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Structured illumination microscopy with
unknown patterns and a statistical prior

LI-HAO YEH,1,* LEI TIAN,1,2 AND LAURA WALLER1

1Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720,
USA
2Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA
*lihao.yeh@berkeley.edu

Abstract: Structured illumination microscopy (SIM) improves resolution by down-modulating
high-frequency information of an object to fit within the passband of the optical system. Generally,
the reconstruction process requires prior knowledge of the illumination patterns, which implies a
well-calibrated and aberration-free system. Here, we propose a new algorithmic self-calibration
strategy for SIM that does not need to know the exact patterns a priori, but only their covariance.
The algorithm, termed PE-SIMS, includes a pattern-estimation (PE) step requiring the uniformity
of the sum of the illumination patterns and a SIM reconstruction procedure using a statistical
prior (SIMS). Additionally, we perform a pixel reassignment process (SIMS-PR) to enhance the
reconstruction quality. We achieve 2× better resolution than a conventional widefield microscope,
while remaining insensitive to aberration-induced pattern distortion and robust against parameter
tuning.

c© 2017 Optical Society of America

OCIS codes: (100.6640) Superresolution; (100.1455) Blind deconvolution; (110.0180) Microscopy; (110.1758) Compu-
tational imaging.
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1. Introduction

The Abbe diffraction limit was considered to be the fundamental limit for spatial resolution
of an optical microscope for more than a hundred years. In the last decade, novel techniques
have circumvented this limit in order to achieve super-resolution [1–7]. Structured illumination
microscopy (SIM) [1–4], for example, uses illumination by multiple structured patterns to down-
modulate high spatial frequency information of the object into the low-frequency region, which
can then pass through the bandwidth of the microscope’s optical transfer function (OTF) and be
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captured by the sensor. The reconstruction algorithm for SIM combines demodulation process
which brings the high spatial frequency information back to its original position and synthetic
aperture that extends the support of the effective OTF. Various structured patterns have been used
to realize SIM: periodic gratings [1–4], a single focal spot (confocal microscope) [8,9], multifocal
spots [10–13] and random speckles [13–22]. When the illumination patterns themselves are
diffraction-limited, linear SIM is restricted to 2× the bandwidth of a widefield microscope [4],
allowing up to ∼ 2.4× resolution enhancement (metrics explained in Sec. 3).

In practice, structured illumination systems are sensitive to aberrations and experimental
errors. To avoid reconstruction artifacts that degrade resolution, the patterns that are projected
onto the sample must be known accurately. Periodic grating patterns can be parameterized by
their contrast, period and phase angle, which may be estimated in the post-processing [23–26].
For multifocal patterns, the location of each focal spot is required [10]. For random speckle
patterns, the relative shifts of the patterns are needed [18, 19]. Even with careful calibration and
high-quality optics, distortions caused by the sample may degrade the result.

To alleviate some of the experimental challenges, blind SIM was proposed, enabling SIM
reconstruction without many priors [16,17,21,22,27,28]. The only assumption is that the sum of
all illumination patterns is uniform. Optimization-based algorithms have been adopted, including
iterative least squares with positivity and equality constraints [16, 21, 27], joint support recov-
ery [17] and `1 sparsity constraints [22]. However, these algorithms are sensitive to parameter
tuning and may show low contrast in reconstructing high spatial frequencies [16]. Another algo-
rithm, speckle super-resolution optical fluctuation imaging (S-SOFI) realizes SOFI [29] by first
projecting random speckle patterns onto the object, and then using the statistical properties of the
speckle patterns as a prior to reconstruct a high-resolution image [20]. S-SOFI is experimentally
simple and robust; however it only achieves a 1.6× resolution enhancement instead of 2.4× for
conventional SIM techniques (as compared to a widefield microscope).

In this paper, we propose a new reconstruction algorithm for SIM that is applicable to any
illumination patterns. Our method, termed pattern estimation structured illumination microscopy
with a statistical prior (PE-SIMS), is as robust and insensitive to parameter tuning as S-SOFI,
and achieves better resolution enhancement (up to 2×). Like blind SIM, the patterns need not be
known (except for a requirement on the covariance of the patterns). We demonstrate our method
using simulated and experimental results with both speckle and multifocal patterns. We discuss
pattern design strategies to reduce the amount of data required and demonstrate an extension that
uses pixel reassignment [30–34] to improve the reconstruction quality.

2. Theory and method

Our algorithm takes in a SIM dataset consisting of multiple images captured under different
structured illumination patterns (e.g. random speckles, multifocal spots). We reconstruct the super-
resolved image in two parts. The first part is an iterative optimization procedure for estimating
each illumination pattern based on an approximated object. The second part reconstructs the
high-resolution image using the estimated patterns and the measured images, along with a
statistical prior. Before introducing these two parts, we start by defining the SIM forward model.

