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A Model for Predicting Thermal Conductivity

of Rock~fluid Systems

Anoushiravan Ghaffari

‘ABSTRACT

An analytical study is presehted for détermining the effective
thermal conductivity of partially liquid saturated porous media. A
model made up of normal cubic-packed spheres, flattened at thoir contacts
ig utilized. The relative size of the contacts is détermined from the
two easily measurable properties of porosity and electrical formation
resistivity factor. A reasonable fluid distribution in the model is
incorporated by choosing the wetting phase to be a spherical layer of
uniform thickness on the solid grain surfaces. Neglecting‘the contribu-
tion of any convection of the fluids in the pore channels and heat
transfer by radiation, the heat conduction equation was solved for a.
unit cell of the model. The final results are presented in the form
of working graphs using the dimensionless groupings of effective thermal
oonductivity divided by fluid or solid conductivity, solid-conductivity
divioed by fluid conduotivity, porosity, saturation of the wetting phase.
and dimensionless radius of top-bottom contacts. There is good agree-
ment between values of the effective thermal conductivities of partially
liquid saturatod consolidated sandstones aﬁd unconsolidated sands calcu-

lated by the wodel and existing experimental data.

Professor W. H. Somerton
Chairman, Dissertation Committee
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INTRODUCTION

The subject of thermal broperties,-especially’the thermal conductivity of
porous systems, is ohe of the most challenging problems which has attracted
the interest of scientists and engineers for many years. This cgrrent
g:eat inferest is due to the fact that sucﬁ d;ta have fbund‘rather wide’usage
inla number of industrial branches like thermal recovery processes in the
peﬁroleum fieid, geothermal energy development, therméi insulation in cryo-

genic -applications, and many more,

In general, porous systems have a very complex configuration, solid
partigles of different shapes and sizes, and pores of even ﬁore complicated
geometry which may be filled with a single or several fluids. This irregular
structure makes the exact theoretical investigation of a problem very
difficult or rather impossible.for these systems.» Therefore, experimental
examinations seem to be more logical to analyze a complex phenomenon for
these media. However, to obtain reliable experimental results one should
undertake very careful procedures, which are usually difficult and time

consuming.

Because of these complexities, there have been numerous attempts to
model porous systems by‘analytiC‘studies. In this case one assumes a
typical particle shape gnd size and a fypical packing, and analyzes' the
desired problem for sucﬁ_a model. Although some of these models may no£ be
very realistic,\they will help us to éain a better‘underéténding of the

problem under investigation.

In the present work a conceptual model has been developed for<theore—

‘tical study of effective thermal conductivities of porous rocks saturated

with one or two stagnant fluids. Distinction is made between unconsolidated

particles and consolidated rocks. Studies concerning the effect of some



parameters such as axial and pore pressures, temperature, and grain size on
the thermal conductivity of porous rocks were also made in this investigat-

ion.



1-1

CHAPTER 1

DEFINITIONS AND LITERATURE REVIEW
The Effective Thermal Conductivity Cogfficient'
It is understood in thermodynamics that heat flow is  the result of
a temperatﬁre gradient. A Sasic relation between the amount of heat
conducted per unit>time per unit area and the temperature gradiént was
first defined by‘the French mathematiciaaneap Baptiste Fourier and in
his honor is.called tﬁe Fourier law ‘'of heat condﬁction,which is written
mathematically as: )
4 = - Agrad T . - {1-1-1)
The quantity A which serves as a proportionalityfactoi'betwegn‘the heat
flux and the teméerature‘gradient is called the coefficient of thermal

conductivity.

' In general a relation such as Eq. (1-1-1) can be written macros-

~copically for any system in which there is a flow of heat due to an

imposed temperature difference. 1In this case one may call A the coef-

ficieﬁt_of effective thermal conductivity, and calculate it by experi-

~mental measurement or theoretical estimation of the heat flux, knowing

the temperature gradient.

Experimehtal ﬁeasurement of the heat flux g, and therefére effec-
tive thermal conductivity, will be discussed later in this chapter. How-
ever, for theoretibal predictions one should examine the contribution

of the three basic modes of heat transfef,namely,'conduction, convection

_and radiation, to the desired problem.

For a porous 'system without any mass exchange with thé’outside,
free or natural convection is the only participant in the convection

mechanism. Natural convection occurs when the density of" the saﬁufating

‘fluid_phase in pores is not uniform. The most common parameter that



influences the density of the fluid is temperature. However, in some
cases other buoyaﬁcy effects are also observed, resulting from mass
diffusion. By nondimensionalizing the equations of continuity, momen-—
tum and energy properly, one could obtain an important dimensionless
parameter fundamental to the natural convection heat transfer in porous”
media which is calledthe Rayleigh number and defined as:

K
Ra=g8.55 . —. am.o - (1-1-2)
e

where B, p, C, V are thevvolumetric thermal expansion cdefficieﬁt, the
density, the specific heat at constant pressupe; and the kinematic vis-
cosity (v =~% i of the fluid in the pore;, respectively, K the permea-
_b;lity,;g the effective thefﬁal conductivity of the porous system, g
the gravitational acceleiation, and finally (AT) and D are appropriate
temperature difference, and length reference quantities.

The main consequence of convective motion is to incfease the overall
heat ‘transfer. Therefore, when this occurs, the overall effective 
thermal‘conductivity is greater than when the fluid in the.pores is
'stagnant. A comprehensive treatment of convection in porous media can
be found elsehwere [1]. It is important to note that the crite;ion for
the onset of convective motion in such system isvgiVen by:

"Ra__. =4m = 40 , ' (1-1-3).
This is obtained theoretically, and observed experiﬁentally by many
authors [2], [3].

At high temperatures, radiation between particle surfaces and
radiation absorptibnlnfthe fluid in the poreS'become important. Radia-
tioh contribution to the effective thermal conductivity has been studied.
by many authors. Chan and Tien [4] analyzed the radiative transfer
through a packed bed of microspheres on thé basis of a conceptual model,

and found qualitative agreement between the predicted and existing



-

experimental data of some radiative pfoperties such as absorption and
écattering pafameters.' Schotte [5] also analyzed the radiation contri-
bution to the effective thermal conductivity. Schotte considered both
the radiation between adjacent particle surfaces and the radiation

between particle surfaces seen through more than one void space, giving:

1- ¢

3
= 4D € OT + -1-4
(Ae)rad- ¢ ( Dp‘O ) 1 . 1 s (1-1-4)
‘ — +
A (4D € 0T3)
s P
where ()\e)rad is the radiation coﬁ%ribution to the effective thermal

conductivity, As, Dp, € are the thermal conductivity, the.diameter and
the emiséivityof’thesolid,particle, respectively, ¢ the porosity, T
the absolﬁte temperature, and finaily 0 is the Stefan;Boltzmann
constant.

In the absence of any mass exchange withvthe outside and at
Rayleigh numbers Eelow Racri.' condpction is the only important mecha-
nism to be considered in the theoret;cal prediétion of heat transfer -
in a porous system at low to moderate temperaturés. A considerable
amount of theoretical work has been done to study conduction heat

transfer in such media. A review of some fundamental, historic, and

most practical works in this field is presented in the following section.

Conductive Heat Transfer in Porous Media.

1-2-1 Two—Component Systems

In general for a two-phase porous system, the effective thermal
conductivity in its simplést form depends on the thermal conductivity,
volume, and distribution of each phase. Therefore, if the two phases
are.a single solid component and é éingle fluid filling fhe pore space,
the above statement is equivalent to:

Ae = f(As, Af, Vg Ve) o, » (1-2-1)

where Xe is the effective thermal conductivity, V the volume, and sub-



sciipts s and f denote solid and fluid phase, respectively. Notice
that'thg functional relationship represented by f is fixed if one
chooses a specific phase distribution.

Usingrthe Buckingham pi theorem, Eq. (lf2—l) in its dimension-

less form can be written as:

A A . ‘
= F(3, 0,  (1-2-2)
f f
where ¢ is the fractional porosity, defined as
U ’ ( )
= - : v 1-2-3
Vs TV A A
For most cases %S>Af, and therefore 1 <5f<X§-. However, closer
: f

and much more useful limits can be placed onf;e by considering

two very simple phase distributions.: For any two-phase system

;he effective thermal conductivity is maximum when the phasés are pre-
sented as plane'layérs parallel to the direction of heat flow, and
minimum, when the phases are separated by planes perpendiculaf to the
direction of heatvflow. These-giméle models are known és parallel and

series distributions. The effective thermal conductivity for these

limits are given by:

by A . '
parallel: “‘;x' =¢+ (1 - ¢) )\—S , , C(1-2-4)
£ . . -
At f AL o .
series: '(%) Yoo+ a- oo A—S )71 (1-2-5)
£ g

The effective thermal conductivity resulting ffom parallel and series.
distributions are also known as weighted arithmetic mean and weighted
harmonic mean of the solid and the flgid conductivities. There is
also an intermediate §alue for the thermal conductivity of a composite
system, which is called weighted geometric mean conductivity and cor-
. Fesponds to a weighted ari&hmetic mean of the lpgarithm of the in-

dividual conductivities, ' {

)
log Ae = ¢ log Xf + (1 - ¢) log As s
orxr }\ )\ .
A_e - <_}\£>1‘¢ : (1-2-6)
f f ’ '



It is very interesting to note that for both parallel and series dis-

tributions we have:

A
d(KEQ .
. 1-2-7
—= ] =1-0 . (427
s - S
G =7t
£/ 't

In facf it would not be verybdifficult to prove that the effective
theimal conductivitY‘eqﬁation for any phase dist?ibutioh shouldvalso
~satisfy Eq. (1-2-7)."

‘Other than these two fundamental bounds for effective thermai
conductivity, Tien and Vafai [6] show that having additional geometric
information abogt the porous media.other than porosity 1leads to a
v.narrower.band for this thermal property.

Probably one of the earliest‘works in the aréa of cdnductivity of
composite systems is Makwell's [7] model for the é;ectrical conducti-
.Qity of a fandom distribution éf spheres of conductivity Xf embedded 
in a matrix of cbnductivity AS. Bécause of the ma#hematical analogy
between the electroStétie field which forms Qhen particles of a dielec-
tric.are placed in é uniform electrical field witha different dielec-
tric constant,ana the temperature field in the composite éystems,

Maxwell's result can be written for thérmal conductivity as:

re

B A ,
21 - ¢) 3=+ (1 + 29)
£ _

— ) (1-2-8)
Ag s

£t 2o 2 -9
To derive Eq ., (l—2-8)vit was  assumed that the spheres are so far
apart that their disturbance to the thermal field is not. felt by neigh-
boring spheres. Therefore, because of this assumption Eq. (1-2-8)

cannot be used widely. For porous rocks, Beck [8] claims that

Maxwell's model is reasonably successful in the case of water saturated

A

rocks (i§-<10) of relatively low porosities (¢<.10). By using appro-
£ v

priate correction factors obtainable from the existing data in the



‘iiterature, he éxtends the use of Maxwell's model to much widér

ranges of Xs/lf and porosity. |
Kunii-and Smith [9] develéped equations for predicting the ef-

fective thermal conductivity of unconsolidated and consolidated porous

beds. Undef the aséumption of unidirectionai flow df the heat th;ough

quels made up of spheres of uniform size in cubic or rhombohedral

arrangement, taey'arrived at the following equation for the effective

thermal conductivity of unconsolidated particles:

Ye =h + Ba-¢ . (1-2-9)

e -M_z(ﬁ)
, 3 As

where B is a packing parameger (1.0 for cubic and .895 for rhémbo—
hedral arrangement) and o é paramétef which depepds on As/kf and the
nﬁmber of contact points on a semisphgrical surface of one solid particle.

vForvbeds of cbnsoiidated particles, Kuﬁiiand Smith extendéd their
theoretical work by introducing é'dimensionless consolidation parameter
in  Eq. (1-2-9) and finally obtained the‘followiﬁg'équation for the
effective thermal conductivity: |

(1-o)+La)

Ae %o- o ’ '
— + ———— e
A D h
1 1, pp
o Af

.- where -the new parameters ¢, Dp and hp are, respectively, the porosity
of the original packed bed from which tﬁé consolidated porous media
is made, the diameter of particles, ana the heat transfer coefficient
representing the heat transfer réte through the contact surface be-
tween solid particles. ‘The authors claim that wvalues of .2 to .3

. D . .
for the consolidation parameter _REE.glve satisfactory results.
s



Kunii and Smith state that their equations appear to predict with
reasonable accuracy the effective.thermal conductivities for vari-
ous types of sandstones filled with stationary fluid, but it seems
any agreement with experiment for high wvalues of AS/Af was probably
fortuitous, because heat flow was assumed»to be.uﬁidiréctional in
their investigation. However, such models might serve as a guide
for correlating their data.

’ Krupiczka [10] modeled granular materials by solid cylinders
and solid spheres éf uniform size packed in a normal cubic arrange-
ment, and pores filled with a single fluid phase. By a rigorous
mathematical solﬁtion of the Laplace equation for the above modéls,
combiﬁed with experimental data, he developed a general correlation

for effective thermal conductivity as:-

A

0.28-0.757 log¢-0.057 log (A /AP
.f>

A A '
S (8 . (1-2-11)

This correlation formula is valid in the region of .215<¢<.476, but
it can also be used with some approximation for values going a little
beyond this region. Krupiczka's correlation is'reasonably successful
in most cases of porous rocks but for.dry consolidated sandstones
/(porosities .23<¢<.29) there is a poor agreement between computed
and experimental values. |

Anand, Somerton and Gomaa [11] developedﬂthe following corre-
lation based on experimental data for the éffective thermal conduc-
tivity of dry and saturated porous rock:

0.10

' AD = 0.34ODD - 3.20¢ + 0.530K + 0.0130F - 0.031 , (1-2-12)



10

- | e 0.33 ) Af\c;.aezmb : -0.43 |
B 14030 |G -1+ AT T [ Sa] , (1-2-13)
D a D Pp

where:

AD’ Asat = thermal conductivities of dry and fluid saturated

rock, respectively, Btu/hr. ft. °F,

A, A. = thermal conductivity of air and saturating fluid

a®* 'f

respectively, Btu/hr. ft. °F,

pD, psat = density of dry and fluid saturatéd rock, respectivély,
g /cc,

K = abéolute permeability, md,

F'= electrical formation resistivity faé;of, and

m = |

Archie's cementation factor.

Emphasis in these correlations is placed on prediction of thermal

conductivity from more easily measured properties. The authors re-—
ported that for the 38 experimental data points which were used to
obtain correlation Eq. (1-2-12), the standard deviation was 0.139

for a thermal conductivity range of 0.4-2.2 Btu/hr. ft. °F, while

for the 52 literature data points used in correlation Eq. (1-2-13),

'the standard deviation was found to be 0.179 for the range\of AS/AD

ratio values of 1.2-2.3.
2 Multi-fluid Saturafed Porous Rocks °

For petroleum or geothermal reservoirs the situation in which
pores are filled with more than a single fluid phase is more likely.
In petroleum reservoiré,'oil, water and gas may exist simultaneously
in the voids, or water and steam could occupy the pores together in
formations around a geothermal well. Therefore, knowledge of thermal

conductivity for these systems is also important. The simple idea of



11

weighted arithmetic mean, weighted harmonic mean and weighted geometric
mean conductivity for a two-phase system could be generalized for-a

.multi-phase composite system as:

n. . )
A, = T . A, \ (1-2-14)
Ay ME '
. n ' . -1 :
AH = (§ ¢i/Ai) R : (1-2-15)
i=1
: n ¢i
A= - , 7 , (1-2-16)
G . i
i=1: '

where'subscriﬁts,A, H, G represent arithmetic, harmonic and geometric
means, respectively, Ai is the thermal C6nductivity and ¢i the volu-
metric fraction of each individqal component. Above equations are
useful when Ai of the individual components are not very different
- from eéch other.

Based on experimental measurements, Somerton, Kesse and Chu [12]
obtained the following correiation equation for thermal conductivity

of partially brine saturated unconsolidated sands.

(1-2-17)

. , . ~ ]/
A =0.735'- 1,309 + 0.390A_ S * |

e : : s w
f;vhere'Sw is brine saturation (fraction of the pore space occupied by
‘ Bfine), and thermal‘cdnductivities are in (Btu/hr-ft-°F). Equation
‘(1—2—17) is repdrted to be in excellent agreement with thermal con-
ductiﬁity data of oil sands Eontaining original fluids.

. Ozbek [13] develéped“a conceptual model for prediétion of'thermal

¢onductivity of multi-fluid saturated porous media. Using.the model,

"he obtained the>following correlation equation for effective thermal

conductivity.
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-3.31¢ 0.5 0.783 18.13X
Xe = 0,0585e + 0.0166 Sw <+ 0;1939A§ + 0.0197e
. 86.365\nw ' o
+ 0.0159 .= 0.0002R - 0.0001R - 0.067 (1-2-18 ,.
wS - . nws v . .
where.

‘Ae = effective thermal conductivity of two-fluid saturatedvrock,

W/cem=K

¢ = fractional porosity, (0.10 - 0.45),

Sw = fractional wetting fluid saturation, (0-1.0),

Ag = thermal conductivity of rock solids,_(O 03-0.08 W/em-K) ,

Ay = thermal conduct1v1ty of the wetting fluid, (0.0004 Z 0.010
0.010 W/em-K), ‘

., = thermal conductivity of the non-wetting fluid, (0.0001 -
0.001) W/cm=-K),

Rws = wetting fluid-solid contact re51st1v1ty (0- 10 ),

Rnws = non—wetting fluid-solid contact resistivity,'(O—ZO m -K ),

Ozbek reported that thermal conductivity predictions.by the model
equation and the experimental results dre generally in good agreement
with standard deviations of 0.0014, 0.0017, 0.0027,v0.0033 W/em-K
for brine~decane saturated Ottawa saﬁd, Boise éandstoné, and Baﬁdera
sandstone, respectively.

A compérison'of the values of A, /A¢ calculated with some 6f_the
- formulas proposed by différent authors was maée for different values
of porosity and for two different yglues bf As/Af’ namely, 10 and 200
which are typical fqr porous :ocﬁs fully saturated with watef.and with-
air, respectively. Figure 1 shows that for high values of lslkf the
effective thermal‘conductivity of a porous system for a‘gi§en porosity

is greatly influenced by the model which represents the system and the

e
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method of calc@lation, while for low values of AS/Af,vtﬁe;e are ‘of
lesser importance.
Effect of Temperature, Pressure and Grain Size on Effective Thermal
Conducﬁivity
Effect of Temperature

_ At low to moderate temperatures aﬁd in the absence of any con-
vective motion inside the pores, temperature depéndénée-of the effect-
ive thefmal conductivity is mostly due to the fact that thermal con-
d?ctivities of solid matrix and fluids filling the pore chénnels_may
be temperature dependent.

Ihe solid matrix of'porou; rocks consists of many differen;

mineralé of whiéh_quartz or feldspar predominaﬁes with thermal con- {
ducti?ikies of 7.7 W/m-K and 2.2 W/m-K, respectively. It has been
éhown by Tikhominov [14] thét in low to moderate temperature range,
thermal conductivity of highly conductive consolidated rocks decreases
with increase in temperaturé, while for poorly conductive rocks this
trend is reversed. This corresponds to the behavior of weil-crystallized
materials which show a decreasing trend with'temperature,‘and poofly :
crystallized or'amorphous materiéls which éhow_increasing ﬁhermgl con-
dﬁctivity with temperature. Based on experimental mea;ufementss‘ \

Tikhominov obtained the following correlation equation for the effect

of temperature on thermal conductivity of porous dry rocks. ' .

