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Karsten Pruess and Kenzi Karasaki

Earth Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

Most geothermal reservoirs are extensively fractured and have low
matrix permeability. The fractures provide the principal conduits for
fluid and heat flow. :

' Conventional approaches to geothermal reservoir modeling have em-
ployed a poroys medium approximation, but recently methods have been
developed which can take into account the different thermodynamic con-
ditions in rock matrix and fractures. The multiple interacting continua
method ('"MINC'") developed by Pruess and Narasimhan treats- the thermal “and
hydraulic interaction between rock matrix and fractures in terms of a.set
of geometrical parameters. However, this approach was restricted to idea-
1lized fracture distributions with regularly shaped matrix blocks.

Fractures in geothermal reservoirs usually occur in nearly parallel
sets with a certain scatter in orientation, and a stochastic distribution
of spacings and apertures. We have extended the MINC-method to realistic
fracture systems with stochastic distributions. The interaction between
matrix and fractures is parameterized in terms of a "proximity function",
which represents the volume of matrix rock as a function'of distance from
the fractures. We employ Monte Carlo techniques to compnte proximity func-
-tions for a number of two-dimensional systems with regular or stochastic
fracture distributions. It is shown how the proximity functions can be

- used to generate computational grids for modeling fluid and heat flow in
fractured reservoirs.

This work was supported by the Assistant Secretary for Conservation
~and Renewable Energy, Office of Renewable Technology. Division of Geothermal
~and Hydropower Technologies of the u. S “Department of Energy under Contract

No. DE-AC03-76SF00098.
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1. - Introduction

It is well established that most . -
high~temperature geothermal reservoirs
are extensively fractured. . The fractures
provide.the principal conduits for fluid -and
- The rock matrix contains most of
the fluid and heat reserves, but it usually .
has a very low pemeabui.ty, perhaps in the
nicrodarcy-:ange. :

c,onventional lpptoaches to geotheml
reservoir modeling have employed a porous . -
medivm approximation, although the validity:

-of this approximation for naturally fractured

reservoirs has never been demonstrated in -
detail. It appears that most researchers

. ‘expected a porous medium approximation to

work in cases with "not too large™ fracture
spacing. Recently it was shown by Pruess -
and NMarasimhan (1982a), that in two-phase
geothermal reservoirs strong discontinuities
in vapor saturation can arise at matrix/
fracture interfaces, due to an interplay
between fluid convecticn and heat conduction.
This guggests that fractured systems with .- -
two-phase fluid may behave quite differently
than porous medium systems even in cases
wvhere fracture spacing is small in comparison
to characteristic dimensions of the problem .

‘{@eGe, reservolyr gize, well lpac.tngs. .

" completion intervals).:

in order to quantiutivaly model . . .
fractured reservoir behavior, Pruess md

- ‘Harasimhan (1982b) developed a “multiple ~

interacting continua® method ("MINC"),

‘which is a generalization of the double-
" porosity model .of Barenblatt et al.: "960)

and Warren and Root (1963). .The classical
double~porosity work employed a quasi-steady
approximation for “interporosity” flow .. -
between rock matrix and fractures, which . .
severely limits the range of systems -

" .-'and processes ‘to which it is applicable, -

‘The MINC-method on the other hand, treats

interporosity flov entirely by numerical
methods,. - This makes possible a fully
transient representation of interporosity -
flow, which is applicable to problems with .-
coupled fluid and heat flow, and to sulti-

‘phase fluids with large and varying compres=

sibility, such as gteam~water mixtures, _

. the matrix-fracture interaction.

. ‘adopted:for interporosity flow.
“be noted that the customary equations for

" volume elements.

“The work of Pruess and Narasimhan .
employed highly idealized regular frac— -
ture distributions, but the authors pointed
out that the MINC-method can be extended to
realistic (stochastic) fracture distributions
as well. It is the purpose of the present
paper to carry out the generalization to

- arbitrary irregqular fracture distributicns.

