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Abstract Particle radiation from black holes has an
observed emission power depending on the surface gravity
κ = c4/(4GM) as

Pblack hole ∼ h̄κ2

6πc2 = h̄c6

96πG2M2 ,

while both the radiation from accelerating particles and mov-
ing mirrors (accelerating boundaries) obey similar relativistic
Larmor powers,

Pelectron = q2α2

6πε0c3 , Pmirror = h̄α2

6πc2 ,

where α is the Lorentz invariant proper acceleration. This
equivalence between the Lorentz invariant powers suggests
a close relation that could be used to understand black hole
radiation. We show that an accelerating mirror with a pro-
longed metastable acceleration plateau can provide a uni-
tary, thermal, energy-conserved analog model for black hole
decay.

1 Introduction

The Equivalence Principle teaches us that gravitation is
equivalent to a combination of acceleration and curvature, the
last of these being unimportant on sufficiently small scales.
Moreover we know that external effects on quantum fields
creates particles, and this ties together black hole particle pro-
duction, thermal baths observed by accelerating observers,
and moving mirror acceleration radiation, e.g. the Hawk-
ing [1], Unruh [2], and Moore–DeWitt–Davies–Fulling [3–
5] effects. However, we also know that constant accelera-
tion is insufficient: e.g. consider the question of whether an
electron sitting on a laboratory table in an eternal constant
gravitational field of the Earth radiates (or the relationship
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to the radiation from a mass freely-falling into a black hole
[6–9]). Along the same lines, an eternal exactly uniformly
accelerating boundary (moving mirror) evidently does not
emit energy to an observer at infinity, e.g. [10]. There is not
yet a consensus on the subtleties and non-intuitive behav-
ior of eternal uniform acceleration (see [11] for a possible
rationale of the distinction between chosen vacuum states).

Another aspect of great interest [12] is that asymptoti-
cally static mirrors preserve unitarity and information [13].
We explore a model that merges these two regimes of uniform
acceleration and zero acceleration and show that this system,
intuitively, can radiate particles for an extended time with
constant power. The system will not only preserve informa-
tion but emit thermal energy, conserve total radiated energy,
and emit finite total particles, without infrared divergence.
This model serves as an analog for complete black hole evap-
oration.

Related explorations are not without precedent. Black hole
evaporation has close acceleration analogs [14] including
moving mirror models [4,15]. Asymptotic infinite acceler-
ation trajectories [16], like the accelerated boundary corre-
spondences for the Schwarzschild, Reissner–Nordström, and
Kerr black holes [17–19], evolve to eternal thermal equilib-
rium solutions [20]. Asymptotic finite acceleration (asymp-
totic uniform acceleration) correspond to extremal black
holes [21–24] while asymptotic constant velocity (zero accel-
eration) can give information preserving quasi-thermal solu-
tions describing black hole remnant models (e.g. [25–31]).
Recently, particular emphasis is placed on unitary complete
black hole evaporation models which are characterized by
asymptotic zero-velocity mirrors (e.g. [32–38]).

Entanglement entropy [39], and hence information, is tied
directly to the mirror trajectory [40]. However, the distant
observer detects the radiated power, not the entropy. We
investigate the connection between these for complete black
hole evaporation via the analog case of uniform acceleration.
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Uniform acceleration mirrors are generally thought to emit
zero energy [41,42]. In our case, we will explore metastable
uniform acceleration, where there is an extended but finite
period of constant power emission. We will confirm that the
stress is zero during this plateau period but find that the power
is not. We will discuss how this is a consequence of defini-
tions, and in particular, of assuming asymptotic inertia in
the derivation of quantum power. The model presented here
will preserve information, evolve to thermal equilibrium, and
conserve emitted energy, providing an analog for a black hole
that completely evaporates away into radiation.

