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ABSTRACT OF THE DISSERTATION 

 

Development and Characterizations of 2D Thin Films and Quasi 1D Nanowires  

Towards Practical Downscaled Integrated Circuits 
 

by 

Thomas A. Empante 

Doctor of Philosophy, Graduate Program in Chemistry  
University of California, Riverside, September 2019 

Dr. Ludwig Bartels, Chairperson 

 

Electronic devices utilize the foremost advances in technology. In order to make 

progress we must understand not only the properties of novel materials but also how best 

to synthesize these materials in an appropriate way so that they can be used in an industrial 

setting.  

 Transition metal dichalcogenides, specifically molybdenum ditelluride (MoTe2) is 

a class of 2D material that has been well studied for their semiconducting nature in the 2H 

phase yet they also have 2 other phases with vastly different properties: 1T’ and 1T. The 

1T’ phase has metallic properties. There is a 3rd phase, however, that prior to my work has 

been largely left unstudied, the 1T phase. This phase is calculated to be semi metallic from 

its calculated band structure but is also highly unfavorable at room temperature. With this 

in mind we set out to synthesis this elusive phase via a chemical vapor deposition process 

by selectively using process gases and varying cooling rates to stabilize the 1T phase at 

ambient temperatures. Measurements confirm the 1T phase of MoTe2 is in fact semi-

metallic. In addition, mixed phase 2H/1T films were synthesized and electronically tested 
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to yield a semiconducting film with significantly improved conductivity that could still be 

gated for on/off current switching. 

 As copper interconnects decrease in cross-section to below 100 nm in size the 

resistivity of this, typically, highly conductive metal starts to increase exponentially do to 

surface and grain boundary scattering of electrons. Quasi-1D Transition metal 

trichalcogenides, like tantalum triselenide (TaSe3), can have metallic properties. The main 

issue that is being addressed is that of copper interconnects as they reach their scaling 

limits. The concentration is 2-fold, 1) develop a growth method/process that could 

synthesis TaSe3 at temperatures at or lower than 400°C and 2) measure the materials 

resistivity as a function of decreasing cross-sectional area to see if these highly crystalline 

transition metal trichalcogenide maintains its bulk resistivity unlike that of copper. Given 

this momentous task we again set out to develop a chemical vapor deposition process to 

synthesis TaSe3 using volatilized reagents to help aid in the formation of the crystals at low 

temperatures. The resistivity of the nanowires grown using this method were tested down 

to 7nm in cross-sectional area and found no scaling effect present with regards to 

resistivity. In addition, it was also found to have an electromigration activation energy, the 

main failing point of interconnects, to be double that of copper and able to withstand current 

densities of 108 A/cm2, orders of magnitude higher than copper. The results give credence 

to this class of materials potential for future downscaled devices.  
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Chapter 1: Motivation 

 

1.1 Motivation 

Most random-access memory (RAM) devices use volatile memory elements which 

are subject to data loss if the system loses power. One way to stop this from happening is 

to use non-volatile memory in the system. Non-volatile memory, like flash drives, work 

well in the short term as an intermediate fix but have a downside, the slow write times. 

Another type of non-volatile memory is phase change memory. This relies on the 

material being used to physically change the phase of the material between device 

channels, generally with quick burst of heat, in order to “write” information down and 

save. The change in materials phase will make the resistivity change, generally between 

one crystal phase and one amorphous phase, this process will allow the memory device to 

read the resistivities and create a non-volatile element of memory that doesn’t forget its 

information if the chip loses power. In order to understand a materials viability as a phase 

change material each phase of a material must be known and well characterized. Toward 

this effort the TMD MoTe2 has been studied and analyzed in 2 phases but there is third 

unaccounted phase that needs to be 1) synthesized and 2) characterized to see if the 

calculated properties are indeed a reality. 

As devices decrease in size each year the scaling issues arise. One of the major issues 

that the industry is dealing with today is the failing efficiency of device interconnects. 

Interconnects the powerlines of a device’s circuitry, supplying power to all of the elements 

on the chip. Today these interconnects are made of copper, which is one of the most 
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conductive metals on the periodic table having a bulk resistivity of 1.7µΩcm. However, as 

the interconnect downscales, its cross-section gets smaller which limits the amount of space 

the electrons can flow through. This leads to the electrons having a higher number of 

collisions with grains of the metal (grain boundary scattering) and with the walls of the 

interconnect (surface scattering). As the cross-section reaches coppers mean free path, ~40 

nm, the resistivity starts to increase drastically and as it decreases even farther the below 

the mean free path starts to increase exponentially. This is a problem for two reasons, one, 

this leads to a decrease in the amount of current density the copper interconnect can handle 

and two, leads to high collision rates with the copper atoms themselves which can create 

voids in the interconnect and therefore broken connections, the leading cause of device 

failure. The mitigate these problems a new material will need to take coppers place as the 

interconnect material. One such class of material are transition metal trichalcogenides 

which are highly crystalline materials that can have metallic properties. The problem lies 

in the synthesis of the material in situ, as part of the device making process but has only 

previously been made with incompatible methods. Here we develop a novel method of 

synthesizing the TMT TaSe3 with a more BEOL compatible process for potential 

implementation in future nanoscale devices.  
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Chapter 2: History of Relevant Materials  

2.1 Transition Metal Dichalcogenides   

Transition metal dichalcogenides, particularly MoS2, were first discovered in 1778 

as naturally occurring molybdenite minerals by Swedish Chemist Carl Wilhelm Scheele.1 

It was mainly mined in the geographical region of Norway, namely the Knaben mine but 

was left unstudied until the start of World War I when new mines in Colorado opened up 

to supply the military with a source of molybdenum which was used as an additive to steel 

for better tank armor and later in early 1940’s research in the application of molybdenite 

(MoS2) as a dry lubricant.2-6 It wasn’t until the late 1950’s when Richard Feynman7, 8 

speculated the future importance of layered materials that sparked researchers to put more 

focus back onto TMDs for further exploitation of its structurally layered nature. It was not 

long after this classic lecture that MoS2’s optical properties were characterized with 

decreasing layers exfoliated from these naturally formed molybdenite crystals using 

“sticky tape” by Robert Frindt9 probing the optical absorption and photoconductive nature 

of the bulk material. A number of chemical exfoliation methods were developed to study 

lower layered TMD materials, most notably, for metallic TMDs like TaS2
10, 11 and NbS2

11 

and later for semiconducting MoS2
12 in 1986 by Per Joensen (along with Frindt and 

Morrison). Later research in the 1970’s showed that MoS2 had catalytic properties that 

aided in hydrodesulfurization reactions12-17 which are used by oil industry for the 

production of higher purity products till this day. With the advent of novel 

micromechanical exfoliation techniques, most notably by Novoselov18 for graphene, the 

emergence of multiple reports in the early 2010’s found that the mono layer of MoS2 
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exhibits a photolumenesence at the energy of 1.84eV corresponding to the transition to a 

direct band gap at the monolayer from an indirect band gap in the bulk. 19-22 The discovery 

of the monolayered TMD material allowed for a vast amount of research to take place and 

discovered a plethora of exciting properties such as field effect transistors (FET), 

valleytronic behavior23-25 and suggests the potential for spintronic applications26 due to 

absence of inversion symmetry leading to spin orbit coupling in the Brillion zone near the 

K-point. The optical band gap for molybdenum based TMDs, MoS2, MoSe2, and MoTe2 

are 1.84eV, 1.55eV, and 1.1eV respectively. The band gap of MoTe2 is relatively low and 

has been proposed for applications in silicon-based photonics. 19, 20, 27 While MoS2 and 

MoSe2 have been studied extensively, MoTe2 has had comparatively little research 

performed on it. This is due to the materials proclivity for oxidation in air like that of bare 

silicon28, 29. In this thesis every synthesized MoTe2 sample was spun coat with a layer of 

poly-methyl methacrylate (PMMA) in an inert environment, nitrogen filled glovebox (see 

figure 3.9), to mitigate the amount of oxidation to great success. 