After briefly reviewing the main assump~

tions of the MINC-method, we shall introduce
the concept of a "proximity function® as the
central gecmetrical quantity which defines
‘Subse~
quently we shall consider proximity functions
for regular or irregular fracture distribu=
tiens, usi.ng Honte Carlo Lnteqution techriques,

2. -gumnan of the MINC « Method

The . MINC-lnethod tollows the double-
porosity approach in adopting a continuum
treatment for both the fracture network and
for the porcus rock matrix. Global flow in
the reservolir is assumed to occur only
through the network of interconnected
fractures, whereas fractures and rock matrix
can exchange .fluid and heat locally. In
order to obtain a numerical description
for {nterporosity flow, it is necessary to
partition -the flow domain into discrete .
volume elements, or grid blocks. The
:exucial ;point of the MINC-method is the
partitioning {(ox discretization) procedure -
It should -

mass- and energy-conservaticn, when written
4n integral form, ‘hold for arbitrary
‘reservolr gubdomains (Narxasimhan, 1982).
However, discretized equations are only
useful {solvable), when the-flow terms
between volume. elements can be related.to
the accumulation of mass and heat within:
Fluid and heat flow are
driven by gradients of pressure and temper-
ature, respectively, and these can be

" ‘expressed in terms of -average values of -

thermodynamic varinbles:if (and only if).::
there ‘is -approximate thermpodynamic equili-

o brium within each volume element at all

times.- -In porous media, this requirement
will usually be satisfied for any suitably -
%gmall® gimply-connected gubregion, as
thermodynamic conditions generally vary
continucusly -and smoothly with position.




The gituation can be quite different in
fractured media, where changes in thermo-~
dynamic conditions as a consequence of
boiling or cold water injection may propagate
rapidly in the fracture network, while
migrating only slowly into the rock matrix.
Thus, thermodynamic conditions may show
strong variations as a function of position
in the vicinity of the fractures. Because of
the different response times, thermodynamic
changes in the rock matrix will locally
depend mainly upon the distance from the
nearest fracture. Then, interporosity flow
will be perpendicular to the fracture faces.
This suggests partitioning (discretizing) of
the rock matrix into sequences of nested
volume elements, which are defined on the
basis of distance from the fractures.

Figure 1 illustrates this concept for the
-case of an idealized two-dimensional fracture
distribution. In this case the geametric
quantities governing the interporosity flow
{element volumes, interface areas, and -
nodal distances) can be easily obtained in
explicit analytical form {(Pruess and
Narasimhan, 1982b)e.

The mesh design concept as shown in
Figure 1 can be generalized, to make it more
suitable for applications of practical
interest. In reservolir regions where
thermodynamic conditions vary slowly as a
function of position, it is not necessary to
have separate volume elements within each of
the elementary units depicted in Figure 1.
Instead, corresponding nested volumes in
neighboring units, which are identified by
an index number in Figure 1, can be lumped
together into cne computational volume ’
element. Element velumes and interface
areas scale proportional to the number of
elementary units which are lumped together,
whereas nodal distances remain unchanged.:
The scaling procedure can be further general~-
ized by applying the same scaling law to
grid blocks of arbitrary size or shape.

Thus we arrive at a two-step procedure for
defining a computational mesh for a fractured
reservoir. The first step is to.construct a
mesh just as would be done for a porous-
mediym type system with small grid blocks
near wells, etc. {“"primary mesh®).  The
second step is to sub-partition each grid
block into several continua, the respective-
volumes, interface areas, and nodal distances
of which are cbtained by appropriate scaling
from the quantities pertaining to the basic
fractured unit ("secondary mesh”). :

The concept of partitioning based on
digtance from the fractures can be readily
extended to arbitrary irregular fracture
digtributions. Figqure 2 illustrates this
for & set of fractures of finite length.
Firgt it is necessary to eliminate the
dead~end portions of the fractures, which &o
not participate in global flow within the
fracture system {Figure 2b). The rock
patrix can then be readily partitiocned into
several continua with increasing distance

from the fractures (Figure 2c). While the
general case of irregular fractures is
straightforward from the conceptual poeint of
view, it is not possible toc obtain the
geometrical parameters for the sub-continua
in an explicit fashion. To accomplish this

s introduce an auxiliary function, termed a
"proximity function®, which can be calculated

. for any given facture distribution, and

which allows to completely define all

geometric parameters for interxporosity flow.

: 3s_ The Concept of Proximity Functions

For any given reservoir subdomain with
known fracture distribution a function V(x)
can be defined, which represents total = .
patrix volume V within a distance x from the
fracture faces. Note that the volume V will
generally consist of a2 finite number of
disjoint multiply-connected regions, repre-
senting a guite complex topological structure
(see Figure 2c). If Vg is the volume of -
the gubdomain, and ¢4 is the volume
£raction (average porosity) of the fracture

' system, the volume of the fracture continuum

within Vg 48 V4 = ¢4°Vg. It is convenient

to introduce a "proximity function™ PROX(x),
which expresses, for a given reservoir .
subdomain Vg, the total ‘fraction of wmatrix
volume within a distance x from the fractures.
Noting that the total matrix volume in domain
Vo is .

