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Abstract 

The concept of heuristic decision making is adapted to 
dynamic influence processes in social networks. We report 
results of a set of simulations, in which we systematically 
varied: a) the members’ strategies for contacting fellow group 
members and integrating collected information, b) the 
steepness of status distributions in a network, and c) the 
clustering structure of the members’ communication network. 
The results indicate that the contact and decision rules used 
by the members of the network affect group level outcomes 
and furthermore interact with both steepness of the group’s 
status distribution and clustering of its communication 
network. 

Keywords: Decision making; fast and frugal heuristics; 
social networks; small world networks; social influence; 
simulation; bounded rationality; dynamics. 

Introduction 
Research on group decision making indicates that group 
decisions often strongly depend on the distribution of 
individual group members’ preferences (Davis, 1973; Kerr 
& Tindale, 2004). For example, a popular decision rule that 
is widely used when committees and teams do not reach 
unanimity is the majority rule (Hastie & Kameda, 2005; 
Sorkin, West, & Robinson, 1998). When groups integrate 
their members’ opinions on the basis of a majority rule, the 
group decision is determined by the distribution of 
individual votes. In the present paper, we address the 
question of how the distribution of individual group 
members’ preferences as a central input to group processes 
develop in a dynamic social environment.  

Prior studies revealed that the preference distribution in 
groups depends on how the individual group members 
process their information when working on a choice task 
(Reimer & Hoffrage, 2006, 2003). For example, in one set 
of simulation studies, we compared the performance of 
groups whose members used either a compensatory decision 
strategy (a weighted additive model or a unit-weight model) 
or a non-compensatory heuristic (Take The Best or the 
Minimalist heuristic; see Gigerenzer, Todd, & the ABC 
Research Group, 1999). All groups integrated the individual 
members’ decisions on the basis of a majority rule. The 
fraction of members who preferred the correct decision 
alternative and, consequently, improved group performance 

depended on the strategies they applied and on features of 
the information environment. Specifically, in environments 
in which validities were linearly distributed, groups using a 
compensatory strategy achieved the highest accuracy. 
Conversely, when the distribution of cue validities was 
skewed, groups using a simple lexicographic heuristic 
performed best. 

In these prior studies, we considered only static 
environments, in which each group member formed his or 
her decision separately, without influencing any other 
member. Here, we extend this approach to a dynamic 
context, in which group members are assumed to 
communicate with and to influence each other prior to the 
group decision process.  

Overview 
A major purpose of our simulation study was to investigate 
which impact group members’ status and different 
communication networks have on social influence 
processes. We conceptualized social influence as the rate 
with which high status members in a network change their 
initial preferences. Analogous to research on cue-based 
group decision-making, we modeled member opinions as 
cue variables for individual decision making: Instead of 
processing information on cues, the agents in the network 
integrated opinions of other agents into an individual 
decision. While this framework departs from the prominent 
understanding of social influence, which sees social 
influence as an activity of “social forces” (cf. French 1956, 
Latané 1981, and Turner 1996) rather than as an instance of 
information processing, to us, it seems to be a very plausible 
approach to conceptualize social influence processes within 
an information-processing framework. 

In addition to status hierarchies, we considered different 
network structures as an environmental feature that can 
affect and moderate social influence processes (see 
Festinger et al, 1950; French, 1956; Friedkin,  1998; Latané, 
1996; and Latané & L’Herrou 1996). We considered 
networks of stable contacts, as it is common in the field of 
social network analysis (compare Wasserman & Faust 
1994). While one could combine the facets of status and 
network structure, we are concentrating on a different 
aspect, namely network clustering. Previous research 
(Latané, 1996, Latané & L’Herrou, 1996) has shown that 
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the way a communication network is clustered is a major 
predictor for the persistence of minority groups and, 
therefore, also a factor that may determine the extent to 
which high status members may be influenced by social 
interactions. 

In consequence, we focused on the following questions 
regarding global outcomes of social influence processes: Do 
members’ preferences converge? Does the manipulation of 
decision strategies, status distributions in a network, and 
network structures affect faction sizes? And finally, under 
which conditions do high status group members change 
their initial decision? 

Scenario: Partners in a Firm 
Our simulation model can be exemplified by the following 
scenario, which we adapted from Lazega (2001): Consider a 
group of lawyers who are partners in a law firm. In regular 
intervals, these partners gather in a partnership meeting in 
order to decide about topics concerning the firm, for 
instance, the branch of business in which the firm should 
further expand. In the time between those meetings the 
partners communicate among each other, of course with a 
pattern aligned to their formal work demands and informal 
preferences. At times, they also communicate about the 
forthcoming meeting. During the course of their 
communication, the partners may possibly alter their views 
and opinions on the topic to be discussed, therefore 
changing the communication environment of their fellow 
partners. Eventually, this repeated process either converges 
to unanimous views on the mentioned topics or leads to 
entrenchment of factions in the forthcoming partnership 
meeting.  