4.98 (0.171 log T - 1.61 logh,. + 0.12)

A A 20 '
. 0.947 ) T : ., (1-3-1) .

0o °
where
A_ = thermal conduétivity of dry rock at temperature T (cal/sec-cm-°C)

T
.10'3,
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AZO = thermal conductivity of dry rock at temperature 20°C (cal/sec-

cm—°C).10-3,

' T = temperature ( K ).

Anand, Somerton and Gomaa [}1] foun& that Eq.- (1;3—1) does
not predict the éffect of temperature ;n thermal cbndﬁctivity of
porous rocks satisfactorily. Based on their own experimental data,
the above authors arrived at thevfollowingvcorrelation equation which

is applicable to both dry and fluid saturated rocks.

3»'A

/3.176
)20

3 2

A = Ao = 1.047x10°

= 0 (T - 293) Oy - 1.385)[%20 (1.8T 10

-0.64
+ 1.277],X (1-3-2)

20 :
In Egq. '(1—3—2),fteﬁberaturé T is in K,-thermai conductivities in
W/m=-K éﬁd subscript 20 refers to temperature of 20 °C.

The above correlations were hot'tested in the present wofk.
However, it.is recommended thét the model be used to estimate thermal
conductivities at a base temperature (20°C) and that the correlating
equation (1-3-2) be used to eétimate,values at highef temperatures.
Effect of Pressﬁfe

In subsurface’porous foék formati;ns, prgséure cbuld either be
reférred to the hydrostatic pfessufe‘of the fluids filling_;he pores,
or to the effeCtiQe sgress’which isﬂdéfined as the difference between
the overburdén‘préSSﬁré and fhe éoré pressure.

Increasing the effective stress on the porous rock improves the

‘contact between adjacent grains and therefore increases the overall

thermal cohdﬂétivity;‘ In partially liquid saturated porous rocks,

when the wetting phase is a good thermal conductor, the effective

_ stress might not affect the overall thermal conductivity appreciably.
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This is due to the fact that the wefting phase occupies the intersticesi
between the grain contacts and reduces the thermal contéct rééisfance
at these areas. However, the increase of overall thermal condﬁctivity
with increasing effective stress could be significant when the'wetting
fluid is a poor conductor. Woodside and MEssﬁer [15} have repOrted.

a 307 increase in overall thermal conductivity of aif saturated Berea
sandstone when the axial stress on the fest sample.was‘increased from
zero to 2000 psi (pore pressure was 1 étm.).. Only 52 increase in
effective thermal conductivity has been measured by the abové authors
when the axial stress was incrgased from 2000 psi to 4000 psi. The
effect of axial stress on the overall thermal conductivity of_pqrous
rocks has also been studied by Edmondson [16], Anand, Somerton and
Gomaa [11]. ‘Edmondson's‘experimen;al results show that;the oveyall
thermal conductivities qf dry Bereg, Bandera and'Boisg sandstones
increase by 7;8%, 9.5% and 12.3%/;000 psi, respe;tively,-in'the axial
pressure range of 900-3600 psi. However, work of Anand, Somerton and
Gomaa shows that for dry Berea and Boise sandstones, effective thermal
conductivities increased by only 1.25 and 2 percent/1000 psi respect-
ively, above SOOvpsi axial stress.

Keeping the effective stress constanf,_the pore pfessure affects
thevoverall_thermal conductivity through affecting the thermal con-
ductivity of the.fluids filling the pbres. In general an increase
or decrease in conductivities of the pore'fluids would be expected to
increase or decrease the overall thermal conductivity of the porous
rocks, respectively. For 1iquidsvthe increase in pressure increases
the molecular contact aﬁd consequently the thermal conductivity.
Bridgman [17] shows that the thermal conductivity of liquids may

increase by a factor of two in the pressure range of 0 to 12000 kg/cmz.
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For gases the thermal conductivity is essentially independent of

- pressure in moderate pressure ranges, but increases with increasing

pressure at high preésures. As an'example,at‘tcmperature of 100°C
the thermal conductivity of air increases by a fcctor of 1.3 in the
pressure range of 1-200 kg/cm2 [18].
Effect of Grain Size

In a porous system if the arrangement of the solidAgrains is
kept the same, enlargement or rcduction of their size to any degree
may affect the overall thermal conductivity. The total surfcce area
of the grains expcsed to the pores per unit total volume, or the
total surface area of the grain—to;grain contacts per unit total-
volume is inverscly ptopottional to'a charactcristic dimension of
the grains such as median grain‘diameter. One Qould expect that for
a fixed porosity aﬁd packing arrangement, packs of smallet grains
would have larger total surface.area and larger number of gfain—to—
grain contacts for é given volume. Tﬁere may exist a contact thermcl
resistance due to sctface rcughness.between the grains at their
contacts, or a filmiresistance due to surface contcmination at the
surface of the grains cxposed to the pores. InAthis case, for a
fixed porosity and pécking arrangcmect, porous systems with smaller
grains would offer a larger teéistance to the heat flow compared to
systems with larger grains, and consequently would have lower effectiﬁe
thermal conductivity. |

Other than the atsolute size of the grains forming a porous rock,
the non-uniformity ofAtheit size.might also be of importance with
respect to the value of the effective thermal conductivity.

Based on experimental thermal conductivities for a large variety

of unconsolidated sands and consolidated sandstones fully saturated
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with brine, Cruze [19] obtained the following correlation equation
which gives some measure of the effect of grain size and grain size

distribution on the effective thermal conductivity:

E -
A A = DT, | (1-3-3)

E = 0.961 - 0.347 logh - 0.431 log (A_/A) +0.121 log (D )

-0.869 1og_(D90/D10) s

where
Xe = effective thermal c;nductivity,
A; = therﬁal conductivify‘qf rock solids,
Af = thefmal con&uctivity_of-saturating fluid,
¢ = fractional porosity,
D90‘/D10 = grain.;ize distribﬁtion.function,

‘TD50'= median grain size (mm),

D90 = graiﬁ sizé at which 907 of the grains by weight ére coarser,
D10 = grain size at which ;O% of the grains by weight are coarser.

Equation'(1—3-5) does indeed show a decrease in effective thermal
conductivitvahen the grainsvare reduced in size. It also shows that
the Broa&er the distribution of grain sizes (low-values of DQO/DlO)
the higher-is the thermal conductivity. Note that D90/D10 = 1. for
single grain size. | |
Experimenﬁal Measurement of Thermal Conductivity

Because of the very complex geometry of porous .rocks, an exact
theoreticél investigation of a heat transfer problem for these systems
is very difficult, - Therefore, an accurate experimental study of the
problem cannot be avoided by one who is interested in examining the

matter precisely. However, these experimental procedures are difficult
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and time consuming and usually require great skill and much patience.

In determining thermal conductivity, any experimental measurement
usualiy simulates a solution of the governing differential equation,

expressing the conduction of heat in a homogenous media, that is

e

vor =

©

e, | L (1-4-D)

d

where p, c, A are the density, the specific heat at constant pressure,
and the thermal cénductivity of the material, respectively. A com-
prehensive examination of such solutions that may.be simulated experi-
mentally with little difficulty, along with an extensive.study on the.
measurement of ﬁhermal conductivity can be found in the text of Tye
[201]. Therefofe,“detailed descriptions of different experimental pro-
cedures are not gi&en here and only. the comﬁarative method of thermal

conductivity measurement will be discussed briefly.

For a cylindrical test sample, the steady state solution of Eq.
(1-4-1) with undirectional flow of heat and no radial heat loss, can

+be written as: v '

where:

A = cross section-sectional area of the sampie normal to heat flow
direction,

L = length of the sample,

AT =.temperature difference across length L,v

Q = heat flow through.the sample ,

A = thermal conductivity of the sample,
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Measuring Q, A, L and (AT), thermal conductivity can be obtained from
Eq.- (1-4-2). Dependigg on whether the heat flow is measured directly
by_potentioﬁetriélmeans, or by use of "standards" of known thermal
conductivity, the method is called aEsolute or comparative,
respectively.',- |

A schematic diagram of an apparatus used to measure thermal
conductivity by the steady state comparative method is éhown in Fig.
2 .. The essential.principles-of the method tegether with detailed
technicai information:about this system are discussed elsewhere by
Anand [21] and Somérﬁon [22]. Therefore, just éome important techni-
cal points will be éiven here; ”

This system consists of a cylin&ric;i test sample, 32 mm thick
and 51 mm in diameter,_which‘is placed in 3 holder, 38.5 mm thick,
and havihg an outer diameter of 102 mm. The hoidef.is.madé of poly-
imide resin (Vespel SP-1 by Du Pont) which has low thermal conductivity
(0.433 *W/m-K), good mechanical strength, and is-al;o thermally stable

ﬁp to 300°C. The holder is fitted at each end by a circular stainless

steel plate, 3.2 mm thick and 76.2 mm in diameter, with a copper-constantan .

thermocouple embedded in its center. Each thermocouple plate is seated

on a Vitron O-ring placed ina groove in the holdér, which provides a
good seal to maihtaiﬁ the inside pore fluid pressure. Pore pressure
can be controlled through a line connected to a fluid extraction or
‘injection system. The sample holder is loéated between two othér
holders of the same material Eut only 22,4 mm thick, and containing
standards of known thermal conductivity not very different from the
test sample. These holders are also closed at their ends witﬁ

thermocouple plates. The stack of holders is bounded by heat source
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and sink on the top and bottom which are copper cylinders, 200 mm
long and 102 mm in diémeter, with built-in electric heaters and
temperature sensoré.\ Temperature controllers are used to maintain
;he desired high and low temperature levels. The assembly of the
holders and the copper heaters are surrounded by separéte seﬁi-
annular pieceé of insulation. Electric guard héaters are built into
the insuiators.around the holders in order to miﬁimize radial heat
flow.

One of the intgresting featureé of this apparatus is that the
liquid saturation of the test sample can be changed withoﬁt removing
it from the test section. Detailed discussion on this matter is
made elsewhere By Ozbek.[l3]. It is important to note that‘lowering
the pore pressure, by opening the exit valve, to a‘Qalue below the
‘'vapor pressure at the existing test temperature, causes the pore
liquid to vaporize. The vapor pressure drives the evaporated liquid
through a cooling system which condenses the vapor. Measuring the
volume of the condensate, and knowing the previous volume of the
pore liquid, one can easily calculate the hew liquid saturation for

the test sample.
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. CHAPTER 2~
DEVELOPMENT OF THE MODEL AND

CALCULATION TECHNIQUES

2-1 Porous Syétem Model.

For many years a number of authors have been examining various
means of predicting the highly important properties of composite sys-

tems including porous rocks. In general a precise solution to any

problem in porous media requires a knowledge of the éhape, size,

locationand physical properties of each éomponent in the system, to-
gether with a set of appropriate fundamental equations governing the
desired phenomenon. Because of tﬁe comﬁlex nétﬁre of porous systems
it has been a tradition to model themvby cﬁoosing a typical particle
shape and size, and a typical packing.

The_subject of arfangement of units in space which might serve
as a model to represent porous systems has by this time been thoroughly
explored and one would expect a soEnd and complete set of principles
would now be available for use in'ahy specifié‘applications‘that'yight
arise. Most of the authors tend to consider porous materials as

spheres of uniform size in cubic or rhombohedral packing arrangements.

"The effective porosity (fraction of the total volume which is occu-

pied by the connected voids)'of the most densely packed arrangement
is 26.0 percent, which belongs to a rhombohedral arrangement charater-
ized by a unit cell of éix planes passed through eight sphere centers

located at the corner of a regular rhombohedron, each edge of which

is twice the radius of the spheres. Simple cubic packing gives the

loosest or the most open textured packing with a porosity of 47.6

percent. In this case the unit is a cube, the eight corners of which



are centers of spheres tangent to each other. Other packings give
porosities between these two limits. Therefore, the choice of a packing
sets its porosity. However, it is not practical_to develop a different
model for each packing because this would yield discrete variations of
porosity, and rather Qomglex pore geometries in some céses.

Gomaa [23] modeled porous‘rock with uniform spheres packed in a
normél cubic arrangement. Spheres were flattened at the;r side con-
tacté while keeping their radii constant. In this manner the flatten-
ing causés a continuous reduction in p§rosity. Assuming that the
heat flqw'is in the same direction and parallel to the contacts at

.every point, he arrives at an expfession fo¥_thermal éonductivity of
fully fluid saturated_porous'media. Thiévmodel is reasonably good

for the case of full& water saturated rocks (XS/Kf <¥Q). However, there
is poor agreement'between the computed and experimental values for dry
v.rocks (AS/Af>100). In general the experimental values for effectivé
thermal conductivity arermostly greater than his analyticai results.

| vOzbekv[13] modifieleomaa's work‘bytadaing-an equal amount of
flattening on the top and bottom contacts. He also assumes that the
Heat\flow is unidipectional, and finally arrives at his own equation
for the effective thermal conductivity of partially satufated porous
systems. Comparison of the experimental data with the results calcu-
lated by Ozbek's model show-a reasonable agreement for fully brine
saturated sandstones, but significant diffgrences have been detected
when AS/Af is largev(AS/Af >10). His prediction of thermal conduc-
tivity is usually Z%ower than the observed exbgrimental values.

The reasonable agreement of the above two“models with the experi-

mental results for water saturated rocks indicates that when XS/Af is
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small the effective thermal conducfivity of porous systems is not
greatly influenced by the model which represents their structure or
by the method used to calculate fhe effective thermél conductivity.
However, for large values of Ag/A¢ (dry rocks), the choice of a proper
model for potous systems and a correct method for calculating thermal
conductivity is of great importance.

The unidirectional heat flow assumption considered in the above
two models neglects the distortion of heat flow lines. Accounting
for the distortion is more realistic and would result in an increase
in heat flow and.conséqdently a higher thermal conductivity. This
argument suggests that the proper accounting of heat flow lines in the
model used by Gomaa would permit a correction to thermal conductiv-
ities of dry and liquid saturated rocks caléuiated by his analysis:
But because only point contacts in the direction'of the heat flow
were considered ih.this model, one anticipates a zero effective thermal
conductivity for such a system Vhen the pores are evacuated. However,
experimental results for evacuated sandstones éhow finite values for
the effective thermal conductivity, even though it is small for packs
of unconsolidated grains. Therefore,it would be more realistic to
introduce finite grain;to4grain contact areas in the direction of the
heat flow lines as well. Ozbek did consider such finite areas of
contact when he mo&ified the earlier model of Gomaa; However,becadée
in Ozbek's work the relative size of these contact areas are dictated
just:by porosity, one would end up with large areas of contact for
unconsolidated grains as well as for consolidated rocks. This causes
such a large increase in effective thermal conductivity, that the
calculated values of this property will be higher than their experi-

mental counterparts.
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In the present work a model made up of normal cubic-packed
spheres, flattened at their contacts, is considered. As shown in Fig.
4 side flattenings are the same for:all contacts, and all top and
bottom flattenings are chosen to be the same but smallerlthah those on
the sides. The proper choice for the relative size of these contacts
is dictated by porosity and the degree of consolidation of the rocks,
which will be investigated later. Motion of ﬁhe heat is also con-
sidered to be two dimensional in the calculation of the effeétive
thermal conductivity. This is more realistic when As/Xf is large,
and allows another correction over the previous works of Gomaa and
Ozbek. Furthermore this model.is extended to multi-fluid saturated
porous systems, by choosing a reasonable distribution of wetting and
non-wetting phase fluids in the pore space.

Porosity Calculation
The porosity of the sphere pack shown in Fig. 4 is continuously

variable as a function of the top-bottom and side flattenings. A
2 %

rectangular parallelepiped with dimensions 2(r§ - ril)z, 2(rg - rcl) ,
1 .
2(r§ - riz)z, containing a spherical solid of radius Tgs and flattened

on the sides, top and the bottom is taken as a unit cell as shown in
Fig. 5. Let VT be the total volume, and Vs , the volume of the solid

phase of the unit cell, then Vs, V.. and therefore, pofosity, can be

T

. calculated as follows:

(2-2-1)



Fig. 4 Normal cubic packing of spheres flattened at their contacts

2 2.2
(5™ "c2)

"Fig. 5 A unit cell for porosity calculation
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_4 .3 o2 _ Ll o oy2 ]
VS =3 'nrogl - (1 ml) (2 + ml) 2(1 m2) (2 + mz)f , (2-2-2)
. _ 3 3 :
6=1-v /v = - T 6m1 2m1 + 3m2 m2 -4 , (2-2-3)
Vs’ 12 2
¢ ™M
where
_ 2,% _ el
ml = (1 - pl) ’ pl = r ?
0
2% T

. The above expressions for Vs’ and porosity ¢, are valid up to pl =
V2 /2 = 0.701, where the contact areas on the sides touch each other.
Thereafter by referring to Fig.6B, Vs and porosity must be calculated

from the following equations:

3 .3
V=ﬂ—rg-l—-(1-m)2(2+m)-l(l—m)2(2+m) +iQZzX
s 6 1 1/ T2 2 Tm 6 )™

2
1 - l—2m 1 - 1/

(1 - 2097 = 2m (3 - 2) sin T—B% 4+ 4 tan L1 - mD)El L, (2-2-4)
1 1 1 2 1
l1-m

1
\Y f.(m,) f(m,)
p=1-S=1-L 1 222 (2-2-5)
VT m m2 o
"2 1
where
Tl - (1 - m )2(2 + ml)i + ;Zmi(l' - Zmi)é - 2m1(3 - mi) X
£ (m) = 1 .
1''1 '
’ 2
1-2m % L
sin-l( ‘ 2-]"') + 4 tan—l(l - 2mi)2§
1-m '
l s
6m']2‘

£,(m) = 151 - m)*(2 + my)/m,
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In this case, the expression for fl(ml) can be well approximated by

a much simpler function as:

£ (m)=1 - —:2;;1 - =)
Equation (2-2-4) for.Vs, and (2-2-5) for ¢ are obtained witﬁ consid-
eration that thé contacts on the top and bottom never touch the side
ones, i.e. P, < (1 - pi)%. Later developments showed that.in fact
P, is not very large, and therefore regions for which P, > (1 - pi)L5
were not examined. |

Detailed analysis leading to Egs. (2-2-1) to (2-2-4) are

developed in Appendix A. Fig. 7 1is obtained by calculations using

Egs. (2-2-3) and (2-2-5) and gives porosity as a function of dimen-
r
sionless radius pl =;f5£ of side contacts, for different values of
0 r_ :
dimensionless radiusp1 =£E— of top and bottom contacts.
0

Effective‘Thermal Conductivity Calcuation

In the present work the contribution of convection and radiation
to heat transfer in the model are_neglected. Therefore, the final
results are applicable for porous rdcks in which thé Rayleigh number
characterizing the natural convection is below its critical limit for
that system, and for low to moderate temperatures.  Of course there
will be no forced convection since there will be no flow of fluids
through the pores.

Taking into ;onsideration the symmetry of the model, as well as
appropriate boundary conditions, one could consider that the effective
thermal conductivity of the model and that of the unit cell are equal.
Therefore, it is sufficient to obtain the effective thérmal conduc-
tivity of a unit cell. Iﬁ order to do so, the temperature distribu-

tion due to imposed boundary conditions on this unit cell must first
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be calculated. The temperature distribution would be symmetrical
about both the horizontal plane containing the sphere's center apd
the vertical axis, if constant uniform temperatures are imposed on
the hprizontal boundaries. Thﬁs,because of this stmetry,it is suf-
ficient to obtain tﬁe temperature distribution in a one-eighth seg-
ment of a unit cell. All further discussions will refer only to this
unit, which is called an elementary cell as shown in Fig. 8.

