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Introduction 

A central theme in the psychology of language concerns the role of perceptual, articulatory, and 

modality-neutral representations and processes in language processing. For example, verbal working 

memory has been argued to have both articulatory and auditory components (Gupta & MacWhinney, 

1995; Wilson, 2001) and/or components not tied to any sensory modality (Jones, Beaman & 

Macken,1996).  Another example concerns the nature of percepts in speech perception, which have 

variously been characterized as auditory (Diehl & Kluender, 1989, Diehl, Lotto & Holt, 2004) or as 

motor gestures (Liberman & Mattingly, 1985; Galantucci, Fowler & Turvey, 2006). A third example 

addresses the question of what makes word forms similar to one another. Word form similarity 

affects many phenomena in speech production and perception, including phonological priming, 

speech errors, immediate verbal recall, and spoken word recognition difficulty (Conrad & Hull, 

1964; Goldrick, Folk & Rapp, 2010; Goldrick, Baker, Murphy & Baese-Berk, 2011; Levelt, 

Schriefers, Vorberg, Meyer, Pechmann & Havinga, 1991; Page, Madge, Cumming & Norris, 2007).  

What is less clear is the degree to which, or the circumstances under which, word form similarity is 

based on auditory or articulatory properties of words, or on some form of abstract representation 

shared across modalities.  

A key concept in studies of effects of word form similarity is phonological neighborhood density. 

Informally, phonological neighborhood density is often defined as “the number of words that sound 

similar to a given word” (Vitevitch (2007, p. 166). A common method for determining that number 

is to count the number of words (“neighbors”) in a reference lexicon that differ from a target word 

through addition, deletion, or substitution of exactly one phonological segment, regardless of the 

degree of auditory similarity of target and neighbor. By that criterion, the neighbors of cat include 

caught, pat, and can. Convenience is doubtless one reason why these two characterizations of 



phonological neighborhood density – in perceptual/auditory terms and in terms of phonological 

segments –  are each common, conveying informal working definitions (“neighbors sound similar”) 

and straightforwardly estimating phonological neighborhood density in electronically searchable 

dictionaries (“count anything as a neighbor that differs by one segment”). Convenience aside, these 

definitions and methods reflect the potential role of various sensorimotor properties vs. modality-

neutral segmental representations in the phenomena that the literature on neighborhood density has 

brought to light.  

Different definitions invite different inferences about the sources of effects of word form similarity 

generally, and phonological neighborhood density in particular. The definition of phonological 

neighbors as similar-sounding words implies that effects of phonological neighborhood density are 

due at least in part to auditory similarity; if that is so, then the degree to which words sound similar 

to one another should affect the strength of phonological neighborhood density effects. On the other 

hand, the one-segment-difference metric implies that words overlapping in segmental content 

without sounding particularly similar (e.g. leap and lope) should act as neighbors of one another. 

Conversely, words that do sound similar to one another, but do not form neighbors by the one-

segment-difference metric (e.g. this and fish), are not expected to act as phonological neighbors 

under the segmental-overlap conception of word form similarity.  

What makes word forms similar? Common sense suggests that the answer must depend on the nature 

of the task, such as identifying words over noise vs. producing tongue twisters. It follows that a 

measure of phonological neighborhoods that successfully predicts neighborhood effects in one 

domain needn’t be relevant to some other domain. The fact that phonological neighborhood density 

as estimated by the one-segment difference criterion is predictive of a wide range of tasks was an 

empirical discovery that has had a major impact on models of speech production and 



comprehension. However, observations consistent with those models do not constitute proof of a 

causal role of one-segment-difference neighbors in the phenomena being modeled: Words that share 

segments in common require some of the same articulatory movements and often do sound similar to 

one another. Therefore, one and the same effect may be consistent with models based on ‘amodal’ 

segment overlap, articulatory, or perceptual similarity.  As Vitevitch & Luce (2016) point out: 

“[M]etrics for computing similarity neighborhoods are not the same as theoretical statements about 

the proposed effects of similarity neighborhood activation on recognition.” Yet, the predictiveness of 

phonological neighborhood density metrics is sometimes taken as the basis for inferred mechanisms. 

For example, effects of phonological neighborhood density on phonetic detail in speech production, 

which we discuss below, are sometimes explained in terms of the auditory similarity of words (e.g. 

Lindblom, 1990; Wright, 2004, Scarborough, 2004). At other times (including in our own previous 

work, e.g. Gahl et al. 2012), effects of phonological neighborhood density on speech production are 

linked to (amodal) segmental and articulatory similarity of words, without any assessment of 

auditory similarity.  

The question of what makes words similar also figures in information-based models of spoken 

language processing (Aylett 2000, Hale, 2001; Jaeger & Levy, 2006; Levy, 2008). The central idea 

in these models is that language processing is optimized for efficient communication, and that 

communication is most efficient when information is conveyed at a constant rate. The more an item 

(a word or sound) reduces the uncertainty about the message to be conveyed at any given point in an 

utterance, the heavier its informational load. A word that is highly similar to other words may 

generate high uncertainty. Segments of words in dense phonological neighborhoods may 

considerably narrow down the set of words matching the signal and hence reduce uncertainty. 

Applied to speech production, the idea is that speakers spend more time and/or articulatory effort, 



and/or produce signals that increase the probability of recognition for highly informative items than 

on less informative items (Fosler-Lussier & Morgan, 1999; Aylett 2000, Jurafsky 2001, Van Son & 

Pols, 2003; Aylett & Turk, 2004, 2006; Pluymaekers Ernestus & Baayen, 2005; Bell, Brenier, 

Girand & Jurafsky, 2009; Kuperman, Pluymaekers, Ernestus & Baayen, 2007, Tily & Kuperman, 

2012; Seyfarth, 2014, Buz & Jaeger, 2015, Pate & Goldwater, 2015). The question of what makes 

words similar can be stated as the question of how estimates of information load are to be fleshed 

out. In practice, information-based models of speech production and recognition have calculated the 

information carried by sounds and words in different ways. These differences depend in part on the 

unit being modeled, such as phonological segments (Van Son & Pols, 2003), syllables (Aylett & 

Turk, 2006), or words (Buz & Jaeger, 2015), and on the estimates of contextual predictability. In 

part, though, they depend on assumptions about what it takes to disambiguate a signal: Like metrics 

of phonological neighborhood density, some estimates of information density take auditory 

similarity into account, while others do not. Which estimates best predict variation in the signal or in 

recognition accuracy, and whether articulatory effort, intelligibility, and recognition probability vary 

as a function of one measure of information load is an empirical question. One step towards 

answering that question was taken in Buz & Jaeger (2013), who described three different ways of 

estimating neighborhood density: The (log) count of the neighbors, the summed log frequency of the 

neighbors, and a measure taking into account both the segment-to-segment confusability of target 

and neighbors along with the frequency of neighbors (termed the frequency-weighted neighborhood 

probability in Luce & Pisoni, 1998, see below, but computed using a different confusability matrix). 

Buz & Jaeger (2013) found that the three measures behaved similarly as predictors of word duration 

in a picture naming experiment. (We return to the results of the picture naming experiment, which is 

described in greater detail in Buz & Jaeger, 2015, in the General Discussion.) Buz & Jaeger (2013, 



2015) did not attempt to assess whether the neighborhood density measures were equally good 

predictors of recognition accuracy of the recorded naming responses. More generally, the ability of 

different measures of phonological neighborhood density to predict recognition vs. production has 

typically been assessed in separate studies, using different sets of words. Tracking the effects of all 

aspects of word similarity and contextual predictability affecting production and recognition, in 

identical contexts, remains an unmet goal.    

The present study takes a step in that direction. We track effects of variables indexing word-form 

similarity with and without taking perceptual similarity into account in two data sets representing 

auditory word recognition accuracy (the ‘recognition’ set) and word duration in a corpus of 

conversational speech (the ‘production’ set, taken from the Buckeye corpus; Pitt et al., 2007). We 

hypothesized that perceptual and segmental metrics of phonological similarity have different and, to 

some degree, separable effects in recognition accuracy vs. conversational speech, and that these 

differences would reveal themselves as asymmetries in the predictiveness of a perceptually-based vs. 

a segmentally-based estimate of phonological neighborhood density. 

Several cautionary notes about our analyses of these two very different data sets are in order.  

