UC Berkeley
SEMM Reports Series

Title
GENGRAF: A General Purpose Subroutine Package for Computer Graphics

Permalink

bttgs:ggescholarshiQ.orgéucgitemélctSthg

Author
Oliver, Robert

Publication Date
1983-12-01

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/1ct5h8m8
https://escholarship.org
http://www.cdlib.org/

REPORT NO. STRUCTURAL ENGINEERING AND
UCB/SESM-83/09 STRUCTURAL MECHANICS

GENGRAF:

A GENERAL PURPOSE
SUBROUTINE PACKAGE FOR
COMPUTER GRAPHICS

by

R. GORDON OLIVER

DECEMBER 1983 DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

GENGRAF
A GENERAL PURPOSE SUBROUTINE
PACKAGE FOR COMPUTER GRAPHICS

R. Gordon Oliver

Department of Civil Engineering.
University of California.
Berkeley,

California 94720.

ABSTRACT

GENGRAF is a general purpose subroutine package for generating graph-
ics on computer controlled displays. The package is device independent in that
it can create graphics for any number of different display devices. This report
explains the general philosophy underlying the proposed use of the package and

also details the necessary calling sequences.

November 28, 1983

Table of Contents

ABSITACE .ovvvvvii oot oeoeoeeeeeeoeeee i
ACKNOWIEABEMENLSoivviviieiice oo ii
Table Of CONMENLS ..o iii
Chapter 1 : The Gengraf Graphics Package. ... iii
LOVEIVIEW oot 1
2. Organization of the Graphics Package. ..o 1
2.1 Starting and finishing. ... 2
2.2 Viewports and Windows. ..o 2
2.3 3D View CONMIOL ..o 3
2.4 Control Of CHPPING.vvvvervoeeecieeeneeieeeoonee oo 4
2.5 World Transformations.cooeeeveeeeemmvomveroeooooeeoo 4
2.6 Display AUHDULES. ..ooooiiriiiniecesece oo 5
2.7 Graphical Primitives.ccoooooooooouooviemveeorioeneeeoeooeeeeeooeoeooooooo 6
2.8 Coordinate CONVETSIONS.cccerrrveeernonreeeeeeeeee oo 6
2.9 INQUITY. oo 6
2.10 General Control.c.occuummmemiiiersseeceeoroees oo 1

3. The Device Drive Interface.cccooocecermmmmmmmmeomcrooomrcceeooo 7
3.1 The MFB SYStem. ..c.ocooiiviiimiviierieeciesneceonneeeeoes oo 7

4. Using The Gengraf Library.ccccommmmmmmvoommiiomoom 8
4.1 Writing Programs Using Gengraf. ..o 8
4.2 Compiling Programs Using Gengraf. ... 9
4.3 Running Programs Using Gengraf. ... 10

5. REfErenCes. ...t 11
APPENAIX L oo 12
1. Starting and Finishing. ..o 12

2. Viewports and Windows. ... 13

3. 3D View Parameters.ccoooommmmmreoommceoonoe 15

4. Clipping CONOLoeeiveoiiceeiiee oo 16

5. World Transformations. ... 17

6. Controlling AUribULes.ccoorvummmmviimircoeoo 19

7. Geometric Primitives.coouvovmcceimmmicoooeo 21

8. Text Primitives.ooooooioiiiiiiionniiinceocoooooo 24

9. Coordinate CONVErSions.cocoooovvvvveoommeeevosoeooooo 25

10, INQUITY. oo 26

10.1 Device Values.ccccoooouommmmiomcoeoieo 26

10.4 Transformation Values. ... 30
10.5 Clipping Values. ..o 31
10.6 Attribute Values. e 32

I1. General CONtrol.cco....oooocermvvmesoooooo 33

II. ACKNOWLEDGEMENTS.

I would like to thank Professor K. S. Pister for providing the opportunity for this work to
be undertaken, and for his help and advice. I would also like to thank Professors R. L. Taylor
and E. Polak for their advice and suggestions. In addition many other people conveyed their
comments and suggestions with respect to both the package and this report, which have been
most helpful, especially Chris Thewalt and Joe Landers. Finally, I wish to thank Ken Keller
and Giles Billingsley for the use of their Model Frame Buffer graphics device driver package
which GENGRAF uses.

This work was supported by the National Science Foundation under Grant PFR-7908261
with the University of California, Berkeley. Computing facilities were provided in part by

Equipment Grant ENG-7810992 from the National Science Foundation.