Vo = (1=~¢4) Vg (83
we have

Vix) | __V(x)
Va (1=%4) Vo

PROX(x) = (2)
In the MINC-methcd, a discretization is
adopted for the rock matrix (see Figure 3)
whereby all matrix volume within a distance
x2 from the fracture faces will be lumped
into one computational volume element (or
subcontinuum) V2; matrix volume within a
digtance larger than x; but less than xj3
will be lumped into V3, etc. This is
illustrated in Figure 3 for a regular
fracture network, but it is evident that the
same procedure can be applied to arbitrary
irregular fracture distributions, see Figure
2c, To define flow towards or away from the
fractures, it is necessary to specify
interface areas and nodal distances between

" the matrix sub-continua. From the definition

of the proximity function as given above,
the interface area for flow at distance x is
simply N o . :

"4 PROX(x)

av .
o Mx) == (1-01)‘% ax (3)

In conventional porous medium-type
simulation methods with simply-connected
grid blocks, the computational nodes arxe
points, usually located at the center of a -
volume element.: For the multiply connected
volume elements of the MINC-method, the



element nodes become nodal surfaces, which’
are located half-way between the inner and
the outer surface of an element. The : - '~
digcretization procedure adopted in the
MINC-method can now be described as follows.
First, a "primary® mesh is specified.ih -
integral finite difference form by means of :
a set of volume elements {Vpy £%1, o o o N}, -
interface areas Ayn, and nodal distances

4nme  All primary ®connections® (Apy,- S
d,m) between volume elements are assigned

to the fracture continuum. ' Each grid block
Vp of the primary mesh i3 then partiticned
into a sequence of interacting continua -
Vn (9mYy o o 0p J)» The continua are -
specified by means of a get of volume
fractions Qj (’-1' e o 03-J), vhere ’1

ig the nverage fracture porosity, and the

$2¢ ¢ viep $3 Genote volume fractieng in .~
the matrix at increasing distance from the
fractures. Ohvieusly we nust have -

Z e3=1 Lt
3-' ) K ) 5 12N S LR

Apart from this constraint, the ¢4 (J=2, »
o o, J)- are arbitrary, but for best accuracy
- the volume fractions near the fractures -
(2, 93, + o) should be chosen not "too® B
larges The volumes of the sub-pmitioning
are smply

Vny =¢3 ° Vn L (8)

so that i
Z v,,, - vn S e
Rt T -

In the ":econdary mesh {Vn 1 =1, o e e NI
3=1, < o o, 3} each of the primary grid blocks
V¢ (representing fractures) interacts -
with its neighbors through the fracture
continuum, and with a one-dimensional string
Vn2¢ Vp3s o ¢ o4 Vp3 of nested grid “blocks”
in"the matrix. -The distances xj to- -whieh "

the vni ‘axtend can be simply cbtained by’

inve g ‘the proximity :unct;on. Wthqve
ROX o . ?
3'=2 S

The Lntettace axea betveen elementa Vay+

' and-Vp4eq is simply- Mx,) as given by -
equation (3). Nodal disuncea nre qiven by

(j-z. o o 8y 3-2) : e

ey mge T T o

= g (Xger = x4eq)

. The fracture nodes are placed at the fracture~-

matrix interface, so that

X2 .
a1, n2 = bl 9)

The: unemost nodal dist.ance :equires :pecul
conaidernuon. w:.i.u.ng

x - X

a - J=-1. J=2 . 1
ad=%, J.. . . 2\\“\* DJ (10)

ve kxttoduce the distance Dy of the nodal

- surface with index ' from the innermost

intexface arxea, Apy-q, pn3¢ Dy should be )
chogen in such a way that the finite differ~- -
ence approximation for pressure - and
temperature - gradients gives the most
accurate estimate for the actual gradients

at the interface Apy.y, pye In general, Dy
may be taken in ‘quasi-steady flow approxi-
mation. A good spproximation for the quasi-
steady nodal distance 1.n many cases u
(Warxen and noot, 1963) - .
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4. l:xam 1es of Proximit t‘unctions

“In the case of. regularly chaped matrix
blocks. analytical expressions can be
written down for proximity functions.' For
example, for two~dimensicnal square matrix
blocks with side length a the matrix volume
within a distance x from the block’ !ace: is

o ‘(pet unit thickness)

v(x) - a2 - (.—zx)i’ R (12)

g0 that, according to tquatlon (2)