Pronunciation and intelligibility of stimuli in the recognition task vs. the conversational speech differ 

enormously (see e.g. Johnson, 2004; Keune et al., 2005). Conversational speech is produced far 

more rapidly and contains far more contextual clues than laboratory speech. The differences in the 

time available for utterance planning and articulation undoubtedly affect what kinds of lexical 

information can be reflected in conversational speech vs. the recorded stimuli for the recognition 

task. Indeed, Gahl et al. (2012) speculated that some of the differences between effects of 

phonological neighborhood density in single-word production tasks vs. conversational speech may 



be due to the different temporal demands of the tasks. We return to these caveats and what we see as 

fruitful directions for future research in the Discussion.  

 

Background: Phonological Neighborhood Density in recognition and production 

The core empirical fact that earned phonological neighborhood density its place among lexical 

variables of interest to psycholinguists is that words in dense phonological neighborhoods (those 

with many neighbors) are more difficult to recognize, other things being equal, than words in sparse 

neighborhoods (Goldinger, Luce, & Pisoni, 1989; Luce & Pisoni, 1998; Luce, Pisoni, & Goldinger, 

1990; Vitevitch & Luce, 1998).  That observation provided the empirical foundation of a highly 

influential model of spoken word recognition, the Neighborhood Activation Model (NAM, Luce & 

Pisoni, 1998) and for a large body of research on recognition and production (see e.g. Chen & 

Mirman, 2012, and Vitevitch & Luce, 2016 for overviews and discussion).  

The observation that words in dense neighborhoods tend to be difficult to recognize fits a widely-

held intuition: that neighborhood density effects arise because phonological neighbors tend to sound 

similar to one another. The more neighbors a word has, the more words it resembles, increasing the 

difficulty of the categorization task faced by the listener. However, from the start, measures of 

phonological neighborhood density were calculated in different ways, not all of which made 

reference to what words sounded like. The original instantiation of the NAM (Luce & Pisoni, 1998) 

employed the Frequency-Weighted Neighborhood Probability Rule (FWNP), which uses forced-

choice phoneme confusions in noise to quantify the auditory confusability of a target word with all 

other words in the lexicon (Luce & Pisoni, 1998, Experiment 1). That is to say, the method of 

estimating the lexical “competition” faced by a target word took into account the fact that some 



segments are more confusable than others (as well as the fact that some words are more frequent 

than others). Furthermore, the FWNP took into account a target word’s segment-by-segment 

confusability with all other words in the lexicon, not just those that differed from the target in one 

segment. However, when predicting auditory lexical decision and naming latencies (to words 

presented in the absence of background noise), Luce & Pisoni (1998, Experiments 2 and 3) used the 

number of one-phoneme-difference neighbors as an estimate of phonological neighborhood density, 

rather than the segment confusion matrices (which rely on segments presented in background noise). 

By that criterion, all words differing from a target word by exactly one segment are neighbors – and 

words that differ in more than one segment from the target are not neighbors. Numerous subsequent 

related studies, both in the recognition literature and the production literature, also use that shortcut 

estimate of phonological neighborhood density, sometimes weighted by lexical frequency, to 

quantify lexical competition (Cluff & Luce, 1990; Dell & Gordon, 2003; Gordon, 2014; Munson & 

Solomon, 2004; Scarborough, 2010, 2013; Vitevitch & Luce, 1998).  

Alongside evidence for an inhibitory effect of phonological neighborhood density on spoken word 

recognition, there is evidence for a facilitative effect of high neighborhood density on spoken word 

production (Harley & Brown 1998; Vitevitch 1997; Gordon, 2002; Marian & Blumenfeld, 2006; 

Peramunage, Blumstein, Myers, Goldrick, & Baese-Berk, 2010; Vitevitch, 2002; Vitevitch & 

Sommers, 2003). Dell & Gordon (2003) model this pattern of high PND facilitating word 

production, but inhibiting word recognition, as resulting from interactive feedback between lexical 

and segmental levels, consistent with Dell’s interactive two-step model of lexical access and 

retrieval (Dell, 1986; Dell, Schwartz, Martin, Saffran, & Gagnon, 1997):  In production, feedback 

from phonological neighbors boosts target word activation, which is already high, due to the initial 

jolt of activation from the semantic level. Recognition, on the other hand, begins with activation of 



phonological segments, boosting the activation of target words, but also of other words containing 

those same phonological segments – leading to a net loss in target activation that is especially 

perilous when a target has many phonological neighbors. Chen & Mirman (2012) argue, on the basis 

of simulations in a domain-general interaction and competition model, that the reported pattern of 

facilitation and inhibition is predicted in any model in which multiple representations are activated in 

parallel: Weak competition (such as that posed by phonological neighbors in spoken word 

production) yields a net benefit for the target, whereas strong competition (such as that posed by 

phonological neighbors in spoken word recognition) results in target inhibition. More recently, Chen 

& Mirman (2015) have shown that phonological neighbors produce a facilitative effect even in 

spoken word recognition, when semantic context weakens the activation of phonological neighbors. 

Importantly for the current discussion, these explanations make no reference to auditory or 

articulatory similarity; the amount of competition among jointly activated phonological segments 

does not depend on how similar the phonological segments are.   

Complicating matters is the fact that phonological neighborhood density is highly correlated with 

several other variables, including lexical frequency (Frauenfelder, Baayen, Hellwig & Schreuder, 

1993), various measures of phonotactic probability (such as the probability of a given segment 

appearing in a given position, possibly conditioned on the segment preceding or following it; 

Vitevitch, Armbrüster & Chu, 2004; Vitevitch & Luce, 2005), onset density (i.e. the proportion of 

neighbors with the same initial segment as a target word), and the ‘spread’ of the neighborhood (i.e. 

the number of segmental positions at which neighbors can be formed; Vitevitch, 2007).  Each of 

these variables affects speech production, but not all of them do so in the same direction as 

phonological neighborhood density. While high lexical frequency and phonotactic probability are 

associated with shorter naming latencies, high onset density has been found to elicit longer naming 



latencies when phonological neighborhood density is controlled for (Vitevitch, Armbrüster & Chu, 

2004). Several related models similarly predict patterns that take into account the left-to-right nature 

of word recognition (Allopenna, Magnuson, & Tanenhaus, 1998; Magnuson, Dixon, Tanenhaus, & 

Aslin, 2007) and production (Sevald & Dell, 1994). For example, Sevald & Dell (1994) argue that 

phonological selection is a serial process: Following lexical selection and during phonological 

encoding, target segments are accessed in the order in which they are to be articulated. Sevald & 

Dell (1994) found that speakers were able to repeat pairs of words more quickly when the words 

differed in their initial consonants (e.g. PICK-TICK) than when the difference was in the final 

consonants (e.g. PICK-PIN). Sevald & Dell (1994)  interpret that observation as an effect of shared 

segments producing lexical competition: Words that share initial segments act as strong competitors 

of one another. That interpretation is consistent with Chen & Mirman (2015)’s simulations: While 

high neighborhood density generally yields target facilitation in word production, that facilitation 

gives way to inhibition at a point when the only remaining competitors are strong. That is, at the 

point when the initial two segments have been selected, competition between pick and pin is strong. 

In summary, the presence of multiple correlated variables (such as neighbors overlapping in onsets 

in a specific stimulus set or in the lexicon generally, as well as phonotactic probability and the 

positions in a word at which neighbors can be formed among) considerably complicate the 

interpretation of observed effects.  

Evidence for a facilitative effect of high phonological neighborhood density on spoken word 

production is still relatively sparse, compared to the copious literature on its inhibitory effects on 

spoken word recognition, and the idea remains somewhat controversial. For example, Sadat, Martin, 

& Costa (2014) argue that high phonological neighborhood density is associated with longer, not 

shorter latencies in picture naming. However, Sadat et al. report that the correlation between PND 



and ‘onset density’, i.e. the number of words that share the initial segments with the target, was .97 

in their data set of Spanish nouns. Sadat et al.’s observation of longer latencies with increasing 

phonological neighborhood density may therefore be due to an inhibitory effect of onset density (cf. 

Vitevitch, Armbrüster & Chu, 2004).  The literature on effects of phonological neighborhood density 

on speech production is still small, compared to the literature on its effects on recognition. More 

research is needed on individual effects of variables that are correlated with phonological 

neighborhood density. 