Assuming that. conduction is the only mode of heat transfer, the
© governing equation for steady state temperature distribution in the
elementary cell ié:

V.o =0 , (2-3-1)

with boundary conditions:

5 (2-3-2)

2
T = Tl at g=0 , T =T, at z= (r0 - rcz)
AT _ o aix o c 2248 3o
i 0 atii =0 and x = (r0 - rcl) i (2-3-3)
AT _ = = (£2 - L2 43 3
T 0aty = 9 and y (r0 rcl) . - (2-3-4)

The conditions (2-3-3) and (2-3-4) arise from the fact that the lat-
eral boundaries are adiabatic due to the symmetry of the temperature
distribution.

A solution to'equation (2-3-1) for the elementary cell, with
boundary conditioﬁs as described, would yield a three dimensional
temperature field thch could be used to calcuiate the total heat

flow passing through the elementary cell as:

_ 3T dA A
Q'f*s(azpo , (2-3-5)

- A
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Fig. 8 An elementary cell for the effective thermal conductivity

calculation

Fig. 9 Elementary cell divided by an adiabatic surface
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where A is the area normal to the direction of heat flow. This heat
flow value can then be used to determine the effective thermal con-

ductivity of the elementary cell, whichis defined by

_Q.L - -
. 5e AT, -T) (2-3-3)

It is not very difficult to show that this effective thermal conduc-
tivity is equal to that of a unit cell, or of the model.

Before starting to solve the problem, the elementary cell was

2_,2
0" el

1
3

divided into two‘regions by a cylindrical surfacg of radius (r
having tﬁe Z coordinate as its axis (Fig. 9), and it was assumed that
the total heat flbw Q could be divided into two independent flows,
namely QI and QII;éachpassing one of the separated regions. This
could be justified as follows: For As/kf = 1 it is obvious that the
heat flow lines are parallel with each other everywhere and perpendi-
cular to the xy plane, and therefore heat flows_QI and QiI are indeed
indepeﬁdent of each.pther. It is easy to show‘that in this case
QII/Q =1 ~ %-= .215, in'other wdrds only 21.5.percent of the total
heat will flow as.QII. The matfer will be similar for As/Af values
not very far frdm unity. However, for large values of XS/Xf most of
the total heat flo&s és QI and QII will be eveﬁ less than 21.5 percent
of the total heat. Thus there is a weak interéétion bétween the heat
flow lines passing tﬁrough region II and the boﬁndary which separates
this region from.thé rest of the elementary ﬁell.

' As a consequence of the above consideration, the cylindrical sur-
face which divides fhe'elementary cell into two regions can be safely
approximated as an adiabatic boundary. This enables us to determine the

thermal resistance of each region separately, and because these resist-

ances are parallel with each other, the total thermal resistance is
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given by

s o (2-3-6)

A =L (2-3-7)

where

(o
1]

2 2 %
(rO - rcz) L

_ 22
A= (r0 rcl) .

Therefore our original problem has been reduced to the calculation of

the thermél résistances RI'and RII

Determination of the Thermal Resistance of Region I
The thermal resistance of this region can be determined in terms

of the heat flow QI as follows:

T Tl L | - (2-4-1)
I Qr

In order to evaluate QI’ the temperature distribution in the cylindri-
cal region I, as shown in Fig.10, mﬁét first be calculated. With the
temperature distribution célculéted, the heat f;ow QI can be evaluated
from the temperature gradientsat eithértﬁe lower or upper boundéry.
Agreement of the heat floﬁs calculated?at.thése two boundaries gives a
check oﬁ the accuracy of the temperatufe diétribﬁtion.
Calculation of temperature diétribution}in'regi6n I is bossible by

solving the steady state héétréonduction équation in the solid and in

the fluid. 1In the system of cylindrical coordinates this has the form

-3T+—1-—3—1+'1—2—3——T—+3T=0’. . (2-4-2)
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Fig. 10 Region I

Ly | L2

"Fig. 11A Region I subdivided into Fig. 11B An interior node
near the solid-fluid

finite difference elements .
interface
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Because the geometry and the boundary conditions for this region are

independent of the coordinate O, the temperature will be a function

of r and z coordinates only, and Eq. (4-4-2) reduces to
2 : 2 : -
§—§+lﬂ+3—%=o . (2-4-3)
or r or 0z '
In this case the flow of heat takes place in planes passing through ) )

the z axis.

The temperature distribution TS of .the solid phase and Tf of the

fluid phase are both governed by Eq. (2-4~3) so the problem reduces

to solution of the following systems of equations:

o’r T, AT, _,
+ = t—5-=0 , (2-4-4)
or r or 0z
o’r, ot a’r,
+ = +—5 =0 , (2-4-5)
or r or 9z
and the boundary conditions are:
= - 2 2 .\5
TS = T1 at z = 0, 0< r«< (r0 - rcl) ,
BTS 5
F=Oatr=0, 0<z<(r0—r2) ,
T 2 2 \%
Er 0Oatr = (rO —-rcl) , 0< z < L
= Z (2 2.k
T, = T2 at z = (ro ‘ rcz) , 0<r < r, o, .
_ _ 2 2 5 L2 .2 \%
Tf Té at z = (ro rcz) s TH<T <(r0 - rcl)” , -
oT v
f s 2 2k 2_ 2%
55 - 0. at r = (rO rcl) » T 1< 2 <(r0v rcz)

In addition to the above boundary conditions, at the common boundary
of the phases, continuity relations for temperature and heat flux

must be satisfied,i.e.:
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> >
AS(V.TS).n‘é Af(VTf).n

where g-is a unit vector perpendicular to the interface.

An exact analytical solution to the System of Eqs. (2-4-4) and
(2-4—5), which satisfies the above boundéry and interface conditions,
is diffiéult and may.be impossible. This is due to the fact ﬁhat ana-
lytical methodé can be applied mést effectively to homogeneous prob-
lems of simple geometry. A comprehensive study of such solutions can
be found in the famous work of Carslaw and Jaeger [24]. However, there
is anbther important method for obtainiﬁg_solutions to phese problems,
namely, numerical analysis.‘ Although the basic fundamentals of numeri-
cal techniques have long béen known in mathematics, it has only been
since -the developﬁent of large scale digital computers that these me-
thods have been uséd Widely_in scientific and engineering fields.

A numerical sélution to a boundary value problem such as Eq.
(2-4-3) can be obtained by finite difference methods which have been
the subject of many texts [25, 26, 27]. The basic idea of these me-
thods is to replace;derivatives at a point by ratios of the changes in
appropriate variabiéé over a small but finite interval. Adopting the
the notation of suﬁscripts i,j to denote the éositions (r,z), and

notation

g, =T (@=ibr, 2500, (2-4-6)

where we have specified a mesh size (Ar, AZ), the finite difference

approximation of Eq. (2-4-3) is:

LRSS V%, TRl O M Tl V% TN U o V0. St V5 O
2 .
(Ar) 2(Ar)ri’J
T, . . -2T,  +T, |, -
i,j -1 i,j i,j+1 _ o . ‘ (2-4-7)

(AZ)2
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This equation can also be obtained making an energy balance for the
node (i, j), i.e., equating the sum of thermal currents directed to-
ward this node to zero. This can be expressed mathematically as:

Lz by L b bey oy
oY (755 73 MW " Ta—1,y) ¥ AGY (g g v 50Ty 5 =T 44,9

Ar _ A
Z;) (Ti;j - Ti,j + l) = 0.(2-4-8)

-7

9

Ar '
+ )\(ri’j Az)(Ti,j - I, + )\(ri 5

?
Rearranging terms in Eq. (2-4-8), yields Eq. (2-4-7).

In general the method of making an energy balance for an indi-
vidual node m and its adjacent n nodes can be represented'as:

% kmri(Tn - Tm) =0, ‘ (2-4-9)

where Kmn is the thermal conductance between the node m and adjacent

n nodes, and is defined as:

A
' = ) (-Dm, —~4—
kmn = X(L ) (2-4 lQ)
mn .

.where A is the thermal conductivity, Amn the average surface area per-
pendicqlar to the direction of heat flow, and Lmn the distance between
the nodes. If the line connecting the two adjacent nodes is lécated
entirely in the interior of the so0lid or of the fluid phase,then A in

" Eq. . (2-4-10) would be considered As or Af, respectivel&. Otherwise,
when the element connecting the two adjacent nodes is partly located in
the solid and partly in the fiuid phase, the overall thermal conduct-

ance between the nodes is calculated using the following relation:

i .1,1, (2-4-11)
K K K .
mn 1 2

where Kl and K2 are the thermal conductances of the parts located en-

tirely in the solid and in the fluid phase. This relation is obtained

based on the fact that Kl and K2 are thermally in series with respect

to the direction of heat flow.
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 Using the method of energy balance, for a node near the boundary

between the solid and fluid 1like node B in Fig. 11B, one would obtain

a nodal equation such as

node B
: 1 _ "Ar
i L Ti5 - T w1,y Y20y 10 X
- + : :
L L,
AS(rc - -3 (Az)_ )\f(rc + =) (82)
(T - T ) + 1 - (T - T, ) + X x
i,3 i,j -1 H) H, i, i,j +1 s
AS(Ar)ri’ Af(Ar)ri,
Az Ar ‘ , o

By the same token, for a node on.the left boundary such as C and one
on the right boundary such as D shown in‘Fig.llA, the nodal equation

would be, respectively, as following:

node ¢

(Ty,3 7 Ti 41,52 +3 (T3 7 Ta,5-0 % Ty 57T 540 %i‘;i 0
o - (2-4-13)

2(Ty ”  Ty -i,j)(ri,j - %E) (-ﬁ—f') * (Ti,j--' T+ 0Ty %1) '(AA%)
$(r, , -1 oy -G =0 (2-4-14)

i,j i,j -1

The nodal equations given by (2-3-12), (2-3-13) énd (2-3-14) can
also be obtained by using the original ngerpingvequation,that is, Eq.
(2;4—3),'and existing boundary/conditions_fof the problem. This ap-
proach, together with an investigation of the errors invélved in the
difference formulation of the problem; are discussed in Appendix B.

To evaluate the temperature at each nodal point in the field,

equations such as (2-4-8), (2-4-2) for interior nodes and (2-4-13),
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(2-14-14) for boundary nodes should be written, and the resulting

set of equations must be solved simultaneously.
Solution of the Difference Equations.

The.system of difference equations can be written in matrix
notation as:

A.T=B , (2-5-1)

where T and B are column matrices containing the unknown values of
temperature and known values connected to theboundary conditions,
fespectively, while A is a square matrix containing the coefficients

of unknown temperatures in the difference equations.

B

Solutions to such a set of algebraic equations are usually
considered in two general éatégories, direct and iterative methods.
The direct methqu, of which GausSian elimination is a well known
example, yield thé exact solution of a system of difference equations
using a finite number of ogerations, while iterative methods consist
of the repeated application of a simple algorithm, and usually
yield the exact solution only as a limit of a sequence of trials.

Direct methods are ideally suitéd for the solution of a small

set of equations or system of equations which have been generated

-in approximating parabolic equations. Thomas algorithm, which

plays an essential role in such problems, is perhaps one of the most
efficient methods in direct approaches.
The iterativg methods, on the other hand, are usdally pre- _ .
ferred for solVing large spares, that is when the coefficient
matrices associated with the finite difference solution of the
differential équations contain a large number of zero elementsf

These methods take full advantage of these numerous zeros, both
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in storage and operation. vThere are meny different lterative
methods, among which successive over-relaxation (SOR) is a very
efficient and effective device to reduce the time required to ob-
tain a desired_eccuracy.w.Thls teehni4ue eleng with some generalized
concepte underlying direct end iterative methods are discussed in
Appendix C.

Because the number of simultaneous equations, the solution of

~which yields the temperature field, can become very large for this

problem, and also due to the fact that the coefficient matrix A

contalns a large number of zero elements, the successive over-
relaxation technique 1s used in the present work to solve the re-

;‘sult1ng set of algebralc equatlons._

Solv1ng a large set of equatiorns w1th the S.0.R. method may
require meny iterations over many nodes, thus it is very 1mportant,
even with a monern digital computer, to optimize,the iteretion
procedure. For this problem a method descrlbed by Carre DS] is
used to estlmate the optlmum acceleration factor for the successive
iterations. S
Determination ef the,Thermal.Resistance'of Region II;”

" As explained earlier in_Section (2—3); when XS/Af is large,
only a small frection of the total heat will flow throngh region II.

Thus the effective thermal conductivity of the model and that of

‘the region I are very close. Therefore the method of calculation

of the heatflow.Q1y does not have a real effect on our final result.
For this reason the thermal resistance of this region is calculated
with the assumption of undirectional motion of the heat, which of

course yields satisfactory reSults for small values of AS/Xf ashwell.
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Region II is divided into five sections as shown in Fig. léA
The thermal resistance of each section is calculated separately aﬁd
a netwérk of these resistances is constructed to evaluate the total
thermal resistance of this'region. Determination of the thermal
resistance of each individual section is given as follows: |
Section 1

This section contains fluid only. Therefore:

R = (AT), _ Ly _ (rg - 1) -1, . (2-6-1)
1 , T i 2 2
O Aty Q- - T

Section 2

This section contains both solid and fluid. To determine the
thermal resistance of this section, first the heat flow through the
infinitesimal cylindrical element of thickness dr, shown in Fig. 13,

is calculated as:

(aT), _ - (2-6-2)
dQ = ’
2 1 L
ASdA2 AfdAz
but '

-1,%¢1
dA. = 6rdr ,0 =2 _ 2sin (=5
2 2 ro

_ 22k
LS (ro r’) ’ |

- _ 2 2.%
Lf - rcl Ls - rcl (rO -r) ’

therefore Equa. (2-6-2) becomes:

(AT)Z.O.r.dr

aqQ. = '
© 2 _ 2% (- rz)%
. (rO ) + Tel 0
X X
S f



‘Fig. 12A Region II subdivided into 5 individualjsections
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fig. 12B Electrical analog of region II
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Fig. 15 Region II and its
electrical analog,
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The total heat flow passing through section 2 is

To
= rdr
Q, = 6. (A1), T .13, .t
) )\)(r - )4
2 2 3 s £/°°0 £
(rO - rcl)
Carrying out the integration yields:
AS ‘
' — -1
: (5:- ) ,
2 f 1
R = = . . (2-6-3)
2 (AT)2 | AS/Af . AS O.rcl.xs
AT) wm() -
A Af
8 _ 3
f

Section 3
This section also contains fluid only. Thus:

(AT)3 L r

R w — ' (26-4)

Sections 4 and 5

These two sections contain both solid and fluid and are also
identical. Therefofé, it is sufficient to determine the thermal
resistance of only éne of these components. An infinitesimal element
of thickness dz in section 4 is considered (Fig.14), and the heat

flow through this element is calculated as:
| (),
Q4 = — s : (2-6-5)
. 1 ,

dz

AsAl + AfAZ

where A1 gnd A2

phase perpendicular to- the direction of heat flow, respectively.

are the areas of the infinitesimallsolid and fluid
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N

These areas can be expressed as following:

2 2y
1,2 2 1,2 2 -1,%c1% - 252
Al =5 (rCl -~z ) ¢ - 5 (r0 -z ) tan " ( 2 r ,2)
o~ fe1
1,2 2.2 2.5
P R S R R
A=t (2o 2 sin o -2 (22 - 2 yp-a, o= siﬁ'l(fc—l)
2772 To'To 1 2 ‘o T T’ M1 T,

Substitution of A; and A2

for the thermal resistance of this section:

into Equa. (2-6-5) vyields the following

4
where
' _ 2 2.5 . 2 2
Cl = Xf $r0(r0 - rcl) sin ¢ - (ro - rcl) @; /2,
L _ ‘ 2 2.5
C2 .—v()\S )\f)(ro - rcl) /2 s

@]
1

3_ (AS - Af).Q /2 ’

o
1]

4= g = A /2
Analytical evaluation of the inteéral involved in Equa. (2-6-6) is
very difficult and cannot be found; Therefore, this integral is
evaluated numerically.

The electrical analog for the heat conducted through region II

is shown in Fig. 12B, which gives a total thermal resistance as:
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RII = Rl + 5 ' (2-6-7)
*R
4

S+
2

|
W

When the contact areas on the sides touch each other, thereafter

resistances R2 and R3 vanish, but another section, which is completely

solid, appears as shown in Fig. 15, Its thermal resistance is given

by
0.2 2.5
o (AT) _Lg (2r_y - 1) . (2-6-8)
76 Q A_A 2 2 _T
II  "6's (ro rcl)(l Z)AS

The total thermal resistance for region II in this case is:

R., = R,

I 1+1(2R

+R, - o (2-6-9)

4
2-7 Thermal Conductivity of Multi-Fluid Saturated Rocks.

The single fluid saturated'sysfems for whichvthe calculation of
the effective thermal'conductivity was considered above in detail
are very rare in fetroleum.reservoirs. However, having developed a
model for a simpler case, it is easy to e#tend it to a more compli-
cated one.

Pore spaces in an oil reservoir are usually filled with two or
more fluid phases. 0il, water, and gas may exist simultaneously in
the voids, each occupying a fraction of the pore volume. This
fraction is referred to és'the saturation of that phase and is denoted
by the symbol Si’ where_subscript i identifigs eacﬁ individual fluid
component.

in general, if the pore spéces‘contain fluids of thermal con-

ductivities Al’ A A, and corresponding saturations Sl’ SZ""'

v2’...l‘. n

'Sn’ then the effective thermal conductiﬁity of the system in its
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dimensionless form can be written as: .

Ae AS AS XS
e = F (‘5\—, Tty ¢, Sl, 32,.....Sn_1) . (2-7-1)
s 1 2 n :

The functional relationship represented‘by F depends on the texture
(i.e. size, shape, and‘arrangement) of the solid components as well és
on the distribution of each individual fluid within the pore space..
To make the problem less complicéted,;it was thought that a two-
fluid saturated system would be a simple and rather practical case to
'examine, since oil-water or gas-oil systems are relatively common in
petroleum reservoirs; Using the present model to represent the porous
rock where the size, shape and arrangeﬁent of the solid grains are
fixed, it remains to specify phase.distributién of the fluids within
the pores forvcaléulation of the effecfive thermal conductivity. Dis-
tribution of the fluids in the porous network of a r¢servoir rock is
a functizn of the saturation as well as the wetting chafacteristic of
the rock solids and the fluids, For éxample, for an oil-water system,
the reservoir rock could be either water wet, which means water pre-
ferentially adheres to the reservoir rock surface, or oil wet. From
the geometry point of view, the distribution of two immiscible fluids
within the pore space can be considered as the following widely accepted
model. When the porous medium has the lowest poésible saturation of
the wetting phase, this phase forms pendular rings around the grain
contact points. These rings are not connected with each other except
perhaps through a molecular thickness on the solid surface. If the
~wetting phase saturation is increased beyond this minimum, the pendular
rings expand and finally become large enough to merge and form contin-

uous channels while thenon-wetting fluids stays in the middle forming
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also a continuous network. Further increase in saturation of the
Wetting-fluid causes the non-wetting fluid to break into individual _
droplets. Fig.l6 represents the above possible regimes for an bil—_
water s&stem where grains are considered to be water wet.

To incorporate a reasonable fluid distribution into the exiéting
model, the wetting phase is chosen to be a spherical layer of uniform
thickness next to the solid grain surfaces (Fig. 17). Even though
this choice méy not be very realistic for very low and high saturations
of the wetting phase where the'wetfing and non-wetting fluids become
discontinuous, it woqid be a good approximation fbr the intermediate
saturations, and ié also convenient from the analysis pointvof view.

