Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

A UNIVERSAL FORMULA FOR THE QUASISTATIC SECOND-ORDER DENSITY PERTURBATION BY A COLD MAGNETOPLASMA WAVE

Permalink

https://escholarship.org/uc/item/1cr9g3g4

Author

Kaufman, A.N.

Publication Date

1977-12-01

To be presented at the Third Topical Conference on RF Plasma Heating, Pasadena, CA, January 11 - 13, 1978

LBL-7234

RECEIVED
LAWRENCE
BERTELEY LABORATORY

JAN 27 1978

LIBRARY AND DOCUMENTS SECTION

A UNIVERSAL FORMULA FOR THE QUASISTATIC SECOND-ORDER DENSITY PERTURBATION BY A COLD MAGNETOPLASMA WAVE

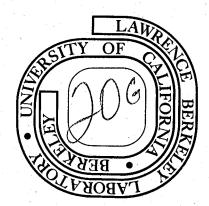
A. N. Kaufman, J. R. Cary, and N. R. Pereira

December 16, 1977

Prepared for the U. S. Department of Energy under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5716



LBL-7234

· LEGAL NOTICE ·

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

A UNIVERSAL FORMULA FOR THE QUASISTATIC SECOND-ORDER DENSITY PERTURBATION BY A COLD MAGNETOPLASMA WAVE*

A. N. Kaufman, J. R. Cary, and N. R. Pereira

Department of Physics and Lawrence Berkeley Laboratory University of California, Berkeley, California 94720

Abstract

Using the general expression for the ponderomotive Hamiltonian, we obtain the quasi-static quasi-neutral density change caused by the ponderomotive force of a cold magnetoplasma wave of arbitrary frequency and polarization:

$$\delta n(\underline{x}) = -\frac{|\widetilde{\underline{E}}(\underline{x})|^2 - |\widetilde{\underline{B}}(\underline{x})|^2}{4\pi(\underline{T}_e + \underline{T}_i)}$$

This formula agrees with and extends previous results for unmagnetized and magnetized plasma.

Supported by the U.S. Department of Energy December 16, 1977

In studying the modulation of a finite-amplitude plasma wave, a number of authors have calculated the quasi-static quasi-neutral second-order density perturbation produced by the ponderometive force of the modulation. With the representation

$$\phi(\underline{x},t) = \phi(\underline{x}) \exp(-i\omega t) + c.c. \tag{1}$$

for a longitudinal magnetoplasma wave, the $result^1$

$$\delta n(\underline{x}) = -\frac{|\nabla \phi(\underline{x})|^2}{4\pi (T_e + T_i)}$$
 (2)

has been obtained by Morales and Lee² for lower-hybrid waves, and by Shukla³ for electron magnetoplasma waves. The former authors remarked on the identity of formula (2) with the familiar expression for Langmuir wave modulation in unmagnetized plasma.

It is natural to inquire into the universality of formula (2). In this paper, we show that it does indeed apply to <u>any</u> longitudinal <u>cold-plasma</u> wave (for a single ion species $\hat{\beta}$); i. e., the three solutions $\hat{\beta}$ $\omega(\theta)$ of $\epsilon_{L}(\omega,\theta)=0$, where $\epsilon_{L}\equiv\hat{k}\cdot\underline{\epsilon}(\omega)\cdot\hat{k}$.

More importantly, we show that formula (2) can be simply generalized to apply to a cold plasma wave of any polarization, i. e., to a wave with non-zero $\nabla \times \underline{E}$. Here we use a local plane-wave representation

$$\underline{\underline{E}(\underline{x},t)} = \underline{\underline{\tilde{E}}(\underline{x})} \exp (i\underline{k} \cdot \underline{x} - i\omega t) + c. c.,$$
 (3a)

with
$$\underline{\underline{B}}(\underline{x}) = (c/\omega)\underline{k} \times \underline{\underline{E}}.$$
 (3b)

The generalization, derived below, is

$$\delta n(\underline{x}) = -\frac{|\widetilde{E}(\underline{x})|^2 - |\widetilde{B}(\underline{x})|^2}{4\pi(T_e + T_i)}$$
 (4)

We note first that it reduces to (2) when $\frac{\tilde{B}}{B}$ = 0. Secondly, for the transverse unmagnetized case, where

$$\left|\frac{\widetilde{B}}{\widetilde{B}}\right|^2 = (kc/\omega)^2 \left|\frac{\widetilde{E}}{\widetilde{E}}\right|^2 = (1 - \omega_D^2/\omega^2) \left|\frac{\widetilde{E}}{\widetilde{E}}\right|^2$$

formula (4) becomes $\delta n/n = -(e^2/m\omega^2)|\tilde{\underline{E}}|^2/(T_e + T_i)$, the familiar result.⁷

Formula (4) can be used for <u>any</u> cold-magnetoplasma wave, e.g., lower hybrid in the electromagnetic region⁸, fast-magnetosonic-whistler⁹, Alfvén¹⁰, ordinary and extraordinary, etc., so long as (3b) is a valid approximation. (When it is not, use formula (10) below.)

