturated water:

$$s_{f}/s_{c} = \left(1 + \sum_{i=1}^{6} F_{i} Y^{i}\right) / \left(1 + \sum_{i=7}^{10} F_{i} Y^{i-6}\right)$$

7. Specific entropy of saturated steam:

$$s_g/s_c = \left(1 + \sum_{i=1}^{6} G_i Y^i\right) / \left(1 + \sum_{i=7}^{10} G_i Y^{i-6}\right)$$

Critical Properties for Water:

$$h_{c} = 2.107209 \times 10^{6} \text{ J/kg}$$

$$P_{c} = 2.2119256 \times 10^{7} \text{ N/m}^{2}$$

$$s_{c} = 4.4427222 \times 10^{3} \text{ J/kg,K}$$

$$T_{c} = 647.27 \text{ K}$$

$$v_{c} = 3.1698 \times 10^{-3} \text{ m}^{3}/\text{kg}$$

Symbols:

$$\beta$$
 = reduced pressure P/P_c
X = ln (1/ β)
Y = 1 - θ

Constants:

$$A_{1} = 0.129 542 684 9 \times 10^{0}$$

$$A_{2} = 0.451 360 243 6 \times 10^{0}$$

$$A_{3} = 0.212 237 843 6 \times 10^{0}$$

$$A_{4} = -0.358 143 709 6 \times 10^{-2}$$

 $A_5 = 0.909 \ 0.31 \ 628 \ 3 \times 10^{-4}$ $A_6 = 0.333 \ 853 \ 0.62 \ 2 \times 10^{1}$ $A_7 = 0.142 \ 655 \ 898 \ 5 \times 10^{1}$ Constants (continued)

^B 7	=	0.123	093	751	0x10 ¹⁰
^B 8	=-	0.135	116	048	0x10 ¹¹
B ₉	=	0.635	376	971	4x10 ¹⁰
^B 10	=	0.116	326	898	4x10 ⁵
וו ^B	=	0.768	677	553	4x10 ⁷
B ₁₂	=	0.369	408	938	0x10 ⁹

с ₇	= -	0.172	949	642	3x10 ⁸
с ₈	=	0.478	039	111	9x10 ⁴
و ⁰	=	0.143	626	686	2x10 ⁷
с ₁₀	=	0.273	219	597	4x10 ⁸
с ₁₁	= -	0.861	139	257	8x10 ⁸
C ₁₂	=	0.898	119	690	3x1C ⁸

D ₆ =-	0.169	003	475	3x10 ⁷
D ₇ =	0.528	873	227	7x10 ⁴
D ₈ =	0.982	421	289	1x10 ⁶
D ₉ =	0.782	590	628	8x10 ⁷
D ₁₀ =-	0.462	022	817	7x10 ⁷

E ₆	=	0.272	498	390	8x10 ⁸
Е ₇	=	0.480	296	564	1x10 ⁴
E ₈	=	0.138	587	610	4x10 ⁷
E ₉	=	0.232	356	620	5x10 ⁸
E ₁₀	=	0.813	454	111	0x10 ⁶

 $B_{1} = 0.103 083 704 2 \times 10^{5}$ $B_{2} = 0.553 842 656 9 \times 10^{7}$ $B_{3} = 0.179 977 219 3 \times 10^{9}$ $B_{4} = -0.474 384 340 7 \times 10^{9}$ $B_{5} = 0.201 974 977 9 \times 10^{10}$ $B_{6} = -0.625 856 400 9 \times 10^{10}$

 $C_{1} = 0.411 \ 687 \ 661 \ 4 \times 10^{4}$ $C_{2} = 0.882 \ 469 \ 159 \ 6 \times 10^{6}$ $C_{3} = 0.433 \ 265 \ 710 \ 0 \times 10^{7}$ $C_{4} = 0.283 \ 542 \ 718 \ 9 \times 10^{8}$ $C_{5} = 0.365 \ 887 \ 547 \ 4 \times 10^{8}$ $C_{6} = 0.129 \ 983 \ 597 \ 3 \times 10^{7}$

 $D_{1} = 0.503 588 841 8 \times 10^{4}$ $D_{2} = 0.852 988 031 0 \times 10^{6}$ $D_{3} = 0.397 566 129 4 \times 10^{7}$ $D_{4} = -0.132 121 217 4 \times 10^{8}$ $D_{5} = 0.747 256 735 8 \times 10^{7}$

 $E_{1} = 0.498 \ 130 \ 313 \ 7x10^{4}$ $E_{2} = 0.155 \ 796 \ 661 \ 1x10^{7}$ $E_{3} = 0.321 \ 871 \ 068 \ 9x10^{8}$ $E_{4} = 0.958 \ 496 \ 511 \ 4x10^{7}$ $E_{5} = -0.439 \ 895 \ 952 \ 3x10^{8}$

Constants (continued)

	-				
$F_1 = 0.500 \ 361 \ 430$	5x10 ⁴	$F_6 = 0.122$	650	602	1x10 ⁷
F ₂ = 0.827 385 789	8x10 ⁶	$F_7 = 0.518$	729	581	3x10 ⁴
$F_3 = 0.389 385 240$	7x10 ⁷	F ₈ = 0.916	803	401	9x10 ⁶
F ₄ =- 0.115 966 636	4x10 ⁸	F ₉ = 0.631	959	188	4x10 ⁷
F ₅ = 0.336 964 036	5x10 ⁷	$F_{10} = -0.676$	264	517	9x10 ⁷
G ₁ = 0.592 250 267	9×10 ⁴	G ₆ = 0.430	345	978	4x10 ⁸
G ₁ = 0.592 250 267 G ₂ = 0.212 150 645	9x10 ⁴ 3x10 ⁷	G ₆ = 0.430 G ₇ = 0.578	345 290	978 580	4x10 ⁸ 1x10 ⁴
$G_1 = 0.592 250 267$ $G_2 = 0.212 150 645$ $G_3 = 0.436 715 991$	9×10 ⁴ 3×10 ⁷ 8×10 ⁸	G ₆ = 0.430 G ₇ = 0.578 G ₈ = 0.195	345 290 084	978 580 025	4x10 ⁸ 1x10 ⁴ 9x10 ⁷
$G_1 = 0.592 250 267$ $G_2 = 0.212 150 645$ $G_3 = 0.436 715 991$ $G_4 = -0.175 543 802$	9×10 ⁴ 3×10 ⁷ 8×10 ⁸ 6×10 ⁸	$G_6 = 0.430$ $G_7 = 0.578$ $G_8 = 0.195$ $G_9 = 0.335$	345 290 084 195	978 580 025 702	4×10 ⁸ 1×10 ⁴ 9×10 ⁷ 5×10 ⁸

E-4

٧,

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720