Model Structure 
In our thought experiment, we implemented this scenario in 
the following way: The lawyers of our example were 
represented by a set of 21 agents, each having a certain 
preference for a branch of business into which the firm 
should expand (say corporate law, litigation, or public law). 
Each lawyer was assigned a certain status value, which 
determined whether this agent was considered a high or a 
low status member of the network, which neighbors were 
contacted by the lawyer, and how much influence the 
lawyer had on the preferences of other lawyers who might 
contact him/her. Furthermore, a directed network connected 
the agents and represented their persistent communication 
channels. Every agent was assumed to update his/her 
preference according to some decision strategy. This 
decision strategy consisted of a contact rule, which selected 
communication partners from the agents’ local network 
neighborhood, and a decision rule, which integrated the 
absorbed information. The decision strategies we 
implemented differed to the extent to which they considered 
the preferences and status values of the agent and his/her 
neighbors in the network. Note that this environment is 
dynamic in that the simulation proceeds by repeated updates 
of all individual agents’ preferences.  

More formally, the model structure can be declared as 
follows:  Let the lawyers be represented by a set L of Nl=21 
agents. Each agent l i is associated with both a value di of a 
decision variable D, which contains three discrete values 
D=:{corporate law, litigation, public law} and a value si of  
an individual status variable S having continuous values in 
the range of (0.5,…, 1.0). Furthermore, a directed graph G, 
describes a network of directed communication channels cji  
between the agents L: G:={L,C} . Finally, each agent l i is 
assigned a decision strategy f out of a set of decision 
strategies F. This function f consists of a contact rule rc and 
a decision rule cd and maps an agent’s actual decision state 
dj_n onto his/her subsequent state di_n+1. Iterated and 
sequential call of this decision rule f for all agents results in 
a dynamic evolution of the model.  

In the next paragraph, we describe the three central 
features of our model in more detail: a) the contact and 
decision rules used by the individual agents, b) how the 
members’ status was distributed in a network, and c) the 
clustering structure of the communication network.  

Contact Rules and Decision Rules  
Decision strategies can be conceptualized on the basis of the 
following building blocks (Gigerenzer et al., 1999): a) a 
search rule, b) a stopping rule, and c) a decision rule. In 
order to tailor the decision strategies to our task of decision 
making in a dynamic network including ongoing 
interactions between agents, we added an additional 
building block by including a contact rule. According to a 
variation of the stopping criterion, decision strategies may 
be classified as compensatory or non-compensatory. 
Compensatory strategies utilize all available information: 
Any cue value can therefore be compensated by another 
one. This is not the case for the non-compensatory (or fast-
and-frugal) strategies: here absorption of information is 
stopped according to a certain criterion. Empirical research 
indicates that decision makers use non-compensatory 
strategies in particular under time pressure or when 
information search is costly (Rieskamp & Hoffrage, 1999). 
We modeled the aspect of compensation in two ways: (1) 
Whether or not an agent contacted all possible neighbors or 
only a subset of neighbors; (2) and whether the opinions of 
the contacted neighbors were integrated on the basis of a 
compensatory or a non-compensatory decision rule.  

In our simulation, we included two contact and four 
decision rules.  According to the first contact rule, agents 
contact every direct neighbor in their network, regardless of 
their status. We call this rule the “contact all”  or ALL rule. 
According to the second rule, agents contact only those 
neighbors, which have at least the same (or a higher) status 
value as the agents themselves. We name this rule the 
“higher equal” or HE rule. Its inclusion is based on 
observations in research on collective choice, which indicate 
that group members who have high expertise are at times 
more influential in the group decision process than members 
who have low expertise (e.g., Bonner, Baumann, Lehn, 
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Pierce, & Wheeler, 2006). Note that both rules include the 
searching agent himself/herself as information source. 