The relation between the wetting phase séturation Sw and radius
to thé interface of the fluids T, is needed. As mentioned before,
the wetting phase saturation is the fraction of the pore space occu-
pied By this phase;lfhus: |

Sw'= vdluﬁe of wetting phase/pore volume (2-7-2)
By referring to Fig.v17, the volume of wetting phase and pore volume

can be expressed as follows:

3
mr 1 :

__0f3 2 1 )2 -

Vg =75 4Py~ (py mm)T(2e, ) -5 (o - my) (20, + m,)
6 2 .

3.2 :
Vo = Tp mmy o, \ (2-7-4)
where

Py = rw/r0 .
The above relation for v, is valid until rw,<5\45 (rg _ r2 )
v - : c

- 2 2 5 2 2
For the region where wﬁf(rb - rcl)2 <r, < (2r0 - T rcz) R

N =

Eq.  (2-7-3) should be modified as:



Low water saturation Intermediate water ‘High water saturation
saturation :

Fig. 16 Three possible regions for an oil-water system where water

is the wetting phase

‘ez . | \Aﬁch’ln%
l ] |__Non-wetting
Fluid
—
el
1

Fig. 17 Distribution of the wetting and the

non-wetting fluids in the pore space
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3
Tr;
__o0y3 2 1 2
Vw 6 3pw (pw ml) (ZQW +'m1) 2 (pw - m2) (pr + m2) + V0
6, .2
-7 (1- ¢)mlm2 . (2-7-5)
where
3
P 2 L
Vo = T—T-‘i;z(zp —l);i(l-p) - 2(p? +2)(1-—p) J(ZP_E-_l)
_ P
+ 4 tan L(20 (2-7-6)
2 2%
(o, = my)
p = 5
Tw
. . 2 2 2 .\
There is another region where r >(2r. - r", - r .)*, for
v W 0 cl
which the functional form of Vw becomes very complicated. This
. 1
~region is not examined, because rd\r-\(Zr - ril— riz)’i itself

covers a Qide range of the wetting phase saturation.

| Figure 18 is plotted using the appropriate relation for the
volume of wetting phase in Eq. (2-7-2), and gives saturation as a
function of dimensionless radius to the wettlng fluid—non—wettlng
fluid interface for different porositles and no flattening on the
top and bottom contacts. It is very interesting to note that these
curves are pot very sensitive,té changes in pz'for'avfixed-porOSity.
Therefore these curves can also be used fqr the other values of Py
with an error less tﬂanvone percent. Only at véry 1Qvaorosities
(less than 0.10) doés this erfor increase, and different curves
should be consideredifor-different values of pz.

The existing knowledge developed earlier for a single fluid

saturated model can Be used with some modifications fqr the calcu-
laﬁion of the effectivé thermal conductivity‘of the proposed two-

fluid phase system. Referring to Fig. 17 the thermal resistance of
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Fig. 18 Dimensionless radius to the wetting-non-wetting fluid
interface as a function of saturation of the wetting

phase, for different porosities and r, = 0
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region.I can be easily determined following the same procedures
described earlier to solve the steady state heat conduction equation
for this region by the method of finite difference.

| Thermal resistance of region II can be calculated as bef§fe
making the asstmption of undirectional flow of heat. HowéVer,
because of the complex/geometry of the two phase system, a weighted
geometric mean of the conductivity of these phases is assigned for

the thermal conductivity of this region, given by:

Ve Vaw
( ) - &) &)
VT II VT II _
>‘II - XS 'Aw 'Anw > (2-7-7)

where Vs’ Vw’ Vnw'are the volume of solid, wetting, and non-wetting
* phase in region'II, respectively, and VT is the total volume of this

region, given by:

v =1 gu - (.1.—. oBya - b .“2 [(1 )*(2 + 03 - 3p, + 54
-Ta- oi)pls : (2-7-8)

v, o= ;cbsw(l.—’pi.)(l -oha - o+ Hla -ohie + )

- 3p, + pi]+ % @ - .pi)_pl‘ - T - oy (ol + o2 - 1)%

Q% o2 - 0" - 322+ 2 - DFL @ - 0D 4

0 + pi—»l)3/2]'} . O (2m1-9)
vy -Pa-eha-ed? o, N )
Vo=V -V -V - | (2-7-11)
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‘have been made elsewhere in texts on sedimentary rocks [29, 30].

24

As argued before, any reasonable method to evaluate the thermal

conductivity of this region will be éatisfactory and does not have

én important effect on the value of the overall-thermal conductivity.

Having assigned a thermal conductivity as in Eq. (2-7-7) for region ‘ ”

IT, its thermal resistance can be given by

. 2 2.}
Rop . Lip (- r)” , (2-7-12)
) I— Ty (2 2 3y
1 @ =)y = T

Determination of the Relative Size of Grain to Grain Contacts.
The equations obtained for porosity of the proposed model reveals

the fact that knowledge of porosity alone is not enough to define a

‘unique configuration for the system, and some argument should be made

about the relative size of grain-to-grain contacts to fix the geometry

. for a given porosity.

In general a complete understanding of the relation between the
grains, such as the number and type of contacts, requires a compre-

hensive study of the size, shape and arrangement of these particles.

Also required is knowledge of the processes which are responsible for

reduction of the pore space, namely compaction under which gravita—
tional stress over geological ages causes closer packing, crushing
and deformation of the grains, and cementation in which minerals

serve as cement to hold together the individual grains. Such studies

However, a sound and precise relationship among these propertieé and
the relative size of the contact between the grains is very difficult
to obtain. Taylor [31] classifies the sand grain contacts as they

appear in the plane of a random thin-section and considers that three
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types of contacts, namely tangential, long, and concave-convex, as
shown in Fig. 19, can occur between the grains. Taylor finally con-
cludes that the number of contacts per grain ;nd the types of them
due to stress increase with depth. In connection with the mutual
spatial relatibnship among the grains, Kahn [32] introduces two
numerical parameters, namely.the packing proximity, and the packing
density. The formér is a qualifative measure of*grain-to-grain con-

tacts, and is expressed as the ratio of the number of grain-to-grain

contacts in a traverse across the thin-section, to the total number

of coﬁtacts of ail kinds in the same traversg; When this parameter
is small, most of thé contacts are those bétween a grain and cement,
and the grains.have énly a-small aréa of contaét with each other.‘v Con-
versely a large packing proximity means that vmost of the contacts
are grain-to-grain, with less mutual relation between the grains and
cementing minerals,_ﬁhich suggests that the rock has been under
compaction withouﬁ the introduction of much cementing agents. The

second parameter introduced by Khan; i.e. the packing'density, is a

measure of aggregation of the packing and is defined as the ratio of the

sum of the length of grain intercepts to the total length of the
traverse across the‘fhin section.

Although the éﬁsve authors have examined types and the number
of grain—to-grain'contacts, they have not made ény quantitative
statement about theif relative size, which is of course a difficult
parameter to investigéte frpm thin-section analysis. However, for
porous rocks there exists a physical property, namely, the effective
thermal conductivity, which can be used as a guide for estimation of

some average size of the grain-to-grain contacts.
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Concavo -Convex
Contact
. Long ‘Tangential
Contact Contact

Fig. 19 Mutual spatiél relationship among the grains in a typical
. sedimentary rock (after Taylor [31])
The total number of grains in the traverse is six and there
are only two grain-to-grain contacts in the traverse. Packing
proximity is therefore, %—.100 = 33.3%. Packing density is
the ratio of the sum of the intersept-size values for the
six grains to the length of the traverse. Therefore, packing

density ='Zgi/t,
i=1
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In a porous system if the interconnected pores are evacuated, in
the absence of radiation energy transfér,heat can only be conducted
by the solid components through their finite contact areas
present in the direction of heat flow. Tﬁerefore, the effective
thermal conductivity in this case will be a function of the size,
shape, arrahgemeﬁt; and.thermalvconductivity of the grains as well
as the number and size of their contacts.

The influence of the thermal conductivity of the solid com-
ponents,ls, on the effective thermal conductivity of a porous system

under the vacuum condition,keo,

is very easy to ihvestigate. In
:fact because the interconﬁected pores are ﬁon—conductive; the con-
ductivity of the'system is entirely due to the solid grains and their
finite areas of contact.. Cohéequently, one can conclude that er

is proportional to XS. This can be expressed as:

F = % : | (2-8-1)
e0
It is obvious from Equa. (2-8-1) that the factor F, which serves as
a proportionality constant, fully embodies the influence of the
geometr& of the grains and their mutual relationship.

Similar to thé above factor, thefe exists a widely used parameter
in the oil industry to characterize the pore structure of sédimentary
rocks 'and sands. Ihis parametery, which is éalled the electrical for-
mation resistivity factor, F, is defined as the ratio of
the electrical resistivity of a fully saturated porous rock,Re, to

the electrical resistivity of the saturant fluid,Rff- Thié can be

shown as:
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W

_ e

Felectrical - Rf T (2-8-2)

In terms of electrical conductivities, Egq. (2-8-2) becomes:

Ye

Felectrical - ?;

. (2-8-3)

The fact that the rock forming minerals are usually poor electrical
conductors reveals the striking similarity between the two Egs.
(2-8-1) and (248—3). Therefore,it will be appropriate to call the
factor F in Eq. (2—8—1),,the’£hermél formation resistivity, and
denote it by Fthermal'
Mény at;empts have been made to find analytical or empirical
relat%ons that can express the influenqe of the geometry and packing
df the grains on the thermal‘formation résistivity factor. Chan and
Tién [33] studied thevhéat transfer through the solid phase of three
&ifferent packed beds of uniform sizé sphereé, namely, simple cubic,
body~-centered cubic, and face-centered cubic,as sﬁown in Fig; 20 In
eaéh case heat can be transfe:red through thé circular patches which
are formed at the contact points of the spheres, due to an axial:
load on the system. Based on the assumption that the contact areas
are very small, these authors obtained an analytic solution, for the
temperature field within a single sphere, which has a uniform heat
flu# on’the‘two diametrically opposite contacts, while the rest of
its surface is insulated. This_baéic solution tbgether with some
geomé;rical parameters providesthe necessary information for the
calculation of the effective thermal conductivity of each packing.

“Chan and Tien's final results can be expressed as follows:
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Fig. 20 Unit cell of three different regularly packed spheres

Table 1 Basic Parameters for different packing patterns

d Nt Na
Simple cubic : 0.476 1[Ero l/4ro2
Body-centered cubic 0.320 V§/2ro 3/161‘02
Face-centered cubic 0.260 V@/&ro V?V6r02
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Fig. 21 Curvilinear square Fig. 22 Curvilinear square
network for a network for a cy-
spherical  element lindrical element

with circular con- , with circular con-

tacts : - tacts
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e0

where Nt and Na are the number of particles per unit length and per
unit area, respectively, and are presented in Table (1) for the three
regular packing patterns, r, is the radius of 'the circular contact

 area, Sj a packing paremeter which is equal to 1, 1/4, 1/3 for simple

cubic, body-centered cubic and face-centered cubic, respectively,

and finally Sr a parameter which depends on the ratio of the rediﬁs
’ {

of the contact r, to the radius of spherical grain ro,vits numerical

values given as:

f? 0.001 , 0.002 0.004 0.006 0.008 0.010
r .

0

Sf 0.8252 0.8193 0.8207 0.8334 0.8280 0.8331

Because of the assumption that the contact areas are not very large,
the applicatfon of Equa. (2-8-4) is limited to small values of rc/ro-
In fact Chan and Tien suggest fhat the ratio of rc/r0 should be
smaller than 0.10. For larger values of rc/ro, the analytical solu-
tion of the conduction equation for the propagation of heat tﬂ;ough
the solid phase of the foregoing packed beds Becomes rather difficult.
Therefore, approximation methods are usually used to obtain the

effective thermal conductivity of such systems.

Kaganer [34] used the method of curvilinear squares to determine
the thermal :esistance of a single spherical particle} which has uni-
form teﬁperatures on the two diametricelly opposite contact patches,
while the rest of its surface is insulated. For a particular ease of
.rc/ro=0.2,)for which iq Fig; 21 a network of isotherms and constant

e

- flow paths are shown on the cross-section: of a quarter sphere Kaganer
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calculated the thermal resistance of the whole sphericél grain as:

RT = g'is , rc/rO = 0.2 . : (2-8-5)

c 8

The thermal resistance given by Eq,v  (2-8-5) can be used to evaluate
the thermal formation resistivity factor of a normal cubic packing
arrangement of uniform spheres which are just flattened at their top

and bottom contacts as follows:

A A
- _S - S - s _ - e
Fihermal = X L. 1 2 2.5 5.61 , (2-8-6)
‘ e =+ '3 2(r, - r)?* r A
Rp 0 PN
br” 0.55
o
Te
- = 0'2 9 ¢ = 0.466 -
r
0
- r
Note that for the same packing, a ratio of ;E-= 0.001 in Eq. (2-8-4)
0
yields:
XS . o |
Fthermal =% 1056 (2-8-7)
e0
T
—<£=0.001 , ¢ =0.47 .
o .

In connection with porous rocks, it is very interesting to ob-
serve that the unconsolidated aggregates of rock grains usually’ have
thermal formation resistivity factors in the range of the values

r

. given by Eq. (2-8-4) for very small ratios of ;53 while systems of

0
- which are

consolidated rocks'possess much lower values of F »
. thermal

of the order of the numerical value of this parameter given by Eq.
(2-8-6). These can bé seen from the experimental investigations of
Woodside and Messmer [ 15,35 ], who measured the effective thérmal
conductivity in vacuum of three quartz sand packs and five consoli-

dated sandstones. The three unconsolidated sand packs which had
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porosities of 19, 36 and 59 percent possessed values of 645 and -
higher for the thermal formation resistivity factor; whiie values of
this parameter for the five consolidated sandstones with porosities
ranging from 3 to 29 percent ranged between 3 to 5.

The foregoing discussion about the thermal formation resistivity
féctor of some reguiarly packed spheres and their compérisbn with
the experimentally obtained Qalues of this parameter for the porous
rocks show that once a reasonable model is proposed to represent the
latter, the thermal formation resistivity factor can be used to
establish a relation between the relative size of the grain-to-grain
contacts, although this task might be difficult. For example, in
the original model of normal cubic-packedsphefes,flattened’at their

points of contact, this can be written as:

As rcl rc2
Fihermal =%, =~ f Py =7 » Py =7 (2-8-8)
e0 .0 0

Recalling that the porosity of this systém can also provide another
relation betweep pl and pzbwhich is indeed independent of an equation
suéh'as (2-8-8), one can conclude that the porosity and the thermal
formation resistivity factor of a porous rock together will furnish
]fhe_necessary equations needed to fix the geometry of the model
reﬁrésenting,it.

To find how the thermal formation resistivity factor of the

proposed model depends on the dimensionless radii p. and 02, efforts

1
should be made to find the thermal resistance of a single solid
grain which has uniform temperature on top and bottom flattenings,

while the rest of its surface, including the lateral flattenings,

is insulated. As stated before, because of the complex geometry of
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such a>uni£, an exact analytical solution to the proBlem isvdifficult.
On the other hand one might think of this situation as a limiting
case of the single-fluid saturated model when Af tends to zero.
Therefore, the knowledge developed in the earlier sections of this
chapter can be used to provide an approxiﬁate solution of the problem.
‘However, the limiting case for which thermal conductivity of the

fluid is zero should be.éxamined carefully. Setting kf = 0 in the
finite difference treatment of the problem also makes the thermal con-
ductance of some elements connecting the nodal points equal to

zero, and providés é difficulty for the iterative method of solution
of the system ofvdifference equations. = This problem can be ovércome_

either by choosing a finite but very small value for A_, or by some

f’
modification of the solution procedures to avoid the iteration for

the nodes which are surrounded by the elements having zero thermal

conductance. Both alternatives were examined, and as one would

A

~= obtained by each treatment were

expect, the values‘of Fthermal = Aeo

almost the same.

It is important to note that equating'lf to zero eliminates
the passage of any heat through region II, and makes the effective
thermal conductivify of the model and that of region I equal. Thus,
instead of the formér case, attention could be focused on the latter,
The propagation of heat through the solid phase of region I is very
similar to the propagation of heat through a cylindrical element
which has uniform temperature on one base, a circular patch of
another uniform temperature on the other base, and insulation on
the rest of its surface, as shown in Fig. 22. Therefore, it would

be appropriate to assume that the thermal resistance of this element
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. and that of the solid part of region I are equal, if both possess the
same dimensions. Veziroglu [36] gives a closed form solution for the
thermal resistance of the above cylindrical element, which can be

written as follows:

tan—l(%}-— 1)
R, = c + . (2-8-9)
2mr A * TroA _
c's s

where r and H are the radius and the height of the cylinder, and r,
is the radius of the circular patch on one of the bases. Using
Eq. (2-8-9) for the'thermal resistance of the solid grain in region

I, one can obtain its thermal formation resistivity factor as:

2 - 2 .
F = i§—»= s A )y 4 a-ep tan”t (l - pl)% ~ 1}t ,(2-8-10)
thermal AeO L.1 m 20 (1 - 2)% ~ p2
A R ) P2 2
p = E p = rcz
b
1 ro 2 r0>

Notice that for pl = 0 and pz = 0.2 the original model is similar to
the one examined by Kaganer. Therefore, a8 comparison can be made be-
tween Eq. (2-8-10), Kaganer's graphical approach; and the present

finite difference treatment of the problem. The results are given as.

follows:
Graphical approach Eq. (2-8-10) Finite difference technique ‘
As | As -As
)\—= 5.61 7\—='5.58 ! T='5'80
el el e

The above figures show that ﬂhe_thermalbformation resistivity factor
of the present model with Py = 0 and Py = 0.2,vcalcu1ated by finite
difference technique, is only 47 higher than the value of this para-

meter as determined from Eq. (2-8-10). For cases in which pl>0,
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this difference was found to be evén smaller. Thus, Eq. (2-8-10) is

indeed a good representation of the present numerical work when

: Af = 0, and can serve as a second equation in conjunction with the

equation for porosity to obtain the relative size of the contacts.

In Fig. 23 curves of constant porosity and constant thermal formatidn
resistivity factor are plotted, using vKé. (2-2-3) and (2-8-10).
Knowledge of these two parameters for a porousvsystém defines a pair
of these curves, the intersection of which gives the appfopriate
choice of Py and p2 for that system.

Although the thermal formation resistivity factor of porous
rocks can be used for estimation of average relative size of the
grain-to-grain contécts, its knowledge requires laboratory measﬁre—
ment of effective fhermal conductivity of the porous.rock in vacuum.
Therefore, a measurement which in nature is similar to the measurement
of effective thermal conductivity cannot be avoided. Another point
which'should be.nqted is that the éxperimental value of the effect-
ive thermal conductivity of é porous rock in vacuum contains not
only informatixnlabbut the_size of the graih—to—grain contacts, but
it also embodies information about the thermal contact resistance.
which exists betw;en the areas of contaét. Thus by using the experi-
mental valﬁe of A;é in Eq; (2-8—10),§hich does not consider any
thermal contact résistance, one would underestimate rc2.

As stated before,thereexists_another physical property of the
porous rocks, namély, electrical formation resistivity factor, which
is also a represeﬂtation of the geometry of the pores. Because the
electrical forMatién resistivity factor is eésy to meésure and

does not include any contact resistance contribution, it would be
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a logical substitute for its thermal ceunterpart. Therefore, it re-
mains to be found an exﬁression which relates the electrical formation
resistivity factor to the geometrical parameters of porous rocks.