2.1. Forward model of structured illumination microscopy

A representative experimental setup is shown in Fig. 1. A DMD spatial light modulator (SLM)
is used to project patterns onto the object through an objective lens. The measured intensity
for the `-th captured image is the product of the object’s fluorescence distribution o(r) with
the illumination pattern p` (r), where r = (x , y) denotes the lateral position coordinates. This
product is then convolved with the system’s incoherent detection-side point spread function
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Fig. 1. Example experimental setup for structured illumination microscopy (SIM) using a
deformable mirror device (DMD) to capture low-resolution images of the object modulated
by different illumination patterns. Our IPE-SIMS algorithm reconstructs both the super-
resoloved image and the unknown arbitrary illumination patterns.

(PSF), hdet(r):

I` (r) = [o(r) · p` (r)] ⊗ hdet(r) =

"
o(r′)p` (r′)hdet(r − r′) d2r′. (1)

2.2. Part 1: pattern estimation

The first part of our inverse algorithm is to estimate the illumination patterns. To do so, we start
with an low-resolution approximation of the object. Then, we use this object and our measured
images to iteratively estimate the patterns (see Fig. 2).

Part 1a: approximate widefield image

If we already knew the object o(r), it would be straightforward to estimate the pattern for each
measured image by dividing out the object from each of the measurements. However, the object
o(r) is unknown. Hence, we start by making a rough estimate of the object. We first take the
mean of all the measured images:

Iavg(r) = 〈I` (r)〉` = [o(r) · 〈p` (r)〉`] ⊗ hdet(r) ≈ p0o(r) ⊗ hdet(r), (2)

where 〈·〉` is the mean operation with respect to `, and p0 = 〈p` (r)〉` is approximately a constant
over the entire field of view. The resulting image will be equivalent to the low-resolution widefield
image if the sum of all illumination patterns is approximately uniform.

Part 1b: deconvolve widefield image

Since the widefield image represents the convolution of the object with its PSF, we can perform
a deconvolution operation to estimate the low-resolution object:

oest(r) = F −1
 Ĩavg(u) · h̃det(u)

| h̃det(u) |2 + β

 , (3)
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Fig. 2. The first part of our algorithm, Pattern Estimation (PE), iteratively estimates the
illumination patterns from an approximated object given by the deconvolved widefield
image.

where F and F −1 denote the Fourier transform and its inverse, respectively, ·̃ denotes the Fourier
transform of a certain function, u = (ux , uy ) are the lateral spatial frequency coordinates and β
is a small Tikhonov regularization constant. Note that this object estimate has diffraction-limited
resolution and will be used only for estimating the illumination patterns.

Part 1c: Pattern estimation

We then use the low-resolution object estimate oest(r) to recover each of the illumination patterns.
Since each image is simply the product of the illumination and object, we could divide each
image by the estimated object to get the pattern. However, we instead solve the problem as
an optimization procedure in order to impose the correct Fourier support constraint and avoid
reconstruction artifacts. The `-th pattern estimate is the solution to the following problem

minimize
p`

f (p` ) = fdiff (p` ) + IC (p` ) =
∑

r
|I` (r) − [oest(r) · p` (r)] ⊗ hdet(r) |2 + IC (p` ),

where IC (p` ) =

{
0, p` ∈ C

+∞, p` < C
, C =

{
p` (r)

∣∣∣∣∣p̃` (u) = 0, ∀u >
2N A
λillu

}
,

(4)

where λillu is the wavelength of the excitation light. The first term of the cost function, fdiff (p` ),
in Eq. (4) is the least square error (residual) between the measured intensity and the predicted
intensity based on our current estimate. The second term enforces a frequency support constraint
for the illumination pattern via an indicator function IC . This is important to reduce artifacts in
the pattern estimation because a normal division between the measured image and estimated
object will create errors outside of this frequency support. In our epi-illumination geometry, the
constraint is that the frequency content of each illumination pattern be confined within the OTF
defined by the objective’s NA.

We implement a proximal gradient descent algorithm [35], summarized in Subroutine 1.
Proximal gradient descent is designed to solve convex optimization problems like ours that have
two cost function terms: one being a differentiable cost function term (e.g. the residual) and the
other being a constraint or regularization term (usually nondifferentiable). When the constraint is
defined by an indicator function, as in Eq. (4), the method is also known as a projected gradient
method.
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To implement, we first compute the gradient of the differentiable cost function term with
respect to p` (r)

g(k )
`

(r) =
∂fdiff (p(k )

`
)

∂p`
= −2oest(r) · [hdet(r) ⊗ (I` (r) − [oest(r) · p(k )

`
(r)] ⊗ hdet(r))], (5)

where k denotes evaluation of the gradient using the pattern at the k-th iteration.
We define the projection operation ΠC to force the information outside of the OTF to be zero

at each iteration. To reduce high-frequency artifacts, the following soft-edge filter is used

ΠC (y) = F −1
{
F {y} · | h̃illu(u) |2

| h̃illu(u) |2 + δ

}
, (6)

where hillu(r) is the system’s illumination-side PSF, and δ determines the amount of high-
frequency information that is suppressed in the pattern estimation step. We repeat this process of
updates and projections until convergence (typically ∼50 iterations to estimate each pattern).