For the case of the decision component, we modeled an 
ensemble of four decision strategies (see Reimer & 
Hoffrage, 2006, 2003). The first strategy, the “weighted 
additive model” or WADD-rule, is a compensatory rule that 
integrates all available information. WADD chooses the 
alternative with the highest weighted sum, the weight being 
the cue’s respective validity. The alternative with the 
highest weighted sum is then chosen. In the present 
application, WADD decides in favor of that alternative for 
which most contacted neighbors vote, each member’s vote 
being weighted with his/her status value.  The second rule is 
the “unit weight model” or UWM-rule, which is also 
compensatory and analogous to the WADD-rule with one 
significant difference: Status values are generally treated as 
being in unity, thus information on individual status is 
ignored. The UWM strategy therefore determines the 
number of neighbors who favor a specific alternative and 
adopts the one which is held most frequently. Consequently, 
it can be interpreted as a local majority vote over the 
different decision alternatives (Reimer & Hoffrage, in 
press). The third rule is a heuristic decision rule called the 
“minimalist” or MIN-rule. Here one of the decision values, 
which have been gathered during the contact phase, is 
chosen at random with uniform probability. Plainly spoken, 
the MIN-rule follows the opinion of a randomly chosen 
neighbor who has been contacted. The last decision rule 
employed, the “follow the leader” or FTL-rule, is also a 
non-compensatory one. The strategy follows the decision of 
the “leader”—the neighbor with the highest status among all 
contacted neighbors. The rule has been modeled in analogy 
to the “take the best” heuristic for cue-based decision 
making (Gigerenzer et al., 1999). 

As can be seen in Table 1, we considered all possible 
combinations of contact and decision rules. The “follow the 
leader”-rule is listed only once, because it makes no 
difference, whether the “leader” is selected among all 
neighbors or only among the subset of higher status 
neighbors. 

 
Table 1: Contact and Decision Rules Considered. 
 
Contact Rule Decision Rule 
HE  (higher equal) UWM    (unit weight model) 
HE  (higher equal) WADD  (weighted additive) 

HE  (higher equal) MIN       (minimalist) 
HE  (higher equal) FTL        (follow the leader) 

ALL (all neighbors) UWM    (unit weight model) 
ALL (all neighbors) WADD  (weighted additive) 

ALL (all neighbors) MIN       (minimalist) 

Decision Environments 
As further features in our simulation, we varied two 
dimensions of the decision environment: The distribution of 

the agents’ status in a network, and the structure of the 
communication network. 

 
Status Distributions The first element of the decision 
environment (resp. the input variables of the set of agents´ 
decision rules) is the distribution DS of status values sj. 

We considered three shapes of status distributions, each 
with increasing steepness. The first is a linear distribution, 
which contains equal proportions of values over its entire 
range. The second is a flat J-shaped distribution, which 
contains considerably more high than medium or low 
values. The last status distribution is a steep J-shaped one, 
which contains only few high status values and a majority of 
low status values (see Reimer & Hoffrage, 2006, for 
respective distributions of cue validities).  

The status values of the respective distributions were 
randomly assigned to the agents because, in our model, we 
had no external criterion with which status was correlated. 
For the same reason, the absolute range of the distributions 
was effectively arbitrary.1 We chose a range of (0.5,..,1.0), 
in line with prior studies in which we considered validities 
(Reimer & Hoffrage, 2006). 

 
Network Structures The second feature of the decision 
environment is the structure of the communication network.  
Research on social influence processes in networks shows 
the eminence of the degree of clustering of a communication 
network. For example, Latané and L’Herrou (1996) found 
that high local clustering contributes to the emergence of 
stable clusters of opinions because it allows members to 
shield each other against external influence.  

Contrary to the analyses of Latané and L’Herrou, who 
considered regular grid structures and regular grids of 
irregular (and highly clustered) substructures, we 
implemented random graphs, which allow for variation of 
clustering properties of a network in a more controlled 
manner.  

Specifically, we concentrated on random graphs from the 
family of so called “small world networks” (compare Albert 
& Barábasi 2001, Newman 2003, and Watts 1999). This 
type of network has attracted considerable interest, because 
it plausibly captures characteristics of real-world social 
networks, namely the joint occurrence of both high local 
clustering coefficients and short average path lengths. This 
is also known as the small-world effect. Both the model as 
well as its name have their roots in the observation that 
seemingly unrelated persons often have mutual 
acquaintances and are therefore reachable via only a few 
intermediaries. 

An intuitive illustration of the small world model can be 
given as follows: Suppose individuals are situated in spatial 
units, such as an office hall in a company building or a 
neighborhood of a town. Then it should be plausible to 
expect strong connectivity within such a unit. Furthermore, 

                                                        
1 Originally, we employed both a high and a low valued linear 

status distribution. As expected, both induced exactly the same 
process behavior. 
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one could expect that some member of a unit also knows 
some members of another, different unit, who are also 
strongly connected locally. Related to our example, the 
spatial units could correspond to different office halls in the 
law firm’s building. 