THE GENGRAF GRAPHICS PACKAGE

1. OVERVIEW

There is a strong case for using a standard graphics subroutine library in order to proceed along the
path towards producing software which facilitates fast and logically controlled graphics. Such a package
would be useful for a number of reasons :

(1 To have a standard set of graphics routines which any application program may
utilize.

2) To segregate the graphical control section of a program from the other opera-
tional sections.

3) To facilitate the use of programs using graphics on a number of different

display devices. That is, to achieve a high degree of device-independence, both
for existing hardware and future additions.

(4 To have the capability of producing hardcopy (printed graphical output)
without any additional programming.

One standard graphics system which has been proposed and which has had a number of extensive and
successful implementations is that of the Special Interest Group on Graphics of the Association for
Computer Machinery (SSGGRAPH-ACM). They have established a Graphic Standards Planning Com-
mittee which has produced a number of reports on the proposed form of a standard graphics system,
which is known as the CORE system [1].

Therefore it was decided to follow the SIGGRAPH outline proposal in attempting to design a graphics
package for use in structural engineering applications. The CORE system defines a number of
different operation levels, ranging from basic display with no interaction to a more sophisticated and
highly interactive level. The CORE system proposal is very comprehensive and the full implementa-
tions that have been reported have involved an investment of much time and many programmers [2].
Thus, the GENGRAF graphics package described here is not intended to be a full implementation of
the CORE system, but one which provides the basic capabilities and has sufficient flexibility to be
extended in the future, without major revisions.

GENGRAF is a general purpose graphics utility package. It consists of approximately one hundred rou-
tines, which are written in the C programming language [3] and run under the UNIX operating system.
The user callable routines are explained in the user manual in Appendix 1. GENGRAF provides rou-
tines for the display of two- and three-dimensional graphical primitives in a coordinate system which is
under user or application program control.

2. ORGANIZATION OF A GRAPHICS PACKAGE

A graphics package has different types of functions for dealing with the different aspects of graphics
control. In the case of the GENGRAF package these can be summarized as follows:

(1 Starting and Finishing.
These routines are used to initialize the graphics device and the variables asso-
ciated with the package and to close the device and de-allocate storage associ-

ated with it.

(2) Viewports and Windows.
These are terms used to describe areas of the device display and regions of the
users coordinate space being viewed. A group of routines exist to allow user
control of all their associated parameters.

3) 3D View Control.
If the user space is three-dimensional (3D) a number of parameters can be
varied so as to control the resultant view.

(4) Clipping Control.
Parts of an object which would be displayed outside of a certain area of the
display (known as the viewport) can be removed or clipped if desired.

(5) World Transformations.
Objects specified within the users (world) coordinate system can have transfor-

mations applied to them.

(6) Controlling Attributes.
The visible attributes such as color and pattern types can be specified.
(7 Displaying Primitives.

A primitive is a graphical entity that can displayed with a single function invo-
cation, such as a line, polygon or a string of text,

8) Coordinate Conversions.
A number of routines exist to convert coordinates from between the various
coordinate systems associated with the graphics package.

9) Inquiry.
Inquire about certain values held within the graphics package.
(10) General Control.

These are routines that do not fit into any other category.

Having outlined the different aspects of a graphics package each one will now be considered in more
depth.

2.1. STARTING AND FINISHING

These are a group of routines concerned with opening and closing operations. The GENOpen and
GENClose routines open and close the GENGRAF package and must be called as the first and last rou-
tines, respectively. Also included in this group are the routines to open and close individual
viewports, as well as a routine to set a particular viewport as the current or working viewport. These
routines are GENOpenView, GENCloseView and GENSetCurView, respectively. As previously explained
a viewport is a section of the device display area which has a window into a world coordinate system
mapped onto it. A viewport can extend over the full area of the display surface or just a fraction of it.
At any given time more than one viewport can exist on a device display area. Viewports can also be
‘stacked up’ on top of each or overlapped as the user requires. In this case the application program

would control which viewports display information.

2.2. VIEWPORTS AND WINDOWS

Two of the most essential concepts of this graphics system are the viewpors and window, A viewport is
an area of the display device surface; that is, a section of the screen of a CRT device or a section of
the plotting surface of a pen plotter. A window is a region of the space, known as the world space or

coordinate system, in which the user is modelling an object or phenomenon for display and possibly
other purposes. A reader not familiar with these basic components of a computer graphics package
may wish to consult a text on the subject [6]. The graphics package performs the operations necessary
to project an image of what appears within the bounds of the world space window onto the correspond-

ing device viewport.

