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ABSTRACT Pseudomonas putida KT2440 has long been studied for its diverse and robust
metabolisms, yet many genes and proteins imparting these growth capacities remain unchar-
acterized. Using pooled mutant fitness assays, we identified genes and proteins involved in
the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosyn-
thesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, signifi-
cant fitness phenotypes were elicited in 672 different genes including 100 transcriptional
regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and
propose assimilatory pathways for the compounds based on this wealth of genetic data. To
complement these data, we characterize the substrate range of three promiscuous amino-
transferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the
specificity of five transcriptional regulators, explaining some fitness data results and explor-
ing their potential to be developed into useful synthetic biology tools. In addition, we use
manifold learning to create an interactive visualization tool for interpreting our BarSeq data,
which will improve the accessibility and utility of this work to other researchers.

IMPORTANCE Understanding the genetic basis of P. putida’s diverse metabolism is impera-
tive for us to reach its full potential as a host for metabolic engineering. Many target mol-
ecules of the bioeconomy and their precursors contain nitrogen. This study provides func-
tional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous
compounds, and provides an interactive tool for visualizing these data. We further char-
acterize several aminotransferases, lactamases, and regulators, which are of particular in-
terest for metabolic engineering.

KEYWORDS nitrogen, Pseudomonas putida, RB-TnSeq, transposon, metabolism, BarSeq,
t-SNE, aminotransferase, lactam, biosensor, amino acid, nucleotide, nitrate, nitrite,
polyamine, aminotransferases, biosensors, nitrogen metabolism

As a free-living soil bacterium, Pseudomonas putida encounters many different organic and
inorganic nitrogen sources, and its responses to these conditions have been the target of

recent study. During rhizosphere colonization, P. putida displays chemotaxis toward plant root
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exudates, which contain nitrogenous compounds such as benzylamines, polyamines, pyrrole
derivatives, nucleotide derivatives, amino acids, and phenylpropanoids (1, 2). It also dem-
onstrates chemotaxis toward and degradation of the phytotoxic and insecticidal benzoxa-
zinoids exuded from the roots of maize seedlings (3, 4). Not only is P. putida able to with-
stand and metabolize these varied compounds in a nitrogen-rich rhizosphere, it is also
capable of adapting to nitrogen-scarce conditions by increasing polyhydroxyalkanoate
(PHA) production, repressing carbon catabolism, and increasing expression of transporters
for nitrogen uptake (5).

Given its ability to adapt to the varied environment of the rhizosphere and its burgeon-
ing role as a host for sustainable chemical bioproduction, it is not surprising that P. putida’s
nitrogen metabolism has also been examined in the context of metabolic engineering. Due
to the utility of PHAs as a next-generation bioplastic, the transcriptomic, proteomic, and
metabolomic response of P. putida strains to nitrogen-limited growth conditions has
been analyzed in order to better understand how PHA synthesis is triggered by nitrogen
scarcity (6, 7). P. putida’s nitrogen metabolism and its regulation have also been a source
of metabolic engineering parts. Some of its 39 predicted aminotransferases have been
heterologously expressed as part of benzylamine derivative and glutaric acid production
pathways (8, 9). The transcription factor regulating capro- and valerolactam degradation
has been developed into a highly sensitive biosensor with the potential to be applied to
increasing lactam production titers and used as an inducible system in pathway engi-
neering (10). Moreover, many nitrogenous compounds are relevant building blocks for
commodity chemicals, and understanding P. putida’s metabolism of them can enable
more flux to be directed toward the desired product (11).

Despite its relevance to both metabolic engineering and basic scientific research,
our understanding of P. putida’s nitrogen metabolism is far from complete. Many gene
functions have been assigned through homology predictions with limited functional
evidence, which can hamper the accuracy of metabolic modeling (12). Furthermore, P.
putida has multiple paralogs of many of its enzymes, each potentially with different sub-
strate preferences. Functional genomics can provide evidence for assigning gene functions
and illuminate the specific roles of genes that have multiple paralogs (13).

In previous studies, we have employed barcoded transposon sequencing (BarSeq)
to interrogate lysine, fatty acid, alcohol, and aromatic degradation in P. putida (13–15). In
this work, we use BarSeq to study P. putida KT2440’s metabolism of 52 different nitrogen-
containing compounds, nearly doubling the amount of publicly available BarSeq data for
this bacterium. We provide evidence for many known nitrogen assimilation pathways and
their regulatory systems, and also assign function to genes whose exact roles in nitrogen
metabolism were not previously known. Due to their relevance in recent metabolic engi-
neering efforts, we further examine the substrate specificity of P. putida’s 5-oxoprolinases
and aminotransferases (8, 9, 16). To understand the regulation of these enzymes in vivo,
we further characterized their cognate regulators. This work will bolster P. putida’s utility
both as a host microorganism and as a source of metabolic engineering parts for sustain-
able chemical production.

RESULTS AND DISCUSSION
BarSeq reveals the genetic bases of diverse nitrogen metabolisms. Genes involved

in nitrogen utilization from natural and unnatural compounds were identified using
BarSeq. In these assays, a library of barcoded transposon insertion mutants was cultured in
minimal media with glucose and a variety of sole nitrogen sources (Fig. S1). A list of these
nitrogen sources and the section in which each is discussed can be found in Table 1. Wild-
type growth on these substrates over 96 h is shown in Fig. S2. These assays revealed 672
genes with strong (jfitnessj . 1) and significant (jt j . 5) fitness phenotypes. These include
100 transcription factors, 112 transport proteins, and numerous other enzymes with applica-
tions to engineered systems, such as aminotransferases (17, 18) (Fig. 1A, Fig. S3). Additionally,
529 of these genes encode proteins that are currently unreviewed in the Uniprot database,
and 256 have not shown significant phenotypes in previous BarSeq studies. To visualize the
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fitness data, the manifold learning method, t-distributed stochastic neighbor embedding
(t-SNE), was employed to cluster genes based on their fitness values in the tested condi-
tions (Fig. 1B, Fig. S3) (19). The clusters were named based on the condition that elicited
the largest and most frequent changes in fitness scores for genes within the cluster. In this
visualization, we can identify genes that may take part in similar metabolisms. An interactive
version that contains embedded hyperlinks to the Fitness Browser (20) can be accessed via
this link: https://ppnitrogentsne.lbl.gov. Although genes with specific phenotypes to one
condition are easy to identify, genes essential across many conditions are more challenging
to assign a specific function. This is particularly problematic for genes that are essential in
the majority of the tested conditions, like those involved in amino acid biosynthesis. To our
surprise, clusters of genes involved in tryptophan, arginine, methionine, and branched chain
amino acid biosynthesis were resolved by t-SNE (Fig. I1-2 available at https://ppnitrogentsne
.lbl.gov). While not as exhaustive as pairwise comparisons of conditions, t-SNE provides a
useful visualization of this diverse data set.

Global effectors of nitrogen metabolism. Mutants affected in the global regulators
NtrB (PP_5047) and NtrC (PP_5048) have diverse phenotypes in the conditions tested. NtrBC

TABLE 1 Compounds used as nitrogen sources in BarSeq experiments and the section of the paper they are
discussed in nitrogen sources indicated by (N) and amino acid dropout conditions indicated by (-)

Section Experiments included
Inorganic nitrogen sources and urea ammonium (N) nitrite (N)

nitrate (N) urea (N)

Proteinogenic amino acids L-isoleucine (N) glycine (N)
L-leucine (N) L-histidine (N)
D-lysine (N) L-alanine (-)
L-lysine (N) L-arginine (-)
L-methionine (N) L-asparagine (-)
L-ornithine (N) L-aspartate (-)
L-pipecolic (N) L-cysteine (-)
L-proline (N) L-glutamate (-)
L-threonine (N) L-glutamine (-)
L-phenylalanine (N) glycine (-)
L-serine (N) L-serine (-)
L-valine (N) L-histidine (-)
4-guanidinobutyrate (N) L-isoleucine (-)
D-alanine (N) L-leucine (-)
L-alanine (N) L-lysine (-)
L-arginine (N) L-methionine (-)
L-asparagine (N) L-proline (-)
L-aspartate (N) L-threonine (-)
L-cysteine (N) L-tyrosine (-)
L-glutamate (N) L-tryptophan (-)
L-glutamine (N) L-valine (-)

Quaternary amines and ethanolamine betaine (N) choline (N)
carnitine (N) ethanolamine (N)

Purines and pyrimidines adenine (N) hydantoin (N)
cytosine (N) uracil (N)

Lactams butyrolactam (N) 5-oxoproline (N)
caprolactam (N) valerolactam (N)
g-aminobutyric (N)

Polyamines, v -amino acids, and GABA isomers 1,3 diaminopropane (N) 6-aminocaproic acid (N)
1,6-diaminohexane (N) b-alanine (N)
DL-2-aminobutyrate (N) cadaverine (N)
DL-3-aminoisobutyrate (N) putrescine (N)
3-aminobutyrate (N) spermidine (N)
5-aminovalerate (N)

Not applicable nicotinic acid (N)
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is a two-component system that regulates the expression of numerous nitrogen assimilatory
genes in P. putida (5). When the cell is nitrogen starved, the uridylyltransferase protein GlnD
(PP_1589) modulates the activity of GlnK (PP_5234, protein PII). GlnK then activates NtrB,
which affects the phosphorylation state of NtrC. Subsequently, NtrC modulates expression
of its target regulon (5). While the library used for these assays has no insertions in glnK, the
three other members of the signaling cascade are represented in the data set and occupy

FIG 1 Global analysis of the P. putida KT2440 BarSeq data. (A) Significant genes (jfitnessj . 1 and jt j . 5) from all 71 tested conditions sorted by their
cluster of orthologous groups (COGs) based on the eggNOG database (149, 153, 154). “Multiple COGs” indicates that there was more than one COG
assigned. (B) Image of the interactive t-SNE visualization (Fig. I1 available at https://ppnitrogentsne.lbl.gov) showing the legend, t-SNE clustering (left) and
cluster centroids (right). By clicking on a substrate in the legend, the corresponding cluster (left) and centroid (right) is highlighted, opening a list of cluster
members and additional information. By clicking the highlighted centroid (right), the user is redirected to the Fitness Browser (https://fit.genomics.lbl.gov)
(20), where the fitness data for all significant genes in the condition cluster is shown. An additional t-SNE visualization including COG identifiers is
presented in Fig. I3 (available at https://ppnitrogentsne.lbl.gov). More information about the interactive figures can be found in the description of Fig. S3.
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the same cluster determined by t-SNE (Fig. I1 available at https://ppnitrogentsne.lbl.gov). It
is unclear why certain nitrogen sources trigger a strong NtrC response (Fig. 2A). The general
role of NtrC is to counteract nitrogen starvation by activating the majority of nitrogen assim-
ilatory genes, such as transporters (5). By setting an arbitrary fitness score cutoff at .21.5,
we identified at least 8 out of 52 nitrogen sources that might not rely on a functional copy
of ntrC (Table 2). The utilization pathways for those compounds seem to be less dependent
on NtrC activation, suggesting specific regulation systems or the presence of constitutively
expressed transporter and degradation pathways for these nitrogen sources. The fitness
profile of mutants in the extracytoplasmic function sigma factor SigX (PP_2088) also
seems to be correlated with that of ntrBC mutants. Previously, we found sigX to be par-
tially essential for growth on D-lysine as a carbon source (15). While no clear pattern in
the fitness data could be determined for NtrC, another global factor involved in nitrogen
metabolism, GltBD, illustrates a clear relationship between the conditions tested and their
downstream metabolites.