We modeled this idea of clustering as follows. First, a 
regular ring network was created, in which each of the n 
nodes was connected to k neighbors on each side. This 
structure is called cyclic substrate, and as a regular grid it 
has the feature of high local clustering, thus representing a 
characteristic of spatial organization. Then, individual edges 
of the grid were rewired with a certain probability pr with 
randomly chosen nodes. Introduction of these shortcuts, 
with a rewiring probability ranging approximately within 
the interval of pr = (0.001,…0.2), leads to creation of a 
network with the mentioned small world effect: strong 
clustering, but no isolated highly clustered regions. A 
graphic example of a small world net is displayed in Figure 
1.  

 
 

Figure 1: Small world network (n=21, k=2, p=0.1).  

Note: The network has been created by introducing 
shortcut ties to a regular ring network, where every node is 

connected to two neighbors on each side. 
 
Of special interest for our question is the fact that by 

varying the rewiring probability pr, we are able to produce 
an array of differently clustered networks. A parameter of 
pr=0 results in a completely regular and highly clustered 
network, a parameter of pr=0.1 results in a small-world 
network, and a parameter of pr=1 results in a random and 
unclustered network, the so called random regular graph 
(see Table 2.) We employed these three parameter settings 
as variations of the agents’ network environments, thus 
controlling for the effects of clustering and average path 
length, which jointly could be termed isolated clustering. 
Furthermore, we set the number of neighbors of the agents 
to approx. four (k=2) over all three variations. 

In addition, we considered a completely connected 
network as a control condition in order to observe model 
behavior in the absence of structural effects. Furthermore, 
we assumed the network to have loops, which means that 
every agent was connected to himself/herself and, thus, had 
access to his/her own decision. 

 
Initial Values and Setup Generally, initial values were set 
according to certain criteria. First, status values were 
randomly assigned to agents. Furthermore, the initial 

distribution of decision values dj over the agents were 
assumed to be uniform, so that every alternative was 
assigned to exactly seven agents. Thus, we assumed no 
correlation of status values sj and initial decision values dj..  

 
Table 2: Employed Variations of the Small-World Model  

(n=21, k=2). 
 

Rewiring Probability Characteristic 

pr=0 Regular, high clustering 
pr=0.1 Small-world  
pr=1 Random regular, no 

clustering 
 
Every combination of decision rule, status distribution, and 
network structure was simulated 1000 times, each with a 
newly sampled network and a process length of 50 cycles. 

Simulation Results 
The simulations revealed that the decision rules, network 
topology, and status distribution affected global outcomes. 
The reported effects were tested with Hotelling’s T2-tests 
and were significant at α=0.01 level. 

Equilibrium, Faction Size, and Scaling  
Equilibrium has been achieved in all variations of the 
model. While it took the groups employing a MIN decision 
rule an average of approximately 25 cycles to reach 
equilibrium, the remaining rules converged within two to 
seven cycles. The reached equilibrium was usually one of 
entrenched factions with unanimity only being present in the 
case of the complete network.  

In cyclic regular networks, different faction sizes were 
observed for compensatory and non-compensatory rules. 
Figure 2 shows the mean sizes of the three possible 
factions. Each faction refers to one of the three decision 
alternatives: The smallest faction refers to the alternative 
that was favored by the smallest number of members in a 
network and the largest faction refers to the alternative that 
was favored by most members in a network.  

 

 
 
Figure 2: Mean faction sizes in a cyclic regular network 

(majority is reached at a count of eleven) 
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Non-compensatory rules accentuated contrasts in faction 
size, as can be seen from their steeper slope in Figure 2. 
These differences were smaller in small world and random 
regular networks, which typically yielded identical profiles 
for non-compensatory but a larger majority and smaller 
minorities for compensatory rules. For the case of  
compensatory rules, this finding is in coherence with the 
assumption that clustering stabilizes minority positions. 
Simulations, in which we included networks containing 9 
and 31 agents revealed similar results.  

Decision Change of High Status Partners  

There is substantial variation of the propensity of the 
different decision rules to induce an opinion change of high 
status members, which we defined as the subset of agents 
with above average status. The manipulation of network 
structures and status distributions had an effect on opinion 
changes in high status members. 
 
Network Structure Focusing on an aggregated view of 
network structures averaged across status distributions, as 
depicted in Figure 3, we identified the following results. 

If status is important for contact behavior (as it is in case 
of the HE-rule), there is only a constantly low probability of 
a decision change in high status members, regardless of the 
decision rule employed.  