The convergence speed for proximal gradient descent is on the order of O(1/K ) [35], indicating
that the residual between the current and optimal cost functions is inversely proportional to the
number of iterations K . To accelerate convergence, one extra step is conducted in Subroutine 1
to include the information of the previous estimate [36, 37]. The convergence rate for this
accelerated proximal gradient method, O(1/K2) [37], is significantly faster than the normal
proximal gradient method.

Subroutine 1: Pattern Estimation
Input : I` (r), oest(r)

1 initialize p(1)
`

(r) with all zero image;
2 t1 = 1;
3 for k = 1 : K do
4 Select step size η(k ) > 0;
5 p̂(k+1)

`
(r) = ΠC

[
p(k )
`

(r) − η(k )g(k )
`

(r)
]
, where ΠC denotes the projection onto C.

tk+1 =
1+

√
1+4t2

k

2 ;
6 p(k+1)

`
(r) = p̂(k )

`
(r) +

tk−1
tk+1

[
p̂(k+1)
`

(r) − p̂(k )
`

(r)
]
;

7 end
Output : p` (r)

2.3. Part 2: SIM with a statistical prior

Once we have recovered the illumination patterns, the second part of the algorithm is to recon-
struct a high-resolution image from the measured dataset I` (r) and the estimated patterns p` (r).
We call this part of the algorithm Structured Illumination Microscopy with a Statistical prior
(SIMS), summarized in Fig. 3. There are four steps, which are explained below. We will also
describe how the statistical prior is used and why this procedure gives better resolution.

Part 2a: calculate the pattern-intensity covariance

Consider the case where the pattern p(r) is a random variable at position r and the measured
intensity I (r) is also a random variable at position r. The `-th image is thus the `-th sample
function for these random variables (one event out of the sample space). Covariance is a measure
of how much two random variables change together. Since the intensity I (r) is the blurred
version of the product between random patterns p(r) and deterministic object o(r) (Eq. (1)),
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· · ·

· · ·

Measurements

Estimated patterns

2a. Pixel-wise
covariance

Covariance image

2b: Pattern-pattern covariance
Theoretically or numerically calculate the 

pattern-pattern covariance to determine PSF 

Pattern-pattern
Covariance

2c. Deconvolve

Deconvolved
covairance image

SIMS 
reconstruction

2d. Shading
correction

Fig. 3. The second part of our algorithm, termed structured illumination microscopy with a
statistical prior (SIMS), estimates the high-resolution object from the measured images and
the estimated illumination patterns obtained in Part 1.

the covariance between the pattern and the intensity should give high similarity wherever the
object o(r) has signal and thus allow us to find the object underneath the random-pattern
illumination [14, 38–41]. We calculate this covariance image Icov(r) as

Icov(r) = 〈∆p` (r)∆I` (r)〉` =

"
o(r′)

〈
∆p` (r)∆p` (r′)

〉
` hdet(r − r′)d2r′ , (7)

where ∆I` (r) = I` (r) − 〈I` (r)〉` , and ∆p` (r) = p` (r) − 〈p` (r)〉` .
Regardless of which illumination pattern is imposed, the covariance image always gives an

estimate of the object. However, the resolution of the reconstructed object may be different for
different pattern statistics. We can quantify this by taking a closer look at the expression on the
right-hand side of Eq. (7). The multiplication of detection PSF and covariance between p(r)
and p(r′) acts as the PSF of the covariance image, which thus determines resolution. If the
patterns are perfectly spatially correlated, the pattern-pattern covariance is a constant, and the
pattern-intensity covariance image is a normal widefield image with PSF of h(r). If the patterns
are perfectly spatially uncorrelated, the pattern-pattern covariance is

〈
|∆p` (r) |2

〉
`
δ(r − r′),

which, for a constant variance, results in the PSF being a delta function and the object being
reconstructed with perfect resolution. In practice, this is not achievable, since the illumination is
bandlimited and thus cannot be perfectly uncorrelated. In the general case, to find the resolution
(PSF) of the covariance image, we need to calculate the spatial covariance of the patterns, which
is the subject of Part 2b, below.