Figure 2.1: Ball and stick depiction of MoS2 showing the molybdenum atom layer, 

greenish-blue, sandwiched between two sulfur layers, yellow, illustrating the single layer 

nature of TMDs. 
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2.1.1 Phases  

As mentioned above some TMDs like TaS2 and NbS2 have metallic properties, 

whereas for molybdenum based TMDs have semiconducting properties. This is due to the 

fundamental crystal phase of the material which for MoS2, MoSe2 and MoTe2 is the 2H 

trigonal prismatic semiconducting phase. However, this is not the only phase these 

materials can have. In addition to the 2H phase there is an octahedral structure known as 

the 1T phase and a 2x1 reconstruction of the 1T phase which is metallic known as the 1T’ 

phase (see figure 2.2). 22, 30, 31 For MoTe2, the as yet synthesized 1T phase is predicted to 

have a semi-metallic behavior.32, 33  

Figure 2.2: Top and side view of the 2H, 1T, and 1T’ phases of MoTe2
34 

Previous reports on the phase changing properties of MoTe2 have been exclusively 

on the 2H and the 1T’ phases.34-37 with the vast majority coming from exfoliated bulk 

chemical vapor transport (CVT) crystals38-43 with the exceptions of references44-46. While 

these CVT grown materials can synthesize high quality crystals the method lacks the 
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controllable means of phase selectivity and while chemical treatments can be used to 

change the phase of the material it inherently causes defects in the crystal lattice. Reports 

have calculated that the 1T’ phase of the material can be favored during processing47 if you 

use particular process gases during the synthesis process. Since the 1T’ is the reconstructed 

version of the 1T phase it stands to reason that it could help favor the formation of the 1T 

phases as well.   This phase is the prime objective of the research. The stability or pseudo 

stability of the 1T phase at ambient temperatures is the primary goal. For this reason, the 

CVD45, 46 method described in section (3.4.1) was developed to allow the growth of not 

only the 2H and1T’ phases but also the novel 1T phase. 

 

2.1.2 Electronic Properties 

The electrical properties of a material are dependent on the energies of the electrons 

in the conduction and valence bands. These bands have a distinct momentum of electrons 

as a function of position in the crystal lattice. When the electrons in the highest occupied 

molecular orbital (HOMO), valence band, overlap in energy with the lowest unoccupied 

molecular orbital (LUMO), conduction band, the material is metallic. Conversely if the 

HOMO and LUMO band energies have a gap between them on the order of <3.5 eV then 

the material is semiconducting and insulating if the gap is larger than 3.5 eV. If the 

materials HOMO and LUMO bands are at the same energy level but do not touch the 

material is said to be semi-metallic. It has been calculated that the 1T phase of MoTe2’s 

band diagram indicates the phase is a semi-metallic material (see figure 4.4). 
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2.2 Transition Metal Trichalcogenides  

Transition metal trichalcogenides, unlike there dichalcogenide sister compounds, 

are not geologically found in nature and were first synthesized in 1938 by Biltz describing 

the synthesis of TaS3 via a CVT like process.48 In the years that followed other TMTs were 

grown, like that of TaSe3
49-51, and characterized to further elucidate the rod like structural 

nature of these TMT materials. In the late 1970s focus was again put on the TMTs when 

the conductivity of these materials were being measured for charge density wave (CDW) 

properties.52, 53 Noticeably all of the synthesis methods for attaining TMTs are via CVT, 

which is mentioned in section 3.4,  and can produces high quality crystals. However, the 

CVT process has massive drawbacks when it comes to synthesizing materials. Firstly, it 

requires the reaction to be performed in a sealed quartz tube that is evacuated and filled 

with a process gas, usually a halogen like iodine or bromine. Second, the process uses 

synthesis temperatures of over 900°C for periods of 72 hours to over 1 week which are 

excessively long for high throughput processes. Third, the resulting crystals that the 

process yields are bulk crystals which, for any nanoscale characterization need to be 

exfoliated and transferred to a substrate in order to be characterized. This method is largely 

unfit for any type of industrial application. The ideal process for any industrial purpose 

needs synthesis temperatures below 400°C for brief periods of time.  
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Figure 2.3: Ball and stick illustration to show the rod like nature of transition metal 

trichalcogenide nanorods 

The applications for low dimensional materials like TMDs21, 54-58, graphene18, 59-61, 

and MXenes62-65 has pushed the boundaries of technology as we know it. One thing that 

most of these materials have in common is a van der Waals gap in their crystal structure 

that aid in there layer like nature, optoelectronic properties, and reduced scattering in 

transport. TMTs also have a van der Waal gap like that of TMDs but instead of being planar 

they are tubular and surround the rod like structure of the trichalcogenide. Recently 

published transport measurements on metallic 1D TaSe3 
66-68 and zirconium tritelluride 

(ZrTe3)
69 showed bulk conductivity and high breakdown current density threshold on 

mesoscopic exfoliated  bundles, respectively. In the CVD section (see 3.4) we describe our 

novel chemical vapor deposition (CVD) process that allows the fabrication of wire bundles 

as small as a few nanometers across (i.e. consisting of a hundred atom stacks or less in 

parallel), scaled to the demand of the semiconductor industry for upcoming processing 

nodes. 
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3.2 Electronic Properties 

As electronic devices continue to downscale in size new problems arise with 

regards to the number of devices per area can be fabricated on a chip. One of the major 

issues that is starting to take precedence is the exponentially increasing resistivity of copper  

Figure 2.4: The change in the normalized resistivity of copper interconnects as the 

cross-section is scaled down to 1 nm. 

interconnects as you scale down its cross-section. In an effort to understand the behavior 

of TMTs as the materials cross-section is scaled down. we find that such nanoscale bundles 

retain the bulk conductivity, much different to conventional metals, which at the 10 nm 

cross section scale are strongly affected by surface and grain-boundary scattering.70-72 

Additionally, we find that TaSe3 exhibits a barrier to electromigration more than twice that 

of copper and can sustain current densities in excess of 108 A/cm2. The favorable scaling 

of the conductivity with wire cross section renders these material of great interest as next 

generation interconnect material as copper reaches its scaling limits in 2023 according to 

the ITRS roadmap.73-76  
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Chapter 3: Experimental Techniques  

3.1 Raman Spectroscopy 

Raman spectroscopy is a useful characterization technique for determining the 

lattice vibrations of the crystalline material that is discussed in this thesis. This, non-

destructive, technique relies on measuring the way a material scatters photons inelastically, 

namely by that of Stokes and, to a lesser degree, anti-stokes interaction. When you expose 

a crystalline material to a specific wavelength (energy) via a laser the electrons in the 

material are excited to a higher energy state. 