In Sect. 2 we exhibit the mirror dynamics of acceleration
and velocity with the desired properties, leading in Sect. 3
to evolution with quantum purity (information preservation)
from the finite entanglement entropy with a Page turnover.
Section 4 computes the quantum Larmor power and total
energy radiated, linking the mirror parameters with black
hole properties. We conclude in Sect. 5, highlighting the uni-
tarity and thermality of the analog model for black hole evap-
oration.

2 Acceleration and velocity

We seek a mirror acceleration that dies to zero at ±∞ (to
preserve information) and has a constant plateau at some
maximum acceleration (for metastable thermal power). We
can arrange the maximum to be at time t = 0, for example.
We would also like to be able to adjust the duration of the
plateau, to study the scaling. A simple model is

α = α0 e
−(t/t�) j sgn(t). (1)

The metastable plateau runs over |t | � t�; at t = t� the
acceleration falls to 1/e of its maximum value α0. As a fore-
shadowing, we expect the power emission to determine the
black hole lifetime, Ṁ ∼ P ∼ M−2, where M is the black
hole mass, so we anticipate a successful analog model will
have t� ∼ M3.

We take j to be a positive even integer so that α will die
to zero for t → ±∞. Large j gives a flatter plateau and a
steeper fall off to approach zero. For example, the acceler-
ation plateau stays within a fraction ε of the maximum for
|t | < t�ε1/j so for j = 4 (8) it is within 1% of maximum out
to |t | < 0.32t� (0.56t�). The limit j → ∞ gives a box func-
tion for the plateau. This approaches equilibrium emission
on the plateau. The sign flip (change in direction) in acceler-
ation at t = 0 is so the mirror comes back to rest (not merely
inertial, but static) at future infinity. Since power depends on
α2, the sign flip does not affect the power detected by a dis-
tant observer. (One can easily regularize the sign flip through
use of a tanh transition without affecting the results.)

Fig. 1 The proper acceleration (red curve) of the mirror starts to the
left (negative by convention), reaches a maximum magnitude (1/4M
as j → ∞), and has a sign (direction) change at t = 0. The velocity
(blue curve) of the (1+1)D mirror trajectory is always to the left (by
convention); the mirror starts from zero speed, approaches the speed of
light, then finally comes to rest. Here we plot for M = 1 and j = 4

The mirror velocity v comes from the acceleration via the
rapidity η, by v = tanh η and

sinh η(t) ≡
∫ t

−∞
dt ′ α(t ′) = α0t�

�(1/j, (t/t�) j )

j
, (2)

where � is the incomplete Gamma function. The velocity
smoothly goes from 0 to a maximum near the speed of light
and back to 0, without changing sign. The maximum velocity
will be reached at t = 0, where the incomplete Gamma
function becomes a complete one, so

sinh η(t = 0) = α0t�
�(1/j)

j
≡ Q (3)

vmax =
[
1 + Q−2

]−1/2
. (4)

When j → ∞, then Q = α0t�. Note the maximum Lorentz
boost factor γmax = (1 + Q2)1/2. Figure 1 shows the accel-
eration and the resulting velocity.

3 Entropy and unitarity

Before proceeding further, let us establish this is a unitary
analog model by observing that the entanglement entropy
does not diverge, as expected for a mirror with asymptotic
static end states [20]. From Eq. (2),

S(t) ≡ η(t)

6
= 1

6
sinh−1

(
α0t�

�(1/j, (t/t�) j )

j

)
. (5)

The entropy is asymptotically zero (no divergence), which
signals purity. That is, in the limit t → ±∞, S → 0. This
ensures that every field mode reflects to the observer. With-
out loss of field modes past a horizon, the model preserves
quantum information during time evolution of the vacuum
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Fig. 2 Page curve turn-over of the von Neumann geometric entangle-
ment entropy, Eq. (5), with asymptotic zeros and no divergence. This
scalar measure of information demonstrates the model has no informa-
tion loss by construction. Here M = 1 and j = 4 as in Fig. 1

state [43]. Figure 2 exhibits the expected Page curve turn-
over.