E ; : vX) 'x:'. xz : Y
PROX(x) . = ey -4 -.- - 4(‘)’ (13)
An Lnteresting applicat.lon of the -
methods presented here is for the Stanford ]
large reservoir model, which ‘has a loading
of reqularly shaped rocks. 'rhete are six
layers, each of which has five. paranelepiped
blocks and four trungular blocks with side
lengths a, b, ¢. The proximity :unction

for ;ly;‘ncitanrgular block Ls Tl

REI MY & -] 2
P (x) =8 =0 = x2 + -) {14)
AE an? ("’ b) ( ‘

: nnd for a tti.angular block we have

‘ sufr 42+\/_

», (,,, -(34-2\,—) R
(—f)

(15).

b




The averaged proximity function in each layer is

S .2
Pn(x) - -.,-Pr(x) + ;Pt(X) (16)

These functions are illustrated in Figure 4.
Fluid and heat flow calculations using these .
functions are reported in another paper

presented at this workshop (Hunsbedt et al. .1982).

] In the general case of a.rbitrary
irregqular fracture distributicns,  prox-
imity functions can be computed by means of
Monte Carlo = integration. A computer
program was written which generates random
points within a region Vg with known .
fracture distribution. The minimum distance
of each point from the fractures is computed,
and all points are sorted in order of
increasing distance. The fractiocn of points
falling below a certain distance x is the
value of the proximity function at x. This
procedure, which is applicable to arbitrary.
fracture distributions, defines the proximity.
function at discrete points, subject to
statistical fluctuatiocns from the Monte
Carlo = integration process. . In order to be
able to numerically compute derivatives of
the proximity function, a smoothed curve is
computed by fitting the discrete function
with a succession of cubic splines. :The
accuracy of the Monte Carlo procedure was
tested by computing proximity functions and
their derivatives for cases where the
results are known in analytical form.

Figures S and 6 show proximity functions
and their derivatives for square matrix
blocks. Note that the results of the Monte
Carlo = integration give a close approxima-
tion to the analytical goluticn as given by
equation (13) already for 5,000 integration
points. However, sgmall deviations are
magnified when interface areas arxe computed
by aifferentiation. Wwhen 50,000 integration
points are used, a good approximation is
obtained for interface areas, see Figure €b.

Figure 7 shows a two-dimensional
stochastic fracture pattern. This was
generated with a computer program developed
at LBL, according to a given distribution of
orientations and lengths, with random
locations (Long et al., 1982). The proximity
function for this system, obtained by Monte
Carlo = integration with 100,000 integration
points, is shown in Figqure 8, while Figure 9
gives the interface axeas as obtained by
numerical differentiation,

S. sms!

The proximity function quantifies, for
a given fractured rock mass, the volume of
rock matrix present in dependence upon the
distance from the fractures. This function
and its first derivative are sufficient to
completely define the gecmetric parameters
for interporosity flow between rock matrix
and fractures, as required by the method of

"multiple interacting continua® (MINC; Pruess
and Narasimhan, 1982b). For regularly shaped
matrix blocks, proximity functions can be
written down in analytical form, while for
stochastic fracture distributions they are
obtained by means of Monte Carlo-integration.
We are currently studying the dependence of
proximity functions upon the parameters of
fracture distributions, and upon sample size
and specific realization of a stochastic
distridbution. Also, we have begun simula-
tions of fluid and heat flow in geothermal
reservoirs with realistic fracture di:t::l.bu-
tions.

It should be emphasized that for model-
ing of flow in fractured rock masses, the - = .
proximity function of the flow system can be
computed cnce and: for all, ahead of actual
flow simulations. - A pre-processor program
hasg been written (Pruess, 1982), which
generates all geometric parameters for
interporosity flow in a format compatible
with lLawrence Berkeley lLaboratory's geother-
mal simulators SHAFT79 and MULKOM. The :
preprocessor can also interface with other
integral finite difference simulators, such
ag TRUST (saturated-unsaturated flow), PT
(single-phase non-isothermal flow), and
TRUMP (advective-diffusive heat and chemical
transport). With the methods outlined in
this paper, modeling of fluid and heat flow
in naturally fractured reservoirs is no more
difficult than simulations for porous
media.
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Figure 1. Basic computaticnal mesh for frac-
tured porous medium, shown here for
a 2-D case. The fractures enclose
matrix blocks of low permeability,
‘which are subdivided into sequences .
of nested volume elements. =

a. Fractures b.Connected froctures c.MlNc ponmomnq
S " EBLERII- 2810
Figure 2. Ill.ustnuon of the MINC=concept
T " for an arbitrary two~dimensional: -
- fracture distribution.’
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