 

Effects of phonological neighborhood density on pronunciation variation  

The inhibitory effects of phonological neighborhood density on word recognition inspired a line of 

inquiry in studies of pronunciation variation, exploring the possibility that talkers might pronounce 

words in dense neighborhoods more clearly than words in sparse neighborhoods, to compensate for 

the recognition difficulty (Munson & Solomon, 2004; R. Wright, 2004). Consistent with this 

possibility, a number of studies reported that words in dense phonological neighborhoods are 

hyperarticulated and/or phonetically enhanced compared to words in sparse phonological 

neighborhoods, as evidenced by longer VOTs (Baese-Berk & Goldrick, 2009; Goldrick et al., 2013; 

Fox et al. 2015), increased nasal coarticulation (Scarborough, 2004, 2010, 2013), or increased vowel 

dispersion (Munson, 2007; Munson & Solomon, 2004; Wright, 2004; but see Flemming, 2010, and 

Gahl, 2015, for critiques and reanalyses of several of these studies). 

However, not all studies of phonological neighborhood density effects on pronunciation report high 

density to be associated with hyperarticulation or lengthening. Gahl et al. (2012) examined the 

effects of phonological neighborhood density on word durations and on vowel dispersion (Euclidean 



distance from a talker’s average first and second vowel formants) in the Buckeye corpus of 

spontaneous speech (Pitt et al., 2007). Gahl et al. (2012) found that CVC (consonant-vowel-

consonant) words tended to be shorter with increasing phonological neighborhood density, when 

other factors affecting word duration were controlled in a mixed-effects regression model. In 

addition, vowels in high-density words tended to be more centralized in F1/F2 space, i.e. more 

schwa-like, than vowels in low-density words. Since shortening and vowel centralization are also 

often observed in high-frequency words, which are retrieved more quickly than low-frequency 

words, Gahl et al. (2012) interpreted these findings as part of a broader pattern of phonetic reduction 

of words whose retrieval is facilitated at early stages of language production: In other words, 

reduction of words with high phonological neighborhood density is attributed by these authors to be 

consistent with, and a consequence of, the facilitation in lexical retrieval predicted in Chen & 

Mirman and Dell & Gordon’s models.  

Several variables correlated with phonological neighborhood density have been explored in research 

linking pronunciation variation to lexical retrieval. Yiu & Watson (2015) recently demonstrated that 

initial overlap of words was associated with a greater degree of lengthening of word durations 

compared to final overlap. Yiu & Watson (2015) interpret that observation to result from words with 

shared overlap (PICK-PIN) being strong competitors of one another, as proposed in Sevald & Dell 

(1994). The idea is that the phonological planning process is slowed down while that competition is 

resolved. 

As mentioned earlier, high phonological neighborhood density has been found to be associated with 

phonetic enhancement in a number of studies of voice onset times (VOT). (Baese-Berk & Goldrick, 

2009; Goldrick et al., 2013; Fox et al. 2015 found longer VOTs in high-density vs. low-density 

targets. The interpretation of those findings is complicated by the presence of other correlated 



variables.  Fricke, Baese-Berk & Goldrick (in press) evaluated the relationship of minimal pair status 

(i.e. whether a stop-initial target word had a neighbor differing only in voicing of the initial stop, e.g. 

pig/big vs. peel/*beel), phonological neighborhood density, and position-specific phonological 

neighborhood density, i.e., the number of neighbors that can be formed by changes at each position, 

on voice onset times (VOT) in initial stop consonants. Although both minimal pair status and 

phonological neighborhood density affected VOT when entered individually in a model of VOTs, 

neither accounted for significant variance when added to a model that included position-specific 

phonological neighborhood density. This raises the possibility that other reported effects of 

phonological neighborhood density on VOTs may likewise be due to position-specific measures, 

rather than phonological neighborhood density.  

The search for lexical factors in pronunciation constitutes a departure from a research tradition in 

which details of pronunciation were either considered to be a matter of late stages of the language 

production processes modeled in serial psycholinguistic models (such as the phonetic encoding 

stage, Levelt & Wheeldon, 1994) or considered to be outside of the scope of psycholinguistic models 

altogether (see Hickok, 2012, for an overview). (An early exception to that strategy is Balota, 

Boland &  Shields, 1989, who observed an effect of semantic priming on word durations. The lion’s 

share of research on pronunciation variation has focused on effects of syllable frequency, n-gram 

probability (of segments and/or words), and phonotactic probability (see e.g. Jurafsky, 2003, for an 

overview). Such effects are well established, and there can be no doubt that word duration is in part 

due to factors affecting late stages of articulatory planning and motor execution, perhaps due to the 

availability of pre-compiled motor plans for frequently-produced syllables (cf. Cholin, Levelt, & 

Schiller, 2006; Levelt, Roelofs, & Meyer, 1999; Levelt & Wheeldon, 1994). 



Since syllable frequency and lexical frequency are highly correlated, particularly in the case of 

monosyllabic words, many effects of lexical frequency on pronunciation can in principle be 

explained as effects of articulatory routinization (though not all; see Gahl, 2008, for discussion). 

Since the words in our datasets are monosyllables, it is questionable whether effects of syllable 

frequency and lexical frequency can be disentangled in our data. We see no reason to doubt the 

effects of phonotactic probability, syllable frequency, or lexical frequency on word durations. As 

explained below, we included syllable frequency in our models of word duration; given the high 

correlation with lexical frequency, we did not attempt to disentangle effects of syllable frequency 

from effects of word frequency. 

 

Limitations of phonological neighborhood density as a measure of lexical confusability 

As successful as phonological neighborhood density has proven to be in studies of word recognition, 

it has its limitations. The first is that the most commonly-used neighborhood density metrics 

categorically divide words into target neighbors vs. “non-neighbors.” That categorical division can 

have unexpected and undesirable consequences, depending on the research question at hand: Some 

words within a set of neighbors might be expected to be more perceptually similar to the target word 

than others – and words outside a target’s neighborhood may be more perceptually similar to the 

target than some target neighbors. For example, both seen and shun are neighbors of sun, but shun 

may be expected to be more highly confusable with sun because [ʃ] and[s] are perceptually similar, 

whereas seen is likely to be less confusable with sun because [i] and [ʌ] are less similar. Another 

potential limitation to PND is that words that differ from the target by more than one phoneme are 

not included in measures of lexical density. For instance, fish and this are not neighbors by a one-



phoneme difference criterion, but it would be reasonable to expect some confusability between the 

two words. Indeed, some words that differ by multiple phonemes (fish and this) may be more 

confusable than words that differ by only one (seen and sun). In part, these are limitations of the one-

phoneme-difference shortcut measure: The FWNP (Luce & Pisoni, 1998, Experiment 1) assigns 

weights to target competitors based on auditory confusability of segments and takes into account all 

words in the lexicon, not just those words that differ from the target in one phoneme.  

Neighborhood density metrics using confusion probabilities, such as the FWNP, have another 

limitation, owing to the fact that these measures fail to take into account the number of perceptually 

similar alternatives for each target segment (Iverson et al, 1998). For example, a confusion matrix 

may reveal that [z,ð] are perceptually similar to one another, and [f,s,ʃ,θ] are also perceptually 

similar to one another. If [z,ð]) are confused on 50% of trials, and [f,s] are confused on 25% of trials, 

then based on p(z|ð) vs.  p(f|s), [z] and [ð] will be judged to be more “similar” than [f] and [s] 

(Iverson et al, 1998). When these values are weighted by word frequency and used to compute 

FWNP, individual target-competitor comparisons will be distorted by the number of response 

alternatives and no longer be based solely on the frequency-weighted perceptual similarity of the two 

words. 

To correct this problem, Iverson et al. (1998) introduced Phi-square, which can be used to quantify 

segment similarity while taking into account the number of perceptually similar alternatives. The 

phi-square statistic is quantified as follows: 

 



where xi and yi are the frequencies that phonemes x and y were identified as phoneme i in a forced 

choice identification task, E(xi) and E(yi) are the expected frequencies of xi and yi if x and y were 

perceptually identical, and N is the total number of responses to xi and yi. If x and y are perceptually 

identical, they should be expected to be identified as members of a phoneme category equally often. 

Therefore, the expected frequencies, E(xi) and E(yi), are the average of the frequencies with which 

phonemes x and y were each identified as category i, because hypothetically, if [z] and [ð] were 

perceptually identical, participants should choose evenly between them when making a phoneme 

identification. Confusion probabilities quantify how regularly two phonemes are confused for one 

another (i.e., a single cell within a confusion matrix); the phi-square value quantifies how similar the 

pattern of responses to the two phonemes are (i.e., comparing two rows in a confusion matrix). 

