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A B S T R A C T

Background: Radioligands for the translocator protein (TSPO) 18 kDa have been used with positron emission
tomography (PET) to assess neuroinflammation and microglial activation in psychiatric disorders. One study
using this approach showed substantial TSPO elevation throughout the brain in chronic methamphetamine users
following long-term abstinence (0.5–4 years), but clients typically present for treatment earlier in abstinence.
Methods: We used PET with [11C]DAA1106 to compare standardized uptake values (SUVs) as an index of TSPO
binding in the brains of methamphetamine-dependent participants who were abstinent for< 6 months (n = 11)
and healthy controls (n = 12). We also assayed other typical correlates of Methamphetamine Dependence (e.g.,
striatal D2-type dopamine receptor deficits, depressed mood, anxiety and impaired emotion regulation).
Results: Methamphetamine users exhibited depression (p<0.0001), anxiety (p = 0.002), difficulties in emo-
tional regulation (p = 0.01), and lower striatal dopamine D2-type receptor availability vs. controls (p = 0.02).
SUVs for [11C]DAA1106 were larger in all brain regions of methamphetamine-dependent participants vs. con-
trols, but the effect size was small to medium and not statistically significant.
Conclusions: The discrepancy between the lack of significant difference in TSPO binding in early-abstinent
methamphetamine users vs. controls in this study and a previous report of elevated binding in longer-abstinent
methamphetamine users may reflect methodological differences or limitations of TSPO binding as an index of
neuroinflammation. It also seems possible that gliosis increases over time during the first 6 months of abstinence;
longitudinal studies could clarify this possibility.

1. Introduction

While the age-adjusted rate of overdose deaths in the U.S. from
prescription and illicit drugs declined from 2017 to 2018, deaths in-
volving psychostimulants with abuse potential increased (Hedegaard
et al., 2020). Effective medications are needed, and the immune system

has been identified as a potential therapeutic target.
Methamphetamine alters immune function (Papageorgiou et al.,

2019), producing reactive microgliosis (Pubill et al., 2002). Glial cell
modulators reduce methamphetamine-induced behavioral abnormal-
ities and neurotoxicity in rodents (Hashimoto et al., 2013). In clinical
trials, ibudilast, which attenuates methamphetamine-induced increases
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in inflammatory markers (Kitazato et al., 2010; Lee et al., 2012), an-
tagonized pro-inflammatory effects of methamphetamine (Li et al.,
2000) but did not facilitate methamphetamine abstinence (Heinzerling
et al., 2019).

Putative neuroinflammation and microglial activation in brain have
been assessed using positron emission tomography (PET) with radio-
tracers targeting the translocator protein 18 kDa (TSPO). Using the
TSPO radioligand, [11C](R)-(1-[2-chlorophenyl]-N-methyl-N-[1-me-
thylpropyl]-3-isoquinoline carboxamide) ([11C](R)-PK11195), higher
binding potential was observed in brains of long-term abstinent (0.5–4
years) methamphetamine users vs. controls (Sekine et al., 2008). Be-
cause most methamphetamine users approach treatment in earlier ab-
stinence, we tested methamphetamine-dependent participants during
the first 6 months of abstinence. The radiotracer used, [11C]N-(2,5-di-
methoxybenzyl)-N-(5-fluoro-2phenoxyphenyl) acetamide ([11C]
DAA1106), exhibits high specific binding in brain (Maeda et al., 2004)
and [3H]DAA1106 has higher affinity for TSPO than [3H](R)-PK11195
(Venneti et al., 2008).

2. Methods

2.1. Participants

Written informed consent was obtained, as approved by the UCLA
and VAGLAHS institutional review boards. Eligibility was determined
using self-reports, physical examination, and the Structured Clinical
Interview for DSM-IV (First et al., 1996) or the Mini-International
Neuropsychiatric Interview (Sheehan et al., 1998). Participants were
classified into two groups: Methamphetamine-dependent, Control.

Exclusion criteria: CNS, cardiovascular, pulmonary, hepatic, or
systemic disease; history of neurological disease or trauma with loss of
consciousness> 30 min; structural brain abnormality; HIV ser-
opositivity; pregnancy; lactation; English non-fluency; current psycho-
tropic medication use; current psychiatric disorders other than Nicotine
Dependence or Cannabis Abuse (allowed in both groups) or
Methamphetamine Dependence (required for Methamphetamine
group); any regular stimulant use (Control group); regular use (> once/
week) of anti-inflammatory medications. Because smoking is prevalent
among methamphetamine users and is associated with lower [11C]
DAA1106 binding in brain (Brody et al., 2017, 2018), daily smoking
was required, verified by expired CO>8 ppm and urinary cotinine
(level> 2; Accutest NicAlert). Participants were genotyped for the
single-nucleotide polymorphism (rs6971), which determines TSPO af-
finity and binding of second-generation TSPO radioligands (Owen et al.,
2011, 2012); only high-affinity homozygotes were included.