GltB (PP_5076) and GltD (PP_5075) comprise the glutamate synthase (GOGAT) of P.
putida, which plays an important role in the regulation of nitrogen assimilation. Interestingly,
gltBD has diverse phenotypes across the conditions we tested (Fig. 2). However, the second

FIG 2 (A) Scatterplot of the average fitness values (n = 2) for ntrC and gltBD in all the tested nitrogen conditions. For
ntrC, nitrogen conditions are grouped based on whether the fitness phenotype of ntrC is , 21.5 (blue) or . 21.5 (green).
Conditions where ntrC fitness is .21.5 (green) may be less dependent on ntrC activation and are shown in Table 2. gltBD
phenotypes are sorted based on putative glutamate (brown), glutamate1ammonium (pink), or ammonium (gray) release
during nitrogen source utilization. Fitness values for conditions resulting in gltBD fitness .21.5 are shown in Table 3. (B) The
role of the GS/GOGAT cycle in the beta-alanine (red), 3-aminoisobutyrate (green), 4-aminobutyrate (blue), and 5-aminovalerate
(orange) nitrogen source conditions. Average fitness values (n = 2) are shown for gltBD, davT, and the pyruvate dependent
transaminase PP_0596. *GlnA lacks fitness data because the library has no insertions. **Pyruvate and alanine are the specific
nitrogen acceptor and product of PP_0596.
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component of the central GS/GOGAT cycle, glutamine synthetase (glnA, PP_5046), has no
insertions in our BarSeq library, indicating that it might have been essential during library con-
struction due to glutamine auxotrophy of the mutants. We were able to observe particularly
strong fitness defects for gltBD in nitrogen conditions that either produce free ammonium or
do not yield L-glutamate (Fig. 2A) (21). For example, gltBD exhibits a very strong fitness defect
in the nitrate (26.17) and L-serine (25.95) conditions but not in the L-phenylalanine condition
(Fig. 2A, Table 3). Another example is in the comparison of 5-AVA (5-aminovalerate), 4-ABA
(4-aminobutyrate), b-alanine, and 3-AIBA (3-aminoisobutyrate). 3-AIBA utilization likely uses
pyruvate as an amino-acceptor (via PP_0596), 4-ABA and 5-AVA require 2-oxoglutarate (via
PP_0214/DavT), and b-alanine requires both aminotransferases (Fig. 2B, Fig. S4). An exemp-
tion to this rule is the nitrogen source ammonium chloride. The fitness defects for gltBD
in this condition were much lower (jfitnessj, 2), but still significant (jt j . 5). It has been
shown that at high concentrations of ammonium (.10 mM), its assimilation is achieved
by both the glutamate dehydrogenase (GdhA) PP_0675 and GltBD (5, 22, 23).

The regulators gacS (PP_1650) and gacA (PP_4099) show strong fitness phenotypes
in our data set. This two-component system is homologous to the well-studied barA/
uvrY system of Escherichia coli, and it has been identified as a global regulator of cellular
physiology in diverse organisms (24, 25). The conditions that elicited the strongest negative
fitness phenotypes for gacSA were L-alanine (21.3), b-alanine (21.8), spermidine (22.0),
and propanediamine (27.4). The direct targets of GacSA regulation are the rsm noncoding
RNAs which modulate the activity of translational repressors, resulting in global changes in
gene expression (26–28). Through this mechanism, GacSA may be required for regulation of
some portions of L-alanine, b-alanine, propanediamine, and spermidine metabolism.

Inorganic nitrogen sources and urea. P. putida KT2440 is a known obligate aerobe,
and cannot use alternative terminal electron acceptors during oxidative phosphorylation (29).
Because of this, oxidized nitrogen species can only be used as nitrogen sources. Although the
preferred inorganic nitrogen source for many bacteria is ammonium (30), other inorganic

TABLE 2 Nitrogen source conditions in which regulation may be less dependent on NtrC
activation, indicated by ntrC fitness.21.5 and illustrated by the dark blue points in Fig. 2A

Conditions in which NtrC fitness is>21.5

Condition NtrC fitness
L-glutamine 20.27
putrescine 20.46
L-asparagine 20.57
ammonium chloride 20.66
4-aminobutyric acid 20.86
4-guanidinobutyric acid 21.30
L-histidine 21.31
adenine 21.43

TABLE 3 Nitrogen source conditions in which gltBD fitness.21.5, illustrated by the
scatterplot in Fig. 2A

Conditions in which GltBD fitness is>21.5

Condition GltBD fitness
L-isoleucine 10.20
butyrolactam 10.12
L-pyroglutamic acid 10.10
L-valine 10.08
L-phenylalanine 10.04
L-aspartate 20.07
L-glutamic acid 20.15
L-proline 20.16
L-glutamine 20.32
4-aminobutyric acid 20.45
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nitrogen species such as nitrate and nitrite can be utilized via the assimilatory nitrate reduction
system, often organized in a single gene cluster (31, 32). The enzymes associated with the
initial steps of the assimilatory nitrogen system in P. putida are the reductases NarB and
NirDB, for which we see significant growth phenotypes (Fig. 3). In Pseudomonads, the
two-component system NasS/T is a common regulator of this operon (32–34). In the ab-
sence of oxidized nitrogen sources, NasS and NasT form a complex that represses produc-
tion of nitrate and nitrite reductases. When nitrate or nitrite are present, NasS dissociates
from the NasS/T complex and the free RNA-binding antiterminator, NasT, enables full
translation of the nitrate reduction operon (35) (Fig. 3).

Our competitive growth assay using BarSeq indicated that the same systemmay also op-
erate in P. putida KT2440. In the nitrate condition, the specific growth phenotypes for nasT
(PP_2093) and nasS (PP_2094) are represented by the significant fitness values of 23.2 and
21.4, respectively. We were also able to identify a distinct nitrate transporter PP_2092 (22.6).
However, no significant phenotype could be detected for this gene in the nitrite condition,
suggesting that it may be specific to nitrate. Because there were no mutants in predicted
transporters with strong fitness phenotypes in the nitrite condition, it is also possible that
PP_2092 or other unidentified transporters are responsible for nitrite transport. At pHs less
than 7.2 and concentrations greater than 100mM, nitrite is also known to be passively trans-
ported into the cell via diffusion of nitrous acid, likely explaining the lack of fitness data for
this transport reaction (36).

Overall, the nitrite condition demonstrates a pattern of fitness phenotypes that resembles
a stress response. In its free acid form, nitrite has been previously shown to have antimicrobial

FIG 3 The assimilatory nitrate reduction system in P. putida KT2440. Average fitness values (n = 2) exhibited in
the nitrate (green), nitrite (red), and ammonium (yellow) sole nitrogen source experiments. Shown are putative
transporters, action of the NasST regulatory system, the assimilatory pathway, and the role of the bis-
molybdopterin guanine dinucleotide (bis-MGD) cofactor. bis-MGD is the required cofactor for NarB (155). The
fitness phenotypes for bis-MGD biosynthesis cluster together with the nitrate phenotypes and can be found in
the interactive t-SNE visualization (Fig. I1 available at https://ppnitrogentsne.lbl.gov).
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properties and was hypothesized to have wide-ranging mechanisms of action, including
DNA damage, collapse of the proton motive force, and deleterious nitrosylation of cofactors
and proteins (37). Our fitness data indicate that disruption of the recently identified RES-Xre
toxin-antitoxin (TA) module (PP_2433-4) is detrimental to growth in the nitrite condition. In
this system, the toxin (PP_2434) rapidly degrades NAD1 to halt bacterial growth and give
the organism time to adapt its survival strategies, while the antitoxin (PP_2433) inhibits
the toxin to allow restoration of NAD1 levels (38, 39). The significant fitness defect of
mutants in the antitoxin PP_2433 (26.4) might indicate that either the RES-Xre system is
part of P. putida’s stress response to nitrite, or that nitrite disturbs the redox homeostasis
of the cell and further disruption of redox balance by the PP_2434 toxin is lethal in
strains lacking a functional PP_2433 antitoxin. We also observed significant phenotypes
for several pathways that oxidize NAD(P)H, which supports the idea that NAD1 is
depleted in the nitrite condition. One example is P. putida’s altered glucose utilization
strategy. Fitness data indicates that glucose oxidation to 2-ketogluconate is preferred over
the gluconate phosphorylation or direct glucose uptake pathways (40–42). Indicators for
the accumulation of 2-ketogluconate in the nitrate condition include the specific fitness
phenotypes for the transporter kguT (PP_3377; 21.5) and the NAD(P)H-dependent dehy-
drogenase kguD (PP_3376;22.65). Compared with the other two pathways, glucose utiliza-
tion via 2-ketogluconate produces more NAD(P)1. Other conditions that seemed to lead to
similar phenotypes for kguT were 1,6-hexanediamine (21.3), caprolactam (21.55), 2-ami-
nobutyric acid (21.5), and uracil (21.2).

Urea, the simplest organic nitrogen source we tested, only elicited significant fitness
phenotypes in gltBD (25.45) and ntrC (21.8). Transcriptome analysis has previously revealed
that the expression of a putative urease operon in P. putida (PP_2842-9) is controlled by NtrC
(5). However, we observed no significant phenotypes in this operon. The presence of a second
urea degradation pathway via urea carboxylase is unlikely, because it has been shown that
organisms that possess the carboxylase pathway typically lack an urease (43–46). More
research is necessary to further characterize urea metabolism in P. putida.

Proteinogenic amino acids. The amino acid metabolism of microorganisms is of
special interest for the food and bulk chemical industries, and has therefore been stud-
ied extensively for many decades (47). In contrast to the genus Corynebacterium,
Pseudomonas spp. play a minor role in the industrial production of amino acids (48).
However, their exceptional tolerance toward organic solvents makes them an excellent
host for production of aromatic amino acid-derived compounds (11, 49–58).

Here, we have tested the 20 proteinogenic amino acids and two D-stereoisomers as
the sole nitrogen source in a competitive growth assay using BarSeq. We also included
BarSeq data from experiments where L-arginine, L-histidine, L-lysine, and D-lysine were
used as sole carbon sources, and ammonium chloride was provided as a nitrogen
source. No fitness data could be obtained for tyrosine and tryptophan due to insuffi-
cient biomass for DNA extraction and BarSeq analysis. Furthermore, although it has
been reported that P. putida is unable to grow with the L-stereoisomers of methionine,
threonine, or leucine as the sole source of carbon and nitrogen, we observed that P.
putida could grow with these as sole nitrogen sources (Fig. S2) (59). The flux of their
carbon backbones into the TCA cycle might be too inefficient for these three amino
acids to simultaneously be the sole source of both carbon and nitrogen.

Microorganisms may possess multiple pathways for the degradation of the same
amino acid, especially in the case of L-arginine, for which there are five known degrada-
tion pathways in Pseudomonas aeruginosa (60–62). Our nitrogen BarSeq experiments
confirmed the presence of two of these pathways, and carbon source BarSeq data con-
firmed the presence of a third. Although another confirmed pathway in P. aeruginosa,
the deiminase pathway, could not be identified in P. putida using BarSeq, the P. putida
arginine deiminase AraA (PP_1001) has been successfully characterized in vitro (63).

The use of L-arginine as the sole nitrogen source led to significant growth phenotypes
in both the common arginine succinyltransferase (AST) pathway (,22.7) and the arginine
decarboxylase/agmatine deiminase pathway. Ornithine can also be incorporated into the
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AST pathway, however, the only significant fitness defect we observed in this condition was for
the dehydrogenase AstD (PP_4478;22.3) (64, 65). Interestingly, the required succinyltransferase
(PP_4479-80) to channel ornithine into the AST pathway exhibits a positive fitness value (11.5).
Under these conditions, ornithine degradation through the AST pathway may not be the
optimal pathway. An alternative route, such as direct deamination by the cyclodeaminase
PP_3533 (20.85) and conversion of proline to glutamate (PP_4947; 25.15), might be
more favorable (61).