Figure 3.1: Depiction of the excitation of electrons in a molecule to an excited 

virtual state and relaxing to give Stokes and Anti-Stokes lines measured in Raman 

spectroscopy.77 
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The difference in energy measured from the incident light and the 1st excited vibrational 

state gives the vibrational energy of the bonded atoms in the crystal lattice. The spectra 

attained is a fingerprint of the chemical bonds in the system and helps identify and confirm 

the material synthesized in the growth process is the accurate material. Other 

characterization techniques like that of FTIR rely on inducing a dipole in the molecule 

rather than polarizability in Raman spectroscopy. We use a Horiba LabRam HR Raman 

system using a 532nm wavelength laser at a power of 0.7 mW to characterize all the 

materials seen in this thesis. 

3.2 Electronic Transport Measurements 

 The electronic transport properties of materials are measured by the 2-terminal, 3-

terminal, and 4-terminal device configurations. Basic 2-terminal devices are measured by 

contacting 2 electrodes onto the material, a source electrode and a drain electrode. A 

Keithley 2400 is used to apply a voltage bias to the source electrode and the other being 

the drain. This will induce a current in the material and allow for the measuring of the 

device’s resistance. The problem with a 2-terminal measurement is that it will include 

contact resistance between the electrodes and material both at the source and drain 

electrodes. This can be measured using 3-terminal measurements (see figure 3.2). This 

technique uses a 3rd electrode which can either be between the source and drain electrodes 

or outside. This 3rd electrode is connected to an electrometer with high impedance (~1011 

Ω) and, depending on the configuration, can measure the voltage drop across the contact 

electrode. Using Ohm’s law, the contact resistance can then be calculated.  
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Figure 3.2: Standard illustration of a 3-terminal measurement to accurately 

measure the contact resistance of the electrode.  

 

 

Figure 3.3: Standard illustration of 4-terminal measurement to accurately measure 

a materials resistance sans contact resistance.  

 



13 
 

The 4-terminal measurement uses 4 electrodes configured so that two electrodes 

are situated in between the source and drain electrodes with both electrodes being 

connected to a voltmeter (see figure 3.3). When a bias is applied between the source and 

drain the electrometers will measure the voltage at each electrode. Subtracting the voltage 

difference and again using Ohms law the resistance can be measure but this time the 

calculated value is the materials resistance devoid of any contact resistance and therefore 

is the most accurate measurement of a material’s inherent resistance.   

 

3.3 Atomic Force Microscopy 

 Atomic Force Microscopy (AFM) is a technique that allows the measuring of 

topical features at the nanoscale down to the angstrom (~10-10 m) level. The main principle 

of AFM is based off of Hooke’s law and the vibrational frequency of the probe tip as it 

interacts with the surface of the material. This technique can be performed in two ways, 

contact and noncontact mode. In contact mode the tip is dragged across the surface of the 

sample and when the laser deviates from the designated origin the z-axis stage moves up 

or down to return the laser to the original position and by measuring this change the 

instrument can map out a topography of the sample. The downside of this contact mode is 

that it only works well on hard surface samples. For this reason, we use the noncontact or 

tapping mode” to measure all of the samples in this thesis. Noncontact mode relies on the 

frequency of the tip oscillation  
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Figure 3.4: Atomic force microscopy illustration of the tip scanning a samples 

surface78  

The probe vibrates with a particular frequency and by measuring the change in the 

probes movement, again using a laser focused on the head of the probe, the surface of the 

sample can be imaged however this time instead of adjusting the z-axis height, the change 

in position of the laser by the detector will be used to map out the sample. This mode is 

advantageous because it can measure surfaces that have softer materials such as transition 

metal di or tri chalcogenides. The corresponding change in height determines the materials 

thickness which gives information about the material such as the number of layers of a 2D 

material, the thickness of a single layer of 2D material, and to some degree the cross-

sectional area for a 1D nanorod.    

3.4 Chemical Vapor Deposition 

Chemical vapor deposition (CVD) is a common research synthesis method due to its 

simplicity. Unlike chemical vapor transport where an ampule is evacuated and sealed with, 
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usually, a halogen carrying gas, CVD is an “open” system whereby the quartz tube is 

flowing an inert gas such as argon or nitrogen through the tube and into a bubbler that 

allows for the tube to be “closed” via a water seal effectively acting as a one way valve for 

the gas to flow. This quartz tube is placed in a tube furnace which can be controlled to ramp 

anywhere from ambient to 1200°C if so desired.  The gas flow is controlled by flowmeters 

to regulate the rate at which gas flows through the tube.  

CVD is also a preferred method of synthesis due to the fact that one can use any 

type of chemical reagent solid, liquid, and/or gas but also any type of substrate for the 

single layer or multi-layered material to grow from amorphous mediums to highly 

crystalline while not being beholden to lattice matching or chemical restrictions.  

Figure 3.5: Image of a chemical vapor deposition system consisting of a 1) tube 

furnace 2) quartz reaction tube 3) exhaust bubbler and 4) temperature controller  
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3.4.1 MoTe2 Grow Process 

The growth of MoTe2 begins by weighing out 7 mg of molybdenum trioxide powder 

into an alumina combustion boat, see Figure 3.6. In a second boat 16 mg of elemental 

tellurium powder is add. The 300 nm SiO2/Si substrate is placed SiO2 side down on top of 

the molybdenum trioxide containing boat79-81 so that it is half covering the top of the boat. 

The boat and substrate are carefully loaded into a 1” diameter quartz tube situated in the 

tube furnace and placed in the center of the furnace heating element. The second boat 

containing the tellurium powder is placed 3” away from the center boat upstream of the 

process gas flow direction.  

Figure 3.6: Alumina combustion boat from Coorstek 3x1 cm. 

The tube is then closed.  The growth process proceeds with a purging step by adjusting a 

flow meter valve to flow argon gas at a rate of 0.5 standard cubic feet per hour (SCFH) for 

10 minutes displacing any oxygen from the tube. After the purge comes a two-step ramp: 

the first is a ramp from ambient temperature, 20°C to 500°C over 20 min with the argon 

gas flow decreased to 0.1 SCFH. During the second ramp step the furnace is ramped from 

500°C to 680°C over 20 min under the same argon gas flow rate. Once the furnace reaches 
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680°C the hold step occurs whereby the furnace is held at this maximum temperature for 

15 minutes maintaining the argon gas flow at 0.1 SCFH and opening a second flow meter 

to add in hydrogen gas to the process gas flow at 0.05 SCFH and if the 1T phase is the 

desired phase then another process gas, carbon dioxide, is add to the argon and hydrogen 

gas flows at 0.05 SCFH flow rate.  

Figure 3.7: MoTe2 growth set up with molybdenum oxide boat at the center of the 

furnace and the tellurium boat positioned up stream of the flow to reach max volatility 

when the furnace is at the maximum hold temperature   

If the desired phase is the 2H or 1T’ then the carbon dioxide gas is not introduced. After 

the hold step there is a two-step cooling process: the first is a 20 minute cool from 680°C 
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down to 500°C with the process gases remaining the same for the first 10 min of the cool 

when the hydrogen gas is turned off (and the carbon dioxide if growing the 1T phase) 

leaving only the argon flowing at 0.15 SCFH for the last 10 minutes before turning off the 

power to the furnace. The second cooling step comprises of opening up the clam shell type 

tube furnace with a fan place toward the center of the tube to cool it down to ambient 

temperatures  at differing rates depending to the desired phase: for 1T it is opened at 500°C, 

for 1T’ then it is opened below 300°C, and for the 2H waiting until the furnace has cooled 

naturally to below 100°C. 

