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Abstract—A machine learning approach is developed for lo-
calization based on received signal strength (RSS) from cellular
towers. The proposed approach only assumes knowledge of RSS
fingerprints of the environment, and does not require knowledge
of the cellular base transceiver station (BTS) locations, nor uses
any RSS mathematical model. The proposed localization scheme
integrates a weighted K-nearest neighbor (WKNN) and a multi-
layer neural network. The integration takes advantage of the
robust clustering ability of WKNN and implements a neural
network that could estimate the position within each cluster.
Experimental results are presented to demonstrate the proposed
approach in two urban environments and one rural environment,
achieving a mean distance localization error of 5.9 m and 5.1 m in
the urban environments and 8.7 m in the rural environment. This
constitutes an improvement of 41%, 45%, and 16%, respectively,
over the WKNN-only algorithm.

I. INTRODUCTION

Due to the weakness of received global navigation satellite

system (GNSS) signals in urban canyons, substantial work has

been devoted towards finding alternative localization methods.

Signals of opportunity have been shown to be one of the

best alternatives in GNSS-challenged environments [1]–[3].

Over the past two decades, cellular signals have attracted

significant attention for localization due to their abundance,

geometric diversity, large bandwidth, and high received power

[4]. Recent research have demonstrated localization with cel-

lular code-division multiple access (CDMA) and long-term

evolution (LTE) signals with meter-level accuracy, by using

specialized receivers that exploit the CDMA and LTE forward

link channels [5]–[11].

The aforementioned localization approaches with cellular

CDMA and LTE signals are based on time-of-arrival (TOA)

or time-difference-of-arrival (TDOA), which tend to produce

a precise position estimate. An alternative approach that is

easier to implement is one that utilizes received signal strength

(RSS), but it yields a less precise position estimate. RSS

approaches use fingerprinting, where RSS from cellular BTSs

is collected a priori at specific points, called reference points

(RPs), which get saved in an offline database. When the

user equipment (UE) enters the same cellular environment,

This work was supported in part by the National Institute of Standards and
Technology (NIST) under Grant 2017-3466.

it measures RSS to nearby BTSs in real-time, and matches

RSS to the offline database to estimate its position [12], [13].

Several algorithms have been proposed to improve RSS-

based localization. Methods to deal with RSS fluctuation

issues have been proposed in [14]–[16]. A method to deal

with noisy signals and path loss variations (specifically in in-

door environments) was proposed in [17]. K-nearest neighbor

(KNN) and weighted KNN (WKNN) improve the estimate

by averaging different numbers of RPs’ positions [18]. The

advantage of WKNN is its simplicity. However, to produce

an accurate estimate, it requires a very large database, and

its performance deteriorates with RSS fluctuations. Neural

networks have been considered for indoor localization using

RSS from wireless local area networks (WLAN) [19]. Neural

network approaches could yield relatively accurate position

estimates without the need for a large database [20].

This paper proposes a machine learning localization ap-

proach that integrates both WKNN and a multi-layer neural

network. This approach takes advantage of WKNN’s clustering

capability to yield a limited number of inputs that are adequate

for the neural network within each cluster. The proposed

approach estimates the location of the UE’s cluster based

on matching the RSS values from an offline RSS database

and then refines the position estimate using the multi-layer

neural network within the corresponding cluster. The proposed

approach assumes no knowledge of the BTS location nor

uses any RSS mathematical model. The proposed approach

is tested experimentally in two urban environments and a

rural environment. RSS data is collected with an Android

smart phone and is used to build the offline fingerprinting

database as well as to train the neural network. The mean

distance localization error is shown to be 5.9 m and 5.1 m in

the urban environments and 8.7 m in the rural environment.

This constitutes an improvement of 41%, 45%, and 16%,

respectively, over the WKNN-only algorithm.

The rest of the paper is organized as follows. Section II gives

background about WKNN and multi-layer neural networks.

Section III presents the proposed RSS-based localization al-

gorithm that integrates WKNN and neural network. Section

IV describes the environmental setup and data collection in

the urban and rural environments. Section V analyzes the

experimental results. Section VI gives concluding remarks.
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II. RELEVANT BACKGROUND

This section gives relevant background on WKNN and

multi-layer perceptron neural networks.