We can push this further, deriving thermodynamic entropy
from entanglement entropy in the analog context. To reach
the thermodynamic regime, we apply two equilibrium limits:
flatness j → ∞, and central time t → 0−. The value of
the rapidity here is given by sinh η� = α0t∗ = 12πM2 =
3π/(4κ2) (as seen for t∗ in Sect. 4 in the j → ∞ limit), with
κ the surface gravity. The entanglement is then

S = 2 × 1

6
sinh−1(α0t�) = 1

3
sinh−1

(
3A

4

)
. (6)

In the first step, we have translated from dynamics to
entanglement using the rapidity-entropy relation [44] and
accounted for (3+1) dimensions [45], where the additive
modulus entanglement entropy is twice the one-sided entropy
of a mirror in (1+1) dimensions, S = 2(η/6). In the sec-
ond step, we have written the (3+1) dimensional entan-
glement entropy in terms of the area of the analog black
hole, A = π/κ2, which illustrates thermodynamic entropy,
S = A/4, of the gravitational analog in the geometric limit
A → 0.

4 Power and total energy

The relativistic Larmor form for power, familiar from elec-
trodynamics [46], also applies to the energy radiated from
accelerating mirrors [45]. In the latter case

P(t) = h̄α2(t)

6πc2 , (7)

where α is the frame-invariant proper acceleration. This mea-
sure is a good candidate for what the observer detects at
asymptotic infinity. It is a Lorentz invariant corresponding

Fig. 3 The acceleration plateau results in a (3+1)D power emission
exhibiting an equilibrium emission plateau, with asymptotic finality (as
t → ±∞) corresponding to complete evaporation

to the emitted radiation from both sides of a (1+1)D moving
mirror, as well as the emitted power for a (3+1)D moving
mirror.

Thus the power for the corresponding (3+1) dimensional
situation of Eq. (1) is

P(t) = h̄α2
0

6πc2 e−2(t/t�) j = c5

G

1

6π

(
α

αPl

)2

, (8)

where here we explicitly show the “Planck power” c5/G and
“Planck acceleration” αPl ≡ c/tPl, although usually else-
where we work in units where h̄ = c = G = 1.

Figure 3 shows the emitted power P(t) with its plateau,
increasingly in equilibrium for large values of j , and vanish-
ing at asymptotically early and late times. The asymptotically
zero emission signals the end of evaporation, e.g. of the (ana-
log) black hole, and a resulting finite total energy.

To find the total energy emitted by the evaporated (3+1)D
black hole analog, one can integrate the power over coordi-
nate time, E = ∫ +∞

−∞ P(t) dt . The result is

E = α2
0 t�

3π

�(1/j)

j 21/j
, (9)

where now we have a complete Gamma function. As j → ∞,
the second fraction goes to 1.

We can use this to fix t� in terms of E and α0. In particular,
in the black hole context it is natural to take the correspon-
dence that the total energy emitted is the mass M of the black
hole, and the acceleration during the equilibrium emission is
the surface gravity, i.e. α0 = κ ≡ 1/(4M). This then implies
that

t� = 3πE

α2
0

j 21/j

�(1/j)
(10)

→ 48πM3 j 21/j

�(1/j)
→ 48πM3 = 3π

4κ3 , (11)
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The first right arrow takes the correspondence, and the second
arrow takes the j → ∞ limit. We see that as expected from
the correspondence with black hole decay, the characteristic
time scale t� ∼ M3. (In the mirror model, the radiation does
not stay thermal beyond t� so the total decay time is not
defined for j finite.) Note that under this correspondence,
Q = 12πM2 in Eq. (3). We used this expression in Sect. 3
to evaluate the thermodynamic entropy.

Conversely, we can write α2
0 = 3πE/t� in the limit and

find

P = c5

G

GM

2(ct�)c2 , (12)

i.e. there is a fundamental limit in that the decay time t� must
be long enough that the Planck power is not exceeded: one
cannot radiate away the energy in shorter than a light crossing
time.