Many attempts have beeh:made‘to find such an expression, both ana-
lytically and experimeﬁteiiy,"emong which only the following empirical

formula proposed by Archie [37] has survived the test of usefulness.

. _1
eilectrical ¢m

(2-8-11)
where ¢ is.porosity,and m a constant called 'cementation factor"
which depends on the.degreevof consolidation of the rock. The

numerical values of the cementation factor m, glven by Archie, are

5:1nd1cated 1n the follow1ng table._

 J-Rbek‘Description 7;{C§@eﬁt8ti°n Factor
.'.,i-Vlef);"Slightl}‘r“coﬁsolli&ated o 1-4,- 1.5
_‘SIightly cemented (porosities of 0.20 or more) .1;6'5 1.7

" Moderately cemented (highly consolidated rocks of 1.8 -~ 1.9
-~ .0.15 porosity or less)

:Highly cemented (very low porosity rocks) - '2.0f4e2,2,.

To obtain the electrical fotmetiOn resistivity factot fpt{;he ekisting
model, -the Laplace equetidﬁ fer'conduction of electtieity ehouid;be
:éeivea‘inlthe porevregien. Thevelectric pdtential_disttibutioﬁviﬁt"
_theﬂpore_sﬁace isnin.general'a tﬁree—dimensional”fieid,_whitﬁethtsi
.mekég'thecalcuiétien 6f the electrical formation resistivity fact0rb_
difficult. One might think that setting As =0 in‘tﬁe.ekistinéiv
.'computet brogram,'which.nalculatesthe effective thermal conductivity, -

"would provide the solution to this new problem. However, this is not
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the case, since it should be noted that in the region of the
elementary cell at z = ra (Fig.10), there is no area available for
the flow of electricity. Therefore, this region will have an infinite
resistance and make no contribution to the electrical conductance.
‘Under the assumption of unidirectional flow of electricity through
the pore space, approximate values of the electrical formation re-
sistivity factor of the model caﬁ be calculated by a simple integra-
tion. Referring to Fig. 8, the flow of electricity I passing through

any cross-section of the pore volume perpendicular to the Z axis is

1=y, A Y, (2-8-2)

f dz
where
Yf = electrical conductivity of the electrolyte-in the pore,
A =

cross~sectional area of the pore space perpendicular to the
Z axis, |
dV = voltage drop across length dz .
.To obtain the total voltage drop AV across the elementery.cell,Equa.
(2-8-12) is integrated as:
(rg i 1'(2:2);i

Av=f | %%=%_/ gi. (2-8-13)

.0 ' 0 '

The area A in Eq. (2-8-13) can be expressed as a function of ro,

rci{ rC2 and z ae follows:
s _ .2 2 2 2% .2 2.5 -
A(z) Al(z) (r0 - rcl) - (rO - rcl) (rCl -2z7)° -
I r2 r2 |
1222 [T ) cost (07 Telyy
2 (rO z7) 7 2 cos ~ ( 3 > ) » for 0<z<rCl s
ry - Z : ‘
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2 2 ' 2 2 L

2 n(r-—z), for r _<z<(r. - r".)
0 _ c2

A(z) = A, (2) = (rg -y -3

cl 0

Therefore Eq. (2-8-13) becomes:

- 2 2.k
Le1 (rg = 1))

I A (z) -2 2 w2 2
B SR 7 (rg - Te) =% (g = %)

cl

(2-8-14)
The first integral on the right hand side of Eq. (2-8-14) should
be calculated numerically, but the second integral has a closed

form value as:

2 2 %
(rg = Te2)
. , c .
’ - dz - el c2 .
res = f (Ps0,) , P, =T , p, =——
/ | A2(z) 17rret o 1 r, 2 r,
Tel
where:
‘ _2a , _-1b_ . -lc 2., T
fl(pl’\ py) = v (tan S~ tan for oI <1 -7 ,
a (b - a)(c + a) 2 1r
=2 >1 - —
£,0P150,) v I T - a)] for o] >1 - 2
1 \ Y p
where a = [(1—0%) —-g-]'5 . b=-2£'(1.. p§)2 , ¢ =__12ﬁ .

The electrical formation resistivity factor is defined as:

| I
Felectrial = 22 : . (2-8-15)

0

elementary cell, when it consists of a single phase of conductivity

Ye I0 may be written as:

where I is the total flow of electricity passing through t_he

2 2
Yf(r0 - rcl) (AV)
0o 5 . (2-8-16)
(r0 - rcz)

I
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'~ Substituting I, from Eq. (2-8-16) and AV from Eq. (2-8-14) into

0
Eq. (2-8-15) yields:

£ .(pys P,)
Felectrical = [f o Op : + i (0 )] -1’ (2-8-17)
1'71°72 271
1 - p2 rCl
where  fo(op) m gy 5 () = / o
(1 - p5) 0 0 1

Using Eq. (2-8-17), F was calculated for different pairs

electrial _
of pl‘and pz,nmich correspond to a fixed value of porosity. Figure
24 represents the results of such calculations and gives F .

electrical
as a function of p2, for different porosities.

For Py =Py = 0 (¢ = 0.476), Eq. (2f8—17) gives Felectrical
= 2.65, which is the smallest electrical formation resistivity factor
that one would obtain for the model with unidirectional assumption of
electricity flow through the pores. It is also important to note
that for p1 2 0.707, where the contact areas on the sides touch each
pther, the pores are no longer connected iq the Z direction. There-
fore, the electrical formation resistivity factor of the model in the
Z direction will be infinity for pl = 0.707. The pofosity of the
model for pl = 0.707 and p2 = 0 is 19 percent. Thus inorder to main-
tain the electrical formation resistivity factor finite for low

porosities, must be kept below the critical value of

1
0.707. 1In such cases Py becomes the significant parameter for con-
trolling the porosity.

For unconsolidated sands with porosities ranging from 30 to 45

percent Kesse [38] reports that the experimentally measured values of the

electrical formation resistivity factor range from 6 to 3. Kesse's

L)
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experimental values for F were compared with the values

electrical

~of this parameter given by Eq. (2-8-17), for p, = 0.. Except for a

2

few sands with porosities between 37 to 45 percent, the predicted

values of F

electrical from Eq. - (2-8-17) were much higher thgn the

experimental values. This would be expeéted, since for p2 =0 or

‘even for small values of 02, the elédtricity flow lines passing

through the pores are so distorted that a unidirectional treatment
of the problem would not be realistic. A two-or th;ee—diﬁensional
solution to this problem would result in an increase ‘in electricity
flbw and consequently a smaller eléctrical formation resistivity

factor. On the other hand as 02 increases, pore chAnnels in the
model become‘less converge;t—divergent, and therqfore'the assumption
that the flow lines are parallel becomes relatively valid.

To conclude the discussion on the relative size of the grain-
to-grain contacts, a very sTali value of Py (p2 < 0.1) should be
used for uncqnéolidated sands. In fact Py =v0 will be satisfactory
for most unconsolidated sands. ‘For.consolidated ‘sandstones, knowing
their porosity and électrigal formation resistivity factor, Fig. 24
can be used for'eStimating'pz{ .It should be noted that Fig. 24 in
general might overestimate pz.

Results

A computer program Writéen in FORTRAN IV was developed to calcu-
late the effective therﬁal conductivity from the model based on the
earlier éhéoretical considerations. .The features of this program
are given in detail in Appendix D.

The parameters necessary to calculatg the effective thermal

conductivity Xe of the model are porosity, ¢, dimensionless radius
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Tto 45 percent. These graphs are suitable for unconsolidated sands.
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of the top-bottom oontacts,bz, saturation of the wetting phase,Sw,

thermal conductivity of the rock matrix,ls, thermal conductivity of

the wetting phase,k and thermal conductivity of the non-wetting phase,

f,
Anw' However, the dimensionless effective thermal conductivity de-
fined as Ae/lf (or Xe/ls) depends only on five dimensionless para-

| \_ and A : i
meters, ?, Py Sw’ As/Af and S/an Therefore, keeping any four of
these parameters constant, the effectsof the remaining variable can be
studied on Xe/Xf. Such a study was made and the final results

are presented in form of graphs in Figs. 23 through 30.

Figures:25vthrough.28 show the effect of AS/Af on Aé/kf for

B single fluid saturated systems. Figures 25 'and 26 are plotted for

O'and-p2 = 0.05, respectively, and porosities ranging from 30

Figures 27 and 28 are for p, = 0.2 and p2 = 0.3 respectlvely and

both cover porosities in the range of 30 to 10 percent. Thus they

‘1‘are useful for consolidated rocks. Figures 29 and 30 are plotted
5for‘two-f1uid saturated uhcdnsolidated and consolldatedfsystems,
respect1vely,w1th A /A = 10 (a typical value for cases 1n which

gralns are quartz and the wetting phase is water) They show the

effect of S on A /A for two d1fferent values of A /A ot namely

. 50 (solld curves) and 200 (broken curves), vﬁuxﬂxaretyplcal for the

 systems w1th AS/A = 10 and with oil and air the non—wettlng phase,

respectively.
Examination»of'Figs. 25 through 28 shows_that, for-a fixed -

porosity, As/kf increases with increasing pz. This increaseiiS‘yery;

small when'AS/lf<10, but becomes significant for large values of -

£ This would be expected since increasing the size -of the

-
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grain-to-grain contacts in the direction of heat flow enhances the heat
transfer and consequently increases the effective thermal conductivity.,
However, this iﬁcrease would not be appreciable when A¢ is not very
different from Ag. As' it can be seen from Figs. 25-28, keeping P,
cénstant,}g/Af increases with decreasing porosity. This is a logical
trend, since the lower the porosity, the higher would be the volume of
the solid grains which have a higher thermal conductivity than the fluid
filling the pores, and therefore the higher would be the effective
thermal conductivit§; These figures also show that the rate of change of
Ae/Xg with ¢ is veryvsmall for small values of Ag/Ag¢, but more notice-
able in the région of high Ag/Age

As it appears in Figs; 29 and 30, the effective thermal conductivity
of the moaei increases with increasing S,. This increase is greater
when porésity is higher. vThe effect of the;mal'conductivity of the non-
wetting phase can also be seen in Figs. 29 and 30. As one would expect,
thé higﬁer the thermal conductivity ofbthe non-wetting phase, the highér
would be the effective thermal conductivity. However, this effect is not

- very strong at high wetting fluid saturationms.
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CHAPTER 3

COMPARISON OF MODEL RESULTS WITH EXPERIMENTAL DATAZ

The ‘effective thermal conductivities of four consolidated sand-
stones and one unconsolidated sand pack werevcaiculated by use of the
model for the cases in which the pore channels are filled with brine-air -
or brine-decane mixtures; and nosults-are compared with the existing
experimental data. Three of the consolidétod samples'are'Boise, Berea,
and Bandera sandstones, the thermal conductivity of wnich were experi-
mentally measured by Ozbek [13] and Gomaa [23] The fourth consolidated
sample is a low porosity, high quartz content sandstone, selected from a
group of cores which were sent to the_Petroloum Engineering Laboratories
of the Universitylof California at Berkeley for measurement of their
thermal condoctivitios. Ihe unconsolidated sand pack consists of Ottawa
sand grains. The effective thermal conductivity of Ottawa sand pack was -
measured by'both Ozbek and Gomaa.
Collecfion of Data For Analysis

The-porosities and electrical formation resistivity factors for
Boise, B;rea, Bandera and the Ottawa snnd pack deternined by Gomaa and
Ozbek are given in Table 2. It should be noted that since Fhe.electrical
formation resistivity factors of the samples éested by Ozbek were not
reported, the values given in Table 2 for Ozbek's cores wefe-estimated as "
follows. The values of porosity and electrical formation resistivity
factor détermined by Gomaa were used in Archie's formula, i.e. Eq.
(2-8-11), to obtain the cementation factor for each sample. These
comontation factors, together with the porosities determined by Ozbek,

v

were substituted back into Eq. (2-8~11) to calculate the electrical

formation resistivity foctors. For the low porosity core, the porosity
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and electrical formétion resistivity factor were.meaéured by Sahnine {39]
and are given in Table 2.

Knowing the porosity and the electrical formation resistivity
factor, the dimensionless radii of top-bottom contacts, Py, were
estimated from Fig. 22, The results are given in Table 2,

The thermal conductivity of the solid matrix and the fluids
filling the pores are needed for prediction of the effective thermal
conductivity. Tﬁe solid matrix of the rocks is usually composed of many
different minerals. Therefore, its overall thermal conductivify is a
function of the voiume fraction and the thermal conductivity of each
individual mineral. Among the minerals making up the solid matrix of
Boise, Berea, and Bandera sandstones, quartz, calcite and feldsp;r
predominate. Clark [40], Somerton [41], Ozbek [13] and Greenwald [42]
have reported mineral analysis for Boise, Berea, énd Bandera sandstones.
From their analysis, fhe volumetric quartz, calcite, and feldSpér contents
are given in Table 3. .As it appears from this Table, there are incon-
sistencies between th; mineral contents reported by the above authors.
The fact that the minerﬁl content may vary within a sample, or from one
sample to another (for tﬁe same rock), could possibly be responsibie for
these differences. Th;Llow porosity consolidated core belongs to a group
of samples for‘yhich the dgartz contents were reported to be between 80
to 90 percent. Therefo;e, an average quartz conteﬁt’of 85% was chosen
for this sample. The solid grains of unconsolidated Ott?wa sand packs

are pure quartz,



Table 2 Porosity, electrical formation resistivity factor and dimen-
sionless radius of top-bottom contacts for the samples

tested.
Ref. Sample ' o) Fele. p2
Boise 0.290 7.90 © 0.251
[23]. Berea 0.220 14.00 0.365
Bandera 0.200 14,00 0.451
Ottawa sand pack 0.355 4:20 0.472
Boise ’ 0.290 7.90 0.251
[13] Berea ' 0.230 12,95 0.360
Bandera 0.225 11.55 0.410
Ottawa sand pack . 0.360 3.82 0.435
[39] Low porosity sandstone 0.097 21,90 0.700

Table 3 Quartz, calcite and feldspar content of Boise, Berea and
Bandera sandstones (volumetric percentage).

Ref. Sample ' ' quartz calcite feldspar

Boise 45,0 neg. 45,0

[40] Berea 85.0 1.0 5.0
Bandera 60.0 13.0 20.0

Boise ' . 33.7 neg. 53.0

[13] Berea 74.8 3.5 9.1
Bandera 37.7 32.3 10.6

_ Boise : 38.7 neg. 39.8
[41] Berea 67.8 9.4 3.0
Bandera 55.5 16.6 3.8

Boise 64.0 neg. 36.0

[42] Berea » 88.0 5.0 7.0
. 9.0

Bandera . 70.0 21.0
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Ki-iti Horai [43] has determined thermal conductivity of 166
rock—formiﬁg ﬁinerals, of which the important ones are given in Table 4.
This table showsvthat qﬁartz has significantly larger thermal conduc- '
tivity than the other minerals. Since quartz is the predominant mineral
in most sandstones, knowledge of its thermal conductivity at different
temperatures.woul& be important for calculation of the overall rock solid

thermal conductivity. For a single quartz cfystal; depending on whether

“the direction of heat flow is parallel or perpendicular to the major axis

of the crystal, the thermal conduétivity would have its maximum and
minimum value, respe¢;ive1y. The National Bureau of Standards [44] has
given these maximum‘aﬁd minimum values of thermaljconductivity as a
function of temperatqfe in the form of curves, which are reproduced 'in
Fig. 31. However, bécagse.of the probable random orientation of the
quartz crystals in tﬁé focks, ﬁﬁe direction of héaf flow would not
neEessarily be parall;l or perpendicular to the major axis of the
crystal. Therefore,'ﬁeither curve for the maximﬁﬁ‘or<pinimum conduc~
tivities in Fig. 31 can be used. An intermediate éurve was constructed

(Fig. 31) based on geometric averaging of the maximum and the minimum

’conductivity curves (weighted equally). This curve is considered appro-

priate for obtaining fhe thermal conductivity oquuartz as a function of
temperatu;e. It is iﬁtéresting to note that the value of thermal con-
ductivity obtained fto; the intermediaté curve in.Fig. 31 is only 4%
higher than the value given by Horai [43] in Tablé_4.

Evenbthough the Qélumé fraction and thermal conductivity of each
mineral is known, the ﬁioblem still reméins to decide on the method of
calcglation of the ovérall thermal éonduétivity'pf.the rock. vIn this

regard one can simply apply the idea of weighted arithmetic, weighted
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harmonic, or weighted geometric mean calculations (Eqs._(1-2—14)-
(1—2—16)), to obtain a# overall thermal conductivity. Since the weighted
geometric averaging provides an intermediate ‘total thermal conductivity,
it was used for calculation of the overall thermal conductivity of the
rock solids. Table 5 shows the results of such calculations. for ﬁoise,
Berea, Bandera, and the low porosity sapdstones based on mineral analysis
of‘Ciark and Ozbek. In prepérétion of this table, the fhefmal conduc-
tivity of the quartz mineral at the test femperature for each sample was
obtained from Fig. 31 (usihg_the intermediate curve), and the thermai
conductivities of thefrémaining minerals were assumed to be 350 W/m-K.
The saturating fluids used are brine, decane, and air. The
thermal conductivity of brine and decane were taken to be those of water
and light 0il. - Kreith [45] has reported thermal conductivities bf air,
water, and light oil ;t different temperéfures; "Using his reported
values, ?ig. 32 is prepared which gives thermal conductivities of the'

above fluids as a function of temperature.

" Comparison of Results

Figures 33 through 41 show the comparison between predicted

values of the effective thermal conductivity Ae'by use of the model,

and their exPerimental'counterparts. Since four sets of mineral analyses
with different values of quartz content were available for Boise, Berea,
aqd Bandefa sandstones, the predicted ;alues of Ae fdr each sample

were calculated by using at least tﬁo different mineral analyses, i.e.
those reported by*Clark and OQbek. |

Figures 33, 34 and 35 show the predicted curves of effective

_ thermal conductivities,ké,ahd the experimental values of Ozbek for

Boise, Berea, and Bandera sandstones, respectively, partially saturated

bt



Table 4 Thermal conductivities of some rock—forming
minerals at temperature of 23°C, Horai [43]

Mineral

Quartz
Plagioclase
FOrthoclasé
Muscovite
Calcite
.Chlorite
Biotite
Hornblende
Magnesite
Epidote

Sphene

Chemical composition.‘

10,

NaAl,Si30g-CaAlSiy0g

K Al,Si30g
(K,Na)Aly(OH)»(A1S13010)

CaCO3
(Mg,Fé,Al)6(OH)8[(Al,Si)4OlO]
K(Mg,Fe)3(OH),(AL,S130;0)

Na Caz(Mg,Fe,Al)5(OH)2(SiAl)8022
MgCO3 |
Cay(Al,Fe)3(OH)(Si0;)3

Ca Si Ti Oj

-Thermal

conduc.
W/m-K

7.70
2.15

2.30

2,20

3.60
4,34
2.34
3.10
5.85
2.34

2.34
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Table 5 Thermal conductivity of the solid matrix for the

samples tested, based on mineral analysis of Clark [40]
and Ozbek [13]

(W/m=K)

Gomaa's samples

Boise - Berea = Bandera Ottawa sand
Test temperature °C 90 58 90’ 58
mineral analysis ' 4.30v " 6.45 4,85 7.50
of Clark : :
mineral analysis 3.90 5.90 4,05 7.50
of Ozbek ' '
Ozbek's samples
Test temperature °C 1 135 135 - 135 135
mineral analysis 4,50 5.40 4.55 6.00
of Clark S .
mineral analysis 3.80 - 5,05 3.90 - 6.00
of Ozbek '

Low porosity sample
Test temperature °C 130

Thermal conductivity 5.45



with brine, and with deqane as the.non-Wetting phase. In general the
predicted curves based én thé'higﬁer quartz éontents‘are closer to the
experimental values and approximate them‘wi;h an error of less than
+5% for Boise and Bandera sandstones. ' In the case of the Berea
sample, phis error is less than 15%.