A. Clustering and Weighted K-Nearest Neighbor

WKNN involves an offline stage and an online stage, which

are described next.

1) Offline Stage: During the offline stage, several RPs ri =
[xi, yi]

T are selected at which the RSS to neighboring cellular

BTSs are measured and stored in an offline database, i.e.,

iRSSoff = [RSSoff,1, . . . ,RSSoff,M ]T , i = 1, . . . , L, (1)

where L is the number of RPs, iRSSoff is the vector of RSS

values at the ith RP to all M neighboring cellular BTSs, and

RSSoff,m is the RSS from the mth cellular BTS.

The next step is to divide the environment into small

clusters, where the probability of identifying the right cluster

is used as a constraint in determining the number of clusters.

The clustering algorithm is summarized in Algorithm 1.

Algorithm 1: Environment Clustering

Input: p = Probability of correctly identifying the right

cluster, {ri}
L
i=1, and {iRSSoff}

L
i=1

Output: Clustered environment into j clusters

1 Set match = 0
2 Set j = 2
3 Divide the environment into j clusters, each containing

the same number of RPs per cluster

4 For i = 1 to L
5 Calculate virtual distances between the ith RP and the

6 other L− 1 RPs, i.e.,

7 di = ||
iRSSoff −

ιRSSoff ||2, ι ∈ {1, . . . , L}\ i
8 Sort the virtual distances in ascending order

9 Find ir̂ =
∑K

p=1
rp/dp

∑
K
p=1

1/dp

10 If ir̂ and rdesired belong to the same cluster

11 Set match ← match + 1

12 end if

13 end for

14 If match
L > p

15 Set j ← j + 1
16 Go to step 3

17 else

18 Set j ← j − 1
19 end

2) Online Stage: During the online stage, the WKNN

calculates the RSS “virtual distances” between the online

measurements

RSSon = [RSSon,1, . . . ,RSSon,M ]T . (2)

and the offline RPs’ values according to

di = ||RSSon −
iRSSoff ||2, i = 1, . . . , L. (3)

The estimate of the cluster coordinates is calculated accord-

ing to

r̂ =

∑K
i=1 ri/di∑K
i=1 1/di

. (4)

Subsequently, K RPs are chosen according to the best RSS

match, and each chosen RP is assigned a weight. The K in

WKNN could be chosen based on several approaches, one of

which is the graphical elbow method [21]. However, a rule of

thumb in localization is to choose K to be equal the square

root of number of clusters.

At this point, the WKNN has identified the correspond-

ing cluster of the UE. Then, for each one of clusters, an

approximation multi layer perceptron (MLP) is employed to

estimate the final coordinates within the cluster itself. In the

next subsection, this is discussed in details.

B. Multi-Layer Perceptron Neural Network

A neural network is an information processing paradigm

that has been applied in many fields like pattern recognition,

nonlinear mapping, approximation models, and data fusion.

The MLP trained by a back-propagation algorithm is a sturdy

tool for such applications. The MLP consists of an input layer,

an output layer, and at least one hidden layer, where each layer

consists of at least one neuron. The neurons are connected

via weights that are considered the bulk of the trained neural

network in order to estimate the desired output. Moreover, a

three-layer neural network has the capability to approximate

any nonlinear function [22]. This paper employs a three-layer

MLP, depicted in Fig. 1.

Input Hidden Output

ŷ

1

3

N

N − 1

1

2

R

x̂

2

N − 2
R − 1

Fig. 1. The structure of proposed neural network for UE coordinate estimation

The number of neurons in the hidden layers is chosen to be

the difference between the number of inputs and the number

of outputs. The training of the neural network will be based

on the back-propagation presented in [23], which achieves

fast convergence. Back-propagation optimizes its weights and

thresholds in order to minimize the sum of squared errors of

the neurons in the output layer, i.e., minimizing the cost

C =
1

S

S∑

i=1

(iOutputtarget −
iOutputest)

2, (5)

1224



where iOutputtarget and iOutputest are the desired output

(ground truth) and the estimated output (by the neural network)

for each training sample, respectively, and S is the total num-

ber of RPs in the cluster. Also, the weights and thresholds of

the neural network are updated using the 4 standard equations

of back-propagation that are explained in details in [24]. These

equations calculate the error at the level of the output layer

according to (5) and then back-propagate this error to adjust

the weights and thresholds based on a learning rate. The

learning rates are generally set from 0.01 to 0.1 in order to

sustain the stability of the network. The algorithm employs

an adaptive learning rate to reduce the computations, while

improving the overall performance.