The presence of a functional arginine decarboxylase/agmatine deiminase (ADAD)
pathway in P. putida is indicated by the fitness defect of the arginine decarboxylase
PP_0567 (20.75). The amidase family protein PP_2932 has a strong fitness defect (21.85) in
the arginine condition, suggesting that it acts on N-carbomylputrescine as part of the ADAD
pathway and should be more specifically annotated as an N-carbomylputrescine amidase.

When L-arginine is used as the sole carbon source, significant phenotypes for the arginine:
pyruvate transaminase (APT) pathway appear as well. This pathway consists of the transami-
nase AruH (PP_3721, 21.2), the decarboxylase AruL (PP_3723, 20.9), the dehydrogenase
KauB (PP_5278, 21.6), and a guanidinobutyrase (PP_4523, 21.5). The putative guanidinobu-
tyrase PP_4523 not only has a fitness defect with L-arginine as the carbon source, but also
with 4-guanidinobutyric acid as the nitrogen source (20.95).

Due to a slight fitness defect (21.0) of the predicted alanine racemase (Alr) PP_3722 and
its localization in the APT operon, it is unclear whether AruH acts on the D- or L-stereoisomer
of arginine, or on both. In a previous study, the deletion of alr led to significantly decreased
growth of P. putida with arginine as the sole carbon and nitrogen source (66). This might
indicate the presence of another catabolic route for arginine via its D-stereoisomer.

Carbon and nitrogen availability could determine the preference for one pathway
over another. Because the AST pathway requires succinate for the conversion of argi-
nine to glutamate, it is less efficient under carbon-limiting conditions, whereas the
products of the other pathways can feed directly into the TCA cycle via putrescine and
gamma aminobutyric acid (GABA) degradation (60).

The predicted histidine-lysine-arginine-ornithine ABC transport system (PP_4483-PP_4486)
shows significant phenotypes (. 22) only in the arginine condition, while the ornithine con-
dition results in mild fitness defects (20.44). Furthermore, a different transporter, PP_5031,
seems to be the most important transporter for histidine (20.55). Interestingly, PP_5031 has a
much stronger phenotype in the histidine carbon source condition (24.5). Because NtrC
responds to nitrogen-scarce conditions by upregulating nitrogen transporters (5), it may be
challenging to identify transporters that are distinctly expressed in the presence of a specific
substrate. These mild fitness defects for transporters in the histidine and ornithine nitrogen
source conditions suggest that multiple transporters capable of accepting histidine or orni-
thine are expressed as part of the NtrC response. This limitation of nitrogen source BarSeq
assays might be circumvented by adding ammonium in excess or complementing nitrogen
source BarSeq data with carbon source experiments.

Another interesting interaction between D- and L-stereoisomers can be observed in
the catabolism of lysine and alanine. Lysine catabolism in P. putida has been extensively stud-
ied and was fully characterized by Thompson et al., who used D- and L-lysine as a carbon
source for BarSeq experiments (15, 59, 66–71).

The key difference between the lysine carbon and nitrogen source data sets is in the
genes PP_4493, PP_0213, and gltBD. PP_0213 and PP_4493 are involved in the flux of the
carbon skeleton of D- and L-lysine into the tricarboxylic acid (TCA) cycle and are therefore
critical under carbon-limiting conditions (Fig. S5). Because the substrates of both gene
products are fully deaminated, their fitness values in nitrogen-limiting conditions are neg-
ligible. The strong phenotype for gltBD (25.8) is likely caused by the release of free
ammonium in the first deamination step.

Along with D-glutamate, D-alanine is an important compound for the synthesis of
microbial peptidoglycan and therefore necessary for bacterial survival and growth (72). The
main racemase in P. putida for alanine appears to be DadX (59, 73). Our BarSeq data for ala-
nine suggest that the conversion reaction was essential for P. putida’s survival when the
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library was constructed because there are no dadX (PP_5269) mutants present in our mutant
library. The dadX paralog alr may be able to convert alanine as well, but its insignificant
growth phenotype implies that it only plays a minor role in alanine degradation (59, 66, 73).
Furthermore, neither of the alanine transaminase homologs show a growth defect when ei-
ther L- or D-alanine is used as the sole nitrogen source. The only significant growth defect
under these conditions is that of the deaminating D-amino acid oxidoreductase PP_5270
(dadA) and interestingly, its fitness defect is only significant with L-alanine (23.6). For D-ala-
nine, it only has a slight fitness defect of 20.65. An indicator that D-alanine deamination is
still dependent on PP_5270 is the significant growth defect caused by the transcriptional
regulator PP_5271 (22.05). The gene PP_5271 has high identity (93% with an E-value
of , 9e-88) with the regulator lrp from P. aeruginosa PA14. In P. aeruginosa PA14, lrp is a
transcriptional activator of the dad operon, which is required for L-alanine catabolism. The
regulator is highly induced by L-alanine and also slightly less induced by D-alanine and L-va-
line (74). The strong negative fitness value of 22.05 also supports the theory that lrp is an
activator rather than a repressor in P. putida (75).

Pseudomonads are well known for their ability to degrade and synthesize aro-
matic compounds (76). Therefore, it is not surprising that they have also developed
a large repertoire of aminotransferases with activity on aromatic substrates (77, 78).
The only aminotransferase we identified in an aromatic amino acid condition (L-phe-
nylalanine) is PP_3590 (24.0). Its gene product is annotated as the D-lysine amino-
transferase AmaC, although it plays a minor role in D-lysine degradation (71). Our
BarSeq experiments suggest that PP_3590 has a broad substrate range, with fitness
defects appearing on other substrates as well. For example, it has a fitness defect of
21.25 on L-pipecolate, indicating potential L-2-aminoadipate transaminase activity.
The homolog, PP_1972, seems to have little effect on phenylalanine (20.35) or pipe-
colate (20.15) growth. In a previous study, a double knockout mutant of PP_3590
and PP_1972 did not lead to phenylalanine auxotrophy, underlining the redundancy
of aromatic aminotransferases in P. putida (78).

Overlaps between aromatic amino acid transferases and branched-chain amino acid
(BCAA) metabolism are also common in bacteria (79). Our data indicate that the aromatic
aminotransferase PP_3590 also seems to be involved in the transamination of L-isoleu-
cine (21.75). However, the main transaminase in BCAA degradation and biosynthesis is
PP_3511 (ilvE). It shows a significant fitness defect (, 24) in almost all the tested condi-
tions, including ammonium chloride (25.55). This highlights the importance of PP_3511 in
minimal media conditions and its unique role in the metabolism of BCAAs. In fact, IlvE-defi-
cient strains require gene complementation or supplementation of all three BCAAs (valine, iso-
leucine, leucine) to restore growth in minimal media (80, 81). We observe a similar behavior
for the histidinol-phosphate aminotransferase PP_0967, which is essential for all the tested
conditions except histidine. Surprisingly, heterologous expression of PP_0967 has been used
to facilitate the deamination of L-phenylalanine to phenylpyruvate (54).

Many steps of the amino acid catabolism in P. putida are already known or precisely
predicted based on homology models. However, by using BarSeq, we were able to
generate functional evidence for the pathways of at least eight additional amino acids
beyond the ones discussed here. To further expand our understanding of the amino acid
metabolism in P. putida, we also included drop-out growth experiments for all proteinogenic
amino acids. By supplying all but one of the 20 proteinogenic amino acids, we created con-
ditions where biosynthesis of amino acids is essential for growth. We refer to the Fitness
Browser (https://fit.genomics.lbl.gov) and the interactive t-SNE visualization (Fig. I1-2 avail-
able at https://ppnitrogentsne.lbl.gov) for more details.

Quaternary amines and ethanolamine. Choline is a trimethylated, positively
charged amine and a common component of ionic liquids used in the depolymeriza-
tion of lignin (82). In nature, choline is metabolized by most bacteria to serve as a pre-
cursor for betaine, which is an important osmoprotectant (83). While biosynthetic path-
ways for those compounds are rarely present in bacteria, transporters and catabolic
routes for quaternary amines are ubiquitous in these organisms (84, 85).
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It is predicted that choline, betaine (trimethylglycine), and carnitine are metabolized
through convergent pathways, with carnitine and choline entering betaine metabolism
following thiolase cleavage and alcohol oxidation, respectively (86) (Fig. 4A). In the subsequent
reactions, betaine is demethylated to produce glycine. Even though the glycine cleavage sys-
tem (PP_0986, PP_0988, and PP_0989) has a significant phenotype when glycine is used as
the sole source of nitrogen (, 24), it is not essential for growth in the quaternary amine con-
ditions (. 20.3). Instead, conversion into serine is more efficient due to the generation of the
required methyl-group donor 5,10-methylenetetrahydrofolate during demethylase activity of
PP_0310-1 (87). As indicated by the strong fitness phenotypes elicited in the carnitine, choline,
and betaine conditions, this reaction is likely catalyzed by PP_0322 (a predicted glycine/serine
hydroxymethyltransferase) (, 22). Although PP_3144 (L-serine dehydratase) appears essential
for growth on L-serine as a sole nitrogen source (22.3), it is non-essential for growth on the
tested quaternary amines. This suggests that other serine dehydratases (PP_0297 or PP_0987)
or deaminating enzymes may be expressed in these conditions to release ammonium
from serine.

Based on the results of the BarSeq assay and sequence homology, the initial steps
in carnitine metabolism were also identified. We propose that the beta-oxidation of carnitine

FIG 4 Quaternary amine and ethanolamine degradation in P. putida. (A) Putative routes for the quaternary amine catabolism in P. putida KT2440. The figure shows the
degradation of choline (red), carnitine (green), and betaine (blue). The corresponding average fitness scores (n = 2) are shown next to each gene. (B) Ethanolamine
degradation pathway, shown with fitness values (n = 2) and regeneration of the AdoCbl cofactor. (C) Heatmap with average fitness scores (n = 2) of genes that are
putatively involved in P. putida’s adenosylcobalamin biosynthesis. No fitness scores (gray) could be obtained for the genes PP_1680 (cobV) and PP_3410 (cobM).
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to betainyl-CoA proceeds through the genes PP_0301 (a putative thioesterase), PP_0303
(a dehydrocarnitine cleavage enzyme), and PP_0302 (L-carnitine dehydratase) (Fig. 4A). The
carnitine metabolism of P. aeruginosa was originally believed to proceed via CoA activation
of oxidized carnitine (88). Enzymatic characterization of a PP_0303 homolog has since sug-
gested that this protein acts upon oxidized carnitine and acetyl-CoA, releasing acetoacetate
and betainyl-CoA (89).

We also observed fitness phenotypes for the transporters and regulators involved
in quaternary amine metabolism. Although all three quaternary amines cause a strong
NtrC response, which tends to mask distinct transporters, PP_0294-6 (choline/betaine/
carnitine ABC transporter) exhibits fitness defects for choline (21.13) and carnitine (22.55).
The metabolism of betaine and its precursors is regulated by the repressor BetI (PP_5719) and
the activators GbdR (PP_0298) and CdhR (PP_0305) (84, 90). While gbdR is essential in all three
conditions (, 21.0), cdhR is specific to carnitine (22.5) and betI is specific to choline (11.15).
The negative and positive fitness defects correlate with the predicted mode of action for these
regulators (90). The reason for the significant fitness phenotypes of PP_0308-9 in these condi-
tions and their role in this operon are still unknown. Transcriptomic analysis suggested that
they might be involved in the formation of filamentous biofilms (91).