Participants completed questionnaires about drug use, as well as the
Fagerström Test for Nicotine Dependence (Fagerström, 1978;
Heatherton et al., 1991), Beck Depression Inventory (BDI) (Beck and
Beamesderfer, 1974), Spielberger State Trait Anxiety Index (STAI)
(Spielberger and Gorsuch, 1983), and Difficulty in Emotion Regulation
Scale (DERS) (Gratz and Roemer, 2004).

Methamphetamine-group participants were instructed to maintain
abstinence from drugs of abuse ≥4 days before PET scans, demon-
strating negative toxicology (methamphetamine, amphetamine, opi-
ates, cocaine, benzodiazepines) and Breathalyzer tests (alcohol).
Controls tested negative for abused substances except for cannabis and
nicotine on screening and test days. All were instructed to abstain from
smoking cigarettes for≥12 h and cannabis for≥48 h before PET scans.
Because cannabinoids can be detected in urine for weeks, positive tests
were allowed.

2.2. MRI scans and volumes of interest (VOIs)

MRI scans to guide anatomical sampling of PET data were acquired
on a Siemens Trio (MPRAGE: repetition time = 1.9 s, echo time =2.26
ms, voxel size = 1 mm3, 176 slices), and processed using the FMRIB

Software Library (FSL; http://fsl.fmrib.ox.ac.uk/fsl/ index.html, Oxford
University). Volumes of interest (VOIs) included the whole striatum for
the D2-type receptor imaging, and an extended brain survey for TSPO
binding (Table 2).

2.3. PET scans

TSPO binding (SUV) and D2-type dopamine receptor availability
(BPND) were determined from PET scans acquired using a Philips
Gemini TF PET-CT (transverse and axial resolution FWHM= 4.8 mm in
the three-dimensional mode) (Brody et al., 2017; Crawshaw and
Robertson, 2017). Participants lay on the scanning bed in the supine
position. Images were obtained with a 2-mm voxel size (field of view =
128 × 128 × 90 mm3). A low-dose CT scan, before each PET scan,
provided data for attenuation correction.

For TSPO-binding scans, each participant received 352± 58.9 MBq
of [11C]DAA1106 (specific activity: 306.4±118.3 MBq/μmol) as a
venous bolus, and underwent dynamic PET brain scanning brain for 90
min. Radiotracer binding was quantified using standardized uptake
values (SUVs) as follows: SUV = decay-corrected mean tissue activity
(Bq/mL)/(injected dose (Bq)/body weight (g)). Mean tissue activity
from 20 to 40 min post-injection, when brain radioactivity is stable, was
used in this equation. For measurement of D2-type receptor BPND,
participants received an intravenous bolus of 205.8±12.8 MBq [18F]
fallypride (specific activity: 355.9±240.8 MBq/μmol). Emission data
were acquired in two 80-min blocks with a 20-min intermission.

Time-activity data within VOIs, extracted from PET images, were
imported into PMOD Kinetic Modeling (PMOD Technologies Ltd). The
simplified reference tissue model (Lammertsma and Hume, 1996) was
used to calculate BPND fromVOI time–activity curves as follows: CT(t) =
R1CR(t) + (k2′− R1k2/(1 + BPND))CR(t) *exp(-k2t/(1 + BPND)) where
CT(t) is the radioactivity in the striatum VOI measured by PET, CR(t) is
the radioactivity in the reference region (cerebellum), R1=K1/K1`=k2/
k2` (K1, influx rate parameter for the striatum; K1′ for the cerebellum,
k2, efflux rate parameter to plasma for the striatum, k2` for the cere-
bellum), and * denotes the convolution integral. The parameters R1, k2,
and BPND were estimated by nonlinear regression.