Part 2b: calculate pattern-pattern covariance

To calculate the spatial covariance of the projected patterns, we first consider the pattern formation
model. In our experiments, for example, we use a DMD to create random patterns at the sample
plane. Assuming that the projected DMD pattern is sparse enough to avoid interference cross-
terms, we can express our pattern under the incoherent model as

p` (r) =

"
t` (r′)hillu(r − r′)d2r′ , (8)
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where t` (r) is the `-th pattern on the DMD. With this model, the pattern-pattern covariance is

〈
∆p` (r)∆p` (r′)

〉
` =

" "
〈∆t` (r1)∆t` (r2)〉` hillu(r − r1)hillu(r′ − r2)d2r1d2r2

=

" "
γt

〈
∆t2

` (r1)
〉
`
δ(r1 − r2)hillu(r − r1)hillu(r′ − r2)d2r1d2r2

≈ αt

"
hillu(r − r1)hillu(r′ − r1)d2r1 = αt (hillu ? hillu)(r − r′), (9)

where we have used an assumption that the DMD pattern values at position r1 and r2 are perfectly
uncorrelated:

〈∆t` (r1)∆t` (r2)〉` = γt
〈
∆t2

` (r1)
〉
`
δ(r1 − r2) ≈ αt δ(r1 − r2), (10)

with γt being a constant that maintains unit consistency. This assumption is valid because the
effective DMD pixel size is small compared to the FWHM of the optical system and we can
control ∆t` (r) to create an uncorrelated pattern. In the experiment, each position of t` (r) is an
independent and identically distributed random variable. When the number of patterns is large
enough, the variance

〈
∆t2

` (r1)
〉
`

approaches the same constant for all the positions. We can then
combine γt and the variance into a single constant αt .

Ideally, we can assume hillu(r) ≈ hdet(r) when λillu ≈ λdet, where λdet is the wavelength of
the fluorescent emission detection light, and theoretically calculate the pattern-pattern covariance.
We can also estimate hillu?hillu(r) by numerically evaluating Eq. (9) using our estimated patterns,
which accounts for possible aberrations in the illumination optics.

Part 2c: PSF deconvolution of the covariance image

The pattern-pattern covariance derived in Part 2b is related to the PSF of the pattern-intensity
covariance calculated in Part 2a. Hence, we can plug the pattern-pattern covariance into Eq. (7)
and write the covariance image as

Icov(r) = 〈∆p` (r)∆I` (r)〉` =

"
αto(r′)[(hillu ? hillu) · hdet](r − r′)d2r′. (11)

Importantly, the effective PSF for this correlation image is now [(hillu? hillu) · hdet](r), and the
corresponding effective OTF is [| h̃illu |

2 ⊗ h̃det](u). Since both | h̃illu |
2 and h̃det have approximately

the same Fourier support as the widefield OTF, the convolution between them covers around 2×
the support of the widefield OTF, as in conventional SIM. Given the effective PSF, we implement
a standard deconvolution to improve contrast at high spatial frequencies:

Icov,dec(r) = F −1
{

Ĩcov(u) · H (u)
|H (u) |2 + ξ

}
, (12)

where H (u) = [| h̃illu |
2 ⊗ h̃det](u) and ξ is a small regularization parameter.

Part 2d: shading correction operation

When the number of images is not large enough to give uniform variance of the patterns at each
pixel (

〈
∆t2

` (r′)
〉
`

from Eq. (9)), low-frequency shading artifacts will occur. Even if we assume
the mean of the pattern to be flat in Eq. (2), the variance can still be non-uniform. These can
be seen in the deconvolved covariance image in Fig. 3. To resolve this, we can estimate and
correct for the variance across the image using our previously estimated projected patterns. Since
the projected pattern p` (r) is the blurred version of the pattern on the DMD, by ignoring the
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high-frequency component of the DMD pattern, we can approximate the variance of the DMD
pattern by

αt (r) = γt
〈
∆t2

` (r)
〉
`
≈ γt

〈
∆p2

` (r)
〉
`
. (13)

We divide out the spatially-varying variance αt in Eq. (11) from the deconvolved SIMS image,

ISIMS(r) =
Icov,dec(r) · αt (r)

α2
t (r) + ε

, (14)

where ε is a regularizer and ISIMS(r) is the output from our SIMS reconstruction (Part 2c). This
result of this step is our final reconstruction of the high-resolution object function.

2.4. Parameter tuning and algorithm runtime

Our SIMS algorithm involves 4 regularizers: β, δ, ξ, and ε , described in Eq. (3), Eq. (6), Eq. (12),
and Eq. (14), respectively. Each is decoupled from the others and acts similarly to a typical
Tikhonov regularizer, so tuning may be done independently. Generally, we want the regularizers
to be as small as possible, while still avoiding noise amplification.

The procedure to tune the regularization parameters heuristically is summarized as follows.
First, we check if the widefield images are well-deconvolved by finding the smallest β to give the
image with best resolution but without obvious noise amplification, then we move on to check
the deconvolved covariance image by tuning the SIMS regularizer ξ and the smooth-edge filter
regularizer δ using the same principle, and finally we check the final reconstruction by using the
smallest shading correction regularizer ε with enough shading correction but without evident
noise amplification. Additionally, the negative values in all of the deconvolved images are set to
zero since the fluorescent density is always positive.