3.4.2 TaSe3 Growth Process 

 The growth of TaSe3 occurs in the same 1” diameter clam shell type tube furnace 

as the MoTe2 process described above. Into an alumina boat 50 mg of tantalum 

pentachloride (TaCl5) (99.99%, Sigma Aldrich) crystals are weighed and carefully ground 

to make a fine powder. In a second boat 50 mg of elemental selenium powder (99.99%, 

Sigma Aldrich) is added. In the boat containing it the tantalum chloride, 130 mg of diethyl 

ether (OEt2) is added to form the adduct (TaCl5[OEt2]) and mixed while adding the 

selenium content of the second boat before the mixture naturally dries. An additional 50 

mg of selenium is added to the, now empty, secondary boat. Once the tantalum chloride-

ether adduct and selenium containing boat has dried 150 mg of ethanol (EtOH) is added 

and mixed well to solvate the solid precursor mixture. The mixture is then placed onto a 

65°C hotplate to drive off excess solvent until the mixture has the consistence of a slightly 

runny tar and removed from the heat. A 300 nm SiO2/Si substrate is placed SiO2 side down 

on top of this boat leaving a slight amount of space on either side of the boat and placed 
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carefully in the quartz tube at the center of the furnace. The second boat containing the 

selenium is placed 1.5” away from the center boat upstream of the gas flow direction. The 

furnace is purged with argon at a flow rate of 0.5 SCFH for 10 minutes. After the purge the 

furnace is ramped to 400°C over 15 minutes with a flow rate of argon at 0.1 SCFH.  

During the ramp at 200°C hydrogen gas is introduced at 0.05 SCFH. Once the furnace 

reaches 400°C it is held for 3 minutes with the same flow rate of argon and hydrogen after 

which the hydrogen is turned off, the flow rate of argon is turned up to 0.15 SCFH and the 

furnace is turned off and opened with a fan to cool the furnace back to ambient temperature 

over 15 minutes.  

  

Figure 3.8: TaSe3 growth process boat positioning with the substrate placed in the 

center of the combustion boat containing the tantalum adduct and selenium mixture with 

the secondary selenium powder boat upstream.  
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Figure 3.9: Glovebox used for spin coating of the TMD and TMT samples showing 

1) load lock, 2) the hotplate used to bake the samples at 150°C for 1 minute, and 3) the spin 

coater that spins the sample at 4000 rpm for 1 minute to spread an even layer of PMMA 

on the sample 
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Chapter 4: Results  

 4.1 Molybdenum Ditelluride, MoTe2 

The following chapter contains excerpts from “Chemical Vapor Deposition 

Growth of Few-Layer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of 

MoTe2 Films” by T.A. Empante, et. al.82  

Cooling of the CVD furnace proceeds in three steps: initially the furnace 

temperature is ramped down from the maximum temperature to 600°C over 10 minutes at 

equal flow rates H2, CO2, and Ar for a total of 0.15 SCFH. The use of CO2 is motivated by 

Ref.47 because density functional theory calculations suggest that it has the potential to 

stabilize the T-type phases over the 2H phase of MoTe2.  The second step ramps the furnace 

down from 600°C to 500°C in 20 min under a flow of 0.1 SCFH of Ar; H2 and CO2 flow 

is terminated. After the end of the second step the furnace power is turned off. The 2H 

phase is dominantly attained by leaving the clam shell closed until the furnace temperature 

is below 100°C. The 1T’ phase dominantly results by opening the clam shell as soon as the 

furnace cooled to 350°C. Finally, the 1T phase is dominantly obtained, if the clam shell is 

opened at 450°C. As soon as we open the clam shell the process tube is cooled directly by 

a fan. Fig. 4.2 shows Raman spectra and optical micrographs of the MoTe2 films in all 

three phases. The growth procedure differs only by the cooling rate – and the formation of 

1T phase films requires the presence of CO2 in addition to H2.  While we can obtain 

extended (>10 μm) single-layer films of 2H MoTe2, we find the growth of uniform single- 

or few-layer thickness films of 1T and 1T’ MoTe2 to nucleate frequently in a circular 
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fashion around growth seeds. Fig. 4.2 also shows atomic force microscopy profiles 

revealing the layer thickness of our MoTe2 samples. CVD growth of molybdenum and 

tungsten disulfides and diselenides reliably leads to triangular islands with straight edges 

in our lab.80, 81 In contrast, MoTe2 films generally do not adopt straight edges, so that the 

edge shape cannot be used to indicate crystallographic orientation. The highest propensity 

for straight edges we find for 1T MoTe2. We discuss the origin of this phenomenon below. 

 

Figure 4.1: MoTe2 Phases and Overview of Preparative Technique a,b,c) top view 

onto a sheet of 1T, 1T’ and 2H MoTe2, respectively. The unit cells are indicated.  d,e): 

CVD growth of few-layer MoTe2 in a tube furnace. The temperature (indicated) at which 

the growth is quenched determines the resultant MoTe2 phase. 
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Microscopy profiles revealing the layer thickness of our MoTe2 samples. CVD 

growth of molybdenum and tungsten disulfides and diselenides reliably leads to triangular 

islands with straight edges in our lab.80, 81 In contrast, MoTe2 films generally do not adopt 

straight edges, so that the edge shape cannot be used to indicate crystallographic 

orientation. The highest propensity for straight edges we find for 1T MoTe2. We discuss 

the origin of this phenomenon below. 

Density functional theory (DFT) based structural minimization finds both the 2H 

and 1T structure as local minima of the energy, if a 1x1 crystallographic cell is utilized. 

The 1T structure has a lower (unfavorable) binding energy per stoichiometric unit of 

0.51eV/f.u.. If a 2x1 supercell is used, no local energy minimum at the 1T phase is detected; 

rather the 2H and 1T’ phase are found and the latter has a binding energy lower 

(unfavorable) by 0.03 eV/f.u..  

We calculated the phonon spectrum for each structure by means of 3x3 supercell; 

while neither the 2H nor the 1T’ exhibited negative phonon frequencies, a band of negative 

frequencies was found for the 1T structure when expanded to a 3x3 supercell. This 

indicates that this phase requires stabilization by extrinsic effects that will be discussed in 

the following section.  
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Figure 4.2: Comparison of the experimental (black) Raman spectra for each 

phase of MoTe2 with computational predications (colored lines): a) 2H continuous film, 

b) 1T’ island, and c) 1T island. d) mixed phase film as indicated by the presence of 2H 

Raman peaks in an otherwise 1T film. The AFM line scans indicate the film thickness. 

Raman spectroscopy is used to identify and characterize the MoTe2 phases. 