Ethanolamine is a common molecule in nature and is involved in the choline and
serine metabolism of plants (92, 93). Therefore, it is not surprising that several Pseudomonads
are able to use it as a source for carbon and nitrogen (94). Bacterial ethanolamine degradation
can be divided into two routes: (i) via acetyl-CoA or (ii) via ethanol (94, 95). However, the first
step in both pathways is catalyzed by the adenosylcobalamin-dependent ethanolamine am-
monia-lyase (EAL) EutBC (95–97). In P. putida, we observed a strong fitness phenotype for
eutBC (PP_0542-3;23.1) in the ethanolamine condition (Fig. 4B). Furthermore, we were also
able to support the requirement for its cofactor adenosylcobalamin (AdoCbl). Because there
is no exogenous AdoCbl in our minimal media and no specific phenotypes for the corri-
noid-specific transport system PP_0524-5, P. putida is likely capable of the de novo synthesis
of AdoCbl (98–101). This is also supported by the strong fitness phenotypes we observed
for the putative cob genes in this condition (Fig. 4C). The additional requirement of the
adenosyltransferase PduO (PP_1349; -2.2) is most likely caused by the release of Cbl during
EAL activity (102–105). Re-adenylation of Cbl by PduO is likely less metabolically demanding
than the de novo synthesis of AdoCbl.

Purines and pyrimidines. Purines and pyrimidines are widely distributed chemical
structures in nature, and many organisms also salvage them as nitrogen sources. In
this study, we have tested the purine base adenine and the pyrimidine bases cytosine
and uracil as sole nitrogen sources using BarSeq. Similar to many other purines, the first
steps in the degradation of adenine and guanine are the conversion into the shared inter-
mediate xanthine (Fig. 5A). While adenine is converted to xanthine via the intermediate hy-
poxanthine, guanine is directly converted to xanthine by the guanine deaminase PP_4281
(106). The slight fitness defect of the adenosine deaminase PP_0591 (-0.45) might indicate
that it can also act on adenine as a substrate.

The deamination products of the purine nucleobases, hypoxanthine and xanthine, are
then both converted by the xanthine dehydrogenase complex xdhABC (PP_4178-80) to
yield urate. For many years it was believed that the urate oxidation reaction yields (S)-allan-
toin in a single step (107). However, it was recently discovered that in addition to urate oxi-
dase, this reaction actually involves two other enzymes and proceeds through the interme-
diate 5-hydroxyisourate, releasing hydrogen peroxide (108). To date, no urate oxidase has
been experimentally verified in P. putida, and the only potential urate oxidase (PP_3099)
exhibits no growth phenotype in any of the tested conditions. An indirect indicator for this
reaction could be the significant fitness defect of the LysR-type transcriptional regulator
PP_2250 (22.35) and the conserved membrane protein of unknown function PP_2251
(22.25). PP_2251 has high identity with the proteobacterial antimicrobial compound efflux
(PACE) transporters A1S_1053 (57% with an E-value of 6e-45) from Acinetobacter bauman-
nii and PFL_4585 (64% with an E-value of 5e-56) from Pseudomonas protegens Pf-5. It is
possible that PP_2251 might also be a PACE transporter that functions as part of a defense
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FIG 5 Putative routes for purine (A) and pyrimidine (B) catabolism in P. putida KT2440. Shown are the average fitness
scores (n = 2) for genes involved in adenine (teal), guanine (yellow), cytosine (blue), uracil (red), and hydantoin (green)
degradation.
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mechanism against hydrogen peroxide or spontaneous peroxide radicals formed during
urate oxidation (109, 110). The downstream reactions of 5-hydroxyisourate conversion to
(S)-allantoin were strongly indicated by BarSeq. These reactions and further processing of
(S)-allantoin to glyoxylate and urea are shown in Fig. 5A

The degradation of the pyrimidine base cytosine begins with the removal of the amine
group by the cytosine deaminase CodB (PP_3189; 21.2) (Fig. 5B). Furthermore, we were
able to confirm the significance of the designated cytosine transporter CodA (PP_3187;
21.2). Unexpectedly, the same transporter and deaminase cause fitness defects in the 3-
aminobutyric acid (3ABA) condition (21.15 and 21.15, respectively). The expression of the
codBA operon and many other transport systems for nitrogenous compounds is controlled
by the global regulator NtrC (5, 111). A general survival strategy for P. putida under nitro-
gen-limiting conditions seems to be the expression of numerous transporters for nitrogen-
containing compounds that could potentially be present in the medium (5). Because 3ABA
is an uncommon metabolite in nature, it might activate NtrC to such an extent that the cell
starts scavenging nucleotides as a first response to nitrogen starvation (5, 111). Fitness
defects for the hydantoinase PP_4036 (21.8) and the dihydropyrimidine dehydrogenase
PP_4037-8 (22.78) are additional indicators for the degradation of nucleotides.

Given the deamination product of cytosine is uracil (Fig. 5A), similarly strong fitness
values in both conditions could be expected. However, the fitness values associated
with uracil degradation were at least 5-fold smaller in the cytosine condition. Our data
suggest that in some cases subsequent deaminations of the same compound lead to
less significant phenotypes; other examples include lysine and arginine nitrogen source
experiments (Fig. S5).

The ring-opening reaction for 5,6-dihydrouracil is catalyzed by PydB (PP_4036; 22.8),
and the resulting amide (S)-ureidoglycolate is then hydrolyzed by hyuC (PP_4034) or its
predicted paralog PP_0614. Both (S)-ureidoglycolate hydrolyzing genes have no significant
fitness defect, likely due to functional redundancy. Surprisingly, the only significant growth
phenotype we identified for hyuCwas in the hydantoin condition.

Hydantoin was discovered as a reduction product of allantoin (112), and its derivatives
are used as anticonvulsants and pesticides (113, 114). Because it is a xenobiotic compound,
the ability of P. putida to utilize hydantoin is probably due to its structural similarity to 5,6-
dihydrouracil. The pyrimidine permease PP_4035 (-1.05) appears to be involved in hydantoin
transport, and the same dihydropyrimidinase (PydB) that acts on 5,6-hydrouracil is likely re-
sponsible for opening its 5-membered ring (21.15), producing carbamoylglycine. The ami-
dohydrolase hyuC has a fitness defect of 21.0 in hydantoin sole nitrogen source experi-
ments, which is the strongest fitness defect we observed for this gene. This could be
explained if hydantoin was not within the substrate range of its paralog PP_0614 (20.15). It
is known that R-substituted hydantoins are converted by bacteria to the corresponding d-
amino acid (115). Although comparing the hydantoin condition with the glycine condition
did not reveal any common phenotypes involved in these metabolisms, it is likely that the
products of the carbamoylglycine hydrolysis are glycine, ammonia, and carbon dioxide.

Even though we have no data for thymine, we tested a racemic mixture of 3-amino-
isobutyric acid (3-AIBA) as the sole source of nitrogen. Its D-stereoisomer is the final
product of thymine degradation (116). To date, no aminotransferases have been identi-
fied in P. putida that show either D- or L-3-AIBA activity. However, the strong fitness
phenotypes for the pyruvate transaminase PP_0596 (26.3) and the dehydrogenase
PP_0597 (21.7) are most likely caused by the presence of the L-stereoisomer, which is
a common intermediate in valine degradation (117). Another potential indicator that
PP_0596 has 3-AIBA transaminase activity is the fitness defect for the transcriptional
regulator lrp (22.15) and the deaminating D-amino acid oxidoreductase PP_5270 (21.4). As
described earlier, these genes are part of the dad operon which is involved in alanine metab-
olism and therefore an indicator for pyruvate transaminase activity (74).

Lactams. With applications ranging from manufacturing solvents to precursors for
plastics and pharmaceuticals, lactams are an industrially relevant class of chemicals (118).
Here, we tested four different lactams as nitrogen sources in our BarSeq experiments,
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gaining functional evidence for two previously uncharacterized lactam hydrolases,
PP_2920-2 and PP_4575-7. Fitness data indicate that these lactam hydrolases are responsi-
ble for the hydrolysis of butyrolactam and 5-oxoproline (Fig. 6A). In-frame deletions of
each of these hydrolases abolished growth when their respective lactam was provided as the
sole nitrogen source. Growth could then be restored by complementation with a pBADT-
based plasmid containing the lactam hydrolase (Fig. S6).

The three subunits of PP_2920-2 and PP_4575-7 are annotated by UniProt as paral-
ogs of pxpABC, the previously described widespread prokaryotic 5-oxoprolinase (119).
Formerly, 5-oxoprolinases were only known to exist in eukaryotes and bacteria

FIG 6 (A) Heatmap with fitness scores (n = 2) of genes putatively involved in the hydrolysis of caprolactam, valerolactam,
butyrolactam, and 5-oxoproline in P. putida KT2440. (B) LC-MS analysis of caprolactam degradation in P. putida KT2440.
Wild-type cells were grown in MOPS minimal media with ammonium (blue) and caprolactam (orange) as the sole source of
nitrogen. Shown is the OD (squares) and concentration of adipate in the supernatant (circles) over a time course of 72 h. The
dashed line marks the time point at which caprolactam was no longer detected in the media.
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possessing a g-glutamyl cycle. Niehaus et al. hypothesized that prokaryotes must have a
way to combat the spontaneous cyclization of glutamate and glutamine to 5-oxoproline
and identified pxpABC (119). Our fitness data suggests that only PP_4575-7 acts on 5-oxo-
proline, although it is also possible that spontaneous metabolite cyclization is the reason
for the evolution of P. putida’s two other lactam hydrolases, PP_2920-2 and the previously
identified valerolactam hydrolase OplBA (PP_3514-5) (16). The v -amino acids GABA and 5-
aminovalerate (5AVA) are common metabolic intermediates in P. putida, appearing as part
of arginine, putrescine, and lysine catabolisms (15, 120, 121). Previous work has demon-
strated that these C4 and C5 v -amino acids can cyclize following activation to an acyl-
CoA thioester (16, 118, 122). With no functional hydrolase, these lactams would serve as
dead-end metabolites, and the reduction in carbon and nitrogen availability might be det-
rimental to growth. To test whether these lactamase systems serve this purpose, we con-
ducted growth assays of DPP_4575-7, DPP_2920-2, and DoplBA with their lactam substrate’s
corresponding v -amino acid as a nitrogen source (Fig. S7). We observed slight growth lags
and decreased maximal optical densities (ODs) in the knockouts versus the wild type, sup-
porting the idea that these lactam hydrolases might exist for this purpose.

In previous work, the lactamase responsible for the hydrolysis of valero- and caprolactam,
OplBA, was identified using proteomics data (16). Although the authors did search for the
lactam hydrolase with BarSeq experiments using valerolactam as a sole carbon source, there
was no significant fitness data for OplBA. Interestingly, we observed significant negative and
positive fitness phenotypes for OplBA mutants with valerolactam and caprolactam as the
nitrogen sources, respectively (Fig. 6A). The positive fitness data for OplBA mutants on cap-
rolactam is especially surprising, because previous work has shown that oplBA knockouts
cannot grow with caprolactam as the sole nitrogen source (16). However, it could be
explained by the nature of BarSeq experiments. Library mutants with a functional OplBA hy-
drolyze the caprolactam to 6-aminocaproic acid (6ACA), which then accumulates due to P.
putida’s slow utilization of this nitrogen source (Fig. S2). Then, mutants with the oplBA genes
disrupted can consume the freed 6ACA without needing to expend the resources to pro-
duce this protein in already nitrogen-limited growth conditions.