The algorithm is implemented in MATLAB and run on an Intel i7 2.8 GHz CPU computer
with 16 G DDR3 RAM under OS X operating system. To reconstruct an image with size of
200 × 200 pixels and 400 measurements, this computer takes about 200 seconds. The bottleneck
of the algorithm is on the pattern estimation step. The estimation of each pattern takes around
0.5 second.

3. Results

3.1. Definition of resolution

Before introducing and comparing any SIM algorithms, we want to first define the resolution
criterion considered in this paper. Resolution of a microscopic image is usually defined by
measuring the minimal resolvable distance between two points. Consider a widefield image
with detected wavelength λ and numerical aperture N A; the Abbe resolution criterion is then
0.5λ/N A, the full width at half maximum (FWHM) of the widefield PSF. As two points get closer
to each other, the contrast between them decreases. Under the separation set by Abbe’s limit, two
infinitely small points observed under widefield microscope will give an overlapped two-point
image with a dip at the center with the contrast equal to 0.01. Hence, the Abbe resolution criterion
can be thought of as setting the minimum acceptable contrast between two points at 0.01. We
can therefore define the resolution of a microscope or a reconstruction algorithm by measuring
the smallest resolvable fine features that have contrast between them of at least 0.01.

3.2. Comparison of algorithms

Given this definition of resolution, we quantify the resolution for various algorithms in Fig. 4.
The Siemens star test target (o(r, θ) = 1 + cos 40θ in polar coordinates) has varying spatial
frequencies along the radius. The resolution of different imaging methods is quantified by
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reading the minimal resolved period when the contrast reaches 0.01. The effective modulation
transfer function (MTF) of each method is shown in Fig. 4(b), measured as the contrast of the
reconstructed Siemens star image at different radii.

Period (�/2NA)

C
on

tra
st

Widefield
Deconvolved

Widefield Confocal
Deconvolved

Confocal

Object

Blind SIM[15] S-SOFI[19] PE-SIMS PE-SIMS-PR

(a)

(b)

Fig. 4. (a) Simulated reconstructions of a Siemens star target under a widefield microscope,
deconvolved widefield, confocal microscope, deconvolved confocal, blind SIM [16], S-
SOFI [20], our PE-SIMS and PE-SIMS-PR algorithms. (b) The effective modulation transfer
function (MTF) of each method, given by the contrast of the reconstructed Siemens star
image at different radii.

Our simulations use a SIM dataset with random patterns, so that we may compare against the
previously proposed reconstruction algorithms of blind SIM [16] and S-SOFI [20]. We create
Nimg = 400 speckle-illuminated images from shifted random patterns on the DMD, with shifts of
0.6 FWHM of the PSF across 20× 20 steps in the x and y directions, respectively. In each pattern,
only 10% of the DMD pixels are turned on. This noise-free situation allows us to compare the
ideal achieved resolution for the different algorithms.

Figure 4a shows the widefield, deconvolved widefield, confocal, and deconvolved confocal
images of the Siemens star, as compared to blind SIM [16], S-SOFI [20] and our algorithm. At
the bottom, we show the measured effective MTF for each algorithm. In terms of visual effect,
S-SOFI [20] gives the least artifacts.

To compare resolution, we use our definition of the minimal resolved separation when the
contrast drops to 0.01 and summarize the results in Table 1. The enhancement metric gives the
ratio resolution improvement over widefield imaging. S-SOFI resolves features down to 1.67 ×
smaller than the widefield microscope, which is close to the claimed 1.6× in [20], and Blind
SIM achieves 1.84× improvement but lower contrast for high-frequencies, which is consistent
with [16]. Our PE-SIMS and PE-SIMS-PR (PE-SIMS with pixel reassignment algorithm [30–34]
described in Appendix B) algorithms give better resolution compared to other methods. We
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Table 1. Achieved resolution for different algorithms

Widefield
Widefield

deconvolved Confocal
Confocal

deconvolved
Resolution
[λ/2N A] 1.035 0.844 0.681 0.428

Enhancement 1 × 1.23 × 1.52 × 2.42 ×
Blind SIM S-SOFI PE-SIMS PE-SIMS-PR

Resolution
[λ/2N A] 0.563 0.619 0.551 0.517

Enhancement 1.84 × 1.67 × 1.88 × 2.00 ×

resolve features down to 1.84× and 2× , respectively, close to the limit set by the deconvolved
confocal image. Hence, our method performs the best of the blind algorithms.