Coordinste Systems

GENGRAF provides the capabilities to model both two-dimensional (2D) and three-dimensional (3D)
world coordinate spaces. For the purpose of being able to identify points and regions and to be able to
define transformations within the world space, it is necessary to define a coordinate system with which
to relate. This also applies to the display surface of the graphics device. A coordinate system has to
be defined in order to locate viewports. In the case of the display surface a two-dimensional Cartesian
system is most appropriate, since display surfaces usually consist of a rectangular area. In this case the
Xx-axis is taken to be horizontal with values increasing from left to right. The y-axis is taken as being
vertical with values increasing from bottom to top. The coordinate values are normalized in both x
and y directions with values ranging from 0 to 1. These normalized coordinates are known as the nor-
malized device coordinates (NDC).

The world coordinate system is also a Cartesian system of either two or three dimensions. A 2D world
coordinate system is similar to that of the display surface and viewports. A 3D world coordinate sys-
tem is a ‘right-handed’ system, with the x and y axes lying in the horizontal plane and the z axis per-
pendicular to this plane, values increasing in the upwards direction. A window into a 2D world system
is simply a rectangular area orthogonal to the x and y axes. The window area is mapped onto the
viewport area, thus if the viewport and window have different aspect ratios (ratio of height to width)
then the scaling will be different in x and y directions. If clipping is in effect, everything within the
window will be displayed and anything that falls outside will be hidden from view. If clipping is not in
effect and primatives are displayed which are partially or wholly outside of the window are displayed,
the result is device dependent and in the worst cases can be expected to be "messy".

The window into a 3D world system is not so straightforward, since a transformation from three-
dimensional space to two-dimensional space is required. The best way to conceive the region of the
three-dimensional world system that will be displayed on the viewport is to imagine an observer sitting
in a room, looking out through a window in one of the walls onto a three-dimensional world. If a
Cartesian coordinate system was established with a reference origin, then the observer would be
located at a three-dimensional point (consider this point to be your eye). All other points in the world
would also have unique coordinate triplets. If the projection of everything the observer could see
through the window was to be traced onto the window itself, then this window would be like the
display surface we attempt to simulate when displaying a 3D world. Everything that is displayed falls
within a hypothetical, semi-infinite pyramid which has its apex at the eye of the observer. The four
edges of this pyramid extend from the eye of the observer through each of the corners of the rec-
tangular window area. Thus, if an object lies outside of this pyramid then it will not be visible. If
objects lie across the boundaries of this pyramid and if clipping is in effect, then only the parts within

the pyramid will be displayed.

2.3. 3D VIEW CONTROL

The control over the area of the 3D world viewed through this window is maintained by a number of
parameters. One of the most basic is the size of the window. This could be specified so as to produce
a distorted view, if the window aspect ratio is different from that of the viewport. However, this situa-
tion should be avoided. The actual location of the observer (or more precisely the eye of the
observer) has to be specified by a Cartesian triple. This is referred to as the view reference point. Also
the direction of the view has to given. This is specified in terms of a three-dimensional vector which

gives the direction of the view relative to the view reference point. This vector is called the view direc-
tion vector. One can also imagine the observer being able to twist his or her head around an axis pro-
jecting in the viewing direction. This would effect the direction that they perceived to be up. Thus the
view up angle can also be specified by the user; this angle is measured relative to the direction of max-
imum increasing z values, assuming the x and y axes form a horizontal plane.

Finally, one other parameter can affect the projection of the world system onto the hypothetical win-
dow, this is the distance of the window (or projection plane) from the observer. This distance effects
the amount of perspective that is perceived, if a perspective projection has been selected. This will not
be the case if an oblique or isometric projection has been specified. The perspective projection can, if
used appropriately give a more realistic image of the three-dimensional world on a two-dimensional
surface than can the other projections. Therefore, four parameter sets control the view of a 3D sys-
tem. Some graphics systems define viewing parameters such as the angle of the cone of vision to con-
trol a view. However, this is simply the angle of the hypothetical viewing pyramid and so can be con-
trolled by the size of the window on the projection plane and the distance of this plane from the view

reference point.

These routines allow the user to control viewport and window parameters. The extent of the viewport
is specified in normalized device coordinates with GENSetViewport routine. The dimensionality of the
world system is set with GENSetDimension, this being either 2D or 3D. The window size is set by the
GENSetWindow routine. In the case of a three-dimensional world coordinate system, other routines
which effect the view are GENSetViewPoint (set the view reference point), GENSetViewDir (set the
view direction vector), GENSetViewUp (set the view up angle), and GENSetViewDist (set the distance

to the projection or window plane).