Our derivation begins with the standard expression 11 for the quasi-static density perturbation, of species s, caused by the ponderomotive potential energy $\Psi_{s}(\underline{x})$ of an oscillation center 12 and by the

self-consistent electric potential $\Phi(x)$:

$$\frac{\delta n_{s}(\underline{x})}{n_{s}^{o}} = -\frac{\Psi_{s}(\underline{x}) + e_{s}\Phi(\underline{x})}{T_{s}}.$$
 (5)

For two species (electrons and singly-charged ions), we impose quasineutrality ($\delta n_e = \delta n_i$, $n_e^O = n_i^O$) to eliminate Φ , and obtain the relation

$$\frac{\delta n(\underline{x})}{n^{\circ}} = -\frac{\Psi_{e}(\underline{x}) + \Psi_{\hat{1}}(\underline{x})}{T_{e} + T_{\hat{1}}} . \tag{6}$$

Our expression for $\Psi_{s}(\underline{x})$ is based on a useful relation ¹³ for the ponderomotive Hamiltonian ¹⁴ of an oscillation center. In the cold-species limit, Eq. (3) of Ref. (13) reduces to

$$n_{S}(\underline{x}) \Psi_{S}(\underline{x}) = -(4\pi)^{-1} \underline{E}^{*}(\underline{x}) \cdot \underline{\chi}_{\omega}^{S}(\underline{x}) \cdot \underline{E}(\underline{x}), \qquad (7)$$

with the representation $\underline{E}(\underline{x},t) = \underline{E}(\underline{x}) \exp(-i\omega t) + c.c.$, where χ_{ω} is the well-known cold-species susceptibility. (We note that χ is proportional to density, so that Ψ is density-independent; but the dependence of χ on possibly nonuniform magnetic field $\underline{B}_{o}(\underline{x})$ appears in Ψ .)

Inserting (7) into (6), we have

$$\delta n (\underline{x}) = \frac{\underline{E}^{*}(\underline{x}) \cdot (\underline{\chi}_{\omega}^{e} + \underline{\chi}_{\omega}^{i}) \cdot \underline{E}(\underline{x})}{4\pi (\underline{T}_{e} + \underline{T}_{i})} . \tag{8}$$

Now we use the field equation

$$(\chi_{\omega}^{e} + \chi_{\omega}^{i}) \cdot \underline{E}(\underline{x}) = -\underline{E}(\underline{x}) + (ic/\omega)\nabla \times \underline{B}(\underline{x}), \tag{9}$$

where $\underline{B}(\underline{x}) = (c/i\omega) \nabla \times \underline{E}(\underline{x})$, to obtain

$$\delta n(\underline{x}) = -\frac{|\underline{E}(\underline{x})|^2 - |\underline{B}(\underline{x})|^2 - (c/\omega) \operatorname{Im} \nabla \cdot \underline{E}^*(\underline{x}) \times \underline{B}(\underline{x})}{4\pi (\underline{T}_{e} + \underline{T}_{i})}. \quad (10)$$

Finally, for a local plane wave, with $\underline{E}(\underline{x}) = \underline{\tilde{E}}(\underline{x}) \exp i\underline{k} \cdot \underline{x}$ and (3b), one may drop the complex Poynting term in (10), as higher order in kVln \tilde{E} ; the result is then Eq. (4).

Two points should be kept in mind in applying (4): second-order magnetic perturbations may be of significance 16; and the quasi-static assumption may be invalid. 17

Footnotes and References

- 1. The numerical factor in the denominator is sometimes given incorrectly as 8π . If, instead of (1), one uses $\phi(\underline{x},t) =$ = Re $\phi(x) \exp(-i\omega t)$, the factor should be 16π .
- 2. G. J. Morales and Y. C. Lee, Phys. Rev. Lett. 35, 930 (1975).
- 3. P.K. Shukla, J. Plasma Phys. 18, 249 (1977).
- 4. For more than one ion species, formulas (2) and (4) generalize to less beautiful forms.
- 5. We note that for the lowest-frequency solution (ion-cyclotron wave), the cold plasma model may be invalid.
- 6. More correctly, exp i k x \rightarrow exp i $\theta(x)$, with $\underline{k}(x) = \nabla \theta$.
- 7. P. Kaw, G. Schmidt, and T. Wilcox, Phys. Fluids 16, 1522 (1973).
- 8. G. J. Morales, Phys. Fluids 20, 1164 (1977).
- 9. R. L. Berger and F. W. Perkins, Bull. APS Oct. 1977; K. H. Spatschek, M. Y. Yu, and P. K. Shukla, J. Geophys. Res. 81, 1413 (1976).
- J. A. Tataronis and W. Grossmann, Nuc. Fusion 16, 667 (1976);
 D. J. Kaup and A. C. Newell, Bull. APS Oct. 1977.
- 11. In a Vlasov treatment, T represents the effective temperature of velocity distribution parallel to the magnetic field, if the wave is localized. For a cavity mode, the temperature is not an adiabatic invariant.
- 12. G. Schmidt, Physics of High Temperature Plasmas, Sec. 2-9.
- 13. J.R. Cary and A. N. Kaufman, Phys. Rev. Lett. 39, 402 (1977).
- 14. R. Dewar, Phys. Fluids <u>16</u>, 1102 (1973); S. Johnston, Phys. Fluids 19, 93 (1976).
- 15. T. Stix, The Theory of Plasma Waves, Sec. 1-2.
- 16. A. N. Kaufman and L. Stenflo, Phys. Scripta 11, 269 (1975); M. Porkolab and M. V. Goldman, Phys. Fluids 19, 879 (1976).
- 17. N. R. Pereira, R. N. Sudan and J. Denavit, Phys. Fluids <u>20</u>, 271 (1977).

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.