Samples not quenched during the growth process exhibit Raman peaks at 171cm-1 and 

233cm-1, as shown in Fig. 4.2a. These features agree well with peaks predicted from DFT 

calculations of the 2H phase at 170cm-1 and 230cm-1, at a deviation of 0.59% and 1.30%, 

respectively. Our values also corroborate published results on exfoliated36, 38-43 and CVD-

grown44-46 2H:MoTe2.  

Quenching at ~350°C leads to an MoTe2 film (Fig. 4.2b) that exhibits a number of 

Raman features that are typically associated with the 1T’ phase of MoTe2. Because of the 

expanded supercell and lower symmetry of this structure, the set of Raman-active modes 

is wider. In particular, we observe pronounced features at 80cm-1, 85cm-1, 102cm-1, 112cm-

1, 126cm-1, and 162cm-1. These match our DFT predictions within an error of 1.25%, 

4.49%, 2.00%, 0.90%, 1.61%, and 3.18%, respectively. The Raman modes observed in 

these films also correspond well to literature values. 
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Quenching the film growth at 450°C, we observe a Raman spectrum that is clearly 

distinct from the 1T’ phase (panel c). It is significantly simpler consisting of two prominent 

modes only at 155cm-1 and 242cm-1, each of which is slightly broader than is counterpart 

in the 2H phase. Comparison to our computational work reveals good agreement of the two 

experimental Raman modes with the Raman modes of 1T MoTe2, which we predict at 

159cm-1 and 240 cm-1 respectively. Based on this finding, we assign this phase to be 1T 

MoTe2. We note that the higher-energy mode is consistently broader in the spectral 

signature. We are not aware of prior experimental observation of this phase. 

On the Mechanism of Phase Control: We interpret the ability to grow three different 

phases of MoTe2 by procedures that differ only during the cooling process as an indication 

that during initial growth, MoTe2 occurs in the 1T phase. A number of reports suggest 

thermodynamic preference for the octahedral (1T-type) phase at elevated temperatures for 

a number of TMD materials; for instance, for TaS2 an unreconstructed 1T phase has been 

observed.83  We find that in the absence of both H2 and CO2 during growth, we cannot 

obtain 1T MoTe2; in prior computational work we have shown that both H and CO2 

adsorption reduce the energy difference between the H and T’ structures, potentially 

reducing the bias of the growth toward the H phase.47 While these calculations motivated 

our choice of gases to include during growth, the actual role and specific bonding of these 

gases may differ from the assumptions made in the survey of Ref. 47 . We hence attribute 

the initial growth in the 1T phase to the interplay between CO2, H2, (and possibly the 

underlying SiO2 substrate) with the emergent MoTe2 film.  
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Fig. 4.3 shows the free energy for each phase as a function of temperature; the 

lowest phase at each temperature is the thermodynamically preferred one. At low 

temperatures this is the 2H phase and it transitions to the 1T’ phase at ≈310°C. The 

prediction of the transition temperature between the 2H and 1T’ phase neglects effects of 

gas-phase species and substrate interactions. The computed value of 311ºC is in good 

agreement with the experimental observation that we need to start quenching at ≥350ºC so 

as to avoid the 2H phase.  Unfortunately, computational modeling of the 1T phase would 

require precise knowledge about the high-temperature chemical interplay that stabilizes it, 

which is beyond our computational capabilities. As a zeroth-order approximation we 

assume the adsorbate interplay to shift all negative phonon density to the lowest positive 

phonon frequency of 1T MoTe2.  This crude approach is conceptually motivated by the 

assumption that weak adsorption of the gas species – and weak binding to the substrate – 

is necessarily associated with soft vibrational modes. However, we emphasize that this 

approach does not represent an authentic representation of the system – and that the 

resultant computational transition temperature at 916ºC should not be interpreted 

quantitatively. Conceptually, this approach leads to a consistent explanation of our 

experimental results, in as much as it predicts thermodynamic stability of 1T MoTe2 at the 

highest temperatures, followed by preference for 1T’ and 2H at successively lower 

temperatures. Consequently, if starting at sufficiently high temperatures the growth is 

quenched rapidly enough, one obtains 1T MoTe2. As the temperature is gradually reduced 

while CO2 and H2 are purged out of the tube (as we only flow them at the peak temperature 

of the growth), the 1T’ becomes thermodynamically stable and it will be the final product, 
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if the growth is quenched in the correct temperature regime. Finally, if the film is brought 

gradually all the way down to near room temperature, then the thermodynamically 

preferred phase at room temperature, namely 2H, emerges.  

Figure 4.3: Computed phase stability: Free energy of MoTe2 in the 2H, 1T’ and 1T 

phase based on calculations of the phonon density of states in the three phases. The curve 

for 1T MoTe2 is subject to the limitations described in the text. At each temperature, the 

curve with the lowest free energy represents the thermodynamically preferred phase. Spin-

orbit coupling effects are included in the underlying electronic structure calculations for all 

phases. Relaxed lattice constants are used for all phases. 

The assumption of phase transitions during cooling of the MoTe2 film suggest the 

highest propensity for straight edges in 1T MoTe2 and successively lower definition of the 

mesoscopic crystallographic order in 1T’ and 2H MoTe2, as these films had to undergo 
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reorganization in the course of their phase transitions from the growth phase. Our 

observations affirm this prediction. 

We investigated whether the presence of CO2 during growth leads to incorporation 

of carbon into the MoTe2 film. X-ray photoelectron spectroscopy (XPS) measurements 

confirm that only comparatively small amounts of carbon are present after the growth is 

complete. Raman spectroscopy also shows the absence of an amorphous carbon film. The 

incorporation of small amounts of oxygen in the final film can unfortunately not be 

determined in this way because of the abundance of oxygen in the SiO2 substrate and the 

MoO3 precursor.    

Figure 4.4: Band structures calculations of monolayer films: Left semiconducting 

2H-MoTe2, center metallic 1T’-MoTe2, and right semimetallic 1T’-MoTe2. Spin-orbit 

coupling effects are included in all calculations.  

Band Structure and Semimetallicity: Figure 4.4 shows on the right the band 

structure of 1T MoTe2 and compares it to the one of the 2H (left) and 1T’ (center) phase. 

1T MoTe2 is metallic; an electronic feature resembling a valence band crosses the Fermi 
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level at the K point by a very small amount; a feature resembling a conduction band crosses 

below the Fermi level by a similar, very small amount at a low-symmetry point along Γ-K. 

The amount of Fermi level crossing is less than 50 meV in each case and does not exceed 

the expected accuracy of DFT calculations leading us to classify this material as a potential 

semimetal.  