2.4. Statistical analyses

Group differences in demographics, measures of mood and emotion
regulation, and striatal D2-type BPND were evaluated using t-tests or
Chi-square tests, as appropriate. Our primary analysis (analysis of
variance) tested for a group difference in whole-brain [11C]DAA1106)
SUV, with age and sex tested as covariates to determine if they ex-
plained a significant portion of variance. For descriptive purposes, in-
dependent-samples t-tests were used to evaluate group differences in
SUV in 17 volumes of interest (VOIs). Because SUVs among regions
were highly correlated (r > 0.90), we used the single whole-brain SUV
in linear regressions to test associations with BDI, STAI trait anxiety,
total DERS scores in each group, and past-month methamphetamine use
(Methamphetamine group). Age, which was consistently significant,
was included as a covariate in these regressions

3. Results

The groups did not differ in age, sex distribution, education level,
cannabis or alcohol use in the month before screening, daily cigarette
consumption, or nicotine dependence (Table 1). Methamphetamine
participants reported heavy methamphetamine use (24.18± 8.13 days,
past month). Two met criteria for Cannabis Dependence, and three for
Cannabis Abuse; no Control participants met these criteria although one
endorsed using cannabis daily. Methamphetamine participants were
typical of those tested before in our lab, differing significantly from
controls (p< 0.05) by having lower striatal D2-type BPND (−18.8 %),
higher depressive symptoms and anxiety, and greater difficulty in
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emotion regulation (London et al., 2004; Okita et al., 2016). At the time
of [11C]DAA1106 scan, they were abstinent for 35.2± 57.6 days (range
= 4 days to 24 weeks, median = 6 days).

Whole brain SUV for [11C]DAA1106 did not differ significantly
between groups (p = 0.363); age and sex, which did not account for
significant variance in this analysis, were not retained (ps> 0.05). The
group difference in whole-brain SUV had a small-to-medium effect size
(Cohen’s D = 0.356, upper limit of 90 % CI = 0.89), indicating a re-
quirement for n = 94 to detect a significant difference with 80 % power
at p< 0.05. Means in every VOI were non-significantly higher in the
Methamphetamine group (5.3–19.8 %, Table 2). Whole-brain SUV was
not significantly associated with measures of mood and emotion reg-
ulation, except for a positive relationship between SUV and DERS score
in Control participants (p = 0.008, nonsignificant after multiple-com-
parisons correction).

4. Discussion

TSPO binding was not significantly elevated in the brains of 12
abstinent methamphetamine-dependent participants vs. 11 controls,
whereas substantially higher TSPO binding in methamphetamine users
vs. controls was observed in a prior study of similar size (Sekine et al.,
2008). Methodological differences possibly affecting this discrepancy
were differences between the radiotracers, [11C]PK11195 having lower
affinity than [11C]DAA1106 and low specific signal-to-background ratio
(Banati et al., 2000; Venneti et al., 2008). Moreover, we quantified
[11C]DAA1106 binding using SUV, a measure that is limited by not
being validated against the full model to test for bias and systematic
errors (Acton et al., 2004). Sekine et al. (2008) determined [11C]
PK11195 binding potential using a normalized [11C]PK11195 time-ac-
tivity curve from the cortex of healthy controls as a reference-tissue
input function to model regions of interest in methamphetamine users.

The samples differed. Our participants all endorsed daily cigarette

smoking, which is associated with lower TSPO binding in brain (Brody
et al., 2017, 2018); Sekine et al. (2008) studied participants who did
not meet DSM-IV smoking-related criteria. Duration of methampheta-
mine abstinence also differed. Our participants were abstinent from
methamphetamine ≤5.5 months, most for only 4–7 days; Sekine et al.
(2008) studied participants in sustained abstinence (0.5–4 years). Al-
though Sekine et al. (2008) showed inverse correlation of binding in
some brain regions with duration of abstinence>6 months, microglial
activation may increase in brain during earlier abstinence, consistent
with the increase in cerebral glucose metabolism over the first month of
abstinence (Berman et al., 2008). Increasing glial cell number is
thought to increase cerebral metabolism (Roh et al., 1998).

Lack of a positive finding on TSPO binding here is consistent with a
postmortem study in which levels of several protein markers of mi-
crogliosis and astrogliosis did not differ in samples of autopsied brain of
chronic methamphetamine users vs. matched controls (Tong et al.,
2014). Half of the methamphetamine samples in that study were from
individuals who died of drug intoxication, and therefore not in long-
term abstinence. A very recent in vivo study using PET and [18F]FEPPA
another second-generation TSPO radioligand, also showed no group
difference as well (Rathitharan et al., 2020)

The ubiquity of TSPO in brain, especially at the blood-brain barrier
(Turkheimer et al., 2007), and its interaction with numerous ligands,
such as cholesterol (Kim et al., 2018), preclude assigning specificity of
TSPO-imaging findings to microglial activation. Notably, a study using
mouse models of schizophrenia showed changes in TSPO levels that
involved astrocytes and vascular endothelial cells as well as microglia,
and PET imaging revealed a trend towards reduced TSPO binding in the
middle frontal gyrus of patients who had recent-onset schizophrenia
and increased levels of inflammatory cytokines in peripheral and cen-
tral tissues (Notter et al., 2018).

Table 1
Participant Characteristics.