Using the entire distribution of responses for two phonemes negates the problem that the number of 

likely alternatives interacts with response probabilities.  Phi density thus provides a measure of 

perceptually-based target competition that avoids the undesirable conclusion that highly ambiguous 

phones are less confusable than less ambiguous ones. 

A second strength of using Phi-square values rather than confusion probabilities (as FWNP does) is 

that it reduces the influence of response biases that are present in forced-choice phoneme confusion 

tasks. If a participant disproportionately chooses a phoneme response for reasons that are not related 

to the task (e.g., always guessing [g] when unsure), it generates artifacts in the probability data. Phi-

square values avoid these artifacts by evaluating the similarity of two phoneme response 

distributions, rather than simply evaluating the likelihood that two phonemes will be confused (see 

Iverson et al., 1998 and Strand, 2014). 

Once the similarity of phoneme pairs has been established, word-level similarities may be calculated 



using the position-specific phi-square values for a target and competitor. For example, the predicted 

confusability of “cat” and “cup” is quantified as Φ
2
(k|k) * Φ

2
(æ|ʌ) * Φ

2
(t|p). Following the method 

of calculating FWNPs (Luce & Pisoni, 1998), Strand & Sommers (2011) calculated the perceptual 

similarity of each target word with every other word in a reference lexicon, and summed these 

values to obtain a measure of density called “Phi density.” Critically, similarity values can be 

calculated between word pairs that differ by multiple phonemes (e.g., fish and this, to return to the 

example above), thereby removing the distinction between “neighbors” and “not neighbors”; in Phi 

density (as in Luce & Pisoni’s FWNP), all words are allowed to compete. As a consequence, a word 

can have a PND of 0, but still have high Phi density, if its segments are confusable with other 

segment combinations that also form words in the lexicon.  

Phi density predicts additional variance in spoken word recognition beyond that accounted for by 

PND or by continuous measures of lexical competition based on confusion probabilities (Strand, 

2014; Strand & Sommers, 2011). These studies suggest that the success of PND at predicting spoken 

word recognition accuracy may be due in part to the fact that it is correlated with and approximates 

measures of auditory confusability. However, Strand & Sommers (2011) did not also evaluate the 

influence of other measures that correlate with PND, such as syllable frequency. This leaves open 

the possibility that the improvement in predicting variance in spoken word recognition was not 

actually due to Phi density, but to other syllable-level, lexical, or segmental properties.   

 

Aims and predictions 

The goal of the present study is to model the effects of a variables targeting auditory vs. segment-

based phonological neighborhood density on word recognition and production. We do so by 



modeling variation in word duration and recognition accuracy in two datasets that have figured in 

discussion of effects of phonological neighborhood density, but that so far been analyzed only from 

the perspective of perception (Slote & Strand, in  press) or production (Gahl et al., 2012), but not 

both.  

 

Methods 

Data sets 

Spoken word recognition data were obtained from an existing dataset (Slote & Strand, in  press). 

These data included word recognition in noise scores of 400 consonant-vowel-consonant (CVC) words by 53 

college-aged listeners with normal hearing. Six of those words were excluded from the present analysis 

because they did not appear in the SUBTLEXUS database (Brysbaert & New, 2009). Excluding trials on 

which participants failed to respond left 19,860 observations. Words were presented in a background of six-

talker babble at a signal to noise ratio of 0 at approximately 65dB. Each word was presented individually with 

no carrier phrase and participants were instructed to type what they heard.   

Word duration data were obtained from the Buckeye Corpus of conversational speech (Pitt et al., 

2007; Pitt, Johnson, Hume, Kiesling, & Raymond, 2005), which consists of one hour of spontaneous speech 

from each of 40 talkers (20 male, 20 female; 20 under 40 years of age, 20 over 40 years of age) from 

Columbus, Ohio. Target words were all monomorphemic CVC content words in the corpus, with the 

following exclusion criteria: (1) Words which did not appear in the lexical databases used for estimating 

syllable frequency, PND, or auditory confusability,; (2) Word forms that are frequently used as function 

words or as discourse markers, such as right or like; (3) Orthographic forms with multiple phonemic 

representations, such as read and lead; (4) Utterance-initial and utterance-final word tokens, as well as word 

tokens immediately following or immediately preceding filled pauses such as um and uh; (5) Words all of 
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whose tokens had bigram probabilities of 1, i.e. probabilities given the immediately preceding or following 

word, which often represent parts of fixed expressions and/or hapax legomena in the corpus. The final data set 

contained 477 word types, represented by 11,095 tokens. 

Our dataset only contains monosyllables, raising the question whether the observed effects are 

informative about speech perception and production more generally. As an anonymous reviewer points out, 

the correlation between lexical frequency and PND is approximately 0.5 in the 40,000 word dictionary of the 

English Lexicon Project (ELP; Balota, et al., 2007). In our sample, the correlation was far lower than that (r = 

.13 in the recognition set and .02 in the production set). The reason for the large difference is the relationship 

between word length and PND: The 40,000-word ELP lexicon includes multisyllabic words, whereas our 

sample is restricted to CVC monosyllables.  Long words tend to be lower in frequency and generally have 

fewer neighbors than short ones – by necessity, since long words are less likely than short words to differ by 

exactly 1 phone. In the ELP, 1-syllable words have an average of 12.4 neighbors. For 2-syllable words, the 

average drops to 2.1, and 3-syllable words have only .3 neighbors on average; see also (Frauenfelder, Baayen, 

Hellwig, & Schreuder, 1993). Despite the large differences in neighborhood size for long vs. short words, 

monosyllables form an important subset of the words speakers and listeners typically encounter.  For 

example, 81% of word tokens in the Switchboard corpus of conversational speech are monosyllables 

(Greenberg, 1999). We also note that, although the majority of work on lexical competition has been done on 

monosyllabic words, bisyllabic words show similar effects of lexical competition as monosyllabic words 

(Vitevitch, Stamer, & Sereno, 2008), with high density words being recognized less accurately on a word 

recognition task and more slowly on a lexical decision task. This suggests that, while the processing of 

multisyllabic words is certainly a topic awaiting much more research, the properties of monosyllabic words 

form a useful starting point. 

 

Description of variables in the regression models 
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To assess the influence of Phi density and PND on the two outcome variables, we fitted models 

containing these variables along with other known predictors of, respectively, recognition accuracy and word 

durations.  

Lexical frequency Word frequency of occurrence values were obtained from the SUBTLEXUS 

database (Brysbaert & New, 2009) and represent the log-transformed number of times a given word appeared 

per million words. 

Baseline Duration. Some segments are inherently longer than others. For example, tense vowels tend 

to be longer than lax vowels, and nasal stops tend to be longer than voiceless oral stops (Bent, Bradlow, & 

Smith, 2008; Crystal & House, 1988; Peterson & Lehiste, 1960; Umeda, 1977). In addition, segment 

durations vary with phonological context, for example word length, position within a word, or (in the case of 

vowels) voicing of a following consonant. To control for the ‘inherent’ duration of the target words, i.e. the 

duration they might have if factors such as lexical frequency, neighborhood density, speaking rate, and so 

forth, had no effect, we estimated their ‘baseline’ durations, as follows: We calculated the median duration of 

each consonant and vowel in the Buckeye target words (i.e. CVC content words in fluent speech, using the 

criteria for inclusion described above). For consonants, we calculated separate medians for tokens in initial vs. 

final position. For vowels, we calculated separate median durations for tokens preceding voiced vs. voiceless 

consonants. As expected, the by-segment medians differed substantially based on position and final voicing. 

The “baseline duration” of each target word was the summed median duration of its segments, conditioned on 

position (initial vs. final consonants) and final voicing. Baseline durations were log transformed and centered.  

This estimate of baseline duration differs from that in Gahl et al. (2012), who calculated the mean 

(not the median) duration of each segment type across the entire Buckeye corpus, i.e. including tokens before 

disfluencies. Means are unduly affected by outliers (particularly for duration measures, which cannot be 

negative). Moreover, tokens before disfluencies are often substantially longer than segments in the subcorpus 

of target word productions. The baseline measure used in the current work is more firmly grounded in 
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research on phone durations, reducing the possibility that variability due to position and final voicing might 

yield spurious effects of PND or other lexical variables. 

 Bigram probability given the word preceding / following the target: The (log-transformed) 

probability of a word, given the immediately preceding or following word in an utterance, which is a known 

predictor of word durations in connected speech (Bell et al., 2003; Fosler-Lussier & Morgan, 1999). Bigram 

probabilities were estimated based on the entire Buckeye corpus. Word types with average bigram 

probabilities of 1 were excluded from further analysis.  