We validate the predicted properties of 1T MoTe2 by electrical transport 

measurements on all three phases. For contacts we utilize Sc/Au stacks fabricated by 

electron-beam lithography. Fig. 4.5a shows the results obtained on 2-terminal devices. The 

2H device of channel width/length of 2.4 µm/0.8 µm used 1L material; the 1T’ devices of 

3.5µm /1µm used 1L material; the 1T devices of 25 µm/0.5 µm used 1L material. It is well 

established that 2H MoTe2 exhibits the properties of a semiconducting film including 

comparatively low conductivity as well as a ready response to an applied bottom gate. Our 

measurements corroborate this showing a resistance of 570 MΩ at zero gate and VSD=0.5V 

corresponding to a resistivity of 168 Ω cm. Our film shows a mobility µ of 0.03 cm2/Vs 

under gating through 300nm of SiO2, in line with prior work on CVD films.40, 45, 84     
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Figure 4.5: Transport Measurements: a) source-drain current ISD as a function of 

source-drain voltage VSD across two-terminal devices fabricated on the MoTe2 materials 

of Fig. 14: 2H MoTe2 (blue, right y-axis) exhibits p-type semiconducting behavior. 1T’ 

(red) and 1T (green) show metallic, ohmic behavior and significantly increased currents 

(left y-axis) that correspond to resistances of 0.67 MΩ and 0.14 MΩ, respectively. The 

inset shows the temperature-dependence of the resistance of a 0.5 micron channel of 1T 

MoTe2 measured in a 4-probe setup. b) ISD-VSD curves as a function of channel length 

(measured electrode center to center) for a MoTe2 device with a mixture of 1T and 2H 

phases: the response is semiconducting despite the low Raman contribution of the 2H 

phase.  
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The 1T’ phase reveals metallic behavior with electrode-to-electrode resistances in 

the upper kΩ regime. For the 1T material we find an electrical response with significant 

sample to sample variation (see below); the conductivity of few-layer 1T MoTe2 films can 

exceed that of our best single-layer 1T’ devices. The resistivities of the 1T and 1T’ phases 

of Fig. 4.5 are 2.0 Ω cm and 0.17 Ω cm, respectively. Neither the 1T nor the 1T’ devices 

of Fig. 4.5a show an appreciable response to back gating. However, the 1T phase exhibits 

a decreasing resistance with temperatures (inset of Fig. 4.5a) as expected for a semimetal. 

Hybrid Phase Films: Slight variation in the MoTe2 growth parameters, such as the 

temperature or the rate at which the quench occurs, results in uniform films that exhibit 

Raman spectra of a combination of two (or all three) MoTe2 phases within a diffraction 

limited sample spot. We have observed every which pairing and focus in the following on 

a device that combines the 1T and 2H phases.  

The Raman spectrum and micrograph of such a film is shown in Fig. 4.2d. The film 

is 3 layers thick and the Raman spectrum is practically constant across the entire film 

region.  Fig. 4.5b shows the transport properties between electrodes at successive 

separation (see inset for device image); a linear fit results in a contact resistance of 17 MΩ 

(or 0.75 Ωcm2) and a channel resistance of 14 MΩ/µm (or 2.7 Ωcm). 4-point configuration 

resistance measurements agree with the ones obtained here.  

1T MoTe2 has a significantly stronger Raman response than the 2H material. 

Despite the dominant 1T character of the material’s Raman spectrum, the device exhibits 
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a semiconducting behavior and responds to gating just like the 2H phase, yet the total 

conductivity exceeds that of our 2H MoTe2 devices by two orders of magnitude while 

lacking by a similar factor compared to the pure 1T device. This finding suggests that 

judicious tuning of the 1T-2H mixture allows tailoring the conductivity and gate-response 

of MoTe2-based devices at will.    

Sample Characterization & Device Fabrication: Sample characterization proceeded 

on a Horiba LabRam system for imaging and using a 532 nm laser for Raman spectroscopy. 

Atomic force microscope (AFM) was performed on a Veeco Dimension 5000 system with 

samples capped in PMMA for environmental stability. Transport measurements proceeded 

in a probe station housed in a glove box utilizing a Keithley 2400 source meter. 

Fabrication of contacts for electrical transport measurements involved e-beam 

lithography on a Leo SUPRA 55 electron microscope. A double stack of MMA 

(EL9)/PMMA (A4) served as resist; development occurred in a 1:3 mixture of methyl-

isobutylketone and isopropyl-alcohol. Immediately subsequent, we deposited 6-10 nm Sc 

followed by 80-100 nm Au in an e-beam evaporator (Temescal BJD 1800). Lift-off was 

performed in acetone.    

Computational Method: Our computational work uses density functional theory 

(DFT) as implemented in the Vienna Ab Initio Simulation Package (VASP)85, 86, using the 

Projected-Augmented Wave (PAW) method87. Electron exchange and correlation effects 

were treated with the generalized gradient approximation (GGA) functional of Perdew, 

Burke, and Ernzerhof (PBE)88. Spin-orbit coupling effects were included for non-
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vibrational calculations. A plane-wave basis set with a kinetic energy cutoff of 350 eV was 

employed. We sampled the Brillouin zone using an 18181 Monkhorst-Pack89 k-point 

grids. The computational cell is 16 Å along the interlayer direction. A rectangular unit cell 

with two formula units of MoTe2 was used for 2H and 1T’ phase, and a hexagonal unit cell 

with one formula unit of MoTe2 was used for 1T phase.  
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 4.2 Tantalum Triselenide, TaSe3 

The following chapter contains excerpts from “Low Resistivity and High 

Breakdown Current Density of 10-nm Diameter van der Waals TaSe3 Nanowires by 

Chemical Vapor Deposition” by T.A. Empante, et. al.90 

 

Figure. 4.6 a) Crystallographic structure of TaSe3 consisting of four nanowire Ta-

Se3 stacks per unit cell along the b axis. The greyed atoms inside the unit cell correspond 

to those shown outside of it in order to highlight the selenium triangles between each 

tantalum plane; b) schematic representation of the chemical vapor deposition process inside 

a tube furnace; c) optical image of a population of TaSe3 nanowires. 

This manuscript focuses on the preparation and characterization of a specific 

transition metal trichalcogenide (TMT), TaSe3, on a commercial 300 nm SiO2/Si substrate 
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using process parameters (ambient pressure, ≤ 400°C process temperature, ≤ 5 min process 

duration) that are amenable to conventional back-end-of-the-line (BEOL) process limits.  

Despite the large interest in TMDs, TMTs have been largely left unstudied at the nanoscale; 

they have varying structures from 2D thin films to 1D wires and properties ranging from 

insulating to metallic.49, 50, 68, 91 TaSe3 has a monoclinic unit cell and consists of stacks of 

Ta atoms, each of which are bonded to three selenium atoms above and below along the b 

axis (Fig. 4.6a). Neighboring -Ta-Se3-Ta-Se3- stacks are separated from one another by a 

tubular vdW gap exposing chalcogen atoms only, similar to the gap between the Se-Mo-

Se layers in 2D MoSe2.  TaSe3 has been known for a long time and bulk samples have been 

prepared using chemical vapor transport (CVT), a process that requires long process times 

and is not amenable to current semiconductor processing paradigms; exfoliation of such 

samples yielded the results reported by some of us earlier.66-68 

Interconnect performance is crucial for low-power high-clock-frequency 

computing: the transition from aluminum to copper interconnects starting some 20 years 

ago was driven by both the better conductivity of copper and the better manageability of 

electromigration in copper, the key failure mechanism for interconnects.92, 93 However, as 

the cross section of an interconnect becomes shorter than the electron mean free path (~40 

nm in copper),70-72 its resistivity increases dramatically due to scattering at the material 

surface and at internal grain boundaries. A 1D material without surface dangling bonds or 

internal grain boundaries would, in theory, lack these drawbacks and be a prime candidate.  

The best aspect ratio of interconnect cross sections has been studied intensely 

optimizing interconnect topology while reducing capacitive cross coupling. Modern 



36 
 

processors use aspect ratios between 1.2 and 1.5 on the first four (0-3) metal layers.94 We 

show a CVD method that natively generates nanoscale wires with a width to height aspect 

ratio of  ~1, close to the optimal one.  