The slow utilization of caprolactam, and therefore 6ACA, as a nitrogen source may
be because P. putida is unable to utilize the product of 6ACA transamination, adipic
acid (123). We suspected that adipic acid was accumulating in the media, which we
confirmed with a metabolomics experiment. Caprolactam was used as a sole nitrogen
source, and samples of the supernatant were taken at 1, 6, 12, 24, 48, and 72 h. Within
48 h, caprolactam is no longer detectable in any of our samples, while adipic acid
slowly accumulates at approximately the same rate that biomass increases (Fig. 6B).

Adjacent to each of these three lactam hydrolases are three transcription factors:
oplR (PP_3516), PP_2919, and PP_4579. The fitness data suggest that each of these
transcription factors activates expression of its neighboring lactam hydrolase in response to
the presence of its lactam substrate. However, we cannot determine from the fitness data if
specificity for the different lactams is due to the transcription factor, the lactam hydrolase, or
both. To answer this question, we examined the specificity of the lactam hydrolases through
a complementation assay and the specificity of the transcription factors using (red fluores-
cent protein) RFP reporters.

For each of our three hydrolase knockout strains, we attempted to restore growth
on its corresponding lactam with plasmid-based expression of the three different lac-
tam hydrolases, resulting in a total of 9 strains tested. If a lactam hydrolase was more
promiscuous than its regulator, we would expect it to restore growth in backgrounds
with a different lactamase knocked out. However, plasmid-based expression of the lac-
tam hydrolases only restored growth in the expected nitrogen source condition, indi-
cating that the lactam hydrolases are fairly specific (Fig. S8).

The transcription factor oplR has already been identified as the regulator of oplBA
and developed into a suite of highly sensitive valero- and caprolactam biosensor plas-
mids (10). However, although it is strongly suggested, we cannot assume from the fit-
ness data alone that the other adjacent regulators are responsible for inducing

RBTnSeq Investigation of P. putida Nitrogen Metabolism Applied and Environmental Microbiology

April 2022 Volume 88 Issue 7 10.1128/aem.02430-21 16

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.02430-21


lactamase expression. To confirm the role of each transcription factor, we conducted
assays of two-plasmid systems in E. coli, as done by Thompson et al. with oplR (10). The
transcription factor was expressed under the control of an arabinose inducible pro-
moter on a low copy plasmid (pSC101 origin), while the region 200 bp upstream of the
lactamase was cloned 59 of the RFP gene in a medium-copy-number plasmid (BBR1).
We refer to these plasmids as the sensor and reporter plasmid, respectively. The tran-
scription factor induction level and concentration of the expected lactam ligand were
then combinatorially varied. RFP, normalized with OD, increased with increasing lactam
concentrations, and the dynamic range of the assay changed with transcription factor
induction (Fig. S9B). This indicated that the transcription factors do in fact induce
expression of their adjacent lactam hydrolases in response to their corresponding lac-
tams. However, total induction and dynamic range were very small, likely because
these transcription factors do not function optimally in E. coli. Therefore, we decided to
probe the specificity of lactam regulation in P. putida. Unfortunately, our sensor plas-
mids are not compatible with P. putida. Instead, we opted to test the ligand range of
these transcription factors by transforming our reporter plasmids into P. putida and
relying on native expression levels of the transcription factors.

Both the butyrolactam and 5-oxoproline systems displayed high inducer specificity,
with RFP induction occurring only in the presence of their expected ligand. The dynamic
range of both of our reporter plasmid systems was quite wide, and both systems displayed
high sensitivity. In particular, the butyrolactam reporter had normalized RFP signal roughly
900 times above zero induction at the lowest tested butyrolactam concentration (50 mM).
This system has the potential to be highly effective as a biosensor for detecting butyrolac-
tam production in P. putida. We also observed a response to butyrolactam from the reporter
plasmid for OplR. Previous work by Thompson et al. showed that OplR is highly specific to
valero- and caprolactam, but the maximum butyrolactam concentration tested was 0.5 mM
and the host was E. coli (10). We detected fluorescence at butyrolactam concentrations
greater than ; 6.25 mM, however, because we are relying on native expression of the tran-
scription factor, we cannot know for certain whether this is due to a response from OplR to
the butyrolactam or cross talk between PP_2919 and the oplBA promoter (Fig. S9C).

Polyamines, x-amino acids, and GABA isomers. Polyamines are abundant in
nearly all forms of life and are involved in numerous cellular functions, including gene
expression, stress response, cell growth, and membrane homeostasis (124). Beyond their bi-
ological significance, polyamines also have great industrial value, for example, putrescine is
a direct nylon precursor, and propanediamine is used in textile finishing and strengthening
agents (125, 126). The v -amino acids, several of which are the degradation products of poly-
amines, also have both biological and industrial relevance. Many are produced as metabolic
intermediates in pathways such as proteinogenic amino-acid degradation, while some, such
as GABA, can act as signaling molecules (127, 128). Industrially, the aforementioned 6ACA,
5AVA, and GABA are precursors to several polymers and plastics (118).

The three transaminases that appear to be most important for the utilization of poly-
amines, v -amino acids, and GABA isomers are the pyruvate:alanine aminotransferases
PP_0596, PP_2180 (SpuC-I), and PP_5182 (SpuC-II). They have different specific fitness phe-
notypes on both polyamines and amino acids, however, because the tested polyamines
are converted to v -amino acids, we could not determine if any acted directly on polyamines.
Therefore, we purified these enzymes to assay their substrate range in vitro. Surprisingly, all
three of the aminotransferases showed some in vitro activity on nearly all of the substrates
tested, including substrates on which they had no significant fitness phenotype (Table 4)
(Fig. S10).

The promiscuity of these enzymes directly contrasts with the specific phenotypes of
the fitness data. For example, PP_2180 or PP_5182 have no fitness defect on 1,3-diamino-
propane (1,3-DAP), yet both demonstrate greater activity on this substrate than PP_0596,
which does have a significant fitness defect. This disparity between the fitness data and bio-
chemical data is best explained by a difference in the promiscuity of these enzymes

RBTnSeq Investigation of P. putida Nitrogen Metabolism Applied and Environmental Microbiology

April 2022 Volume 88 Issue 7 10.1128/aem.02430-21 17

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.02430-21


and their regulators. To investigate our hypothesis, we constructed fluorescent re-
porter systems.

As previously described in the Lactams section, we used a two-plasmid approach
with RFP as an output to test transcription factor and aminotransferase promoter com-
binations in E. coli. We were able to identify the transcription factors likely responsible
for regulation of the aminotransferases PP_0596 and PP_2180 (Fig. S11). Adjacent to PP_0596
is the LysR-type transcription factor PP_0595, which has fitness data that closely mirrors the
phenotypes of PP_0596. The two-plasmid system for this combination worked as anticipated,
and it appears that PP_0595 activates the promoter in response to both DL-3-aminoisobutyric
acid (3AIBA) and b-alanine (Fig. S11). The aminotransferase PP_2180 had opposite fitness data
to the adjacent MerR-family transcription factor PP_2181, which is oftentimes characteristic for
transcriptional repressors. PP_2180 appears to be part of an operon and using the region
upstream of PP_2177 as a promoter results in a response to 1,6-diaminohexane (1,6-DAH) and
cadaverine (Fig. S11). The specificity of these transcription factors was much higher than the in
vitro substrate specificity of the aminotransferases they regulate, suggesting that the role of
PP_0596 and PP_2180 in vivo is determined by regulation.

Utilization of polyamines as a nitrogen source can proceed through two pathways, direct
transamination by an aminotransferase or the g-glutamylation pathway. However, because
the product of theg-glutamylation pathway is an v -amino acid that is also then a substrate
for an aminotransferase, we cannot say with certainty which pathways are used based on fit-
ness data alone. In 1,6-DAH and cadaverine nitrogen source conditions, we see mild fitness
defects (, 21.0) for the two aminotransferases PP_5182 and PP_2180. As previously dis-
cussed, both aminotransferases act on these substrates in vitro and the regulator PP_2181
responds specifically to 1,6-DAH and cadaverine. This suggests that transamination, not
g-glutamylation, is the preferred method of utilization for longer chain polyamines. In-frame
deletions of either aminotransferase alone does not effectively abolish growth on 1,6-DAH
and cadaverine, likely because they are functionally redundant. Strains with both PP_5182
and PP_2180 deleted show almost no growth with cadaverine and 1,6-DAH as sole nitrogen
sources, although we did observe very slight growth in the double knockout strain after
72 h (Fig. S12). This could be due to the background activity of another aminotransferase or
theg-glutamylation pathway.

Conversely, theg-glutamylation pathway appears to be equally if not more impor-
tant than direct transamination for the utilization of putrescine, 1,3-diaminopropane
(1,3-DAP), and spermidine, with each condition resulting in significant fitness pheno-
types for all steps of the pathway (Fig. 7B). It is possible that putrescine, 1,3-DAP, and
spermidine may also be directly deaminated by aminotransferases, although this is

TABLE 4 In vitro substrate range of purified pyruvate:alanine aminotransferasesa

Substrate class Substrate % conversion by PP_0596 % conversion by PP_2180 % conversion by PP_5182
Polyamines 1,3 diaminopropane 656 0.9% 956 0.7% 966 3.5%

putrescine 26 0.7% 1096 1.4% 1126 1.8%
cadaverine 96 4.2% 976 1.8% 1036 8.5%
1,6 diaminohexane 146 1.5% 856 4% 886 0.6%
spermidine 1016 1.1% 1056 5.8% 1126 1.2%

v -amino acids b-alanine 516 0.5% NA NA
g-aminobutyric acid 756 2% 766 1.5% 836 4.2%
5-aminovaleric acid 706 2.5% 716 1.4% 736 0.9%
6-aminocaproic acid 786 1.9% 826 0.8% 846 1%

GABA isomers DL-2-aminobutyric 556 1.3% 956 1.2% 1006 5.6%
3-aminobutyric acid 876 3.1% 126 1.6% 166 3.8%
DL-3-aminoisobutyric 706 2.4% 66 1.3% 126 2.5%

Proteinogenic amino acids L-isoleucine NA NA 16 0.5%
L-leucine NA 56 0.7% NA
L-lysine 596 49.4% 616 3.8% 656 4.9%
L-valine NA NA NA

aTested substrates were added in excess to pyruvate. Activity of the aminotransferases on the tested substrates was measured indirectly through the quantification of the
co-product alanine. Percent conversion is relative to the expected measurement of alanine if the amine acceptor pyruvate was completely transformed. Error represents
the standard deviation of three replicates. NA indicates that no activity was statistically detected above controls.
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less likely for putrescine, which results in no significant fitness phenotypes for any
aminotransferases.

The v -amino acids, whether provided directly or released from polyamine catabo-
lism, are degraded by transamination to an aldehyde then oxidation to a dicarboxylic
acid. The most poorly utilized v -amino acid we tested is 6ACA, which typically results
in little to no visible growth until close to 72 h. This is likely due to a combination of
regulatory issues and the accumulation of its product adipic acid, which P. putida is
unable to utilize further (Fig. 6B). The spuC paralogs PP_5182 and PP_2180 are likely
involved in 6ACA catabolism, despite their weak (.21) phenotypes. If the aminotrans-
ferases for which we tested the in vitro substrate range are just as promiscuous in vivo
and regulatory issues do contribute to the slow growth rate of 6ACA, we would expect
that plasmid-based expression of these aminotransferases would improve growth. To
test this theory, we provided functional gene copies to knockout mutants of PP_0596,
PP_5182, and PP_2180 by introducing the arabinose-inducible pBADT plasmid harboring the
corresponding gene (Fig. S13). Surprisingly, the control strain, wild-type P. putida harboring
pBADT-RFP, was unable to grow under these culture conditions. We hypothesize that the bur-
den of plasmid maintenance and insufficient kanamycin-resistance protein levels lead to early
stage cell death when 6ACA is used as the sole source of nitrogen. However, our functionally
complemented strains all demonstrated growth on 6ACA, indicating that that regulation con-
tributes to the slow utilization of 6ACA and expressing any of the three aminotransferases
with known activity on 6ACA independently of native regulation improves growth.