Speech rate (before/after): The (log-transformed) speaking rate, measured as syllables per second, in 

the stretch of speech from the preceding utterance boundary up to the target (Speech rate before) and from the 

target up to the end of the utterance (Speech rate after). 

Syllable frequency (type, token). Syllable frequency was estimated using the method described in 

(Cholin et al., 2006): Syllable type frequency was estimated as the number of word types in the CELEX data 

base (Baayen, Piepenbrock, & van Rijn, 1993) containing a given syllable. Syllable token frequency was 

estimated as the summed lexical frequency (according to CELEX) of all words containing a given syllable.  

Phonological Neighborhood Density (PND). We calculated the number of words in the reference 

lexicon (Balota et al., 2007) that could be made by a single phoneme substitution from the target word. 

Although the substitution-only method for calculating phonological neighborhood density is less common 

than the method also counting words that can be made by addition or deletion from the target word, we used 

the substitution-only method here so that the reference lexicon was the same for calculating PND as 

calculating Phi density (see below). The recognition task on which the confusability measures for the Phi-

density metric is based did not allow for the possibility of confusing a segment with the “null segment” (see 

Luce & Pisoni, 1998), as participants knew there was some segment in each position. Values from the 

substitution-only method are highly correlated with values from the substitution/addition/deletion method (r = 

.98 for all CVCs in the reference lexicon; Strand, 2014), so this change is not likely to substantially influence 
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the results. In the discussion to follow, we will use the abbreviation PND to mean the number of words that 

differ from a target in exactly one segment. 

Phi density (Phi).  Phi density was calculated following the method described in the introduction 

(Strand, 2014; Strand & Sommers, 2011). The Phi density of a word is the sum of a quantity indexing the 

pairwise perceptual similarity between the target word and every other word in the reference lexicon.  

Tables 2 and 3 show the pairwise correlations of the lexical variables in the sets of 394 and 469 word 

types, respectively. It will be observed that PND and Phi density are only moderately correlated (r = .25).  On 

the other hand, lexical frequency and syllable frequency were strongly correlated (type frequency: .54; token 

frequency: .83). The strong correlation of lexical frequency and syllable frequency was expected in our word 

list of monosyllabic words.  
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Table 2. Pairwise (Spearman) correlations among lexical variables in the recognition data set (n = 394) 

 
Lexical frequency Syllable type frequency Syllable token frequency Phi density 

Lexical frequency 

 

   

Syllable type frequency 0.54 

 

  

Syllable token frequency 0.83 0.68 

 

 

Phi density 0.04 0.16 0.18 

 PND 0.13 0.35 0.21 0.25 

 

 
Table 3. Pairwise (Spearman) correlations among the lexical variables in the production data set (n = 469) 

 Baseline 

duration 

Lexical 

frequency 

Syllable 

type 

frequency 

Syllable 

token 

frequency 

CV 

biphone 

VC 

biphone 

PND 

Baseline duration        

Lexical frequency -0.14       

Syllable type 

frequency 

-0.16 0.38      

Syllable token 

frequency 

-0.21 0.74 0.57     

Initial (CV) 

biphone 

probability 

-0.04 -0.05 0.19 0.01    

Final (VC) 

biphone 

probability 

-0.27 0 0.24 0.07 0.32   

PND -0.23 0.02 0.24 0.11 0.38 0.44  

Phi density -0.31 0.08 0.1 0.19 0.04 0.04 0.26 

 



Modeling strategy: 

We wished to understand the role of perceptual similarity (Phi-density), segmental neighborhood structure 

(PND), and articulatory fluency (lexical and syllable frequency) in word durations and spoken word 

recognition. We fitted models of word duration and recognition accuracy containing variables intended to tap 

these three potential sources of variation in recognition difficulty and pronunciation. A total of 201 word 

types appeared in both data sets (10,070 tokens in the recognition task, 7,044 tokens in the production set). 

For a side-by-side comparison of the predictors of interest on the same set of words, we fitted models of 

recognition accuracy and word duration to the data sets using the 201 words for which both recognition and 

pronunciation data were available. Each model contained the variables targeting segmental (PND), perceptual 

(Phi density) and articulatory (Feature similarity, syllable frequency) similarity to other words, along with 

‘baseline’ predictors that are known to affect spoken word recognition accuracy and word duration. In 

addition, we tested whether the pattern of significant and non-significant effects observed in the set of 201 

words generalized to the larger set, to reduce the possibility that patterns in smaller set were due to 

idiosyncrasies of the 201 words.  

Statistical treatment of the data  

We fitted mixed-effects regression models of recognition accuracy and word durations. Two related 

sets of issues in regression modeling that have received a great deal of attention among psycholinguists 

concern the specification of the random effects structure (Barr, Levy, Scheepers, & Tily, 2013; Gelman & 

Hill, 2006) and the order of entry or removal of variables (both in the fixed effects structure and the random 

effects). In the models reported here, we entered all fixed effects simultaneously, as opposed to entering or 

removing variables in a stepwise fashion.
1
  

                                                           
1
 In an earlier version of this work, we fitted a “baseline” model containing non-lexical variables (e.g. local speaking rate 

and a baseline measure of expected word durations based on average segment duration) and compared that baseline 
to models containing one additional predictor at a time: E.g. the baseline was compared to the baseline plus Phi, or the 
baseline plus syllable frequency. In other words, PND, Phi, and syllable frequency did not compete with one another. 
The pattern of significant effects of lexical frequency, Phi density, and PND was the same as the results presented here. 



For the random effects structure, we used forward entry of (by-target word and/or by-participant) 

random slopes corresponding to the variables in the fixed effects. In many cases, including random slopes 

resulted in problematic models, either due to zero variances or to perfect correlations among variance 

components, or else resulted in failure to converge. To satisfy our (and a reviewer’s) curiosity about the effect 

forward entry vs. backward reduction in the random effects structure, we explored forward entry and 

backward reduction; in no case did the pattern of significant fixed effects of the critical variables change as a 

result of the choice of method of entry in the random effects structure. The models reported here are the 

models with the maximal random effects structure that appeared to be supported by the data, on the basis of 

the variances and correlations in the random effects. Observations with large residuals (more than 2.5 SDs) 

were removed at each modeling step and the model refitted without those cases. Continuous variables were 

log-transformed where doing so resulted in more nearly normal distributions. All numerical variables were 

centered around their means. Treatment coding was used for all factors.  

The criterion variable in the word recognition data was accuracy (“correct” vs “incorrect”). These 

analyses were completed using logit mixed-effect models with a binomial distribution. The same approach to 

the random effects specification was used in the models of recognition accuracy and the models of word 

duration. All statistical analyses were performed using R (R Development Core Team, 2008) and the R 

package lme4 for mixed-effects modelling  (Bates & Maechler, 2010, version 1.1-7, 2014).  

Results  

Recognition 

The model of word recognition accuracy for the set of 201 words for which both recognition and production 

data were available is summarized in Table 4 (left columns). The pattern of significant effects was similar to 

those observed in the larger set of 394 (right columns). Along with the expected facilitatory effects of lexical 

frequency, Phi density and PND emerged as significant predictors of recognition accuracy; words with more 

lexical competition by either measure showed lower accuracy in the set of 394 words. In the set of 201 words, 



the effect of PND was marginally significant (p = - .06). Syllable token frequency (residualized against lexical 

frequency) failed to produce a significant effect in either dataset. The strongest correlations among the fixed 

effects estimates in the model using 201 word types was that between the estimate of the effect of Phi density 

and PND (r = -.29). All other correlations among fixed effects had absolute values smaller than .16. The 

strongest correlations among the fixed effects estimates in the model using 394 word types were those 

between the estimate of the effect of Phi density and PND (r = -.24) and between Phi density and syllable 

token frequency (r = -.24). All other correlations among fixed effects had absolute values smaller than .12.  It 

will be observed that the models do not include random slopes. In an earlier version of the current work, we 

did include by-participant random slopes for lexical frequency and PND (the maximal random effects 

structure supported by the data). The pattern of significant fixed effects was identical to the model reported 

here. The corresponding random slopes were not supported by the available data for the model of word 

duration, complicating the comparison of the significant predictors of recognition vs. production.
2
 We report 

the models with identical random effects structure here, so as to avoid creating the impression that the 

behavior of the fixed effects (particularly for the critical variables Phi density and PND) was due to 

differences in power arising from differences in the random effects structure. 