Ideally, if we know all the patterns and our spatial modulation covers the full Fourier bandwidth
of the objective, we could reconstruct out to 4N A/λ in Fourier space, achieving enhancement
of 2.42× , as in the case of deconvovled confocal image or periodic SIM with known patterns.
The blind algorithms, however, deal with an ill-posed problem (measure Nimg images and solve
Nimg + 1 images) that can only become well-posed through appropriate constraints. If the prior
for these algorithms are not accurate enough, they may solve a different problem even if the
problem becomes well-posed. This is why algorithms with different prior assumptions give
different resolution performance for the same dataset, as we saw in Table 1.

4. Experimental results

Our experimental setup is shown in Fig. 1. A laser beam (Thorlabs, CPS532, 4.5 mW) is
expanded to impinge onto a reflective DMD spatial light modulator (DLP R©Discovery 4100,
.7" XGA, 1024×768 pixels, pixel size 13.6 µm). The DMD generates a total of Nimg random
patterns (30% of DMD pixels turned on). These random illumination patterns are projected onto
the object (with demagnification of 60×) through a 4f system composed of a 200 mm convex
lens and a 60× objective lens with NA= 0.8 (Nikon CFI). The resulting fluorescent light is
then collected with another 4f system formed by the same 60× objective and a 400 mm convex
lens (magnification 120×). A dichroic mirror blocks the reflected illumination light (as in a
typical epi-illumination setup). The images are taken with an sCMOS camera (PCO.edge 5.5,
2560×2160 pixels, pixel size 6.5 µm). Patterns are shifted on a 20 × 20 grid in the x and y
directions with a step size of 0.6 FWHM of the PSF, while collecting images at each step. Our test
object is carboxylate-modified red fluorescent beads (Excitation wavelength: 580 nm/Emission
wavelength: 605 nm) having mean diameter of 210 nm (F8810, Life Technologies).

Reconstruction results are shown in Fig. 5, demonstrating improved resolution using our
PE-SIMS algorithm, as compared to standard widefield or deconvolved widefield images.

To quantitatively analyze the experimental results, we measure the resolved feature size of
the reconstructed image and compare it to our theory. As shown in the cutline in Fig. 5, two
fluorescent beads separated by 328 nm can clearly be resolved using our method, which are
otherwise unresolvable in either widefield or deconvolved widefield images. The contrast of this
two-Gaussian shape shows these two Gaussian are separated by 1.16× FWHM, so the FWHM
of the reconstructed beads is around 283 nm. Assuming the bead can be modeled as a Gaussian
function with FWHM of 140 nm (210 nm in diameter for the beads), we can then deconvolve the
bead shape out of the reconstruction and get the FWHM of the PSF for this case equal to 240
nm, which is below the diffraction limit λ/2N A = 371 nm.

Our algorithm can be used on other types of SIM datasets, as long as the pattern-pattern
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Fig. 5. Reconstructions of red fluorescent beads (Ex:580 nm/Em:605 nm) from the experi-
ment using random pattern illumination with 20 × 20 scanning step.

covariance gives a point-like function at the center. As an example, we tested our algorithm on
a dataset from a previous method, Multispot SIM (MSIM) [10]. In MSIM, the patterns are a
shifting grid of diffraction-limited spots. Since the previous MSIM implementation assumes
known patterns, a calibration step captured an extra dataset with a uniform fluorescence sample in
order to measure the patterns directly. Our algorithm ignores this calibration data, yet accurately
reconstructs both the object and patterns (see Fig. 6). The MSIM result using the calibration data
is shown for comparison. The sample is microtubules stained with Alexa Fluor 488 in a fixed
cell observed under a TIRF 60× objective with N A = 1.45. Our PE-SIMS-PR reconstruction
gives a similar result to the known-pattern MSIM reconstruction.

5. Conclusion

We have proposed a robust algorithm that can give 2× resolution improvement compared to
widefield fluoresence imaging using a SIM dataset without knowing the imposed patterns. Our
algorithm first estimates each illumination pattern from a low-resolution approximate object and
measured intensities by solving a constrained convex optimization problem. We then synthesize
a high-resolution image by calculating the covariance between the estimated patterns and the
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Fig. 6. Comparison of our algorithm on dataset from Multispot SIM (MSIM) which uses
withNimg = 224 scanned multi-spot patterns from [10]. We show the deconvolved widefield
image and the reconstructions using MSIM with known patterns, as well as our blind
PE-SIMS algorithm with and without pixel reassignment.

measured intensity images, followed by a deconvolution and shading correction to get to the
final reconstruction. We quantified the limits on resolution of our algorithm by the reconstructed
contrast of a simulated Siemens star target. In simulations, we showed that our algorithm gives
better resolution compared to previously proposed blind algorithms [16, 20]. Experimentally, we
demonstrated this improvement experimentally on both random speckle pattern illumination and
multi-spot scanned illumination.