As previously discussed, the transcription factor PP_0595 is specific for b-alanine, and

FIG 7 Heatmaps of polyamine and v -amino acid catabolism in P. putida. For each enzyme class shown, HMMER was used to identify all
putative genes present in P. putida corresponding to that pFam in P. putida. Data was filtered to find genes in each class with fitness values
.–1.0 and t . j5j in the nitrogen sources shown. (A) Heatmap with fitness values (n = 2) for genes putatively involved in polyamine
transamination in P. putida KT2440. (B) Heatmap with fitness values (n = 2) for genes putatively involved in polyamine g-glutamylation in P.
putida KT2440. (C) Heatmap with fitness values (n = 2) for genes putatively involved in omega-amino acid transamination in P. putida
KT2440. Spermidine (SPRM) = teal; 1,3 diaminopropane (1,3 DAP) = yellow; b-alanine = yellow; putrescine/1,4-diaminobutane (1,4 DAB) =
black; g-aminobutyric acid (GABA) = black; cadaverine/1,5-diaminopentane (1,5 DAP) = blue; 5-aminovalerate (5AVA) = blue; 1,6-diaminohexane
(1,6 DAH) = green; 6-aminocaproic acid (6ACA) = green.
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the main substrate of the aminotransferase it regulates, PP_0596, appears to be b-alanine
in vivo. We also found PP_0596 necessary for utilization of uracil, 3ABA, and 3AIBA (Fig.
S14). Both of these genes have a very strong fitness defect in the b-alanine nitrogen
source condition (27.8). Located in the same operon is the methylmalonate-semialdehyde
dehydrogenase PP_0597 (25.9), which catalyzes the conversion of malonate-semialdehyde
to acetyl-CoA. The requirement for PP_0596, davT, and gltBD in the b-alanine condition may
indicate a higher-order metabolic pathway for efficient metabolism of b-alanine. In the b-al-
anine condition, DavT may catalyze the reverse reaction (succinate-semialdehyde and gluta-
mate to 4-ABA and 2-oxoglutarate) to reduce intracellular alanine concentrations produced
by PP_0596. This is supported by the requirement of DavD (PP_0213, succinate/glutarate
dehydrogenase) (Fig. 2B). Alternatively, DavT and PP_0596 may both have activity on b-ala-
nine, and a knockout in either gene could result in detrimental loss of flux to malonate-semial-
dehyde. This peculiarity of b-alanine metabolism requires further investigation (Fig. S4).

In P. putida, GABA can serve as the sole source of both carbon and nitrogen (129).
Because GABA is abundantly present in root exudates, P. putida possesses sensitive
and specific receptors that detect GABA and facilitate chemotaxis (129, 130). Unlike E.
coli, the genes for the degradation and transport of GABA are not clustered in a single
operon (68, 131). Furthermore, the observed fitness defects are mostly unspecific, which
makes it more difficult to identify distinct phenotypes. However, the main aminotransfer-
ase acting on GABA appears to be DavT (PP_0214;22.15) , producing succinate-semialde-
hyde that is then converted to succinate by DavD (68). The fitness defect for davD (20.45)
is not significant (jt j , 5) suggesting that additional dehydrogenases such as PP_2488
(0.0) or PP_3151 (20.2) catalyze this reaction. Moreover, our biochemical assay revealed
that at least three other aminotransferases (PP_0596, PP_2180, PP_5182) accept GABA as a
substrate (Table 4). Although the second aminotransferase (PP_3590) identified by BarSeq
has an insignificant phenotype in the GABA condition (20.55; jt j = 3.7), it exhibits a signif-
icant fitness defect in the DL-2-aminobutyric acid condition (20.95).

2-aminobutyrate (2-ABA) is an unnatural amino acid that is used in the production
of pharmaceuticals, and has been a target molecule for biological production in E. coli
(132, 133). The only known usage of 2-ABA in biological systems is the substitution of
L-cysteine during glutathione synthesis to form ophthalmic acid (134). Biosynthetically,
it can occur during isoleucine synthesis via threonine by IlvE transamination of 2-oxo-
butyrate (133). Due to the essentiality of ilvE in minimal media conditions, we are not able
to confirm this in P. putida using BarSeq. However, we were able to identify the D-amino
acid oxidoreductase PP_5270 (22.75) which acts on the alanine produced during pyruvate
transaminase activity. Although there is no significant phenotype for PP_0596 in this condi-
tion, we have shown that PP_0596 can transaminate 2-ABA (Table 4). Furthermore, the
transamination product 2-oxobutyrate is an intermediate in isoleucine biosynthesis. Because
of this, there appears to be a requirement for the downstream steps of isoleucine biosynthe-
sis. Instead of producing isoleucine, its precursor (S)-3-methyl-2-oxopentanoate might be
directly funneled into the isoleucine degradation pathway via the branched-chain A-ketoa-
cid dehydrogenase (BCKD) complex (21.54). This decarboxylative route is further supported
by the requirement of the methylcitrate cycle (PP_2334-6;21.5). These genes are important
for the degradation of propionyl-CoA, which can only be produced from 2-ketobutyrate via
a decarboxylative reaction (135).

The last GABA isomer we tested was 3ABA, previously described in the Purines and
Pyrimidines section. 3ABA is one of several GABA isomers that can prime plant immu-
nity, and it is applied agriculturally to prevent crop blight (136). Although the most
effective route for 3ABA degradation seems to be the pyruvate transaminase, PP_0596
(25.25), it appears that the cotranscribed gene, PP_0597 (malonyl semialdehyde dehy-
drogenase), is deleterious during growth on 3ABA (12.85). The dehydrogenase PP_0597
is not the correct enzyme for further processing of the downstream product acetoacetate,
and is likely a waste of resources. Furthermore, the reaction catalyzed by PP_0597 is iden-
tical to that of PP_4667, and it is possible that expression of PP_0597 results in a meta-
bolic disturbance in valine metabolism.
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Future directions. In this work, hundreds of genes critical for growth of P. putida KT2440
on diverse nitrogen sources were identified. Not only is the generated wealth of data useful to
those studying P. putida KT2440, but it could also be applied to infer possible gene functions
of homologs in closely related species. Furthermore, this work provides a roadmap for the
characterization of other microbes using functional genomics. Deeper analysis of related gam-
maproteobacteria through similar omics methodologies could enable investigations into the
evolution and diversification of these metabolic phenotypes. The Pseudomonas genus alone
contains a litany of species with interesting metabolisms. Further interrogation of this genus
through BarSeq or multi-omics could shine a light on the evolutionary and ecological im-
portance of these metabolisms.

The majority of our functional genomics data validates what has already been predicted
by major databases such as KEGG or SEED. We and others have confirmed the reliability of
TnSeq data as a guide for successful metabolic engineering (11, 14, 16, 28). These data pro-
vide a level of in vivo evidence for gene function that is distinct from prior mutational inter-
rogations. We contend that these data are highly predictive and can be used in conjunction
with existing databases (BioCyc, SEED, KEGG) to inform genetic, biochemical, and bioengin-
eering studies. A process for integrating the acquired information from these and other
TnSeq studies into public-facing databases would be desirable.

The identification of genetic interactions through t-SNE and correlation analyses could
also enable more detailed interrogations of their translated proteins. With the recent publi-
cation of Alphafold2 and RoseTTA fold, it is now possible to elucidate structures and pro-
tein-protein interfaces using purely in silico approaches (137, 138). Using computer-gener-
ated protein structures and docking simulations, one could propose and test more detailed
hypotheses regarding structure-function relationships. This could further deepen our under-
standing of the molecular mechanisms that enable these diverse phenotypes.

MATERIALS ANDMETHODS
Media, chemicals, and culture conditions. General E. coli cultures were grown in lysogeny broth

(LB) Miller medium (BD Biosciences, USA) at 37°C while P. putida was grown at 30°C. When indicated, P.
putida and E. coli were grown on modified MOPS minimal medium, which is comprised of 32.5 mM
CaCl2, 0.29 mM K2SO4, 1.32 mM K2HPO4, 8 mM FeCl2, 40 mM MOPS, 4 mM tricine, 0.01 mM FeSO4,
9.52 mM NH4Cl, 0.52 mM MgCl2, 50 mM NaCl, 0.03 mM (NH4)6Mo7O24, 4 mM H3BO3, 0.3 mM CoCl2,
0.1 mM CuSO4, 0.8 mM MnCl2, and 0.1 mM ZnSO4 (103). For most experiments, nitrogen-free MOPS was
used, in which case the NH4CL was omitted and the nitrogen source of interest was added at concentra-
tions ranging from 4 to 10 mM. Cultures were supplemented with kanamycin (50 mg/L, Sigma-Aldrich,
USA), gentamicin (30 mg/L, Fisher Scientific, USA), or carbenicillin (100 mg/L, Sigma-Aldrich, USA), when
indicated. All other compounds were purchased through Sigma-Aldrich (Sigma-Aldrich, USA).

Strains, plasmids, and primers. The strains and plasmids used in this work are listed in Table 5, and
plasmids used in this work are listed in Table 6. Primers used in this study can be found in Table 7. All strains
and plasmids created in this work are available through the public instance of the JBEI registry (https://public
-registry.jbei.org/folders/715). Device Editor and Vector Editor software were used to design the plasmids, and
primers used for the construction of plasmids were designed using j5 software (139–141). All primers were pur-
chased from Integrated DNA Technologies (IDT, Coralville, IA). Plasmids were assembled via Gibson Assembly
using standard protocols and isolated with the Qiaprep Spin Miniprep kit (Qiagen, USA) (142).

Plate-based growth assays. Growth studies of bacterial strains were conducted using microplate
reader kinetic assays as described previously (10). Overnight cultures were washed three times with
nitrogen-free MOPS minimal medium and used to inoculate 48-well plates at a ratio of 1:100 (Falcon,

TABLE 5 Strains used in this study

Strain Description Reference JBEI part ID
E. coli XL1 Blue Agilent
E. coli BL21(DE3) NEB
P. putida KT2440 Wild type ATCC 47054
DPP_0596 Strain with complete internal in-frame deletion of PP_0596 This work. JPUB_019820
DPP_2180 Strain with complete internal in-frame deletion of PP_2180 This work. JPUB_019821
DPP_5182 Strain with complete internal in-frame deletion of PP_5182 This work. JPUB_019822
DPP_4575-7 Strain with complete internal in-frame deletion of PP_4575-7 This work. JPUB_019823
DPP_2920-2 Strain with complete internal in-frame deletion of PP_2920-2 This work. JPUB_019824
DPP_3514-5 Strain with complete internal in-frame deletion of PP_3514-5 (16)
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353072). Each well contained 500 mL of MOPS medium with 10 mM the tested nitrogen source. Plates
were sealed with a gas-permeable microplate adhesive film (VWR, USA), and then optical density and flu-
orescence were monitored for 24 to 72 h in an Biotek Synergy H1M plate reader (BioTek, USA) at 30°C
with fast continuous shaking. Optical density was measured at 600 nm. RFP was measured with an exci-
tation wavelength of 535 nm, an emission of 620 nm, and a gain of 100.