III. PROPOSED LOCALIZATION APPROACH

The proposed localization approach learns the environment

offline, storing RSS fingerprints of RPs in an offline database.

The area is divided into several clusters and a few RPs are

strategically selected within each cluster, where each RP is

expected to have a unique fingerprint. The RPs’ positions and

RSS average values over several time samples are recorded.

The weights and biases of the neural network in each cluster

are trained using the back-propagation approach by going over

several locations at different times within each cluster, while

feeding the neural network the locations and their associated

RSS values. In the online phase, the WKNN is first used

to identify the specific cluster and also estimate the location

of the UE. Based on the identified cluster by WKNN, the

neural network is loaded with the corresponding training

weights that correspond to the identified cluster. Subsequently,

the neural network estimates the UE’s position based on

the corresponding RSS values. A flowchart of the proposed

algorithm is depicted in Fig. 2.

Perform real-time

Select RPs and collect
RSS measurements

Cluster RPs using

WKNN

RSS measurements

Identify cluster
using WKNN

position coordinates
Estimate

Build RPs
database

Train the
neural network

Fetch corresponding

trained neural network

o
ffl
in
e

o
n
li
n
e

Fig. 2. Flowchart of proposed RSS-based localization algorithm with WKNN
and neural network

As shown in Fig. 2, the process starts by selecting several

RPs and measuring their respective RSS values. These mea-

surements are used to build the offline database that will be

used later for clustering. The clustering is based on the WKNN

algorithm. Tuning is employed to divide the large cluster

into smaller ones, taking into consideration that the smaller

the cluster, the better is the performance, while ensuring the

highest probability of identifying the corresponding cluster in

the online stage (see Algorithm 1). In order to improve the

confidence in the produced estimates, after the targeted area

is clustered, RSS measurements are taken as training samples

to the neural network. By using the training samples and based

on the back-propagation algorithm, the neural network will be

trained at the level of each small cluster. The next step involves

online measurements, where RSS measurements are used to

find the desired small cluster. As a result, the location estimate

within the cluster depends on the final weights and thresholds

of the trained neural network of the targeted cluster to finally

estimate the position coordinates.

IV. EXPERIMENTAL SETUP

A. Areas Selection

The performance of the proposed method is tested in

two urban environments in the city of Beirut, Lebanon: (1)

Hamra and (2) Beirut Central District (BCD), where each

area correspond to one cluster. Hamra is a dense urban area

where building heights range between 18–36 m, whereas the

buildings in BCD are not as dense with heights between 9–

18 m. The buildings in the rural area are sparse with heights

ranging between 4–9 m. The following describes the RPs’

selection in these environments:

1) Urban Environments:

a) Cluster 1, Hamra: The covered area was 348

×103m2, containing 3133 RPs with 7 m spacing.

b) Cluster 2, Beirut Central District (BCD): The cov-

ered area was 307 ×103m2, containg ,890 RPs

with 7 m spacing.

2) Rural Environment:

a) Cluster 3: The covered area was 420 ×103m2,

containg 3300 RPs with 11 m spacing.

B. Data Collection

In the offline stage, an adequate number of RPs was selected

for each cluster. Then, the RSS values of cellular signals were

recorded from BTSs of the two cellular providers in Lebanon:

Alfa and Touch. An Android smart phone was used to collect

the raw RSS measurements. For each location, the RSS values

were averaged over 30 s and 5 s in the urban and rural

environments, respectively. The data was stored to train the

neural network. A snapshot of the collected RPs is illustrated

in Fig. 3.

C. Neural Network Training

The Neural Designer software was used to train the neu-

ral network [25]. In both urban environments and the rural

environment, 60% of the data was used for training, 20%

of the data was used for selection, and 20% of the data

was used for testing. The training data was used to construct
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(a)

(b)

(c)

Fig. 3. Snapshot of RPs in: (a) rural environment, (b) Hamra, and (c) BCD

different models. The selection data was used for choosing

the predictive model with best generalization properties (re-

move the most incoherent samples that could confuse the

network). The testing data was used to validate the model.The

normalization method used for inputs was the mean standard

deviation scaling. The activation functions for all neurons was

the hyperbolic tangent function, and the loss index on which

the network convergence was based was the root mean squared

error. The number of input neurons for the MLPs were 57, 49,

and 34, for Hamra, BCD, and rural environment, respectively.