Appendix A: reducing the number of images by multi-spot scanning

In this paper, we used 400 random speckle illumination patterns to reconstruct the image, far
more than the 9-image requirement of conventional SIM [4]. This large number of images was
required for high-quality reconstructions because the average and variance of the illumination
patterns must be sufficiently flat in order to avoid shading variations. Recall that we want
αt (r) ≈ γt

〈
∆p2

` (r)
〉
`

in Eq. (13) to be close to a constant, which suggests that the variance of
the random patterns is constant. When the number of images Nimg goes down, this statistical
assumption is not true any more. We use a shading correction algorithm (Sec. 2.3) to fix this
problem by estimating the nonuniform variance, but it is still only an estimate. Hence, when the
degree of variance nonuniformity increases (as the number of images decresases), the shading
correction algorithm incurs errors.

Figure 7 shows simulations demonstrating the effect of reducing the number of images. We
use the same random pattern as in Sec. 2.3 and shift by step sizes of 0.6 FWHM of the PSF. As
we decrease the number of images from 400 to 36, the reconstruction becomes worse, due to
shading errors. The shading map, αt (r)o(r), is shown in the bottom row of Fig. 7. We can see
the artifacts happen at the region where the αt (r) is dim and changing. Without knowing the
patterns a priori it is not possible to fully correct these shading effects.

Since we know that the artifacts that appear with too few images are due to a non-uniform
αt (r), we can attempt to design patterns that will be uniform with a minimal number of images.
We would like

〈
∆p2

` (r)
〉
`

to give a uniform map. Consider the contribution from a single pattern;
∆p2

` (r) is similar to the original pattern but with sharper bright spots. The ensemble average over
` sums up all these bright spots after shifting the pattern around. For a shifted random pattern,
we must capture many images in order for the summation of the bright spots to give a uniform
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Fig. 7. Results with simulated and experimental (fluorescent beads) datasets comparing
random speckle and multi-spot illumination patterns. (middle row) Shading maps overlaid
on the object. Decreasing the number of random patterns results in shading artifacts in the
reconstruction. The random patterns are scanned in 20 × 20, 10 × 10, and 6 × 6 steps with
the same step size of 0.6 FWHM of the PSF, while the multi-spot pattern is scanned with
6 × 6 steps.

map. One efficient way to get a sum of bright spots to become a uniform map is to use a periodic
multi-spot pattern (see Fig. 7) [10, 11, 13]. The period of this multi-spot pattern is designed to
be 6 shifting step sizes. Thus, we can use 6 × 6 scanning steps to give a uniform shading map
αt (r). The reconstruction is also shown in Fig. 7 to be almost as good as the one illuminated
with 400 shifted random patterns.

Experimentally, we see similar trends in image reconstruction quality for different illumination
strategies (see the bottom row of Fig. 7). Results from random pattern illumination of fluorescent
beads with Nimg = 400 and multi-spot illumination with Nimg = 36 give very similar results, and
shading artifacts become prominent as the number of patterns is reduced. Note that we use the
same algorithm for both the random and multi-spot illuminated datasets because the PSFs of the
pattern-intensity covariance images Icov(r) for both cases are the same.

To show that the PSF for the pattern-intensity covariance image with random and multi-spot
illumination are the same, we must derive the pattern-pattern covariance 〈∆p` (r)∆p` (r′)〉` as
we did in Part 2b in Sec. 2.3. To calculate the pattern-pattern covariance, we need to calculate
the covariance of the patterns on the DMD 〈∆t` (r)∆t` (r′)〉` and plug it into Eq. (9) to get
pattern-pattern covariance 〈∆p` (r)∆p` (r′)〉` . For the multi-spot case, we can express the pattern
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on the DMD and its zero-mean pattern as

t` (r) = Λ2
∑
m ,n

δ(r − rmn − r` ) + t0

∆t` (r) ≈ Λ2
∑
m ,n

δ(r − rmn − r` ), (15)

where rmn = (mΛ, nΛ), m and n are integers, and Λ is the period of the pattern. Then, we can
calculate the covariance of the pattern on the DMD as

〈∆t` (r1)∆t` (r2)〉` =

"
∆t(r1 − r` )∆t(r2 − r` )d2r`

= Λ4
∑
m ,n

δ(r1 − r2 − rmn ) ?
∑
m ,n

δ(r1 − r2 − rmn )

≈ Λ4η
∑
m ,n

δ(r1 − r2 − rmn ), (16)

where η is a constant that enforces unit consistency. Plugging this into Eq. (9), we can then
calculate the pattern-pattern covariance as〈

∆p` (r)∆p` (r′)
〉
` = (hillu ? hillu)(r − r′) ⊗ Λ4η

∑
m ,n

δ(r − r′ − rmn ). (17)

Although the pattern-pattern covariance is only a replica of the (hillu ? hillu)(r), the PSF of the
covariance image, Icov(r), only depends on the multiplication of hdet(r) and (hillu ? hillu)(r) ⊗
Λ4η

∑
m ,n δ(r− rmn ) as Eq. (7) derived. If the period of the multi-spot pattern is large compared

to (hillu ? hillu)(r), we can still have our PSF as [(hillu ? hillu) · hdet](r), which is the same as the
case of random pattern illumination.