BarSeq assays. BarSeq experiments utilized the P. putida library JBEI-1 and were completed as previ-
ously described (15). Aliquots (2 mL) of libraries of JBEI-1 were thawed on ice, added to 25 mL of LB medium
with kanamycin, and then grown at 30°C to an OD600 of 0.5. Then, three 1-mL aliquots were removed, pel-
leted, and stored at 280°C as zero time points. The libraries were washed three times in MOPS minimal me-
dium with no nitrogen source, and then used to inoculate each experiment at a ratio of 1:100. Experiments
were conducted in 24-well plates; each well contained 2 mL of nitrogen-free MOPS minimal medium with 10
mM each tested nitrogen source. Plates were grown at 30°C with shaking at 200 rpm, and 1 mL samples were
collected after 24 to 72 h, depending on when cultures appeared sufficiently turbid for DNA extraction.
Samples were pelleted and stored at 280°C until DNA extraction, which was done with a DNeasy UltraClean
Microbial kit (Qiagen, Germany). BarSeq analysis was performed as previously described (19, 37). Strain fitness
is defined as the normalized log2 ratio of the barcode reads in the experimental sample to the barcode reads
in the time zero sample. The fitness of a gene is defined as the weighted average of the strain fitness for inser-
tions in the central 10% to 90% of the gene. The gene fitness values are normalized such that the typical gene
has a fitness of zero. The primary statistic t value represents the form of fitness divided by the estimated var-
iance across different mutants of the same gene. Statistic t values of.j4j were considered significant. A more
detailed explanation of fitness score calculations can be found in Wetmore et al. (143). All experiments
described here passed the quality testing metrics described previously. Experiments were conducted in biolog-
ical duplicates, and the fitness data are publicly available at http://fit.genomics.lbl.gov.

Protein production and purification. The protocol for the v -amino acid aminotransferases purifica-
tion is a modified version of the previously described procedure by Yuzawa et al. (144). Briefly, E. coli BL21(DE3)
harboring the pET28a vectors for PP_0596, PP_2180, or PP_5182 were cultured in LB medium with kanamycin
at 37°C until OD600 reached 0.4. Protein expression was induced with 250mM IPTG and cultures were grown at
18°C for 24 h. Cells were harvested by centrifugation for 20 min at 5,000 g and the pellet was resuspended in
30 mL wash buffer (50 mM sodium phosphate pH 7.6, 300 mM NaCl, 10 mM imidazole, 4°C). The cells were dis-
rupted by sonication (8� 30 seconds) and cell debris was removed by three subsequent centrifugations (15 min,
8,000 g, 4°C). The soluble fraction was mixed with 4 mL Nickel-NTA agarose beads (Thermo Fisher Scientific) for
1 h at 4°C. The mixture was applied to a Nickel-NTA column and washed three times with wash buffer. The pro-
tein was eluted with 12 mL elution buffer (150 mM sodium phosphate buffer pH 7.6, 50 mM NaCl, 150 mM imid-
azole, 4°C) and buffer was exchanged with stock buffer (100 mM sodium phosphate pH 7.5, 0.5 mM DTT, 10%
glycerol, 4°C) by dialysis (SnakeSkin Dialysis Tubing, 10k MWCO, Thermo Fisher Scientific). Protein was concen-
trated in 30k MWCO Amicon Ultra-15 centrifugal filters (MilliporeSigma) and stored at280°C.

TABLE 6 Plasmids used in this study

Plasmid Description Reference JBEI part ID
pMQ30 Suicide vector for allelic replacement with Gmr, SacB (156)
pMQ30 DPP_0596 Suicide vector for in-frame deletion of PP_0596 This work. JPUB_019825
pMQ30 DPP_2180 Suicide vector for in-frame deletion of PP_2180 This work. JPUB_019827
pMQ30 DPP_5182 Suicide vector for in-frame deletion of PP_5182 This work. JPUB_019829
pMQ30 DPP_4575-7 Suicide vector for in-frame deletion of PP_4575-7 This work. JPUB_019861
pMQ30 DPP_2920-2 Suicide vector for in-frame deletion of PP_2920-2 This work. JPUB_019831
pMQ30 DPP_3514-5 Suicide vector for in-frame deletion of PP_3514-5 (16)
pET28a Protein expression vector with ColE1 origin, N-terminal 6xHis-tag and T7lac promoter (157)
pET28a PP_0596 Protein expression vector for Ni-NTA purification of PP_0596 This work. JPUB_019857
pET28a PP_2180 Protein expression vector for Ni-NTA purification of PP_2180 This work. JPUB_019859
pET28a PP_5182 Protein expression vector for Ni-NTA purification of PP_5182 This work. JPUB_019833
pBADT Broad host-range vector with BBR1 origin, arabinose inducible promoter, and kanamycin

resistance marker
(158)

pBADT PP_0596 Complementation vector for PP_0596 This work. JPUB_019835
pBADT PP_2180 Complementation vector for PP_2180 This work. JPUB_019837
pBADT PP_5182 Complementation vector for PP_5182 This work. JPUB_019839
pBADT PP_4575-7 Complementation vector for PP_4575-7 This work. JPUB_019841
pBADT PP_2920-2 Complementation vector for PP_2920-2 This work. JPUB_019843
pBADT PP_3514-5 Complementation vector for PP_3514-5 (16)
pBBR1k pBADT derived broad host-range expression vector with araC and PBAD removed (10)
pBBR1k PP_2920p-RFP Expression vector with region 200 bp upstream of PP_2920 used as promoter for RFP This work. JPUB_019855
pBBR1k PP_4578p-RFP Expression vector with region 200 bp upstream of PP_4578 used as promoter for RFP This work. JPUB_019853
pBBR1k PP_3515p-RFP Expression vector with region 200 bp upstream of PP_3515 used as promoter for RFP (10)
pBBR1k PP_0596p-RFP Expression vector with region 200 bp upstream of PP_0596 used as promoter for RFP This work. JPUB_019845
pBBR1k PP_2177p-RFP Expression vector with region 200 bp upstream of PP_2177 used as promoter for RFP This work. JPUB_019847
pBbS8a pSC101 origin with carbenicillin resistance and arabinose inducible promoter (159)
pBbS8a PP_0595 pBbS8a expressing the transcription factor PP_0595 This work. JPUB_019851
pBbS8a PP_2181 pBbS8a expressing the transcription factor PP_2181 This work. JPUB_019849

RBTnSeq Investigation of P. putida Nitrogen Metabolism Applied and Environmental Microbiology

April 2022 Volume 88 Issue 7 10.1128/aem.02430-21 22

http://fit.genomics.lbl.gov
https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.02430-21


TABLE 7 Primers used in this study

Primer name Sequence (59 to 39) Use
pBbS8a_fwd ggatccaaactcgagtaaggatctcc pBbS8a backbone plasmid

construction
pBbS8a_rev atgtatatctccttcttaaaagatcttttgaattcc pBbS8a backbone plasmid

construction
pBbS8a-PP_2181 PP_2181_fwd ggaattcaaaagatcttttaagaaggagatatacatatgaaagtgcacgaagaaatcgaaggcc pBbS8a-PP_2181 construction
pBbS8a-PP_2181 PP_2181_rev ggagatccttactcgagtttggatcctcagctgaacacccaaagcacgcg pBbS8a-PP_2181 construction
pBbS8a-PP_0596 PP_0596_fwd ggaattcaaaagatcttttaagaaggagatatacatatgagccgacgccccgatcc pBbS8a-PP_0596 construction
pBbS8a-PP_0596 PP_0596_rev ggagatccttactcgagtttggatcctcaacgtgtcgcagccaggc pBbS8a-PP_0596 construction
BBR1k_fwd tttaagaaggagatatacatatggcgag BBR1k backbone plasmid construction
BBR1k_rev gacgtcggaattgccagctg BBR1k backbone plasmid construction
BBR1k-PP_2177p-RFP PP_2177p_fwd gcgccccagctggcaattccgacgtcgtcgggctggaggattcagc BBR1k-PP_2177p-RFP construction
BBR1k-PP_2177p-RFP PP_2177p_rev cgctactcgccatatgtatatctccttcttaaacgtttcggactgccgtgaaatttttag BBR1k-PP_2177p-RFP construction
BBR1k-PP_0596p-RFP PP_0596p_fwd gcgccccagctggcaattccgacgtcactcgacgacgctgcgatag BBR1k-PP_0596p-RFP construction
BBR1k-PP_0596p-RFP PP_0596p_rev cgctactcgccatatgtatatctccttcttaaacggcggttcctcggaagacg BBR1k-PP_0596p-RFP construction
BBR1k-PP_4578p-RFP PP_4578p_fwd gcgccccagctggcaattccgacgtctttctgccgtcaggcggaagct BBR1k-PP_4578p-RFP construction
BBR1k-PP_4578p-RFP PP_4578p_rev accaacaagccgaggcatcctttaagaaggagatatacatatggcgagtagcg BBR1k-PP_4578p-RFP construction
BBR1k-PP_2920p-RFP
PP_2920p_fwd

gcgccccagctggcaattccgacgtcaggtggatcgccgcttgc BBR1k-PP_2920p-RFP construction

BBR1k-PP_2920p-RFP
PP_2920p_rev

gtgccaggagacgcggtctttaagaaggagatatacatatggcgagtagcga BBR1k-PP_2920p-RFP construction

pET28_fwd atgagatccggctgctaacaaagccc pET28 backbone plasmid construction
pET28_rev tgctagccatatggctgccgcg pET28 backbone plasmid construction
pET28-PP_2180
PP_2180_fwd

gccgcgcggcagccatatggctagcagtgaacagaattcgcagacccttgcc pET28-PP_2180 construction

pET28-PP_2180
PP_2180_rev

cgggctttgttagcagccggatctcattaccgaacagcctcataggtcaggtcc pET28-PP_2180 construction

pET28-PP_5182
PP_5182_fwd

gccgcgcggcagccatatggctagcagcgtcaacaacccgcaaaccc pET28-PP_5182 construction

pET28-PP_5182
PP_5182_rev

cgggctttgttagcagccggatctcattattgaatcgcctcaagggtcaggtcc pET28-PP_5182 construction

pET28-PP_0596
PP_0596_fwd

gccgcgcggcagccatatggctagcaacatgcccgaaactggtcctgcc pET28-PP_0596 construction

pET28-PP_0596
PP_0596_rev

cgggctttgttagcagccggatctcatcagtcgatcaggttcagggtttcgc pET28-PP_0596 construction

pBADT_fwd aggatccaaactcgagtaaggatctcc pBADT backbone plasmid construction
pBADT_rev atgtatatctccttcttaaaagatcttttgaattcc pBADT backbone plasmid construction
pBADT-PP_5182
PP_5182_fwd

tcaaaagatcttttaagaaggagatatacatatgagcgtcaacaacccg pBADT-PP_5182 construction

pBADT-PP_5182
PP_5182_rev

ggagatccttactcgagtttggatccttattgaatcgcctcaagggtcagg pBADT-PP_5182 construction

pBADT-PP_0596
PP_0596_fwd

tcaaaagatcttttaagaaggagatatacatatgaacatgcccgaaactggtcctgc pBADT-PP_0596 construction

pBADT-PP_0596
PP_0596_rev

ggagatccttactcgagtttggatcctcagtcgatcaggttcagggtttcgc pBADT-PP_0596 construction

pBADT-PP_2920-2
PP_2920-2_fwd

tcaaaagatcttttaagaaggagatatacatatgcaagcagtggatttcaactcgg pBADT-PP_2920-2 construction

pBADT-PP_2920-2
PP_2920-2_rev

ggagatccttactcgagtttggatcctcagctgaagagcctggccagg pBADT-PP_2920-2 construction

pBADT-PP_4575-7
PP_4575-7_fwd

tcaaaagatcttttaagaaggagatatacatatgcacaacgacaagggagac pBADT-PP_4575-7 construction

pBADT-PP_4575-7
PP_4575-7_rev

ggagatccttactcgagtttggatccttacgaccaacgccccagg pBADT-PP_4575-7 construction

pBADT-PP_2180
PP_2180_fwd

tcaaaagatcttttaagaaggagatatacatatgagtgaacagaattcgcagaccc pBADT-PP_2180 construction

pBADT-PP_2180
PP_2180_rev

ggagatccttactcgagtttggatccttaccgaacagcctcataggtcaggtcc pBADT-PP_2180 construction

pMQ30_fwd tctaagaaaccattattatcatgacattaacc pMQ30 backbone plasmid construction
pMQ30_rev aaaactgtattataagtaaatgcatgtatactaaac pMQ30 backbone plasmid construction
PP_4575-7_up_fwd gtttagtatacatgcatttacttataatacagttttgcgctaatccccgaagactggc pMQ30_PP_4575-7 construction
PP_4575-7_up_rev taagactgctggccctttcgcgg pMQ30_PP_4575-7 construction
PP_4575-7_down_fwd cgcccgcgaaagggccagcagtcttacatatgcctaccttaccgcgcctgc pMQ30_PP_4575-7 construction
PP_4575-7_down_rev ggttaatgtcatgataataatggtttcttagagcaactgacggtgttgtggttcgc pMQ30_PP_4575-7 construction

(Continued on next page)
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In vitro pyruvate transamination and product quantification. Substrate specificity of the purified
aminotransferases was determined by in vitro L-alanine production. The reaction was carried out in 100 mM so-
dium phosphate buffer pH 9 with 500mM pyruvate, 1 mM PLP, 5mM enzyme and 5 mM substrate. After addi-
tion of the substrate, the reaction mixture was immediately incubated at 30°C for 30 min. The reaction was
stopped by boiling the mixture for 10 min at 100°C. Alanine concentrations were determined enzymatically
using the Alanine assay kit (Cell Biolabs, Inc.) following the manufacturer’s instructions.