A follow-up model using (residualized) syllable type frequency (i.e. the number of word types containing a 

given syllable), rather than syllable token frequency (i.e. the summed frequency of all words containing a 

given syllable) also failed to reveal a significant effect of syllable frequency apart from lexical frequency. The 

significant effect of PND diverges from prior work, which showed that PND failed to account for unique 

variance in word recognition accuracy when phi-density was controlled for (Strand & Sommers, 2011). 

However, the data in Strand & Sommers (2011) included fewer target words. In an earlier version of the 

current work, using only 118 word types, we observed that PND ceased to be significant when Phi density 

was entered into the model, consistent with Strand & Sommers (2011). Therefore, effects of PND that are 

separate from Phi-density may be subtle and require a large data set to obtain.  

  

                                                           
2
 We thank Florian Jaeger for raising this point. 



 

Table 4. Summary of the models of word recognition accuracy, using 201 (left columns) and 394 (right columns) 

word types 

 

Fixed effects 

  201 Word types (10,070 observations)  394 Word types (19,860 observations) 

  β (SE) z p β (SE) z p 

 
(Intercept) 

0.429 (0.108) 3.96 < .0001 0.244 (0.088) 2.77 0.01 

 
Lexical frequency  

0.301 (0.129) 2.327 0.02 0.525 (0.074) 7.09 < .0001 

 
Syllable token frequencyres 

-0.050 (0.094) -0.534 0.59 0.052 (0.047) 1.12 0.26 

 
PND 

-0.033 (0.018) -1.866 0.06 -0.041 (0.013) -3.30 < .0001 

 
Phi density 

-0.640 (0.257) -2.491 0.013 -0.852 (0.188) -4.530 < .0001 

Random effects 

 

  Variance SD Variance SD 

 

 
Target (intercept) 

1.6930 1.301 1.8855 1.3731  

 
Participant (intercept) 

0.1369 0.370 0.1354 0.3679  

 

 

 

Word duration 

 

The models of word duration for the 201 “shared” target words and for the total set of 477 words are 

summarized in Table 5. In both models, there were significant effects of baseline duration, forward and 

backward bigram probabilities, and speaking rate before and after the target, in the expected direction: 

Increased baseline duration was associated with longer word durations. High lexical frequency, high bigram 

probability and high contextual speaking rate were each associated with shorter word durations.  Residual 

syllable token frequency failed to produce a significant effect. Phi density failed to give rise to a significant 

effect in either model. PND (counting only substitution-related neighbors) also failed to give rise to a 

significant effect in the model of 201 words, but did do so in the larger data set. In an earlier version of the 



current work, we included the neighbors related to the target through substitution, addition, and deletion of 

segments in our models of word durations. That measure reached significance in the set of 201 words (β = -

0.002, SE = 0.001, t = -1.96), as well as in the larger dataset (β = -0.003, SE = 0.001, t = -2.97). The pattern of 

significant effects, including the non-significance of Phi density, was otherwise identical in the models with 

substitution-only vs. substitution-deletion-addition neighbors. By either measure, higher neighborhood 

density was associated with shorter word durations. Phi density failed to give rise to a significant effect in all 

models of word duration, regardless of the size of the data set.  

The strongest correlations among the fixed effects estimates for both data sets were between lexical frequency 

and the Intercept (-.29 for the smaller set and -.25 for the larger set) and between Phi density and the baseline 

estimate of word duration (.34 and .31, respectively). Follow-up models using (residualized) syllable type 

frequency, rather than syllable token frequency, failed to reveal a significant effect of syllable frequency apart 

from lexical frequency.  

 

The baseline duration variable in the model of word duration is necessary, but raises a potential problem, 

pointed out by a reviewer. The variable is necessary because segments differ in their ‘inherent’ duration, as 

well as in the degree to which their duration varies. For example, nasal stops are much more variable in 

duration than taps. Unsurprisingly, the duration of a word that one might expect, given the segments it 

contains, is in fact a strong predictor of actual word duration. A model of word duration that ignored 

segmental content would strike us as misguided. However, the baseline duration variable is, by necessity, 

correlated with Phi density, PND, - and any variable that is partly predictable from segmental content. The 

correlation between Phi density and baseline duration arises because both are ultimately based on properties 

of segments. For example, sibilants are fairly confusable with one another. Words containing sibilants 

therefore tend to have higher Phi density than words that do not contain sibilants - although not always and 

not necessarily. The correlation between baseline duration and Phi density means that part of the variance 

potentially attributable to Phi density is accounted for by the baseline. In order to explore which of the two 

variables (baseline duration vs. Phi density) best explains the variability in word duration that could in 



principle be explained by either, we fitted a model containing one variable (baseline duration or Phi density) 

and then compared that model to a model containing the other variable, as well. The results indicated that 

baseline duration, i.e. the duration of a word that one might expect, given the segment it contains, was a 

robust predictor of actual word duration, whereas Phi density was not. 

 

There is a sizable body of evidence showing that phonotactic probability affects segment duration – and 

therefore, potentially, word durations. For example, Kuperman, Ernestus & Baayen (2008) show that there is 

a robust relationship between phonotactic probabilities (measured as n-phones, i.e. n-grams of phones) and 

segment duration in Dutch, English, German, and Italian spontaneous speech. Phonotactic probability is also 

known to be correlated with PND (Frauenfelder , Baayen & Hellwig, 1993). This raises the possibility that the 

effects of PND in our models could be due to phonotactic probabilities. To explore this possibility, we fitted 

models using biphone probabilities in place of and alongside PND and/or syllable frequency and lexical 

frequency. We used the phonotactic probabilities from the Phonotactic Probability Calculator (Vitevitch & 

Luce, 2004). The effects of biphone probabilities were non-significant, except in models excluding lexical 

frequency and syllable frequency, i.e. when biphone probability was the only variable capturing the 

probability of target strings of segments. We interpret this pattern as indicating that phonotactic probability is 

predictive of word durations, and that PND has a significant effect on word durations beyond the effect of 

combinations of segments captured by biphone probabilities.  One limitation of the biphone probabilities used 

here, and possibly the reason for the non-significance of biphone probabilities in the models containing 

syllable frequency and word frequency, was the fact that only within-word biphones were considered (the 

probabilities associated with CV and VC in each target), as opposed to biphones across word boundaries, i.e. 

taking into account the segments preceding and following the target in each utterance. We suspect that word-

in-context biphones may very well yield an additional shortening effect, as in the data modeled in Kuperman, 

Ernestus & Baayen (2008). 

We were also interested in seeing whether our data sets gave any indication of an effect of syllable frequency 

beyond the effect of lexical frequency. Therefore, we fitted simple linear regression models predicting lexical 



frequency from syllable frequency and vice versa. We then added the residuals of those models to our mixed-

effects regression models. We found that residualized measures of syllable frequency never predicted 

variability beyond that attributable to lexical frequency. 

Table 5. Summary of the models of word duration, using 201 (left columns) and 477 (right columns) word types. 

 

Fixed effects 

  201 Word types   477 Word types  

  β t  β t 

 
(Intercept) 

0.074 (0.018) 4.03 
 

0.102 (0.016) 6.28 

 
Baseline duration (log) 

0.779 (0.062) 12.53 
 

0.707 (0.044) 16.23 

 
Backward bigram (log) 

-0.024 (0.002) -13.77 
 

-0.025 (0.001) -18.17 

 
(Backward bigram, log)

2
 

0.005 (0.001) 6.19 
 

0.003 (0.001) 5.6 

 
Forward bigram (log) 

-0.012 (0.002) -6.16 
 

-0.012 (0.002) -7.73 

 
Speech rate, after (log) 

-0.147 (0.009) -15.58 
 

-0.136 (0.008) -17.69 

 
Speech rate, before (log) 

-0.087 (0.009) -10.1 
 

-0.083 (0.007) -11.33 

 
(Speech rate, before (log))

2
 

-0.045 (0.013) -3.5 
 

-0.025 (0.011) -2.31 

 
Lexical frequency  

-0.028 (0.006) -4.99 
 

-0.032 (0.004) -7.68 

 
Syllable token frequencyres 

-0.007 (0.01) -0.71 
 

-0.009 (0.007) -1.28 

 
PND 

-0.001 (0.002) -0.97 
 

-0.002 (0.001) -2.05 

 
Phi density 

0.021 (0.024) 0.9 
 

0.009 (0.017) 0.54 

 

Random effects 

  Variance SD Variance SD 

 
Target (intercept) 

0.007 0.085 0.0078 0.088 

 
Speaker (intercept) 

0.0089 0.0941 0.0079 0.089 

 
Residual 

0.0523 0.2287 0.0584 0.242 

 

 

Table 6 summarizes the pattern of significant effects of variables related to neighborhood density in the 

models of recognition and production. 