 

Figure 4.7: a) Raman spectra of TaSe3 nanowire bundles held for different duration 

at the growth temperature of 400°C. A hold time beyond 3 minutes causes the Raman 

spectrum to broaden. The inset shows the resulting length distribution peaking at 3 min 

hold time; b) Nanowire Raman spectra as a function of growth temperature. Starting at 400 

°C  the desired peak at ~180 cm-1 is dominant.  

Raman spectroscopy (Horiba Labram HR800, 532 nm wavelength laser, linear 

polarization, 0.8 mW of laser power on sample) was used to characterize the nanowire 

bundles grown at hold times varying from 1 to 5 minutes (Fig. 4.7a) at 400°C. The feature 

at ~180 cm-1 is typically referred to as B2 or B2/Ag in the literature. In addition, if we align 

the plane of polarization of the Raman excitation perpendicular to the nanowires, we find 

a second, weaker mode at ~ 215 cm-1. This peak in the literature referred to as another A1g 
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mode. Computational modeling of the phonon spectrum and the associate atom 

displacement suggest that the dominant mode in Fig. 4.7a is associated with axial wagging 

of the selenium trimer with regards to the Ta atom and the peak at ~ 215 cm-1 with the 

symmetric and asymmetric stretch motion of the Se atoms in the trimer. The supporting 

information provide angle-dependent Raman spectra and graphic representations of the 

modes. The supporting while nanorods were formed in each instance, up to ~3 minutes 

hold produced the nanowires with the sharpest Raman signature at ~180 cm-1; longer hold 

is associated with a broadening of the Raman mode by a higher energy shoulder. The 

supporting material shows a table of the fit parameters of the spectra.  Determining the 

average length of a large set of nanowires generated at each hold time using optical 

microscopy, we find a maximum wire length at ~3 min hold time (inset in Fig. 4.7a). The 

supporting material shows histograms. This finding suggests that during the hold time the 

nanowires do not only form and elongate, but also can decompose, presumably from 

selenium loss. We studied the Raman spectra of the nanowires as a function of the peak 

process temperature (Fig. 4.7b) and find that 400°C is the minimum temperature at which 

nanowires with the desired Raman signature form. The nanowires with the broad spectral 

feature at ~260 cm-1 formed at process temperatures below 400°C exhibit transport 

properties far inferior to those nanowires described in the remainder of this manuscript; 

their precise composition is unknown to us.   

In order to be of technological relevance, the TaSe3 1D vdW nanowires need to be 

prepared on the scale of a few nanometers in cross section yet significant in length. To this 

end we evaluated the length to width to height ratios in a population of nanowires. Fig. 
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4.8a and b show atomic force and scanning electron microscopy (AFM and SEM, 

respectively) images of the same population of growth seeds and short wires. We obtain 

the nanowire height from atomic force microscopy yet we use SEM to establish the 

nanowire width because of the finite size of any AFM tip and associated convolution of tip 

radius and nanowire width. Fig. 4.8c shows the width-to-height aspect ratio of the 

nanowires plotted as a function of the nanowire length. Nanowires shorter in length than 

~120 nm exhibit ratios between 0.75 and 2.5 which we attribute to the seeding of the growth 

(gray area). Longer nanowires have an aspect ratio very close to unity: as the axial growth 

sets in, the nanowires appear to minimize surface area by maintaining a width to height 

ratio near unity (black markers). Fig. 4.8c includes also a significant number of long 

nanowires that form the basis of the transport measurements in the next section of this 

manuscript. The inset shows the dependence of width to height for the black markers of 

the main panel. The slope is 1.06. 

For measurement of the electrical transport properties of the TaSe3 nanowires we 

employed electron beam lithography (EBL) to fabricate contacts consisting of 5 nm of 

yttrium for adhesion and 50nm of gold for conduction and stability. Previous studies of 

TaSe3 nanowires66-68 used encapsulation in h-BN to avoid surface decomposition by 

oxygen and moisture from the air. Striving to utilize only scalable methods in our work, 

we took a different approach: immediately following removal from the process tube, we 

cap the substrate containing the 1D vdW TaSe3 nanowires with spin-coated polymethyl 

methacrylate (C5 PMMA) resist under a nitrogen-atmosphere. 
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Figure 4.8 a,b) Atomic force microscopy (AFM) and scanning electron microscopy 

(SEM) images, respectively, of the same population of TaSe3 1D vdW nanowire bundles 

(scalebar is 500 nm); c) The width to height ratio of the 1D vdW TaSe3 nanowires at 

seeding (grey area) and as uniaxial growth continues: longer wires have a width-to-height 

aspect ratio of practical unity. The inset plots SEM width vs. the AFM height of the wires 

indicated by black markers in the main panel.   

Subsequently, we characterize the nanowires by Raman spectroscopy through the 

PMMA film and then use the same resist film to fabricate electrical contacts. Care is taken 

to minimize the time between development and metal deposition so as to reduce air 

exposure of the sample. Immediately following metal liftoff, we again spin coat the sample 

with a layer of PMMA in a nitrogen glovebox. Subsequently, a second EBL process is 

performed to remove resist from the surface of the probe pads only. Electrical 

characterization proceeds in a nitrogen atmosphere.  
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Figure 4.9: a) Source-Drain Current vs. Voltage (Isd vs. Vsd) for a 11.6 nm TaSe3 

nanowire; a linear dependence is observed in this two-probe measurement that corresponds 

to the current density shown on the y-axis and the resistivity highlighted. The inset shows 

an SEM image of a 1D vdW TaSe3 nanowire bridging two electrodes (scalebar is 500 nm); 

b) resistivity of TaSe3 nanowire bundles with width-to-height aspect ratios near unity (1.0-

1.1) as a function of bundle width. For reference, we include bulk values for copper and 

TaSe3 as dashed lines, as well as a prediction for the scaling of the copper resistivity with 

wire width based on Ref. 72 The smallest exfoliated nanowire of our prior studies is 

indicated as open dot. 66-68  c) Calculated density of states (DOS) near the Fermi level (EF) 

for bulk TaSe3, a 2D bilayer of wires, a 2×2 wire bundle, a 2×1 wire bundle and a single 

wire. The confined wire geometries have higher DOS at EF than the bulk material 

suggesting that quantum confinement does not adversely affect charge transport in TaSe3.   
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Fig. 4.9a shows a typical current-voltage (I-V) diagram measured on a TaSe3 nanowire 

with width and height of ~11.6 nm each. We use electrodes separated by 500 nm (inset). A 

linear I-V dependence is observed, from which a resistivity ρ of 388 μΩcm is obtained. 

The secondary y-axis of Fig. 4.9a shows the corresponding current density J.   