2.4. CONTROL OF CLIPPING

There are two types of clipping that can be invoked within this package. One is window clipping, where
all objects are checked to see if they fall either totally or partially outside of the window region. This
can be done for a 2D or 3D world system. If clipping is in effect, an object which has parts lying out-
side of the window will be clipped to the window so that those parts are not displayed. However, if the
user is certain that everything will fall inside the window, then window clipping could be turned off.
This is less costly in terms of computer processing time. Window clipping is turned on or off with the
GENSetWindClip routine.

In the case of a 3D world system, it is also possible to invoke depth clipping. In this case two planes are
defined which are perpendicular to the viewing direction. The plane nearest the view reference point
is known as the front clipping plane and the one furthest away as the back clipping plane. Clipping can
be turned on with respect to either or both of these planes so as to produce the image of a semi-
infinite world or a slice from the world system. The positions of the clipping planes is set with the
GENSetViewDepth routine, and clipping with respect to these planes is turned on or off with the GEN-
SetFrontClip and GENSetBackClip routines.

2.5. WORLD TRANSFORMATIONS

There are two different types of transformations identified within the GENGRAF package. These are :

B

(1) world or mode! transformations

(i) viewing transformations.

A world or model transformation is one which maps a point in the world system to another point in
the world system. The different world transformation types are scalings, translations and rotations. A
viewing transformation is one which maps a point or region of the world system onto a point or region
in a coordinate system which has its origin at the eye of the observer. From this coordinate system
the mapping onto the viewport and thus display surface is calculated. For a 2D world system the eye
coordinate system is not such a relevant model. In this case the viewing transformation includes scal-
ings and translations to map the window onto the viewport. For a 3D world system the viewing
transformations will include scalings, translations, rotations and some kind of projective transforma-
tion, such as a perspective transformation.

The user can control the world system transformation directly by calling routines with the appropriate
parameters, however the viewing transformations are handled by the package. The user specifies the
viewing parameters as explained above.

The world transformation routines define the values of a set of transformation parameters that will be
applied to all geometric primitives defined in the world coordinate system. Therefore, all primitives
displayed undergo the current transformation in the world coordinate system before being subjected to
the current viewing transformation, to map the resultant world coordinates to the viewport and finally
to the device coordinates.

World transformations can be defined to act on ‘top of each other’; for example, a translation could be
specified, followed by a rotation, followed by a scaling. The resultant transformation would be the
combination of all of these individual transformations. Therefore the order in which they are specified
is significant. Different transformations can result from combining the same component transforma-
tions in different ordered sequences. The internal mechanism used for combining the transformations
is a stack. Each new transformation specified is combined with all the previous transformations and
the new resultant transformation is placed at the top of the stack. This provides the capability to undo
all of the individual transformations, in reverse order, to give any of the previous intermediary
transformations. Also the world transformation can be reset to the identity transformation by empty-
ing the stack altogether.

The principles of the world transformation system were explained in the previous section. The actual
routines consist of scaling, translation and rotation calls for both two and three dimensions, as well as
a routine to undo the last transformation specified and a routine to reset the resultant transformation
to the identity transformation (ie. to the identity transformation).

There are also two other routines which can be used to start and end a temporary series of transforma-
tions, which will override any transformations previously in effect and then reinstate them. These are
the GENStartTempTrans and GENEndTempTrans routines.

2.6. DISPLAY ATTRIBUTES

These routines control the visible attributes of the primitives displayed. Color is one of the most obvi-
ous attributes. GENGRAF maintains two color values for each viewport, one is the current color and
the other the background color. The current color is in effect the foreground color, in which all primi-
tives, both geometric and text, are displayed. The background color is used for erasures whether they
are of the whole viewport or of previously displayed primitives. Routines exist to define a color and to
both define and set the current and background colors.

The other attributes which can be controlled are linestyle for any line segments displayed, and fill pat-
tern, that defines the pattern used to display solid fill areas. Also included in this section are routines
to control which memory planes are being written to and read from, if the device has multiple memory

planes. For a more detailed description of this topic see Appendix 1.

2.7. GRAPHICAL PRIMITIVES

Any graphical item which can be generated by the display device in a single action is known as a primi-
tive. GENGRAF defines two classes of these, geometric primitives and text primitives. Geometric primi-
tives include line segments and polygons. Line segments may be defined by using a movero instruc-
tion, followed by a drawto instruction. However, only a single primitive is defined by the two instruc-
tions. There are three kinds of moves and draws which are available within the package, each relating
to a different coordinate system. The GENMove and GENLine routines relate to the device coordinate
system. The GENMove?2 and GENLine2 routines relate to a 2D world system, and the GENMove3 and
GENLine3 routines relate to a 3D world system.