Appendix B: enhanced SNR via pixel reassignment

In this section, we first discuss the similarity between SIMS and confocal microscopy. This
leads to an extension of our method that incorporates the pixel reassignment procedure proposed
in [30–34]. In computing the covariance of the shifted pattern p` (r − rs ) and the intensity I` (r),
there is still some information of the object leftover. Pixel reassignment helps incorporate it in a
straightforward fashion, giving better SNR in the final reconstruction.

In Sec. 2.3 of our SIMS procedure, we first calculate the covariance image Icov(r). The
PSF of this covariance image is determined by imposing our statistical prior on the pattern-
pattern covariance 〈∆p` (r)∆p` (r′)〉` . The effect is similar to the illumination PSF of confocal
microscopy [9]. Looking at Eq. (11), our covariance image with PSF of [(hillu ? hillu) · hdet](r)
is the same as a confocal image taken with illumination PSF, (hillu ? hillu)(r), and detection PSF,
hdet(r).

From the same SIM dataset, we can further use the shifted patterns p` (r − rs ) and correlate
them with the intensity I` (r) to compute a series of shifted covariance images

I scov(r, rs ) = 〈∆p` (r − rs )∆I` (r)〉` =

"
o(r′)

〈
∆p` (r − rs )∆p` (r′)

〉
` h(r − r′)d2r′

=

"
αto(r′)(hillu ? hillu)(r − rs − r′)hdet(r − r′)d2r′. (18)

The PSF of the shifted covariance image I scov(r) is the product of (hillu ? hillu)(r − rs ) and
hdet(r), whose center is approximately at rs/2. This image is the same as the image taken under
a confocal microscope with a shifted pinhole. This implies by shifting around the patterns and

                                                                                Vol. 8, No. 2 | 1 Feb 2017 | BIOMEDICAL OPTICS EXPRESS 709 



correlating with the intensity, we get the equivalent of many 2D confocal images taken with the
pinhole at different positions. This is the same dataset as would be described in the imaging
scanning microscope, where the single-pixel camera and pinhole is replaced with a CCD in the
confocal system [32,33]. Though these images are not centered, they still contain the information
of the same object. Pixel reassignment was proposed in [31–34] as a way to incorporate this 4D
information to get a 2D image with better SNR.
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Fig. 8. (a) Comparison of the PSF and OTF for SIMS and SIMS with pixel reassignment
(PR). (b) Comparisons of the deconvolved widefield image and the reconstructions of the
6 × 6 multi-spot scanned fluorescent beads with and without pixel reassignment.

Since the 2D images from rs-shifted patterns are approximately rs/2-shifted versions of the
one at rs = 0, we can shift the information back to the center region and sum up all these images
to enhance the SNR and form a pixel-reassigned (PR) image as

IPR(r) =

"
I scov

(
r +

rs
2
, rs

)
d2rs

=

"
αto(r′)

["
(hillu ? hillu)

(
r −

rs
2
− r′

)
hdet

(
r +

rs
2
− r′

)
d2rs

]
d2r′

=

"
αto(r′)[(hillu ? hillu) ⊗ hdet](2(r − r′))d2r′ (19)

This synthesized image using pixel reassignment gives a PSF of [(hillu ? hillu) ⊗ hdet](2r).
Figure 8(a) shows the comparison between the SIMS PSF, [(hillu ? hillu) · hdet](r), and the
PSF of SIMS with pixel reassignment, [(hillu ? hillu) ⊗ hdet](2r) both in the real space and the
Fourier space (assuming hillu ≈ hdet). In the real space, the PSF after doing pixel reassignment
looks fatter than the one without pixel reassignment. However, the OTF of the one with pixel
reassignment has larger value in the high-frequency region, where the noise severely degrade
the image resolution. Thus, we get better SNR by summing up all the information we have
and have a OTF that better deals with noise at high-frequency region. Since we know the PSF,
[(hillu ? hillu) ⊗ hdet](2r), and the shading map, αt (r), of this pixel-reassigned image IPR(r), we



can again apply the deconvolution and the shading correction operation described in Sec. 2.3 to
get a PE-SIMS-PR reconstruction.

Figure 8(b) compares the reconstruction result of fluorescent beads using 6 × 6 multi-spot
illumination with and without applying pixel reassignment algorithm. Pixel reassignment results
in sharper contrast when two beads are close to each other and helps clean up some background
deconvolution errors. A cut-line plot of the fluorescent beads in Fig. 8(b) shows that the FWHM of
the reconstructed bead from SIMS (300.3 nm) is larger than for SIMS-PR with pixel reassignment
(254 nm), giving better resolution.
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