This accelerating mirror model therefore provides an ana-
log to the concept that a physical black hole emits finite
energy, that this energy is the total mass of the black hole
itself for complete evaporation, the evaporation time ∼ M3,
and the entropy ∼ A/4, consistent with surface gravity
∼ 1/(4M) in the thermodynamic limit.

5 Conclusion

We have presented an analog model using the dynami-
cal Casimir effect for accelerating boundaries (mirrors) to
describe a black hole that evaporates away completely. The
approach uses the quantum power formula,

Pmirror = h̄α2

6πc2 , (13)

where α is the Lorentz invariant proper acceleration. The
quantum power approach works equivalently for (mirror)
acceleration and (black hole) surface gravity. Since particle
radiation from black holes has an observed emission power
depending on the surface gravity κ = c4/(4GM), as

Pblack hole ∼ h̄κ2

6πc2 = h̄c6

96πG2M2 , (14)

the connection between acceleration and gravity, inclusive
with classical Larmor radiation from electrons,

Pelectron = q2α2

6πε0c3 , (15)

is tied together from the underlying symmetry of Lorentz
invariance.

The accelerating boundary correspondence exhibits the
desirable characteristics of unitarity, thermality (equilib-
rium emission), and energy conservation. The finite entropy
with Page turnover preserves information. The model thus
describes a black hole that completely evaporates away in a

physically reasonable manner. Other unique trajectories are
tractable.

From a static state, the mirror accelerates to a velocity
that can approach the speed of light (and the maximum
rapidity is closely related to entropy, and black hole mass),
before asymptotically becoming static again. While the spe-
cific model is of a mirror instantaneously reversing acceler-
ation direction, a simple (e.g. tanh) regularization works in
the same way.

The metastable plateau becomes flatter, more in equilib-
rium, as the superGaussian parameter j increases. While the
formal limit of equilibrium is j → ∞, even for j = 4
the plateau is flat to 1% for an extended period. In the limit
there is a clear correspondence between the mirror acceler-
ation and black hole surface gravity (and hence mass), total
energy radiated and black hole total energy (mass), entropy
and black hole area, and Larmor power and Hawking power.

While for a unitary model radiation episodes must occur
with both positive and negative energy fluxes (and zero flux
in the exact constant acceleration limit), the power always
remains positive. The absence of kB in Eq. (13) agrees with
use beyond the regime or limits of thermodynamic equilib-
rium. As a Lorentz invariant power is an interesting and
mostly unstudied avenue by which to approach the corre-
spondence with black holes.

A cautionary remark regarding quantum power, Eq. (13),
is in order. Consider the apparent discrepancy between
zero energy flux and the non-zero quantum power during
metastable uniform acceleration. This is a result of key differ-
ences in definitions between energy flux and quantum power.
For instance, the quantum power formula is not applicable
for eternal uniform acceleration, but is perfectly applicable
for metastable uniform acceleration (as long as the global
trajectory is asymptotically inertial). The reason for this is
that asymptotic inertia is an assumption required to obtain
the quantum power formula itself [45].

Asymptotic inertial radiated power is not an inconsequen-
tial subtlety. It is related to the long standing debate [47,48]
over whether a uniformly accelerated point charge radiates.
Since the quantum power formula does not apply to globally-
defined eternal uniform acceleration, our results do not con-
flict with the confirmations that a globally uniformly accel-
erated mirror does not radiate energy [41] but does radiate
particles (as is well-established [49–51]). Nor does it conflict
with the fact that uniformly accelerated point-like structure-
less sources emit only zero-energy Rindler particles [52].

Future work on the model presented here could explore the
approach to equilibrium and the development of the particle
spectrum. Conventional computation of the beta Bogolyubov
coefficients is not tractable here, but the asymptotic static
states guarantee there will be no infrared divergence (no black
hole remnant) and a finite total number of particles emitted.
Alternative attempts at the spectrum may yield insights into
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the particle production and other physics of black hole radi-
ation.
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