To draw multiple line sequences the routines GENPolyLine, GENPolyLine2 and GENPolyLine3 are pro-
vided for the device, 2D world and 3D world coordinate systems respectively.

The solid geometries available at present are the GENBox and GENBox2 routines for displaying rectan-
gles in the device and 2D world coordinate systems, respectively. These routines draw orthogonal,
solid filled boxes, if the device is capable of displaying solid fill primitives. The GENPolygon and GEN-
Polygon2 routines display arbitrary shaped polygons, these are filled in if the graphics device has such a
capability.

Other geometrical primitives are the GENArc and GENArc2 routines for displaying arcs comprising of
a series of line segments.

Text primitives are character strings, the basic primitive being the individual character. The GENText
and GENText2 routines provide the capability to display text strings, located with respect to the device
and world 2D coordinate systems, respectively. There is also a routine for question and answer pur-
poses, this is the GENQuestReply routine.

2.8. COORDINATE CONVERSIONS

GENGRAF provides routines to convert coordinates from one system to another, under the currently
defined transformations. GENV1os2 will convert a world 2D coordinate pair to the corresponding dev-
ice coordinates. GENVios3 will do the same for a 3D world triplet. GENStov2 will convert a device
coordinate pair to the corresponding 2D world coordinate point.

Four other routines are also provided, these are in pairs relating to either the 2D or 3D world systems.
The GENW:transform routines subject either a 2D or 3D point to the appropriate world transformation.
The GENWinvtransform routines subject either a 2D or 3D point to the inverse of the appropriate

world transformation.

2.9. INQUIRY

A set of inquiry routines are provided so that the programmer can interrogate certain display values.
These may be contained in the device description data base (of the MFB package) or maintained in the
GENGRAF package data area. These routines can be useful when writing programs for use on a
number of different devices which have different display characteristics. The program is able to
inquire about certain values and make decisions, based on what it learns.

2.10. GENERAL CONTROL

These general control routines could also be termed the miscellaneous routines, since they are routines
that do not fit into the other categories. The GENEraseAll and GENEraseView routines erase the whole
display area and individual viewports, respectively. GENFrame and GENNoFrame are used to invoke
and remove a frame around the currently enabled viewport. The GENPoint routine is used to invoke
the device’s pointing mechanism, if it has one. The coordinates of any point selected by the pointing
device are returned along with the identity of any button or key pressed to indicate this selection. This
routine provides the basis for interactive control of programs, as it can be used for menu selection and

identifying other primitives of interest.

3. THE DEVICE DRIVER INTERFACE

The GENGRAF package is primarily for use with frame buffer (raster) devices, therefore the low level
routines used to actually control input and output, from and to the device tend to reflect this.
GENGRAF makes calls to these low level routines via a virtual graphics interface. The most general
form of this interface is provided by use of the MFB package of routines.

3.1. THE MFB SYSTEM

The Model Frame Buffer (MFB) system [4] provides the GENGRAF package with a virtual graphics
interface for frame buffer (raster) devices. MFB performs the terminal dependent task of encoding
and decoding graphics code, thereby allowing the user to write graphics programs to run on almost any
graphics device. The MFB package could control vector devices, however, it is more specifically
directed towards frame buffer machines. The package displays primitives defined in the device coordi-
nate system, with control over their visible attributes. The package also contains routines for general
device control.

The MFB package is written in the C language and was originally intended to run under the UNIX
operating system, however, an attempt to run it under the VMS operating system has been made. The
package depends on the operating system to control the environment in which it has to run. An
example of such control would be the instigation of a raw mode of operation, where each character
typed in at the terminal is interpreted immediately by the host computer, rather than after a carriage
return has been sent. Also, the operating system suspends any interrupts from external processes
while in the graphics mode of operation. This is important, as otherwise such interrupts could be
wrongly interpreted as graphics instructions. The MFB package has the capability to invoke both of
these modes via the UNIX operating system.

Device Description Data Base

MFB uses a device description data base [5]. This contains descriptions of each individual device’s
capabilities and control syntax. Thus, the GENGRAF system calls the MFB package to initialize the
routines for control of a certain type of device. If a new display device is acquired, it can be run with
the GENGRAF routines when the appropriate device description is added to the data base. This
means no new routines have to be written to cope with a particular display device, unless an operation
which is not contained within the MFB package is required. In such a situation it would be necessary
to expand both the MFB and GENGRAF subroutine libraries.