 

Figure 3: Probability of decision change of high status 
members over networks with decreasing isolated clustering 

(cyclic regular, small world, random regular) 
 
If all neighbors are contacted, regardless of their status (as 

is the case for the ALL-rule), the clustering structure 
becomes important for the compensatory UWM and WADD 
decision rules. The lesser the degree of isolated clustering, 
the higher the probability of decision change of high status 
members, which increases in parallel by .15 for both 
decision rules. However, the status insensitive UWM-rule 
shows a respective probability which is constantly approx. 
0.10 higher than for the WADD-rule. The MIN rule shows a 
maximal probability of decision change of high status 
members, which remains constant over all considered 
networks. In a completely connected network, the examined 
strategies showed only minor differences with regard to the 
probability of a change in the high status members’ 
opinions. It ranges from 0.54 to 0.67.  

The results for the different network types can be 
summarized as follows: Contrary to a completely connected 
network, the effectiveness of the rules varies considerably 
across the networks of the small world family. The rules 
which are status-sensitive with respect to their contact 
behavior (i.e. the HE contact rule) are insensitive to changes 
in the networks’ clustering structure. In contrast, the status-
insensitive rules, which consider all locally available 
information, regardless of status values, are sensitive to 
changes in the networks’ clustering structure. The 
probability of high status initial decision change in this 
latter case increases with a decrease of isolated clustering. 
Highest probabilities can be found for the case of complete 
ignorance of status and of decision distributions, which is 
represented by the ALL-MIN rule. The latter finding is 
robust across all networks and status distributions. 

Under a HE contact rule, the decision strategies yielded 
almost identical results. We checked whether the HE-
contact rule yields insensitivity to network structure only 
because it eliminates all individual decision scenarios 
except the trivial one, where only a single alternative is left. 
This had been considered possible because every agent in 
the non-complete networks had, on average, only five 
neighbors (including himself/herself). Therefore, we also 
simulated large networks with 31 agents and a structure 
with steeply varying connectivity from one to 15 neighbors, 
where elimination of all decision alternatives is implausible. 
However, we observed the same leveling effect of the HE-
contact rule, concluding that this effect is not due to 
triviality of local decision environments. 

 
Status Distributions Another interesting finding regarding 
the decision rules can be seen in Figure 4, which shows the 
results for the case of the small-world network; the same 
pattern was also observed in the other networks considered.  

 

Figure 4: Probability of decision change of high status 
members in a small world network over status distributions 

of increasing steepness 
 

Again, strategies with the hierarchy-oriented HE-contact 
rule showed virtually identical behavior. Furthermore, the 
HE-decision strategies are sensitive to variation of the shape 
of the status distribution. An increase of the steepness of 
hierarchy leads to a decrease of opinion changes in high 
status members.  
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To a smaller extent, this sensitivity is also true for the 
compensatory ALL-WADD strategy, which reacts to 
hierarchy in terms of information weighting. Because of 
their complete ignorance of the status distribution, ALL-
UWM and ALL-MIN are insensitive to respective changes. 

Conclusion 
In summary, we were able to identify the following 
behavior of our virtual law firm: Although the influence 
process settles quickly, unanimity is unlikely and faction 
sizes are governed both by decision rules and by clustering 
of the network. Non-compensatory rules accentuate contrast 
in faction sizes, while decrease of clustering leads to 
marginalization of minority factions.  

Furthermore, the change of high status partners’ initial 
decisions is most probable under the following conditions: 
First, the status hierarchy is not relevant for the contact 
behavior of the partners. As soon as status becomes 
important for information search, the probabilities to exert 
influence on high status partners drops to minimum values, 
regardless of the network’s clustering structure. Second, the 
status hierarchies are flat. Steep status distributions are 
especially hampering if partners consider status not only for 
information weighting but also for information search. 
Third, in the case of status insensitive (ALL-UWM) and 
weighted local majority (ALL-WADD) decisions, higher 
probabilities are obtained with decreasing isolated 
clustering. Finally, if individual partners decide at random, 
with complete ignorance of status distributions, high 
probabilities are obtained. 

Altogether, our results show that the concept of heuristic 
decision making can be fruitfully applied to complex group 
processes. Under the model’s premise that individual 
decisions are based on the status of fellow group members, 
we found an array of interesting results. In the present 
analysis, the interaction of group members’ decision 
strategies and environment structures seems most important 
to us. We are able to show that a non-compensatory contact 
rule results in insensitivity of the influence process towards 
the network’s degree of clustering. 
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