Control (n = 12) Methamphetamine (n = 11) Group Comparison p-value

Sex (# of women / # of men) 5 / 7 2 / 9 0.240
Age (years) a 33.8± 7.48 38.3±9.31 0.219
Education (years) a 13.5± 2.10 13.4±3.01 0.499
Race (% of participants)
Caucasian 2 7
African American 8 3
Mixed 1 1
Other 1 0

Ethnicity (# of participants)
Hispanic/Latino 2 5
Not Hispanic/Latino 10 v6
Other 0 0

Striatal dopamine D2-type receptor binding (BPND) a,b 28.8± 2.16 23.4±6.6 0.0135*
Self-Reports of Mood and Emotional States a

Depressive symptoms c 1.17± 1.53 13.73± 9.19 0.0001****
Trait Anxiety d 28.58±8.80 42.64± 10.14 0.002**
Difficulty in Emotion R egulation e 54.25±15.96 74.91± 19.83 0.012*

Substance Usea

Methamphetamine (days in past 30) 0± 0 24.18± 8.13 N/A
Average grams per day 0± 0 0.62±0.31 N/A
Days abstinent at [11C]DAA scan 35.18± 57.57 N/A
Cannabis (days in past 30) 8.09± 12.25 4.25±8.70 0.393
Alcohol (days in past 30) 3.92± 5.07 5.6± 6.88 0.619
Tobacco (all participants daily smokers)

Cigarettes per day a 9.00± 7.37 7.36±6.52 0.580
Nicotine Dependence f 3.33± 2.77 2.27±2.65 0.180

a Mean± standard deviation.
b Determined using [18F]fallypride and positron emission tomography (see methods).
c Beck Depression Inventory (Beck and Beamesderfer, 1974).
d Y-2 form of the State-Trait Anxiety Inventory (Spielberger and Gorsuch, 1983).
e Difficulties in Emotional Regulation Scale, total score (Gratz and Roemer, 2004).
f Fagerström Test for Nicotine Dependence (Fagerström, 1978; Heatherton et al., 1991).
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4.1. Conclusions

TSPO binding is not significantly elevated in brains of early-ab-
stinent methamphetamine-dependent participants, questioning the role
of inflammation in the behavioral problems they exhibit. Testing
whether brain inflammation increases with duration of early abstinence
from methamphetamine is warranted, and requires longitudinal studies
using direct markers for microglial activation.
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Table 2
Brain Uptake of [11C]DAA1106 in Control and Methamphetamine-Dependent Participantsa.

Control (n = 12) Methamphetamine (n = 11) Δ% vs. Control Group Comparison p

Whole Brain 0.77± 0.15 0.85± 0.28 9.9 0.363
Brain Regionsb

Cerebral Cortex
Orbitofrontal 0.84± 0.18 0.94± 0.28 11.2 0.292

Dorsolateral Prefrontal 0.85± 0.18 1.01± 0.32 17.2 0.141
Dorsomedial Prefrontal 0.84± 0.18 0.98± 0.33 15.4 0.215
Ventrolateral Prefrontal 0.84± 0.16 0.95± 0.29 12.3 0.297
Ventromedial Prefrontal 0.80± 0.19 0.90± 0.30 11.8 0.332

Anterior Cingulate 0.73± 0.17 0.89± 0.32 19.8 0.140
Insular 0.78± 0.16 0.87± 0.29 10.9 0.357

Temporal 0.76± 0.14 0.85± 0.27 11.2 0.337
Parietal 0.85± 0.17 0.96± 0.32 12.2 0.283
Occipital 0.92± 0.16 0.97± 0.30 5.3 0.569

Hippocampus 0.69± 0.13 0.76± 0.26 9.7 0.429
Caudate Nucleus 0.69± 0.17 0.74± 0.26 7.0 0.592
Putamen 0.83± 0.17 0.91± 0.30 9.2 0.400
Nucleus Accumbens 0.76± 0.17 0.85± 0.30 11.2 0.356
Globus Pallidus 0.64± 0.13 0.70± 0.23 9.0 0.431
Amygdala 0.63± 0.12 0.69± 0.23 9.1 0.450
Thalamus 0.82± 0.16 0.87± 0.29 5.9 0.566

The groups did not differ significantly in body mass [Control: 80.36± 16.9 kg; Methamphetamine: 80.8± 15.7 kg] or injected dose [Control: 1026±201 MBq;
Methamphetamine: 1091±200 m Bq], which were used to determine SUV values.

a All values are means± standard deviations.
b For descriptive purposes only, independent-samples t-tests were used to evaluate group differences in SUV in 17 VOIs, p values are not adjusted for multiple

comparisons.
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