4. USING THE GENGRAF LIBRARY

4.1. Writing Programs Using GENGRAF

Writing a program that uses the GENGRAF routines is essentially no different from writing any other
program. The GENGRAF routines are called to perform the graphics operations the rest of the pro-
gram being unaffected. The trivial C example program below shows the typical sequence of calls :

main()
(/ * GENGRAF C test program */

float xcen, ycen, size;

GENOpen("18", ™)

GENSetWindow(0.0, 100.0, 0.0, 100.0);

xcen = 50.0;

ycen = 50.0;

for (size = 10.0; size <= 90.0; size + = 5.0)

drawbox (xcen, ycen, size):

sleep(5);
| GENClose():

drawbox (xc, yc, size)
float xc, yc, size;
/* draw a box of side length size, centered at xc,yc */

size = size / 2.0;
GENMove2(xc+size, yc+size):
GENLine2(xc-size, yc+size);
GENLine2(xc-size, yc-size);
GENLine2(xc +size, yc-size);
GENLine2(xc +size, yc+size):

J

GENOpen is the first routine called as this initializes the graphics routine package and the graphics
device. The default viewport is used in this example and the window mapped on to it is set next.
After that a number of GENMove2 and GENLine2 calls are made which result in a series of concen-
tric rectangles being drawn. Finally the program finishes by calling the GENClose routine to reset the
graphics devige to its original state.

The equivalent program written in Fortran and calling the GENGRAF Fortran library is shown below :

program test
¢ GENGRAF Fortran test program
real xcen, ycen, size
call gopen("18", ™)
call gsetwd (0.0, 100.0, 0.0, 100.0)
xcen = 50.0
ycen = 50.0
do 10i = 2,18
size = float(i) * 5.0
call drwbox(xcen, ycen, size)
10 continue
call sleep(5)
call gclose
stop
end

subroutine drwbox (xc, yc, size)
¢ draw a box of side length size, centered at xc,yc

real xc, yc, size

size = size / 2.0

call gmove2(xc+size, yc+size)

call gline2(xc-size, yc+size)

call gline2(xc-size, yc-size)

call gline2(xc +size, yc-size)

call gline2(xc+size, yc+size)

return

end

4.2. Compiling Programs Using GENGRAF

In order to use the GENGRAF routines the programmer must call them from his/her program code
(as shown in the above examples) and then link the GENGRAF library in with their own compiled
code to produce the fully executable program file. An example for a ‘C’ program might be as follows

cc test.c “rgoliver/lib/gengraf-c.a -Im -o test

where test.c is the file containing the C program code which uses graphics. The file
“rgoliver/lib/gengraf-c.a is the name (including part of a UNIX pathname) of the file containing the
GENGRAF ‘C’ library. The "-Im" tells the loader to load the standard math library and "-o test" to put

the executable code in a file called test.
In the case of a Fortran program the compilation command might be as follows :

f77 test.f “rgoliver/lib/gengraf-f.a -o test

where test.f is the file containing the Fortran program code which uses graphics. The file
“rgoliver/libigengraf-fa is the name (including part of a UNIX pathname) of the file containing the
GENGRAF Fortran library. The "-0 test" tells the loader to put the executable code in a file called

test.

10

4.3. Running Programs Using GENGRAF

Once an executable program has been compiled and linked it is ready to run. This should be straight
forward unless the program utilizes some non-standard version of GENGRAF. The standard version
uses the MFB package to provide the low level device driver. It is possible however, to link
GENGRAF to some other device driver package to drive a single device type in order to reduce

/cad/lib for a file called mfbcap.

GENGRAF sets up some non-standard line modes when operating some graphics devices. Therefore,
if the program should crash while executing a graphics program, the terminal line mode will have to be
reset manually. This can usually be achieved by typing the following commands

tset [control-j)
stty -litout [control-j]

If the routines do not behave as expected one should consult ones local "graphics guru".

REFERENCES

[1] Graphics Standards Planning Committee, Special Interest Group on Graphics, Association
for Computer Machinary (SIGGRAPH-ACM), Computer Graphics, Vol. 13, No. 3, August
1979.

[2] 1.D. Foley, P.A. Wenner, Department of E.E.C.S., George Washington University, Wash-
ington D.C. 20052. The George Washington University Core System Implementation, Computer

Graphics, July 1981,

(3] B.W. Kernighan, D.M.Ritchie, Bell Laboratories, Murray Hill, N.J. The C Programmmers
Manual. Prentice-Hall, Inc.,Englewood Cliffs, N.J. 07632, 1978.