We tested a large number of nanowires, each time followed by AFM and SEM 

characterization of their respective width and height. Fig. 4.9b shows the resistivity of 

wires with width ≤ 50 nm and cross section aspect ratios near unity (1.0-1.1). In a few cases 

we found wires that exhibited significant non-linear response for small voltage, which we 

ascribe to contact resistance. These were omitted from Fig. 4.9b. The figure reveals that 

the specific resistance of 1D vdW TasSe3 nanowires is independent of the cross section of 

the wire bundle down to 7 nm in width and height. This presents a marked contrast to the 

behavior of copper at the nanoscale for which Fig. 4.9b includes a reference line based on 

the work of Steinhogel et al. 72 assuming surface p and grain boundary R scattering 

amplitudes of 0.5 and 0.6, respectively. At a few nanometer wire width, the resistivity of 

TaSe3 becomes competitive to that of copper, assuming that a pinhole-free deposition of 

copper wires is possible at that width scale, which is not immediately apparent.95  

If scattering does not limit the scaling of the conductivity of TaSe3 nanowires, we explore 

whether quantum confinement perpendicular to the nanowire direction may do so. To this 

end, we assume that the conductivity of a metallic material in first order scales with its 

density of state (DOS) near the Fermi level (EF) and calculate the DOS of various nanowire 

bundle configurations.  We employ density functional theory as implemented in the Vienna 

Ab initio Simulation Package (VASP)96 using the projector augmented wave method86, 87 
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and treating the electron exchange-correlation interaction by the generalized gradient 

approximation (GGA) functional of Perdew, Burke, and Ernzerhof (PBE).88 All 

calculations use periodic boundary conditions and the Brillouin zone was sampled by a 

2×7×2 Monkhorst−Pack k-point grid.89  

Fig. 4.9c compares the density of states (DOS) of an infinite bulk of TaSe3 (solid 

line) to an infinite 2D bilayer of wires, bundles of 2×2 and 2×1 wires, as well as a single 

wire. In each case we find considerable DOS near the Fermi level (EF) and no band gap. 

Indeed, as the wire bundle is thinned to a bilayer and a finite number of wire stacks, the 

DOS near EF increases. This finding suggests that – at least for some wire bundle 

geometries – a higher native conductivity is possible than for the bulk case. We recognize, 

however, that this analysis omits fundamental stability limitations (such as the Mermin-

Wagner-theorem97) yet we note that additional research is necessary to fathom their impact 

as shown for graphene.98 The smallest wire bundle for which we obtained transport 

measurements had a width and height of ~ 7nm (Fig. 4.9b) and thus as few as ~10x10 wires 

in parallel; it is almost an order of magnitude larger than the computationally readily 

tractable ones of Fig. 4.9c.  

Finally, we turn to the stability of the 1D vdW nanowires with regards to 

degradation under transport. Measurements of the low-frequency noise are commonly used 

to assess the quality and reliability of conventional99-103 and novel 2D materials 67, 69, 104 for 

device applications. Changes in the noise spectra can serve as a convenient indicator of the 

onset of electromigration and other material degradation mechanisms. In the context of 

interconnect research, the low-frequency noise can provide a fast estimate of the device’s 
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mean time to failure. The low-frequency noise measurements were performed using an 

experimental setup consisting of a “quiet” battery, a potentiometer biasing circuit, a low 

noise amplifier, and a spectrum analyzer; additional details have been reported 

elsewhere.105, 106  

Figure 4.10: a) Normalized current noise spectral density of a ~10×10 nm2 (width 

× height) CVD 1D vdW TaSe3 nanowire bundle at different temperatures T using a source-

drain voltage Vsd of 0.1 V. b) Arrhenius plot of T×SI/I
2 vs. 1000/T for a frequency f of 11 

Hz.  The extracted activation energy EA is 2.57 eV. c) Current density J response of a ~7×7 

nm2 nanowire as the voltage is slowly increased. Failure occurs at a current density in 

excess of 108 A/cm2. 

Figure 4.10a shows the normalized current noise spectral density SI/I
2 as a function 

of frequency f for a TaSe3 nanowire with a cross-section of ~ 10×10 nm2. The noise level 

SI/I
2 of ~10-8 Hz-1 at f=10 Hz and T=300K in the downscaled CVD TaSe3 nanowires is 

appreciably low. Although it is higher than measured in conventional metals107, 108 and also 

for larger cross section exfoliated TaSe3 nanowires,67, 108 the latter is expected because the 

noise originating from a volume of independent fluctuators scales inversely proportional 
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to the size of the volume.99 Indeed, one can write for the noise spectral density99-101  

SI/I
2=H/Nf, where H is the coefficient of proportionality referred to as the Hooge 

parameter, and N=n×V, where n is the concentration of the charge carriers and V is the 

volume of the sample. The noise levels of 10-9 Hz-1 – 10-5 Hz-1 are found in conventional 

transistors and other electronic devices.101 

Fig. 4.10a reveals increase in the noise level with increasing temperature. The informative 

frequency range from 10 Hz to ~400 Hz exhibits a deviation from pure 1/f noise; 

approximately 1/f1.4 provides the best fit at elevated temperatures. This trend is consistent 

with observations on thicker exfoliated TaSe3 nanowires.67 In metals the deviation from 

1/f-type behavior is commonly attributed to the onset of electromigration. We construct an 

Arrhenius plot of T×SI/I
2 vs. 1000/T (Fig. 4.10b) to extract the activation energy (EA) for 

the noise inducing process in CVD 1D vdW TaSe3 nanowires.  The resultant value of ~2.5 

eV is larger than that for exfoliated TaSe3 nanowires67 and more than twice that for 

electromigration in copper (0.76-1.10 eV) and aluminum (0.67- 1.14 eV ) using similar 

measurements.102, 103, 108, 109 This finding suggests very good resistance of CVD TaSe3 1D 

vdW nanowire to electromigration.    

The electromigration resilience of the CVD 1D vdW TaSe3 nanowires is confirmed 

by successively increasing the voltage applied to a 7×7 nm2 wire bundle (about 100 parallel 

Ta-Se3 stacks in total). Fig. 4.10c shows that the wire bundle was able to sustain in excess 

of 108 A/cm2 before electrical breakdown. This current density is an order of magnitude 

higher than that found for thicker, exfoliated TaSe3, and also slightly better than our 

previous findings for ZrTe3.
69 We note that acquiring the dataset of Fig. 4.10c took almost 
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an hour of slowly increasing the bias, so that self-heating may have contributed to reduced 

overall current carrying capacity and increased susceptibility to electromigration. 

Embedding the nanowire with a better thermal sink than the underlying SiO2 substrate and 

the surrounding PMMA resist may result in even higher sustained current densities. 
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Summary  

The developed CVD growth process outlined shows that by altering process gases 

and cooling rates one can selectivity synthesis various phases of MoTe2, from the 

semiconducting 2H phase to the novel 1T semi-metallic phase with relative ease. It also 

gave insight into the ability of a 1T/2H hybrid/mixed phase material to create a low 

resistance gate-able semiconducting 2D films. This characterization could allow the for 

future phase change configurations by tuning the phase alloying in a material.   

We show that chemical vapor deposition allows the growth of TaSe3 nanowires on 

a SiO2 substrate that are competitive in resistivity to conventional metals scaled to sub-10-

nanometer wire diameters, while offering significantly enhanced electromigration 

resilience and breakdown current. The growth proceeds at back-end-of-line compatible 

temperatures (~ 400°C) and because it takes just a few minutes, it has a comparatively low 

thermal budget impact. Future work will adapt prior findings on the spatially-selective 

growth of TMD materials110-113 so as to generate the TaSe3 nanowires not randomly 

dispersed on the sample but at desired locations only.   
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