In Fig. 36 through 38, the prédic;ed values of Ag for brine- )
air s#turated Boise,.Berea, and Bandera sandstones are coﬁpared with
the experimental measurements of Gomaa. For Boise sandstone there is
good agreement Setweén-tﬁe experimental values and the prédicted
values calculated based on the highef quartz content. In the case of
Berea sandstone; the calculated values of Ae by the model based on
the higher quarté content agree with the experimentalidata,'With an
error léss than 15%, The model values are somewﬁat higher (éxcept the
fuily air saturated éaserfér which thevmodei calculated values is 167
higher). For Bande:a sandstone the experimental valuesvof‘)\e lie
between the predicted curves for which solid coﬁductivities are 4.85
W/m-K and 4.05 W/m~K. In general except for the air—dfy éase, the
differenéés between the predicted values and the experimental reédlts
are less than 1;5%. The calculated values of A, by model for the
air-dry case, with Ag valuesvof 4.85 W/m—K and 4.05 W/m-K, are 50%.
and 20% higher than the test value, respectively. |

Figure 39vcompares the model preéicted values of A, with the
experimental meagurements'for the brine-air sgturated low porosity
sandstone. For 0.40<S,<1.0 the model approximates the experimental
data with an error of less than 10% (predicfed values are loher).
When the sample is fully saturated with air, £he effective thermal

conductivity given by model is 457 higher than its experimental
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counterpart. )

Figures 40 and 4l.fepresent the comparison between the calcu-
lated curves of the effective thermal conductivity by use of the model ,
and the experimental data for'unconsolidated Ottawa sand paék, satur-
ated with brine-decane and brine-air, respectively. When the pore
channels are saturated with brine-decane, except for low values of

brine saturation, there exists good agreement between the predicted

values of Ae and the experimental measurements of Ozbek. For the

brine-air saturated case, the predicted values of Ae are higher
th;n the experimentai'results of Gomaa.
Discussion of Results

The foregoing coﬁparisons betweén predicted vélues of effective
thermal conductivity,'Xé, by the model and the experimental data,
show that the present ﬁbdel is reasonable for calculation of effective
thermal.c0nductivitiessof partially liquid saturated sandstones and
unconsolidated sands. ‘The difference between the éxperimental and the
1nodel values qf Ae for ﬁrine—decane or brine-air saturated samples
in most cases is less than +15%. In general it shoﬁld be noted that
part of these differencéé could be due to errors boﬁh in the experi;
mentél data and in some'bf the input parameters leading to calculation
of fhe effective thermal conductivity. For example, there is uncer;
tainty regarding the miﬁéral composition, and the effect is shown by
the two calculated Curvéé in Figs. 32-38.

All the experimentai data.presented in Figs. 32.through 41 were
obtained by the steady sfate comparative method usiné the apparatus
described earlier in Chaﬁter 1. It has been shown by Anand [31] that

using such an apparatus could result in an error of the order of +5%
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in thé.value of thermal conductivity calculated from experimental data,
based on precision of the measuring equipment, Other larger experi-
mental errors could result from such problems as short or non-
paraliel test specimens, leaks in the fluid system, incomplete satur-
ation of'samples, etc.

Other than experimental errors, uncertainties in the estima-
tion of thermal conductivity of the rock solids also contribute to-the
- differences between the calculated and the experimental values of

e

as shown earlier. Such uncertainties could arise from.incorregt -
information on the minerél.content within the rock, lack of adequate
information about the thefmal conductivity of minerals at different
temperatures, and the fact that the method of calculation of the
o§erall rock solid conductiviﬁy from mineral composition is still a
questionable matter. - | |

When the pore channels are filled with air, the predicted values
of Ao are generally higher than their experimental‘counterparts..
Sinée subsurface reservoirs are never fully saturated with a gas;
these errors are not considered important. However, this difference
could be due to shortcomings in the model itself or possibly a thermal
contact résistance between the grains at fheir area of contact, whicﬁ
is not considered in the model. Such a considerafion would indeed
result in reduction of the éffective thermal conductivity, and conse-
quently improvement of the model. This contact resistance would -
pgrhaps not exist, or would be of.minor consequences for liquid satur-
ated rocks. Thishmatter is Aiscussed by Ozbek [13].

\

Estimation of the dimensionless radius of top-bottom contacts,

Po, from porosity and the electrical formation resistivity factor,

N
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could alsb be another source of error in the prediction of effective
thermal conductivity by the model. Referring back to the earlier dis-
cussion on the calculated values of fhé electrical formation resistivity
factor by the model, one may conclude that Fig. 24 in general over-
estimates P9, especially when the porosities.are of the order of un—
consolidated sands. This can be seen'very‘well'froﬁ the high values

of Pa estimated'fof Otta&a sand, as it appears from Fig. 41. A smaller
value of py (for e#ample Py = 0.10) wouid'place the predicted

values of A, much closer to thevexperimental ones, at least for the
brine-air saturated éase. Small grain-to-grain contact.aréas for uncon-
solidated sand packs éould also be justified by tﬁe fact that they
possess high values of thermal formation resistivity faétor, és was
discussedveaflier.ih Chapter 2. It should be noted thag tﬁe'precise
estimation of p, does' not much affect the effective thermal conduc-
tivity when the pores.ére filled with a gobd conductor. For example, for
fully brine saturated Ottawa sand a +5% diviation from Pp = 0.10 would
only cause a :ﬁ% changé.ih the effective tﬁermal éonductivity. However,
this change would be of:the order of +147% and iﬁ2% Qhen the pores are
comfletely filled with decane and.air, réspectively.

To show that the pfésent work is an imprévementiover the previous
atteﬁpts of Gomaa and Ozbek, their models were used to predict the
effective thermal conduétivity of the tested samplés. The A g values
used wére those célculatéd bésed.on the mineral analysis of Clark. These
predicted values, together with calculated values of Ae by the present
model and those measured experimentally, are given in Table 6. As it
appears from this table, the predicted values of the effective thermal

conductivity by the present model are closer to their experimental

counterparts for most cases.
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Table 6 Predicted values of the effective thermal conductivity.
by Gomaa [23], Ozbek [13] and the present work for
tested samples and their experimental counterparts
Effective thermal conductivity W/m—-K

Ozbek's samples

Fully brine saturated - Fully decane saturated

' A B . C D A B c D
Boise - 2,05 2,37 1 2.54 2.56 0.77 1.48 1.68 1.72
Berea 2.53 3.10 3.37 3.92 0.94 2.16 2.64 3.00
Bandera 2.34 2.75 3.03 3.02 0.90 1.92 2.43 -2.40
Ottawa sand 2.10 2.44 \3.25 3.4 0.73 1.34 2,64 1.00
2.60% 1.25%

Gomaa's samples

Fully brine saturated Fully air saturated
A B C D A B C D
Boise 2,01 2,31 2.48 2.62 .027 1.11 1,37 1.38
‘Berea 2.77 3.60 3,90 4.50 0.34 2.24 2.94 2.50
Bandera 2.58 3.05 3.37 3.12 0.36 1.87 2.71 1.88
Ottawa sand 2.33 2.91 \4.07 4.0% 0.26 .136 Y3.36 0.60
3.00% 1.05%

Low porosity sample

Fully brine saturated »Fully air saturated
A B C D A B C D
3.82 4.37 4.60 5.10 0.70 3.38 4.15 2.85

A work of Gomaa, B work of Ozbek, C present work, D experlmental results
present work with p, = 0.10, + probably in error
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CONCLUSIONS

1. A mathematical model has been developed which successfully predicts
the effective thermal conductivity of partially liquid saturated poroue
rocks based on known values of.porosity, elecgrical forﬁetion resistivity
factor, saturation of the wetting phase; and thermal conductivities of the
solid phase, wetting phase and non-wetting phase.

2. A distinction between unconsolidated send packs and consolidated
sandstones is made by introducing eitﬁer a thermal or electrical forma-
tion resistivity factor into ‘the model.

3. The effective thermal conductivity predicted by the model increases
with increesing values of thermal conductivities of\the solia, wetting

and non-wetting phase, and decreases with increase in porosity1/VWhen the
wetting phase has ; higher thermal conductivity than themnon-ﬁetting
phase, the effective thermal conductivity also increases withbincrease

in saturation of the wetting phase.

4, The effective thermel.conductivities predicted By the model for par-—
tially liquid eaturated'poroué rocks show reasonable agreement with experi-
mental data. | )

5. The effect of grain size could be studied by thelpresent model if a
solid-solid or solid-fluid contact thefmal resistance:were considered in

the analysis. However, no propf‘has been given to show that this approach

is vaiid.
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RECOMMENDATIONS

»

1. A more correct calculatipn.for the électrical formation resis;_

ivity factor of the model should be performed by properly accouﬂting for
the distortion of the electricity flow lines passing tﬁrough the pore
channels. A full three-dimensional solution of the Laplace éQUation for
conduction of electricity in thevpore chénﬁels is needed.

2. An extensive and careful experiméntal studylof thé solid-solid and
solid-fluid thermal_contact resistances should be made for porous consol-
idated rocks and unconsolidated sana packs.

- 3. Oéher packing arrangements and grainksize distributions should be
studied both theoretically and g#perimentally to.consider their effects

on thermal conductivity.
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APPENDIX A
DEVELOPMENT OF POROSITY AND SATURATIONIOF THE WETTING-PHASE EQUATIONS
. Because of the symmetry of the model, equétioﬂs for porosity

and saturation are developed for one eighth of a unit cell, which has
been used as an elementary unit throughout this work.
vPérosity Equation

Porosity is defined as the ratio of void to total volume. 1In
tefms of VT the total volume, and Vs the volume of the solid phasé

of the elementary cell, porosity ¢ may be written as

v
o =TI s | : (A-1-1)

By referring to Fig. 5, the total volume is

2 2 2 2 .k

VT = (ro— rcl)(r0 - rcz) (A-1-2)
) ‘
. s < < . .
For cases in which T STy \~\(% ry VS is given by
=1 43 - -1-
Vo =3 (3-rrr0 - 4vy 2v2) , (A-1-3)
where Vl and V2 are the volume of spherical caps having rq and rc2-

as the radius of their bases, repsectively, and are calculated as:

T _ 2 2 %12 2 2 .k 9
Vi 3[%0 (r0 rci) ] ;Zro + (rO rci) . (A-1-4)
i=1,2
> 2 < -1-3) )
However, when'rcl ég_ro, as long as T,y \‘rcl’ Eq. (A-1-3) must
be corrected as: » .
143 - -1-
V= gGTrg - 4V, - 2V,) 4V, (A-1-6)

where V3 is the volume of spherical wedge OABC as shown in Fig. Al,

and can be evaluated by the following integral:
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2 ' ‘
el O) : .
3 / Sdz (A-1-7)

where S is the area of segment AB ¢ in Fig. A2, and is given by

2 254 2 a2y 2 2%l . .2 2
S = (rO - rcl) %(ro - rcl) - (rcl - z) + (ro -Z )X
2 1
gg - tan 1<r0 B rcl>/5 (A-1-8)
2 2)
3 r. -z
c v

Substituting the expression for S from Eq. (A-1-8) into Eq.

(A-1-7) and carrying out thevintegratibn yields:

‘ = 2 2
. . : ' 2r -r
1 2 2%, 2 2 2 2 2, . -1.Tc1 ” Toy
V3 % 2(2rcl ro) (r0 - rcl) 2(rcl + 2)(r0 - rcl) sin ¢ 5 )
rcl
2
1 2ri-1%
+ 4 tan 1( ;l )2 (4-1-9)

To

Using either Eq. (A-1-3) or Eq. (A-1-6) for Vs’ and Eq. (A-1-2)

for VT, in Eq. (A-1-1) one can get the porosity as a function of
r 1 Leo

dimensionless radii pl =-;E—Vand p2 = —,

0 ™o

Saturation of the Wetting Phase Equation
The wétting phase saturation Sw is defined as the ratio of the

volume of wetting phase Vw’ to the pore volume Vp' Thus:
Sw-= Vw / VP . . (A-2-1)
Knowing the total volume from Eq. (A-1-2), and porosity, Vp may be

written as:

_ _ 22 2 2% o
v, = ¢ . Vo = ¢(r0 rcl)(rO- rcz) K (A-2-2)
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By referring to Fig. 17, if the volume of the solid phase VS is
added to Vw’ the resulting composite volume V would have a geometry

similar to VS.' Therefore, EQS. (A-1-3) and (A-1-6) may be used to

evaluate V. Only it should be noted that Tos Ty and r., must be
| 2 2. 2% 2 2 2% .
replaced by T (rw - 1 + rCl) and (rw -1, + rcz) , respectively.

Having calculated V, Vw can be obtained as follows:

v, =»V‘Vs=V'<1i¢)VT s
or
v (1 2 2,2 2% ‘ o
v, = V- 1. ¢)(r0,— Jrcl)(r0 r.y) . (A-2-3)

Substituting Vw from -Eq. (A-2-3) and V. from Eq.. (A-2-2) into

f
Eq. (A-2-1) provides the saturation of the wetting phase as a
| Tw o Te2
function of dimensionless radii pp = —, p, = — and p, = &2
woory i r, 2 T

P
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Fig A2 Horizontal cross-section of a unit cell with plane
Z=z
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APPENDIX B
FINITE DIFFERENCE REPRESENTATION OF THE GOVERNING EQUATION AND
BOUNDARY CONDITIONS
The governing equation for the steady state heat conduction in
a homogeneous system of constant'therﬁal conductivity, with no inter-
nal heat generation in.cylindriéal coordinates and for the case where

temperature is independent of the coordinate 6, has the form:

Q

2 2 :
_3T+i___+___3§=0 . © (B-1)

2
or T oz

H
Q)

If function T(r, 2z) is analytic'within a region of interest R, tﬁen
it may be expanded into a Taylor's sefies in this region about poiqt
(rc, zc), in the positive and negative r and z directions. Referring
to Fig. (B-1), the above statement is written mathematically in the

r direction as:

- 2 2,2 3 837
_ T a"(Ar)” 37T, . a (Ar) _
T, = T, + a(4r) (—ar)c +———2!' (Brz)c + ————-3! 3r3) + ... ,(§ 2)
2,2 3 43
= - T (Ar)~ 37T (Ar)
T, = T, (Ar):(ar)c o (a rz)c o (3 3) + ... (B-3)

Note that for generality, the points W and E are considered to have

different distances from point C. To obtain an approximation to the

first and the second derivatives of temperature at the point (rc, z ),
. c

Eqgs. (B-2) and (B-3) can be solved simultaneously, yielding:

- SRS IS PR _ _ _ 2] .
@ @+ oyan la2 e 7T M Tc)t o [un*].a-0
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Fig. Bl Nodal points for a two-dimensional region
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' 3

o T 2 1, (Ar)(a - 1) ,3°T
=y = J—(T, -T)+ (T - T )f— —3)
1+ a)(Ar)z o é c W c 3 8r3 c

+0 [(Ar) ] : (B-5)
The term()[(Ar)]21neans that all the terms containing expressions of the |

order of (Ar)2 and smaller are dropped. By the same means a differ-
. 2 : o

' P
ence representation of C——%)c would be:
' 3z

ST 2 1 (Az) (B - 1) x
—) = 'gﬁT -T)+ (T -T) +——r12———
‘322 c 1+ B)(Az)z B 'n c s c 3 .
3 2 ‘
(_a_'g) +0 [(Az) ] . ‘ (B=6)
9z~ ¢ .

Truncating 1 Eqs. (B-4), (B-5) and (B-6) after the first term, an

substituting them into the governing equation (B-1) results in

2,1 2 o
. —‘"‘+TZ') (""- _)
2 2 Ar ¥ Ar r
ﬂ+%3—§+'3§= c (r, -T)+ € (T -T)+
Sr 3z oil + a)(Ar) S a+w@en Y€
+ 2 "1(T—T’)+(T—T)+0(Az)(B-7)
n c s c - e '

@ + B) (bz)> (B

Using Eq. (B-7), which is‘ﬁn approximation to the true partial
differential equation, ?rovides some truncational error associated
with truncating the infiﬁite series, representing the‘partial derivaj
tives after-a-fewtfinitebtgrms. This error would be of the order of
Az (assuming Az:>Ar) in Eq. (B-7). However, for o = 8 =1, terms
of the'ordér‘bf (Ar) and (Az) drop out of EQS-\ (B-5) and (B-6),
and therefore the.truncational error in. Eq. (B—7)vwould be of the
order of (Az)z. Cases in which‘a and B are n&t equal to 1 are useful
if one wishes to chaﬁge the distancevﬁetween tﬁé nodal points, either
to accommodate irregular boundaries or to increase the accuracy of

-the computation in some region of interest.
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The difference equation (B-7) can also be obtained by another
approach, that is, the method of making an energy balance for the
node C. This can be written as:

Z K. (T, - T) (B-8)

i=-e,w
n,s

where KiC is the thermal conductance between the node c and its
adjacent nodes. In cylindrical coordinates the region between the
adjacent nodes has the geometry of a cylindrical shell. Such an

element with outer radius r, thickness t, height h and thermal con-

ductivity A has its thermal conductances in the r and z directions

¥

as:
- 2mAh — - ZZAh (r - g/z)‘+<0(ht) K (3-9)
}n (r — t) :
2 2 )
K = [Trr - T (xr - t) ]>\ o 2mAt (r - t/2) . (B-10)

z - h h
Therefore, for the elements between the central nﬁde C and its four
adjacent nodes E, W, N, S, Egs. ‘(Bf9)wand (3—10) can bé used to
calculate the thermal conductance. The results are tabulated in
‘ ‘the following'form;

outer radius thickness  height thermal conductance

. Element CE

: Az ,

+ a(A A + 1) (2% 21A(B + 1) Az, GAr
r,+a(dr)  a(Ar) (8 )G T/ GHee, + 5)
element CW (B-9)

Az 2mA(B + 1) Az, br
r, (A?) - (B + l)(z-) — 7 & )(rc -3 )
element CN I . (B-9)
Ar, Ar. ' 2mA(a + 1) Aryi
o +oGH AraEh B —————m)—.(%—)[rc (1 -a>ZA£]
element CS v (B-10)
2ma(a + 1), Ar

) [e, - 1 -2t

(8-10)

Ar Ar.
r o +aGh) (L+ o)) @2) O
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Substituting the above expressions for the thermal conductances in

‘Eq. (B-8) yields the following difference equation for the node C:

2TA (B + 1)(%—5)
(Ar)

: Ar 1 | aAr,
(Tg = T =) + T - T +37)

+ .

ﬁﬂk (o + 1)(%1:)
(4z)

[r, - (- T, - 1) + X1 - Tc)i =0

(B-11)
The above difference eduation does not look likev Eq. (B-7), which
was obtained by the.method of finite difference. However, multiply-
ing Eq. (B-7) by ﬂkré(a + 1)(B + l)(%zb(Ar) results in the follow-

ing form for this difference equation:

2mA(8 + 1)(%—5)

73S gcrw A AR PICHUE S 1
Ar :
21T>\rc(l + o) (—2—) 1
(AZ) ;(TS - TC) + —B‘(Tn - TC) = 0 . ] (B-lZ)

For o = B = 1 the above equation is the same as Eq. (B-11), and for
0#l, R#1 it is not very .difficult to show that the difference between
the two representations is of the order of (Ar) or (Az), which ever
is larger. This difference can be neglected because in the derivation
of Eq. (B-7) errors of the order of (Ar) and (Az) were already
allowed.