(4] G. Billingsley, K. Keller, University of California, Berkeley, CAD Group, Department
E.E.CS. Model Frame Byffer (MFB) manual, UNIX system document, 1982.

{5] G. Billingsley, K. Keller, University of California, Berkeley, CAD Group, Department
E.E.C.S. Graphics Terminal Capability Data Base (MFBCAP) manuai, UNIX system document,

1982.

[6] W.M. Newman, R.F. Sproul, Principles of Interactive Computer Graphics, 2'nd Edition,
Mcgraw-Hill, N.Y., 1979.

11

12

APPENDIX 1

GENGRAF SUBROUTINE USERS MANUAL

This appendix describes the GENGRAF routines and the calling sequences necessary to invoke them.
The package is written in the C language and so the names and necessary parameters for C program
calls are given. The routines are also callable in Fortran, as an intermediary set of C routines has been
provided to make Fortran calls compatible with the corresponding C routines. This connecting set of
routines is necessary in order to conform to Fortran’s requirement of a maximum of six characters for
variable and subroutine names and also to make procedure call formats compatible. The Fortran sub-
routine names and passed parameter types are given below those for C.

The routines have been segregated into groups relating to the different aspects of operation and control

of the graphical display. If default values are set up at initialization time without a program having to
make explicit calls to set them up then this is indicated below the subroutine description.

1. Starting and Finishing

C GENOpen (devicename,devicefile)
char *devicename, *devicefile;

FORTRAN gopen(devnam,devfll)
character*30 devnam,devfil

Initialize the GENGRAF package for use on the specified device. The name of the graphics device
(devicename) must be given. This device name should be one of those in the Model Frame Buffer
terminal CAPabilities (MFBCAP) file. In addition a UNIX device file descriptor (devicefile) may be
specified if the program is to be run from a device other than the graphics display. This routine must
be called before any other GENGRAF routine. A viewport is established and set to be subsequently
enabled for the convenience of those applications requiring only a single viewport. This default

viewport is named "single".

Defaults : There is no default device name; this must be specified. The default device file is the dev-
ice from which the program is initiated. Therefore, the null string as the device file descriptor will
specify the graphics to appear on the device from which the program is invoked.

C GENClose()
FORTRAN gclose

Close the view package and free all memory allocated for its use. Called when all viewing operations
have been completed. This routine must be called so as to leave the device in the same state in effect

before the package was initialized.

C GENOpenView (viewname)
char *viewname;

FORTRAN gopvp(vname)
character*10 vname

Create a viewport by specifying the alpha-numeric name of the viewport. The name, which must be no

13

more than ten characters long, is checked to see that it has not already been used and if not, all the
necessary variable allocation for the viewport is performed. If it is required to direct graphics to the
viewport then it must be established as the currently enabled or working viewport with a call to GEN-
SetCurView. In this case the viewport is referenced with the same name as used when it is originally

defined.

C GENCloseView (viewname)
char *viewname;

FORTRAN gclvp(vname)
character*10 vname

Close the viewname viewport This will free all storage allocated for the viewport when it was opened.
Another viewport of the same name could subsequently be defined, but none of the original viewport

information will be retained.

2. Viewports and Windows

C GENSetCurView (viewname)
char *viewname;

FORTRAN gscvp(vpname)
character®10 vpname

Set the viewname viewport as the currently enabled or working viewport. The viewport must have
already been opened with a call to GENOpenView. All subsequent graphical output will be directed to
this viewport, until another cail to GENSetCurView is made, specifying another viewport.

C GENSetViewport (xmin,xmax,ymin,ymax)
Sfoat xmin,xmax,ymin,ymax;

FORTRAN gsvp(xmin,xmax,ymin,tmax)
real xmin,xmax,ymin,ymax

Define the limits of the currently enabled viewport on the output device display area. This is specified
in terms of a normalized device coordinate system (NDC). On initialization the normalized coordi-
nates of the device are set to range from 0 to 1.0 in the x display direction, increasing from left to
right. The normalized coordinate range in the y direction is also defined to range from 0 to 1.0 from

bottom to top.