Caprolactam degradation assay and LC-ESI-QTOF-MS analysis. To investigate the degradation of
caprolactam in P. putida KT2440, wild-type cells were grown in modified MOPS minimal media with ei-
ther 10 mM ammonium chloride or caprolactam as the sole source of nitrogen. Cells were cultured as
triplicates in 25 mL medium in shake flasks at 30°C and 200 rpm. Samples were collected and OD600
was measured after 1, 6, 12, 24, 48, and 72 h. For metabolomics analysis, cell culture samples were cen-
trifuged at 16,000 g for 1 min, and 300 mL supernatant was mixed with 280°C cold methanol. After that
the mixture was filtered by centrifugation (30 min, 14,000 g, 4°C) using 3 kDa Amicon Ultra-0.5 centrifu-
gal filters (MilliporeSigma) and stored at 280°C for further analysis.

For the measurement of caprolactam, liquid chromatographic separation was conducted with a
Kinetex HILIC column (100-mm length, 4.6-mm internal diameter, 2.6-mm particle size; Phenomenex,
Torrance, CA) using a 1260 HPLC system (Agilent Technologies, Santa Clara, CA, USA). The injection vol-
ume for each measurement was 2 mL. The sample tray and column compartment were set to 6°C and
20°C, respectively. The mobile phase was composed of 10 mM ammonium formate and 0.2% formic acid
in water (solvent A) and 10 mM ammonium formate and 0.2% formic acid in 90% acetonitrile and 10%

TABLE 7 (Continued)

Primer name Sequence (59 to 39) Use
PP_0596_up_fwd gtttagtatacatgcatttacttataatacagttttcaccaggttggggcgccg pMQ30_PP_0596 construction
PP_0596_up_rev atcggcggttcctcggaagacg pMQ30_PP_0596 construction
PP_0596_down_fwd taatcgtcttccgaggaaccgccgatgtgatctttccgatattgatgccaggcg pMQ30_PP_0596 construction
PP_0596_down_rev ggttaatgtcatgataataatggtttcttagacagcgccttgatctgtggctcc pMQ30_PP_0596 construction
PP_2920-2_up_fwd gtttagtatacatgcatttacttataatacagttttcatggaagtaattgcgcaccg pMQ30_PP_2920-2 construction
PP_2920-2_up_rev catgaccgcgtctcctggc pMQ30_PP_2920-2 construction
PP_2920-2_down_fwd cacaagtgccaggagacgcggtcatgtgagcatcatgttttcgctgtagccg pMQ30_PP_2920-2 construction
PP_2920-2_down_rev ggttaatgtcatgataataatggtttcttagacccgcccaggccgagctg pMQ30_PP_2920-2 construction
PP_5182_up_fwd gtttagtatacatgcatttacttataatacagttttcgcccccgagatggagttctacc pMQ30_PP_5182 construction
PP_5182_up_rev ggcggtccaataacggagaagcacat pMQ30_PP_5182 construction
PP_5182_down_fwd ggcggtccaataacggagaagcacatgtaagcgtttgctaggctagcgt pMQ30_PP_5182 construction
PP_5182_down_rev ccggtactttctacgacatggtcgccatctaagaaaccattattatcatgacattaacc pMQ30_PP_5182 construction
PP_2180_up_fwd gtttagtatacatgcatttacttataatacagttttaaacaaataccaggagcaactggacttcatgca pMQ30_PP_2180 construction
PP_2180_up_rev acagctaaccaggccctctgctgttacattgacttcactccatcaagttgcgcagc pMQ30_PP_2180 construction
PP_2180_down_fwd taacagcagagggcctgg pMQ30_PP_2180 construction
PP_2180_down_rev ggttaatgtcatgataataatggtttcttagaccaccgccgggtccatctc pMQ30_PP_2180 construction
PP_0596_KOCON_fwd ggatgtcgaaatcgctgact Knockout confirmation for DPP_0596
PP_0596_KOCON_rev gcgaaatcttggcttcgttc Knockout confirmation for DPP_0596
PP_2180_KOCON_fwd cgagttccaggtcatggataa Knockout confirmation for DPP_2180
PP_2180_KOCON_rev gttcgacctgggacagaaa Knockout confirmation for DPP_2180
PP_5182_KOCON_fwd gcagtacctgggcaagaaa Knockout confirmation for DPP_5182
PP_5182_KOCON_rev cttgatccctgtctgcttctc Knockout confirmation for DPP_5182
PP_4575-7_KOCON_fwd tatgtgtggatccagcgtttc Knockout confirmation for DPP_4575-7
PP_4575-7_KOCON_rev ttcttcgcctcgggtatct Knockout confirmation for DPP_4575-7
PP_2920-2_KOCON_fwd gaactttggcgcacctacta Knockout confirmation for DPP_2920-2
PP_2920-2_KOCON_rev ggagatgttcaggtggatcg Knockout confirmation for DPP_2920-2
pMQ30_seq_fwd ttgtctcatgagcggatacatatt Forward sequencing of inserts in

pMQ30 plasmids
pMQ30_seq_rev tcaccgtcatcaccgaaac Reverse sequencing of inserts in

pMQ30 plasmids
RFPseq_up_rev ggaaggacagtttcaggtagt Sequencing region upstream of RFP in

reporter plasmids
pBbS8a_seq_rev ccttactcgagtttggat Reverse sequencing of inserts in

pBbS8a plasmids
pBADT_seq_fwd atgccatagcatttttatcc Forward sequencing of inserts in

pBADT and pBbS8a plasmids
pBADT_seq_rev gccctaggtataaacgcagaaa Reverse sequencing of inserts in pBADT

plasmids
pET28a_seq_fwd taatacgactcactataggg Forward sequencing of inserts in

pET28a plasmids
pET28a_seq_rev gctagttattgctcagcgg Reverse sequencing of inserts in

pET28a plasmids
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water (solvent B). Reagent grade and source are as follows: Ammonium formate (Analytical grade) and
formic acid (98% to 100% chemical purity): Sigma-Aldrich, St. Louis, MO, USA; Acetonitrile (LC-MS grade)
and water (LC-MS grade): Honeywell Burdick & Jackson, CA, USA. Analytes were separated with the fol-
lowing gradient: 90% to 70%B in 4 min, held at 70%B for 1.5 min, 70% to 40%B in 0.5 min, held at 40%B
for 2.5 min, 40% to 90%B in 0.5 min, held at 90%B for 2 min. The flow rate was varied as follows: held at
0.6 mL/min for 6.5 min, linearly increased from 0.6 mL/min to 1 mL/min in 0.5 min, and held at 1 mL/min
for 4 min. The total run time was 11 min.

The 1260 HPLC system was coupled to an Agilent Technologies 6520 QTOF-MS system (for quadrupole
time-of-flight mass spectrometric detection). The LC column effluent was delivered to the 6520 QTOF-MS sys-
tem’s electrospray ionization (ESI) ion source via a 1:4 post-column split ratio. ESI was used to facilitate the pro-
duction of gas-phase [M1H]1 ions in the positive ion mode. The capillary voltage was set to 3500 V.
Fragmentor, skimmer, and OCT 1 RF voltages were set to 100 V, 50 V, and 250 V, respectively. Drying gas tem-
perature, drying gas flow rate, and nebulizer were set to 350°C, 12 L/min, and 25 lb/In2, respectively. The instru-
ment was tuned for a range of m/z 50 to 1,700 with the Agilent ESI-Low TOF tuning mix. High mass accuracy
was achieved via reference mass correction with purine and HP-0921 reference solutions, which were pur-
chased from Agilent Technologies. Data was acquired within the 50 to 1,100 m/z range. Analytes were quanti-
fied via a six-point calibration curve following 2-fold serial dilutions from 25 mM to 0.78125 mM. MassHunter
Workstation (Agilent Technologies), MassHunter Qualitative Analysis and MassHunter Profinder (Agilent
Technologies) software were used for data acquisition and processing.

The LC-ESI-TOF-MS method for adipic acid has been described previously (145).
t-stochastic neighbor embedding of BarSeq results. The data used for the t-SNE visualization was

filtered by t-scores and fitness scores (jt j . 5 and jfitnessj . 1). This resulted in a file containing fitness
scores for 615 significantly affected genes across 129 sole-nitrogen source growth assays in 51 different
conditions, and 19 amino acid dropout conditions. 2-ABA was excluded from the analysis due to the large
number of significantly affected genes in this condition. For each gene, the “significant condition” was defined
as the condition that caused the largest change in fitness score. The fitness values were then used as the input
into the t-SNE module supplied in the python package Scikit-Learn (19, 146). Clusters (n = 100) were defined
using the Ward-clustering module in Scikit-Learn. The most frequently occurring “significant condition” was
used to name each cluster. The Jupyter notebook used in these analyses can be found at: https://github.com/
mschmidt75/ppnitrogentsne.git

Bioinformatic analyses. All statistical analyses were carried out using either the Python Scipy or
Numpy libraries (147, 148). To identify the number of aminotransferases, the HMMER version 3.3.2 (http://
hmmer.org/) was used to scan the P. putida KT2440 genome against a profile database file consisting out of
the Pfam HMM files of PF00155, PF00202, PF01063, and PF00266. The E-value cutoff was set to 1e-20, and sig-
nificant hits annotated as transcriptional regulators were excluded from the final data set. HMMER was also
used to identify possible genes of the g-glutamyl cycle, with the Pfam HMM files of PF00120, PF01266,
PF00171, and PF07722 corresponding to the glutamyl-polyamine synthetase, the glutamyl-polyamine oxidase,
the aldehyde dehydrogenase, and the amide hydrolase.

The databases MiST 3.0 and TransportDB 2.0 were used to extract transcription factors and transport
associated proteins from the BarSeq data set (17, 18). EggNOGmapper was used to generate the clusters
of orthologous groups (COGs) for P. putida KT2440 (149, 150). Additionally, manual analysis of the data
and proposals of metabolic pathways relied heavily on BioCyc and PaperBlast (151, 152).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 3.1 MB.
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