Difference equations such as (B-7) may also be written for nodes
on the insulated leff and right boundaries (Fig. 9A). However, it
should be noted that because of the condition %% =0 onlthe axis

(r = 0), the term 19T in Eq. (B-1) is indetefminate, Using

r dr
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L'Hopital's rule, this term can be replaced by its limit as r tends

to zero, i.e.

3

d 0T

L.(EY 2
1im = Br limia_ D Z 2)r -0 (B-13)
r>0 r+0 23r r r ’

Therefore Eq. (B-1) for the nodes on the left boundary becomes:

2 2

224+23%2-0 - (B-14)
or 0z"
321 2
Now the difference equivalents of ~—E'and 5 from Egs. (B-5) and
) B} 3z '
(B-6) may be substituted into Eq. (B-14), which yields
2. .2 . ,
23‘_g+3§= 4 2g%‘—('re-T)+(T—'1‘);+ 2 5 X
ar  9z° (1 + a)(Ar) . ¢ v.o¢ (B + 1) (Az)
L -1)+ (T -T)) . (B-15)
B' ' n c s c

Because node W is this case is imaginary, one could choose a=1, and

use the boundary condition‘%g = (0 to eliminate Tw in Eq. "(B-15) as

followé:
T =T
oT _ "w e 2 _
or
T =T
w e

Thus setting o = 1, and Tw = 'I'e in Eq.. (B-15), provides the follow4

ing difference'equation for nodes on the left boundary.

4 | 2§ .
(T -T) + - =(T -T)+ (T -T)} =0. (B-16)
(Ar)z ve et Ty 1)(Az)228 n ¢ 'S c

With some algebraic manipulations, Eq. . (B-16) may also be cast in

the following form:
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’

: o 2 :
2155 (8 + 1 EHA &5 n(A5)?

2
(Ar)

(T, = T +Foamy Tn = T+ —@gy~ T = T = 0
| (B-17)

Tﬁis representation would have been obtained, if one had used the.’

method of energy balance for the node C on the axis. Only it should.

be noticed that:

mGH (8 + DEHY

o fee o ‘-

2 2
7Dy r A5y
LY IS
B(Az) cn’ (Az) cs
where K , K and K ' are the thermal conductances between the node C
ce cn cs \
and its three adjacent nodes E, N and S, respectively.
For nodes on the right boundary (Fig. 9A), the difference Eq.
. . ]
(B-7) can be used. However, because node E in this case is imaginary,.
it may bé chosen so as to provide o = 1. Furthermore, Te = Tw be-
cause of the condition §%~= 0 at this boundary. These conditions:re—
duce Eq. (B-7) to the following form:

2 2 1 .
— (T._-T) + (T -T)+ (T -T)H)\ =0 .
(Ar)2 w e’ (1 + B)(Az)2 B .n c s c
' : (B-18)
This equation may alsoibe written as follows:
(8 + DEDr | 2mhr_ G5 amr 5
(Ax) (Tw - Tc) + B(Az) (Tn - Tc) + (Az) (Ts'_ Tc) =
(B-19)

which is the difference representation of the governing equation, if

/

the method of energy balance had been applied for a node on the right

boundary.

’
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The foregoing discussion on the difference representation of the
governing equation (B-1) and its boundary conditions show that either
a mathematical or a physical approach could be used to formulate the
problem. These apprdacheggive identical results and have truncational
errors of the order of (Ar)2 or (Az)z, wﬁicheﬁer is larger, if the
nodes in the r and the z directions are equally spaced (Ar and Az are
not necessarily equal). However, truncational error would be of the
order of (Ar) or (Az) if the distances betweeéen the nodes in the r or

z directions are not equal.
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APPENDIX C
DIRECT AND ITERATIVE METHODS OF SOLUTION OF THE DIFFERENCE EQUATIONS
In the numerical_metﬁod of solution of partial differential equé-
~tions, one has to solve a linear system of algebraic equétions which
~may be written in matrix notation as:
AX =B , o (c-1) -
‘where A and B are square and column matriceé of known quantities and
X is a column matrix containing the unknowns.

The algebraic équations presented by Equa. (C-1) may be solved
directly, either by successive elimination of the unknowns (Gaussian
elimination),or by triangular.decomposition of the‘matrix of coeffi-
cients. These techniques are most efficieﬁt whenever such equations
are obtained by difference approximation of parabolic partial differ-
ential equations, or when the number of such equations is small. How-
ever,. for sjstems involving a large set of.equations generéted by
approximatioh of elliptic problems, tﬁe iterative methods are superior
to the direct techniques. A comprehensive discussion on the direct
and iterative methods ﬁay be found elsewhere [45]. Only the high-
lights of some iterative methods, especially the successive over-
relaxation‘which is used in this work, are presented here.

In general, iterative methods for the solution of liﬁear algebraic
equations are those in which a first appfoximation for the unknowns is
used to obtain a second approximation,which in turn is used to calcu-
late a third, and so on. This idea may be ;pplied to a set of equations
generated by the difference approximation of VZT = (0 in three differ-

ent wéys,which are considered in the following.
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In Appendix B,it was shown that either a finite difference or
an energy balance method of deriving a humericai solution of V2T =0
leads to thevfollowing equation for the temperature at a general node
denoted.by (i,3)

+ = -
(Kw + Ke Ks + Kn) Ti,j Kw Ti - 1,3 + Ke Ti + 1,3 + Ks Ti,j -17

L Ti,j +1 , - ’ (C-2)

where Kw, Keé KS and”Kn are the thermal cbnductances between the
central node (i,j) and its four adjacent nodés i-1,3), (i +1,3),
(i,j - 1) and (i,j + 1), respectively. |

Starting with'a first approximation for the temperatures at each

node, Eq. (C-2) suggests that a second approximation may be obtained

as. .
(n+ 1) _ -1 (n) (n)
T, ] = (K, + K +K_+K) KT SETTILE AR
(n) (n)
‘ T (Cc-3)

Tij-14t% T4

where the exponents (n) and (n + 1) denote the sequence of the approxi-
mations. This methéd is called the Jacobi itefation. Because the
rate at which the éuccessive iterations converge to the exact solu-
tion is very slow for this process, the Jacobi iteration is never
used in practice. .

There existsa glightlyvimprOVéd iteratio@ ﬁethod called Gauss-
Siedel, in which one uses the latest iterative Qalues as soon as they
are available. ‘Thisvimplies that if.fhe nddes‘are scanned from left

to right along the successive rows during the (n + 1) iteration, at

v (n+1) (n + 1)
any node (i,j), the vglues of Ti - 1,3 and Ti,j -1 are,already avail-
able from the previoué calcuations, and may be used in Eq. (C-3)
(n) (n) ' -
instead of Ti _ 1’j_\_ai:ld Ti,j - 1" Therefore, thg Gauss-Seidel

¢

v
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iteration formula is written as:

(n + 1) -1 (n + 1) (n) (n+ 1)

Ty,3 = Ky H K+ K KD 3Kw oo, PR T v, PR Ty -
(n)

R T+l (€-4)

‘and the difference between the two successive iterates would be:

(n + 1)(n) (n + 1) (n)

. —1 1
A= - = : ) ’ +
Ii,j Ti,j (Kw + Ke + Ks + KJ '%KwTi - 1,3 + Ke Ti + 1,7
(n + 1) - (n) (n) :
- -5)
KS Ti,j -1 + Kn Ti,j + 12 Ti,j . (C-5)
(n +'1)

A further imprdvemént in the rate at which Ti 3 might converge
9

to the exact solution can be achieved by the method of relaxation in

which a larger change than A obtained from Eq.v (C-5) is given to’
(n) . ' ,
Ti 5 - This may be written as:

(n + 1)(n) .

T, ,=T, .+wA , o (C-6)

i,3 i, 0 7 ,
where w is a parameter called the relaxation factor and may be given
a value between 0.and»2. Note that for w = 1, the relaxation method

is identical to the Gauss-Seidel technique. For O<w<l the method is
called under-relaxation, and for 1<w<2, over-relaxation. Substituting

A from Eq. (C-5) into Eq. (C-6) yields the following formula for

the successive relaxation method:

(n+ 1) B -1 (n + 1) / (n) (n+1)

T T L T L I T I I R |
s n , (n) v

+ K Ti’j + 1P @-w Ti’j . (c-7)

The Jacobi, Gauss-Seidel, and relaxation methods may also be -
written in matrix notation for the system of linear equations such as

Eq. (C-1). To do this the matrix A in Eg. (C—i) is decompqsed into
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three matrices, namely a lower triangular, a diagonal and an upper

triangular, as follows:

A=L+D+1U , (c-8)
‘where v
-r- = P [~ . r
.. o 0..0 .. ...a. ]
#11 #12° %10 | 4000 0 app---ay,
. ..a : a 0 -0 _ _ )
A =|%21 %22° , L =}21 » D=0 a,, -0}, U=10"0..a,
nl a geeed o fnlranz.f O_‘ ? coeea o. . .0
Having done this, it would not be difficult to show that the Jacobi,
Gauss-Seidel and successive relaxation methods for solving the equa-
tions AX'é B have the following representation in matrix notation:
Jacobi: (“+l)—n B- Dl(L + vy x™ (C-9)
Gauss-Seidel: (ni-l) (D + L) B -(D + L) UX( n) (C-10)
Successive relaxation: X(n-+l)= w(D - ulj—lB-(D + um)_%wU - (1 -w)D X<n)

(C-11)
The matrices J = -D"l(L + 1) in Eq. (C-9), 6 = -(D + L)'lu in Eq..
‘(C—lO) and S = -(D-%wal;wU - (1 ~ w)Dz in Eq. (C-11), which play
an essential role in the convergence of each method, are called,re-
spectively, the Jacobi; Gauss-Seidel, and ﬁhe successive relaxation
iteration matrices. It has been shown [ 46] that the convergence of
these iteration methods, and the rate of convergence of the successive
relaxation technique, may be characterized in terms of their jteration
matrices as‘follows:

1) The iteration method converges whenever the spectral radius of

its corresponding iteration matrix is less than unity.
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2) The successive relaxation method has the fastest rate of con-
vergence when the spectral . radius of its iteration matrix is a
minimum. Based on these requirements, Young [47] proves that the
successive relaxation method for solving the system of equations
AX = B ‘converges for ows2, if A‘is a symmetric, positivefdefinite

‘matrix. Young also gives the following theoretical formula for the .

optimum relaxation factor w:

1
P 14 (L -pl@N?

where p(J) is the gpectra 1 radius of the Jacobi iteration m@trix.

. y ,
‘Equation (C-12) implies that knowledge of p(j) is required for calcu-
lation of the optimum rélaxation factor. For a Drichlet problem.:
(VZT = 0 where T is known on the boundaries), if the domain of igterest

is a homogeneous rectangle with sides of length 1 and 12 subdivided

1
into a network of squares of side h, Young- determines p(J) explicitly
as follows: | |

p(J) = %2cos 6%) +cos('-%§) ) (Cc-13)
Unfortunately, in a general probiém‘where the domain of interest might
befmterogeneous with irregular boundéries, no simple formula can Be
obtained for the calcuation of p(j). Therefore,its value is usually
estimated. In this work a method described by Carré [2 8 is used to
estimate p(j). This technidue,which is simple andléonvenient to use
in a computer, can be summarized as follows:
1) Assigning a first approximationfor -the temperatures at each node, -
~ the iteration process is started with iterating once, using a relaxa-

tion factor of unity. Doing so provides better values for the temper-

atures, compared to the initial ones which might be very rough.
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2) Several iterations are performed using a relaxation factor of

W<wW (Carré suggests 12 iterations with w = 1.375).

opt.

3) An estimation for the . spectral radius of the successive over-
relaxation iteration matrix, i.e. matrix S(w) which was defined
earlier,is made by:

(n+ 1) (n)

| _ X (T ~-T )
_p(s(w)) = ™ oD (C-14)

(T -T

where the summation signs cover all the nodes. It has been shown [46]
that Eq. (C-14) is indeed an appropriate estimation for p(S(w).
4) The spectral radius of the Jacobi iteration matrix is calculated

from:

' ' 2
oy = [p(s(c;));w— 1] ) (C-15)
w P (S(w))

Equation‘(C—iS) was obtained by Young, and holds whenever the converg-
ence requirements are satisfied.

5) The spectral . radius of the Jacobi iteration matrix, calculated
from Eq. (C-15), is substituted in Eq. (C-12) to §btain an esti-

mation for W, This value of Wo is then modified as:

pt. pt.

w = 1'25‘”opt. - 0.5 (Cc~16)

Equation (C-16) was obtained empirically by Carre, and enhances the
convergence. |

6) Using the value of w obtained from Eq. (C-16), the iteration
process is repeated by going back to step 2.

The iteration procedure is stopped whenever the.following convergence

condition is satisfied for all the nodes:

T(m)

1 -—-—-
o™= 1)

<e , ' (C-17)
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(m) (m - 1)

where T and T

are,respectively, the values of temperature
at each node at the end of two successive processes defined by steps

2 through6, and € is a small number characterizing the required con-

vergence.
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-*GH FLUID THERMAL *,11Xe3(12H¥
#IROSITY »2(16H* CONDUCTIVITY 1s12H* TCS/TCF  93(12H* ETC/TCF

APPENDIX D

LISTING OF THE COMPUTER PROGRAM

PROGRAM MATM(INPUT,DUTPIT)Y

FHEERRERRAANEE DTAENSTONS AND FOAMON RLDELS HEHH MR %A HH 5 HH %
COMION/GEMERAL/HK (10251201 sVKI1239100)sT(10US133)sT1(100+100)5X(10

*J)oY(le)sDX(]‘O)9DY(1”C)9A(133),NnNNoNPIyTCS

DRINT 177

FARMAT(IHT 318X 9 Q7 {1H®) o /91 TX s THE LY s THI S TN 1 7HE SOLID THERMAL *,1

YolH¥*5/917Xe5H¥* NOes1llH® P

)

FeIH* s /517X 914 54X 9 1H* g TOX92(IH¥ 915X ) 9 1H¥* 911X s 1H* 93X 3 SHMONEL 93X s 2%

# HQHEXPERIMRE 4 93H ¥ SOHKRUPICZKA$2H #*,5/917Xs97(1H¥))
DI=3414189265
M=4D
N IS THE NJMBER OF NODAL POINTS IN THE R AND 7 DIRECTIANS
AN A+N+] :
TNP1=M4
NM1=N-1
".CRIT=SQ°.T(2.)/20
i =0
NT=29
Tr=1, .
T’:.":
TEST1=e.1
TEST2=,251 . .
READ 110 9PHTI sRC23S e TCSesTCFeTCNIWIRT 4 EXP
FORMAT(8FT745) _
PHI=PORDOSITY REC2=DIMENSIZNLESS PADIT OF ToP=ACTTOM CONTACTS
SW=SATURATION OF THE WETTING PHASE s TCS=THERMAL CCNDUCTIVITY OF
THE SOLITN PHASESTCF=TAERYAL ZONDUCTIVITY OF THE WETTING PHASE
TCMy=THERMAL CAMDUCTIVITY OF THE NNN=YETTIMG PHASE
BI=810T NUMBIRLZEXP=EXPERIYWENTAL EZFFECTIVEZ TAEZR“AL TONDUCTIVITY
SET NCR=4 IF THERE IS NO SOLID=SOLID CONTACT RESISTANCE
STHERWISE SET NCR=1
MCR=C
IF(PHIsENele) S0 TO 763
MAT =D
Me=" )
[FITCFeFNLLT) GO TH 129
EXP=EXP/TCF
RATIN=TCS/TCF
RATIO1=TIS/TCNY
CALL GECPA(PHISRTI2939WaRC1RY)
RY=SURT(1e-RCO2*%#24)
71=1e~RC1%%2,
F2=CORTICY)
T2=RY
[ NAERS]

123



aEaaNaNaNaNaNal

3.0

317

214

118

- - -

124

CHAPTER 2222222222222222222222222222222222222222222222222222222222
SPASING RETWFEN THE NODAL POINTS

N 200 I=1,N

Y(I)=R Y*(l.-(l.-FLOAT(I)IFLOAT(N))**NCI)

CONTINUE

nA 202 T=14Nv1

X(IV=(Y{(N)=Y(N=1))%C2/RY

FONTINUE

X(M)=C2

aY(1)=Y(1)

2X(1)=X(1)

A(1Y=(X(1)=NX(1)/2e)%%2,

ANLD=A(T)

AN 210 [=2%,N

DY(I)=Y(I)=Y(]I~-1)

DX(I)=X(I)=-X{1-1)

ANEN=(X(1)=NX(1)/2s)%%2,

A(l)=AMEwaAM D

ANLN=ANCW

CONTINUE

NY(MP1 )=

A(nD]1)=Cl=AN D

CHAPTER 333333333332333222333323322222333327223332322323323333333123
CALCULATION OF THE THERMAL CTONDUCTANCES BETWEEN THE NODAL POINTS
HK (19 J)=THERMAL CONNDUCTANCE SETWEEN THE NODAL POINTS IN THE :
R DIRECTION :

VK(1sJ)=THERVMAL CONDUCTANCE BRETWEEN THE NOPAL POINTS IN THE

2 DIRECTINN

IF(TCFeEQe+0) GO TO 300

IF(QW.EQele) RATIN1=RATIO

DO 392 I=1sN

Kg=n

[ 44 ¢

L =1

LtL=1

IF(Y(1)eGT4RC1) GC TO 314

NG 317 J=1lsN

CALL CONDUCT (1sR¥sIsJsTC39TCF)

CONTINUE

VK(IsNP1)=A(NPYI)/DYI( 1)

A0 TO 392

RCWSSNRTPC I AP 14PWRRY <1, )
=S00T(1e=Y (L)%Y (]))

IF(Y{I1eGToRCA) GO TO 248

DN 338 J=1eN :

IF(X(J)eGTaXC) GO TN 318

CALL CONDUCT (19RWelsJeTCSHTCF)

G0 TO 238 ‘

K¢=¥¢ray



324

126

»?28

330

134
214
338

342

344
346
348

264

362

364
266

375
mn

IF(¥KeGTat) AN TN 294
CALL CONDUCT (2sXCsIsJsTCSeTCF
GO TO 3138
IFITCFeEQeeD) GO TO 326
HK(I’J)-(X(J)-DX(J)/Z.)*(DY(I)+DY(!+1))/2 /RATIJ/DX(J)*Z.
GO Tn 17'%
UeilsJd)l=eD
IF(LLLGTe1) .60 TO 330
YC=SQRT(14=X{J=1)%%2
IFIYCeLTaY(I=1)) GO TO 329
CALL CONDUCT (35YCsl9JsTCSsTCF)
6D TO 338
IF(TCFeEQesd) GO TO 334
VK{1sJ)=A(J)/DY(I}/RATIO
GC TO 336- '
VKITe )=
Ll=LtL+1
CONTINUE ,
IF(Y(I-1)eGE.RC1) GO TO 342
CALL CONDUCT (33RClsIsNPL1sTCSsTCF)
GO TO 392
IF(TCF+S%e40) GO TO 344
VK(IsNP1)=A(NP1)/DY{1)/RATID
~fo TN 244
VK{lsnNPT)=,0
GO TO 292
w-SOQT(QM*'Z.-Y(I)**Z.)
KK=D N
=1 : : :
NN 2ag =1 ,M
IF(X(J)eT X)) GO TO 384
CALL ZONDJCT (19RWsT9JsTCSsTCE)
GN TO 284 Co
IFIX(J)eGTaX) GO TO 374
V=K +Y
1F{KKeGT41) 60 TO 262
CALL CONDUCT (2sXColsdsTCSsTCF)
nnN TO 284
IFITCFe50eed) GO TO 364
HKUT s D= (XD =DX() /21 #{DY (1) +NY (141)1/2./RATIO/DX(J) %2,
~“NTO 244
HK(TIsJ)=ed
TFILLGTa1) 6O .TO 370
YC=SGRT(le=X{J=1)%%2,)