The number of neurons in the hidden layer was the number of

input neurons minus the number of outputs, namely 2. Finally,

MLPs were trained using the back-propagation approach and

were tested to approximate the desired outputs using the

testing samples. The performance of the proposed algorithm

is compared with the WKNN-only algorithm.

D. Clustering

After finishing the data collection stage, one hundred RPs

were selected from each cluster. In the online stage, RSS

measurements were substituted in (3) and (4) along with the

hundred chosen RPs from each cluster. Also, K was set to be

constant in (4) as the nearest RP was chosen. Hence, the best

matching RP’d coordinates determine the targeted cluster (see

Algorithm 1). Experimental results and corresponding analysis

are discussed in the next section.

V. EXPERIMENTAL RESULTS

Three neural networks were trained with the collected data,

one for each cluster covering the two urban environments

and the rural environment. Table I shows the total number

of RPs, number of training samples used for training (60%),

area covered, number of iterations for training, and the gradient

loss. The linear regression between the desired output and the

estimated output is given in Table II, showing the regression

coefficients in each cluster (in the form of (x̂, xdesired) and

(ŷ, ydesired)). A strong relationship between the estimated

outputs and the desired ones can be noticed in the urban

environments, but such relationship is slightly weaker in the

rural environment due to the large spacing used and lack of

the unique RSS fingerprints.

TABLE I
TRAINING DATA FOR THE THREE ENVIRONMENTS

Cluster
Number
of RPs

Number

of
training

samples

Covered

area

[×10
3
m

2]

Number

of itera-

tions

Final

network

loss

Hamra 3133 1880 348 6159 0.051

BCD 2890 1734 307 2657 0.042

Rural 3300 1980 420 15956 0.097

TABLE II
OUTPUT LINEAR REGRESSION OF THE 3 NEURAL NETWORKS

ASSOCIATED WITH THE 3 ENVIRONMENTS

Environment Hamra BCD Rural

Regression
Coefficients

(0.998, 0.996) (0.997, 0.992) (0.966, 0.952)

To test the trained neural networks in the Hamra, BCD, and

rural environment, a total of 627, 578, and 660 RPs were used,

respectively, which constitute 20% of the RPs in the data set.

Fig. 4 shows the cumulative distribution function (CDF) of

the localization error in the two urban environments and the

rural environment according to the proposed approach versus

that of the WKNN-only approach. It can be seen that the

proposed algorithm outperforms the WKNN-only approach in

all environments. The mean distance errors due to the proposed

approach versus the WKNN-only approach are summarized in

Table III. Note that the WKNN in Hamra and BCD show

that the smallest area that attains a probability of 99% in

identifying the correct cluster was 392m2.

TABLE III
MEAN DISTANCE LOCALIZATION ERROR (m)

Environment Hamra BCD Rural

WKNN-only 8.3 7.4 10.1

Proposed 5.9 5.1 8.7
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distance error (m)
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D
F

C
D
F

C
D
F

distance error (m)

distance error (m)

(a)

(b)

(c)

WKNN-only

proposed

WKNN-only

proposed

WKNN-only

proposed

Fig. 4. CDF of localization error in three environments: (a) Hamra, (b) BCD,
and (c) rural environment

VI. CONCLUSION

This paper presented an RSS-based localization approach

that only requires RSS fingerprinting of RPs in the environ-

ment. The proposed approach employs an integrated WKNN

algorithm and a multi-layer neural network in order to estimate

the location of the UE. RSS measurements from cellular BTS

signals were collected along with the respective locations of

several RPs. A percentage of the collected RPs was used to

train using the back-propagation algorithm, which approxi-

mates the nonlinear relationship between location coordinates

and RSS values. Experimental results of the proposed ap-

proach yielded a mean localization error of 5.9 m and 5.1 m

in two urban environments, and 8.7 m in a rural environment,

which constitute an improvement of 41%, 45%, and 16%,

respectively, over the WKNN-only approach.
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