Table 6. Summary of effects of lexical variables on recognition accuracy and word duration in two word 

lists (n = 394 and n = 469) and their intersection (n = 201). Non-significant effects are marked “n.s.”.  

 Perception Production 

 n394 n201 n469 

Lexical frequency increased accuracy increased accuracy shortening shortening 

Phi density decreased accuracy decreased accuracy n.s. n.s. 

PND decreased accuracy decreased accuracy n.s. / shortening shortening 

Syllable frequency n.s. n.s. n.s. n.s. 

 

 

Discussion 

We assessed the ability of a segmental measure and a perceptually-based measure of word form 

similarity to predict two outcome variables - word durations in conversational speech and spoken 

word recognition accuracy. The phoneme-based measure (PND, i.e. phonological neighborhood 

density estimated as the number of words differing from the target in one segment) was a significant 

predictor of both spoken word recognition accuracy and word durations. The perceptually-based 

measure (Phi density) was a significant predictor of spoken word recognition accuracy, but not of 

spoken word durations. We interpret the significant effect of PND in both the production and the 

perception data sets as effects of lexical neighbors that are not necessarily perceptually similar to the 

target, but have segments in common with the target, consistent with numerous previous studies of 

phonological neighborhood density. We interpret the significant effect of Phi density on spoken 

word recognition, but not word durations, as reflecting an effect of ‘perceptual neighbors’, i.e. words 



that sound similar to the target, on recognition. Each of these conclusions has theoretical 

implications. 

The first conclusion - that phonological neighbors in the lexicon affect articulatory detail – adds to 

the growing literature documenting effects of early stages of language production, such as lexical 

retrieval, on pronunciation  (Wright, 1979; Gahl, 2008; Lam & Watson, 2010; Arnold, Kahn & 

Pancani, 2012; Goldrick, Vaughn & Murphy, 2013; Heller & Goldrick, 2014, to appear; Fink & 

Goldrick, 2015; Mousikou & Rastle, 2015). The idea that early stages of language production affect 

spoken word durations in connected speech is consistent with a more general line of research 

demonstrating the role of ‘central’ representations and mechanisms on ‘peripheral’ processes such as 

articulation and response execution generally. A similar line of research is being pursued in research 

on typing (Crump & Logan, 2010) and handwriting (Roux et al., 2013; Kandel et al., 2011; Kandel, 

Peereman & Ghimenton, 2013). Effects of strictly lexical properties on fine phonetic detail are 

consistent with cascading or fully interactive models of language production, in which articulation 

may proceed even as retrieval processes are still ongoing.  

The second conclusion confirms and extends previous research showing that Phi density, a measure 

of perceptual neighborhood density, produces an effect on spoken word recognition over and above 

the effect of PND (phonological neighborhood density based on segment substitution). Prior work 

(Strand & Sommers, 2011) found that PND predicted word recognition accuracy when Phi density 

was not included in the model, but the effects of PND disappeared when Phi density was included. 

The current study, however, found that the significant effects of PND remained when Phi density 

was included. A possible explanation for this discrepancy is the larger dataset used in the current 

study. If the effects of PND beyond Phi-density are small, the larger sample of words may be 

necessary to detect them. The current results suggest that the success of PND at predicting word 



recognition accuracy is not solely attributable to the fact that PND is approximating auditory 

similarity. 

Once one accepts that lexical properties (as opposed to only ‘peripheral’ properties that are specific 

to the domain of motor movements) can be reflected in word durations, the question arises whether 

the direction of the effect – the fact that higher PND was associated with shorter, not longer, word 

durations, is expected or unexpected. If it is indeed the case that high PND has a facilitating effect on 

word form retrieval (Dell & Gordon, 2003; Marian & Blumenfeld, 2006; Vitevitch, 2002), then 

proposals claiming that pronunciation variation can reflect the speed of word form retrieval entail the 

prediction that the effects of PND should parallel those of lexical frequency. Frequent words shorten, 

and so should words from dense phonological neighborhoods. The current results, and the models of 

the same corpus of conversational speech reported in Gahl et al. (2012), are consistent with that 

prediction.  

The idea that phonetic detail reflects early stages of language production, as opposed purely being a 

matter of motor execution also means that response latencies (in single-word production) and word 

durations (in connected speech) should reveal many of the same factors: Any factor known to 

facilitate lexical retrieval might potentially result in shorter word durations. Therefore, response 

latencies and word durations might be expected to correlate positively, a pattern that has been 

observed at times (e.g. Arnold, Kahn & Pancani, 2012, Mousikou & Rastle, 2015), but is far from 

being well established.  

We have commented elsewhere (Gahl, 2008) that participants’ tendency to pace themselves evenly 

in tasks involving the production of word lists and short phrases may get in the way of studying 

lexical effects on word duration. Articulatory and acoustic properties of word-initial segments are 



another factor that can complicate studying the relationship between speech onset latencies and word 

durations, as noted in Kawamoto et al. (2008).  For example, Buz & Jaeger (2015) observed a 

positive correlation between latencies and word durations, but also found that effects of latencies (as 

a measure of lexical planning) and (frequency-weighted) phonological neighborhood density in a 

model of word durations were largely independent of one another, as evidenced by very low fixed-

effect correlations in a mixed-effects regression model of word durations. Buz & Jaeger (2015) 

interpret this as evidence for the independence of planning and articulation. However, these findings 

are complicated by several methodological issues in the words used in Buz & Jaeger (2015), of 

which we mention one here. The low-density target words had a larger number of initial voiceless 

stops (7 out of 18) than the high-density words (2 out of 18). Voiceless stops begin with a complete 

closure, i.e. acoustically a period of silence that is indistinguishable from the latency to begin 

speaking.  The duration of stop closures is variable, but in the order of 80 ms (Umeda, 1977). 

Therefore, the recorded “latencies” for the low-PND words (reported to be 52 ms longer than for the 

high-PND words) may be substantially increased by the initial stop closures and thus inflated 

relative to the high-PND words. This makes it difficult to assess latencies separately from word 

durations.  

 

The model of word duration also has implications for the role of perception in pronunciation 

variation. We have argued that the word duration data modeled here reflect word-level information 

that is independent of perceptual properties of words; in particular it is independent of the perceptual 

confusability of target words with other words. The effect of the number of phonological neighbors 

on target word duration does not appear to be due to perceptual target confusability. It may be 

important to point out that we restricted our attention to fluent multi-word utterances. We suspect 



that words in very short utterances, as well as words near pauses and disfluencies, all of which were 

excluded from our data, may be a better place to look for effects of perceptual target confusability 

with specific alternatives: For example, talkers respond to requests for clarification and 

disambiguation (“I said hyPERarticulated, not hyPOarticulated”) and make up their minds about 

tricky word pairs (“Stalagm-, no wait, I mean stalacTITE!”) – choices, in other words, in which 

target words are being contrasted with confusable alternatives. 

 

Caveats and limitations 

 

Several caveats are in order. One limitation of the current study concerns the continuous vs. 

categorical nature of our outcome variables. Comparing predictors of a continuous variable (word 

duration) and a categorical one (accuracy of word identification) may yield spurious apparent task-

dependent differences (Tooley & Bock, 2014; we thank Florian Jaeger for pointing us to that work). 

One continuous measure tapping the recognition process that one might conceivably use to address 

this problem is the auditory lexical decision (ALD) task, i.e. a task in which participants are asked to 

make speeded judgments about whether phoneme strings form real words. However, ALD tasks are 

typically conducted in the absence of background noise (Goldinger, 1996). Presenting stimuli 

without masking noise can be an advantage, as it enables making inferences about lexical processing 

without degrading the stimuli. However, Phi density values are derived from measures of phoneme 

confusion in noise. Applying Phi density to measures of word identification in the absence of noise 

is therefore problematic. Indeed, although Luce & Pisoni (1998) calculated continuous measures of 

perceptual similarity for predicting identification accuracy, they employed PND when predicting 



ALD responses. Therefore, given our use of Phi-density, we did not include ALD data in the current 

study. 