“IF{YCelTeY(I-1)) GO TO 370

CALL CNNDUCT (29sYCsl 9 s TCSeTCF) .
6N TN 284 '

TF(TCFeFNeed) RO TO 375
VKITeJ)=A()/DY(IV/RATIN

Gn TO 271

VK(I’J)E-.O

LL=LL+1

GO TO 384

125



274

379
3R

389

289

3812
388
384

385
287

386

200

294
292

10¢

296
3972

THY NP 31 )=HY (N 1)
‘DO 293 [=24N

K=K+ X
IF(KKXeGTel) GO TO 378 A
IF({PWeENe1e) GN TN 27§

“ZALL CONDUCT (2+XwWeloJsTCFaTCNW)

GO TO 284

CALL CONDUCT (29sXWelsJsTCSH»TCF)
GO TO 384 .
ITF(TCFeENeel) GO TN 379

HET 9 D)= (X (N =DXJ) /2 1% (DY (II4DY(T+1))/2./RATIOL/DX(J) %2,

60 TO 381

HK{TeJ)=eD

IF(LLIL«GTe1) 6~ TN 282
YC=SQRT(RN%#2 =X {J~1)%%2,)
IF({YCelLToY(I~1)) GO TO 382
[F(PWeENele) GN TH 380

CALL CONDUCT (3sYColsJeTCFsTCNW)
GD TO 284

CALL CONDUCT (3+YColrJsTCSH»TCF}
G T 24ay

IF(TCFeENasD) 50 TH 282

VKT JY=A(J)/DYL1)/RATIOL

GO TO 388

VK(TsJ)=40

LttL=LeL+1

CONTINUE

IF((I=1)eENe") GN TN 28§
vYiNw=v{ T-1 }

GN T 387

YLDW=40

IF(YLOWeGE eRZA)Y GO TO 12390
IF{RWeENele) GN TN 386

CALL CONDUCT (2sRCWeIsNP1oTCF» TCNW)
GO TO 392

CALL CONDUCT (3sRCWeIsNP1+TCSeTCF)
GO TO 299 :
IF(TCFaENe D) GN TO 204
YK{TsND1I=A(NPYI)/DY(T)/PATION
60 TO 292

VK(TsNP1)=4D

CONTINUE
IFINCReEGSJ) GO TO 4V0
YE(MP Y1) )=A(1) %] /RATIN

IF(X{I-1)sGT.RC2) GO TO 395
VKINP1s1)=A(T1)#3I/RATIO

G2 TO 296 i
VKINP1sI)=A(1)1#(1E+20)/RATIO
HK{NP1oT)=HK(NSI)

CONTINUE
UYK{NPTsNP1)I=A(NPLI)I#(15+27) /RATTIO
NA 202 [=1 M

N 297 J=1eN

126



VKINP1+1sJ)=VKINP1=-TsJ)
HK(NP1+I;Jf=H<(N-liJ)

7. 7397 CONTINUE

v<(uP1+1,Npi)-VK(N91 r-npl)

398 CONTINUE

R0.390 J=1,wB1

£ 209 VK(NNsJ)=VK(12J) "

ANAAN

GO 7O 402"

CHAPTER . 44aaaa44a444444444aa44444&a4«aauaauaaaaauaaaaakaaaaauauaaa
* INITIAL TEMPERZTURE DISTRIBUTION

ONFE DIVFNSIONAL HEAT FLOW ASSUMPTION

40N MRz N

- 4J2 NN1=NN+1

[a¥aXa XAl

DO 408 J=1sNP1
o T(leN =TI
S T(NN19J)=T2
436 CONTIMNUE ' .
) !F(TCF.FQ;.O) ~0 TO 409
DO 408 J=1,NP1
B=,0
DO 407 I=1+NN
407 R=R414/VK(14+J)
HEAT#(T2=-TI)/R
DO 408 I=2,NN
Tiled)=T(I=19J)+HEAT/VK(I=1+J)
438 CONTINUE
GN TN M
470 NO 417 =7 ,4NN

T s 1I=TUI=1s1)={TI~=T231/FLOAT(NN)
DO 410 J=2,4NP1
TiIs)=TA1I41)

417 CONTINUE

411 DO 412 1=1,NN1
N 412 J=1,ND1

412 TI(Ied)=T(1sD)

" CHAPTER 555555555555556655565655558565555R556546655556658558555K55555
SUCCESSIVE OVER RELAXATION PROCESS
CALL RELAX(1les14sOMN)

DMO=0MN

"CALL RELAX(OMOGNT sOMN)

MSxNSHNT

T ann HEATDgz.9

HEATY=D
DO §1% I=1.NP1
HEATD=HSATD+VK (1911 ¥ (1 ,=T(2+.1))
HEATU=HEATU+VX (NN I)#T (NNs 1)

512 CONTINUE )
IF(A3S{1-HEATD/HEATU) «GTeTEST1) GO TO 530
DN 527 IN=24NN

127



529

5130

619
616

642

648

640
653

128

Go 52‘ JN=1 900

IF(ASSI1-T(IC»JO)/TI{109J0))eGTL,TEST2) GO TO 530

CONTINUE '

GO TO UV

nun=OMN

NS=NS+NI

CALL RELAX(DMOsNI»DMN)

AN TN 500

CHAPTER 6666666666666665666666665666666666666666666666666566666666
HEAT FLOW CALCULATION

HEAT-(HEATD#HEATU)*PI/Z.
RE1=44/HFAT

IF(TCFeEQs«Q) GO TO 640°
DF1=RE1/PATIN .
IF({SWeEQe1eD) GO TN g2R
v1=C1#%C?

V2=(C3% (2, +RC2%%#2,)~ 3.*QC1+RC1**3 V%P1 /12
V3=C1#RC1*Pl/4
VS=(1le=-PHI}#V]=-V2-V3
V4=SQRT(RA*#2, +RC1%#¥2 4 ~1,)
VW=PHIRSWEVI4V24V3-P1/4 HCL1RVL-PI/12e% (34 #RWHH2, #3333 KRW#*2, ¥V 4=C
H2RRY L LVLHERR,, Y
VT=(14=P1/64e)%C1%C3
VNd=VT=V5-V¥
TC2=TCSH#R(VS/VTIRTCF**#{(VA/VT ) RTCNN#E{VNW/VT)
RT=C2/(1e=P1/44)/Cl/TC2*TCF

GD TO 648
RE2={C3=RC1V/{1,-P1/64,4) /71
1IF(PHI«LTeaes76) GO TO K10
RT=RE2

GO TO 648

IF(RC1-RCRIT) 61696449640
TETA=PI/2e=2e*ATAN(RC1/C2)
REI=(RATIO=1,)%%2,/(RATIO*ALOG(RATIO)~ RAT!O+1.)/RATIO/T=TA/RCI
RE4=RC1/(Z1-TETA/2.-RC1%(2)

ZALL RESIS(RATIOIRC19RES)
DT=RE?+1e/{1e/PE3+1,/RE4+24/RER)
G TO 649 :
C“=2.*RC1**2.-10

C4=SQRT(CL)

C5=(1e=PI/Gs)%C1

CALL RESIS(RATIO»RC1sRES)
REG=C4/CR/RATIO
RT=RE2+RE5/2.+RE6

IFINCR.EQ.1}) RT=RT#*2,
RT=14/(1e/RF1+1./RT)

GO TO 65U

RT=RE1}

IF(NCReEDe1) C22Ca¥2,
ETC=C2/RT/C1

IFINCR.SQ.1) GO TO 655



Q1=VK(Ns1)*T(Ns1)
D £52 T=2,M
IFIX{1=-1).GT.RC2) GO TN 652
21=01+VK (M T #T(NI)
657 CONTINUE
21=21/HEATU
GO TO 657
655 Q1=VKINP1s1)®#(T(NP1s1)-T{NP1+1+1)}
NN 656 T=24N
IFIX{I=1)eGT.RC2) GO TO 656
N1=Q1+VXINPL T )# (TINP1+T1)=T{NP1+1s1))
656 CONTINUE
N1=Q1/HEATY
657 IF{TCF+ENaed) GO TO 658
81=,28-+757#ALOGLIC(PHI)

aMCR=0
Al=e1F+2)
82=z~y,"57

A3=31+32%AL2G12(RATIO)

ETC2=RATIN%%33

GN TO 7<0
658 ET(C2=,0

AHADTER TTITTITINITITITTITIIITNTINNIIITTTTITINIITINTTIIITIITIINITIINIIINITINTITITIT

ouT ouT

T2 - KL =XL+1

D=DH] /

PRINT T1UeKLoPsTCSeTCFWRATIOWETCHIEXPLETC2
T10 FORAATILTX 92H% 31292H #33XsF5e492X92(1R*93XsEFebs3X) 9 3HN sF7els2X

*y3(1H¥*93XsF5e293X)p1H*)

ORIMT T7224RC140C2
772 FORVAT(I X s4URCI=oFR 4448 X 9s4HRC?=9F&,4)

DRIMT 740,81
T40 FORMAAT(S5Xs3rA31=9E9e4)

PRINT T742+SWeRYW . :
742 FORMATISXs3ASW=9oFSe495Xy2AHRW=9FSe2)

" OPRINT 74401 i

744 FORMATIS5Xe6HACT/Q=9F5e4)

PRINT T4k NMH NS
T46 FORMATI(5X96HOMEGA=9F5¢293X913HNOe OF ITER.=513)

DC 750 I=14NN1

MUELILA RS {

PRINT 7482 (T(INsJ)sJ=1sNP1}
748 FORMAT(L(5X915FTet0/))
750 CONTINUE

GN TO 105
767 BRDINT 764
TG FAQUAT(1TY. 497 (1H#*))

STOP

END

.
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134
127

138

130

147

145

180

182
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SUBROUTINE GEOPA(PHIWRC29SWeRC1sRW)
THIS SUcROUTINE CALCULATES THE DIMENSIONLESS RADII OF LATERAL
CONTACTSsRC1sAND THE DIMENSIONLESS RADIUS TO THE WETTING-NON-
WETTING INTERFACE sRWIKNOWING THE POROSITYsPHI+DIVMENSIONLESS
RADII OF TOP-SOTTOM CONTACTSsRC2+AND THE SATURATION OF THE
WETTING D4YASE»SW,
D1=1,1418924%4
S2=SQRT(1,~RC2%#2,)
IF(PHI=e4758) 11021049176
RCl=.0
S1=SURT(1.-RC1%##%#2,)
AA TAH 1688
1=0
IF(PHI«LTeel196) GO TO 142
IF{RC2+GT40) GOTO 1130
A=(]1.~PHI)¥64/P1
Al=34+ARRD /3,
Blzle®ARNY /2T 4a+A+]e
G2 T 135
A={l1e=PHI) #6.%52/P1 ' i
T=aS# ({3 #52-S2#83,~4,) '
Al=(Qe+ANRND ) /2,
Bl #ARRY L /DT o +A=T
B82=SAPT(A1/3.)
B=3,%R1/(2,%41%32)
IF(Ee«GT«d) GO TO 136
TETA=ACOS(-B)/ 3,
~0 TO 127
TETA=(PI=ACOS(3)) /3.
X=D g ¥PORAAC(TZTA)

"TIF(PHIeLT.e196) GO TO 159

Sl=X-A/3.

IF(S1eLTe1ls0) GO TO 139

§1=10ﬂ

RCI=S"RT{1e-S1%#%2,)

50 TO 18e )

IFIRCPe ATLCY GO TO 1485
PCl=le=2.%PH1/2,

O TO TRe

Q—?’-SOQT( 1.-RC?"’2.)
A11=(1e~PHT)%#5%=1,/2, '
Bl1=PI*(1e~S2)%¥2,%(24452)/12e
Tzle=({le5%Al1)%%2,
AT=THR24 /A=l e SHATTI%T11

R12c) ¥ THR2, /2741 ,88A1120171%2T+9,260 8311225,
6N TA 178 '
TC(1.5Qe1) 10 TO 128

X=X+T /3, :
RC1=SART(1.~X)

C1=50RT(X)
IF(RC1I-e7"71)1825187,18¢

1=1

GO TO 130 \

130

op
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&

155
156

162

[F(SYW=1e) 180,158,184

RA=1e7C

0 TO 162

AzQe®SIH%D ASORPHI*(SH=1e+1./PHI) /O]
A1=07‘.*(S]+|§‘SZ)**20
Bl=eS#(S1H*#3 4+ SHS2H%T 4 A) -, 25 (S]+,5%52)%%3,
TETA=ACOS(=eGR%R1/(A1/3,1%%1,5)/7,
X=2e#SART(A1/2, ) ¥COS(TFTA+4L,#PT/2,)
RU=X+45%(S1+,5%52)

RETURM

EMD

131
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SUBROUTINE CONDUCT (ISsX19l9JsTC1eTC2)

THIS SUBROQUTINE CALCULATES THE THERMAL CONDUCTANCES BETWEEN THE

NODAL POINTS. ' )

CCMMON/GFENERAL /HK (13091201 9VK(1009100)2T(1039120)9T1(1305100)4X(10
#5)eY(12G)eDX{100)eDY{100)sAL100) sNeNNeNPL1,,TCS
=0 TO (1072734307 )415
HK{TsJ)=2e# (X JI=DX{J) /2 1 H(DY(TI+DY(I41))/2e/DX D)
VK(Ts ) =A( J) /DY LT
a0 To 400
XC=X1 )

DX2=X{J)=XC

NX1=0X(J)=DX2

IF(TC1eENe Q). GO TN 210 .
DI=NX1/(XC=DX1/2e441E=10)/TCI12TCS
IF(TC2eEQe«d) GO TO 210
R2=DX2/(XC+DX2/2e ) /TCI8TCS.
HK(TeJ)=24%#{1e/{RI+R21INM{(DY(1)+DY(T+1))1/2,)
GN TO 222

HK(1sJ)=e0
VK{ToJ)=A(NIHTCL/DY(T)/TCS

GO TO 4C0

vo=x1

nNY2=Y(I1)=Y"

PY1=DY(I)=-nY2

IF(TCleEQaoed) GO TO 310
21=NY1/A(3y/TC1#TrS
IF(TC2eEQeed) GO TO 7120
R2=DY2/A(J)Y/TCP#TCS
VK(T9J)=1e/(RYI+22)

GN TN 409

VK(lsJ)=eO

DET oM

cMND

132
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191

10a

133

SURROUTINE RELAX({OMOsNTsOMN)

THIS SJUSROUTINE CALCULATES THE OPTIMUM ACCFLFRATICN FACTOR FOR
SUCCESSIVE OVER-RELAXATION AS DESCRIBED IN APPENDIX Ce
COMION/CGEMERAL /HK (1029123 oVKIT17C 91021 TII1275122)eT1(1CI,12CY X112
#0)eY (17 )14DXI172)eDY (I IC) s ALYND YoNsNN,NDT,TCS

AMFEGA=NMA

NImi=NT-1

NIv2=MI=-2

DO 109 ll:l)‘\l[

DD 132 I=2.NN

Ip1= I+1

TMy1=1=-

SuMl= T(lPlol)*VK(Iol)+T(‘“191)*V<(TM191)+T(ToZ)*HK(lMlvl) N
SUM2=VK{Ts 1)+VKIIM1s1)14HK( MYy 1)

IF{SUM2eFQeel) GO TO 1929
TUIs11=(1=0MEGAI*T(T91)40MEGAR(SUMT/SUV2)

DO 1C1 J=?2sN

Jel=y+1

JHrt= =1

SuMl= T(IP‘oJ)*VK(I-J)+T(I“19J)*VK(I“l;J)#T(Ion])’HK(Y“loJ)+T(I'JW
RLIRHKC (T4 g1

SUM2=VK{Te JI+VK(IF19J)+HK(IM1 s J)+HK (I A JWl)

IF({SUM2eENQee0) GO TO 1801
T(IsJ)=(1e=OAEGAY*T (s J)+OMEGA#(SUM1/5UM2)

CONTINUE

SuUMl= T(IP194?1)*Vh(IoNP])+T(I41;NP1)*V((IleNP1)+T(loN)’HK(lM19N)
SUMZ2=VKIToNPII+VKIIMIoNPT Y +HK( IM1 o N)

IF(SUMDeCNee?) GO TO 172

TUTONPYI)=( 1=-2"CGAIXT (T sNPT ) +NIMEGA¥ (SUMT/ S IM2)

CONTINUE .

IF{NIVIeERe3) GO T2 111

IFCIToLToNIM2) GO TO 109

I15=NI~-11+1

GO TO (177+1254123)s1S

DO 124 I=24NN

AN 104 J=1 Pt

TI(TIesJ)=T( 1))

CINTINUE

<D TO 1lue

EM=C

DO 106 I=24MN

DO 106 J=14NP1

:V‘:V+AqS(T(IsJ)-Tl(IvJ))

Tr(ts N=T(Te )

CAMTIMUE
E1=EM
52 TO 129
EM=C

D 108 I=2,8N

NN 108 J=1,,M7)
'-‘V==VM=<(T(I,J)—Tux.J))’
fanINHC

@
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!;2=CIA
ELANDA=E2/F]

109 CONTINUE
OMEGA=0M0
Rz (CLANDA+OMEGA~]1)/0OMEGA
C=1=(R#B/E} ANDA) .
IF(CeGTed) GO TO 110
NMM=OUEGA
O TO 112

110 N=1.+SART(C)
DMEGA=2,/ND
OMEGA=OMEGA-(2-0MEGA) /4.
OMN=0OMEGA
GO TO 112

111 OVMN=14375%

112 ReETYRN
END



o

100

113

120

139

SURRAYTINF QE%IS(QATIO-QC1.Q)
THIS SUSROUTINE CALCULATES THE THERMAL RESISTANCE or SECTION &
N=100
NM1=N=-1
PI=3.141892654
a=RAT10=~1
H1=SQRT(1.~-RC1#%2,)
RCRIT=SART(24)/2
IF(RCI~RCRIT) 1001105110
u2=RC1
X%z=e0
DX=RC1/FLOATIN)
ASI-((1.—H1**2.)*ATAN(H2/H1)-ACOS(HI)+H1*RC1)/2.
ASF=40
GO TO 120
H2=H1
XI=SQRT (2, #RC1#%2,-1,) ,
NX=(RC1=-XD)/FLOAT(N)
AST=HI#*##2 #(ATAN(H2/H1)=P1/2e+1e1/2e
ASF=
AT=(HI#H2=H1#%) #ATAN(H2/H1)) /2
SUM=( 16/ (REASTI+AT)I+1 4/ (ARASF+AT) )/,
A1=H]**2.
A2=ATAN(H2/H1)
no 130 I=1,001
X“+0X*FL0AT(I)
53 Ta=X#R2,
H3=SQRT(A3)
AS=((A2-A1 ) #A2-A2#ACOS(H]/HR)+HI#SORT(A2=AT) ) /2,
CM=S1IM+ T4 /{REASHAT)
CONTINUE
R=SUM#DX
RETURN

“ENn

135
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