A second limitation arises because conversational speech and words spoken in citation form (with or 

without masking noise) sound quite different from one another (cf. Johnson, 2004). This difference 

has consequences for our ability to assess the role of auditory similarity in conversational speech 

production. This is a serious limitation not just of the current study, but, to our knowledge, prior 

research in this area more generally. The problem arises because available measures of perceptual 

similarity of words are based on segment confusability of segments produced in a citation context 

(e.g. [aCa]), not segments produced in conversational speech, in which segments undergo 

coarticulatory and other connected-speech processes that inevitably affects their acoustic and 

perceptual properties (cf. Farnetani & Recasens, 1997 for an overview). To our knowledge, sizable 

data sets on the perceptual confusability of either segments or words as produced in spontaneous 

speech are unavailable. Using tokens from the Buckeye Corpus in a recognition task, perhaps with a 

continuous measure of recognition difficulty, strikes us as a useful direction for future research. 

Doing so would necessitate different independent measures, however: measures of auditory 

confusability (like Phi density) are based on confusability of tokens produced in a citation context 

(e.g. vowel-Target-vowel), which may sound quite different when produced in conversational 

speech. Therefore, Phi density may be a poor predictor of auditory confusability of words as spoken 

in conversational speech. This of course raises the possibility that Phi density (and other available 

segment-based measure of the auditory confusability of words) is a poor predictor of word duration 

not because perceptual confusability doesn’t affect word durations, but because of the difference in 

segment confusability.  



An alternative approach might be to investigate to what extent word durations in conversational 

speech are predictable from the confusability of phones in conversational speech. As a first step in 

that direction, we compared the confusability matrices that formed the basis for the Phi density 

measure (Strand & Sommers, 2011) to transcriber agreement data the Buckeye corpus (Raymond et 

al., 2002) to determine whether the types of feature confusions made were consistent across 

databases. In both, the vast majority of confusions were made within manner and place class (i.e., 

fricatives confused for other fricatives). However, the available data from the Buckeye transcribers 

contained too few instances of transcriber disagreement to enable meaningful comparisons with the 

types of confusions made in the recognition task.  

In any case, transcriber agreement cannot replace a full analysis of the phone-by-phone confusability 

of phones: Segments in conversational speech frequently undergo various (and sometimes extreme) 

forms of phonetic reduction (Ernestus, 2014; Keune et al., 2005). In addition, the task of the 

transcribers was to listen veridically to the corpus data; the transcribers’ task may favor different 

results than the forced-choice-over-noise tasks typically used in studies of perceptual similarity of 

segments. 

A reviewer (Florian Jaeger) points out a third potential limitation, which is that comparisons of the 

predictive power of variables across models with different control variables is problematic. While 

that is certainly true, simply using identical predictors in models of different phenomena would 

create new problems: For example, inherent segment duration is an important predictor of word 

duration – longer segment durations add up to longer word durations, other things being equal. Our 

model of word duration takes this into account, by incorporating a baseline duration measure. 

However, segment duration does not straightforwardly predict spoken word recognition (or even 

segment recognition). Including that baseline duration measure in a model of spoken word 



recognition would therefore not be justified and might well prevent true predictors of spoken word 

recognition from revealing themselves in a model full of extraneous variables.  

Most of the caveats just discussed apply to many previous studies, as well as to the present work: 

After all, interest in PND as a lexical variable began with studies of recognition accuracy in single-

word recognition tasks, which then inspired a huge amount of subsequent work on speech 

production, which set aside the questions just raised. We hope that the present research serves to 

inspire research that can address these questions. 

Conclusion 

Without additional assumptions, PND is a measure, not a mechanism. PND (the measure) indirectly 

reflects several distinct properties of words which are relevant at different stages of language 

production and recognition. Taking effects of PND or any other measure as direct evidence for a 

causal role of any particular measure in language production and comprehension runs the risk of 

shoehorning widely different phenomena into explanations that look appealingly uniform, but are 

ultimately lacking.  

The interest that effects of word form similarity have held is due to the fact that such effects are 

thought to reflect the organization of the mental lexicon and the workings of the production and 

comprehension processes. Understanding the role of perceptual, articulatory, and modality-neutral 

representations and processes in language processing will help clarify the specific mechanisms by 

which humans perceive and produce spoken language.  



Acknowledgments 

We would like to thank the audiences at the 2013 CUNY Conference on Sentence Processing and 

the 2013 conferences of the Linguistic Society of America for helpful feedback on earlier versions of 

this work. We are also very grateful to Neal Fox, Florian Jaeger, Keith Johnson, Antje Meyer, 

Fabian Tomaschek, and two anonymous reviewers for their thoughtful comments. 

 

  



Appendix A.1 

Correlation of Fixed Effects in the model of recognition, 201 word types: 

 Intercept Lexical frequency  
Syllable token 

frequencyres 
PND 

Lexical frequency  
-0.003    

Syllable token frequencyres 
-0.006 0.017   

PND -0.009 0.050 -0.128  

Phi density -0.006 -0.123 -0.150 -0.287 

  

Appendix A.2 

Correlation of Fixed Effects in the model of recognition, 394 word types: 

 Intercept Lexical frequency  
Syllable token 

frequencyres 
PND 

Lexical frequency  -0.001    

Syllable token frequencyres 
.000 0.023   

PND 
-0.005 -0.118 -0.078  

Phi density -0.002 0.030 -0.235 -0.239 

 

  



Appendix A.3 

Correlation of Fixed Effects in the model of word duration, 201 word types: 

 

Interce

pt 

Baseli

ne 

Back

Bigr 

BackB

igr
2
 

Forw

Bigr 

Rate, 

after 

Rate, 

before 

(Rate 

before)
2
 

Lex 

Freq 

Syll.fr

eq. 

PN

D 

Baseline 

duration (log) 

0.01           

Backward 

bigram (log) 

0.124 0.055          

(Backward 

bigram, log)
2
 

-0.224 -

0.027 

-0.188         

Forward 

bigram (log) 

0.094 0.003 -0.028 0.044        

Speech rate, 

after (log) 

0.011 -

0.005 

0.061 0.038 0.008       

Speech rate, 

before (log) 

0.011 -

0.001 

-0.016 0.004 0.032 -0.095      

(Speech rate, 

before (log))
2
 

-0.076 0.005 -0.011 -0.017 0.013 0.008 0.017     

Lexical 

frequency  

-0.286 0.184 -0.078 0.108 -0.113 -0.026 -0.016 -0.008    

Syllable token 

frequencyres 

-0.038 -

0.047 

-0.002 0.021 -0.046 -0.012 -0.005 0.006 0.046   

PND -0.002 0.085 0.003 0.00 0.017 -0.013 -0.002 0.00 0.092 -0.11  

Phi density 
-0.003 0.337 -0.001 -0.001 0.011 0.017 -0.003 0.012 -

0.031 

-0.169 -

0.20

5 

 

  



Appendix A.4 

Correlation of Fixed Effects, 487 word types: 

 

Intercep

t 

Basel

ine 

Back

Bigr 

Back

Bigr
2
 

Forw

Bigr 

Rate, 

after 

Rate, 

before 

(Rate 

before)
2
 

Lex 

Freq 

Syll.f

req. 

PN

D 

Baseline 

duration (log) 

0.002           

Backward 

bigram (log) 

0.112 0.05          

(Backward 

bigram, log)
2
 

-0.225 -

0.012 

-

0.223 

        

Forward 

bigram (log) 

0.086 -

0.003 

-

0.004 

0.04        

Speech rate, 

after (log) 

0.019 -

0.009 

0.089 0.016 -

0.002 

      

Speech rate, 

before (log) 

0.011 0.002 -

0.021 

0.015 0.039 -0.079      

(Speech rate, 

before (log))
2
 

-0.071 0.007 -

0.016 

-0.004 0.009 0.022 0.035     

Lexical 

frequency 

(log) 

-0.249 0.164 -

0.078 

0.135 -

0.109 

-0.028 -0.015 -0.008    

Syllable token 

frequencyres 

-0.051 0.023 -

0.025 

0.013 -

0.069 

-0.005 -0.003 0.001 0.071   

PND 

-0.008 0.122 -

0.007 

0.001 0.004 -0.003 0.001 -0.006 0.066 -

0.026 

 

Phi density 

(log) 

-0.003 0.311 0.002 -0.004 0.00 0.007 0.003 0.008 -

0.016 

-

0.162 

-

0.23

2 
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