Default : The viewport is set to fill the full device area when it is initialized with a call to GENOpen-
View. That is,

xmin =
xmax = 1.0
ymin = 0
ymax = 1.0

14

C GENSetDimension (dim)

int dim;
FORTRAN gsdim(dim)

int dim
Set the type of coordinate system to be used in the currently enabled viewport. The dim parameter is
set to either 2 for a two-dimensional world system (2D) or 3 for a three-dimensional world system
(3D). In the case of a 2D system the only other routine called is the window routine, which defines
the area of the world coordinate system which is mapped onto the viewport. For a three-dimensional
world coordinate system, other routines besides the windowing routine need to be called in order to
establish the viewing transformation to display the world system window within the viewport. In the
case of a 3D system the view into the world coordinate system comprises a hypothetical ‘pyramid of
vision’ which has as its apex the eye of the observer.

Default : A two dimensional coordinate system is established when the viewport is opened.

C GENSetWindow (xmin,xmax,ymin,ymax)
float xmin,xmax,ymin,ymax;

FORTRAN gswd(xmin,xmax,ymin,ymax)
real xmin, xmax,ymin,ymax

Define the window into the world coordinate system which will be mapped onto the current viewport.
Appropriate translations and scaling are performed automatically so as to ensure the window area maps
onto the viewport exactly. To ensure a uniform transformation between the window and the viewport
(that is to prevent any relative distortion between any two perpendicular directions) the window and
viewport aspect ratios must be equal. In the case of a 2D world system, the window specifies a rectan-
gle in the world coordinate plane. In the case of a 3D world system, the window specifies a rectangle
on the projection plane to be mapped onto the viewport. The projection plane is a plane which lies
perpendicularly to the viewing direction, and which is centered about the intersection of the viewing
direction vector. All the points,lines and planes within the world system are projected onto this plane
which is the projected onto the appropriate viewport. The values specified are the minimum and max-
imum coordinates in the x and y directions, respectively. In each case the minimum values must be

less than the the maximum values.

Default : The window values are set to the corresponding viewport values in the NDC system, which
in the case of the default viewport is the full display area. That is,

xmin = 0
xmax = 1.0
ymin = (
ymax = 1.0

C GENFrame()
FORTRAN gfrm

Draw a frame around the currently enabled viewport in the current color. If the viewport takes up the
whole of the display and there is no room for a frame the result is undefined. Thus it is the users
responsibility to ensure that a viewport frame will fit on the display area.

15

3. 3D View Parameters

C GENSetViewPoint (xref, yref, zref)
Sfloat xref,yref, zref:

FORTRAN gsvpt (xref,yref,zref)
real xref,yref, zref

Specifies the point in a 3D world coordinate system from which the rest of the world system is viewed.
Another analogy is to consider the eye of the observer to be at this point.

Default : View point set to the origin. Thus this or the default viewing direction must be changed in
order to be able to view any 3-dimension objects.

C GENSetViewDir(vdx,vdy,vdz)
foat vdx,vdy, vdz;

FORTRAN gsvdir(vdx,vdy,vdz)
real vdx, vdy, vdz

Specifies the viewing direction, in a 3D world coordinate system. The parameters given are that of a
vector pointing in the viewing direction, relative to the view reference point. The various viewing
angles, relative to the orthogonal world coordinate system are calculated using these values. By default
no viewing direction is specified, therefore, these values must be initialized to some set of values
which specify a non-zero vector, before a view can be implemented.

Default : No direction defined.

C GENSetViewUp (upangle)
Sloar upangle;

FORTRAN gsvup(upang)
real upang

Specifies the view-up direction in a 3D world coordinate system. This direction is that which appears
vertically on the viewport. Alternatively this direction can be thought of as specifying the angle of
rotation of the window from its initial position on the projection plane.

Default : For a two-dimensional world the view-up direction is parallel to the y-axis. For a three-
dimensional world system the direction of maximum increasing z is defined as the view-up direction.

C GENSetViewDist (vdist)
Aoat vdisi;

FORTRAN gsvdst(vdist)
real vdist

Specifies the distance from the view reference point to the projection plane. This effectively controls
the two angles of the ‘viewing pyramid’ and consequently the scope of the world coordinate system to
be viewed. Default : The viewing distance is set to zero, ie. the view reference point lies in the projec-
tion plane, which is a paradoxical situation. Thus the viewing distance parameter must be initialized to
a positive non-zero value before a view can be implemented.

16

4. Clipping Control

The following routines deal with clipping, which can be in either of two states on or off This is
signified by the Boolean variable onoff whose value is 1 if the associated clipping is on and 0 if the as-

sociated clipping is off

C GENSetViewDepth (minZ ,maxZ)
float minZ,maxZ;

FORTRAN gsvdth(minz,maxz)
real minz, maxz

Specifies two planes which are perpendicular to the viewing direction vector and which are at distances
minZ and maxZ from the view reference point (observer). Thus, they define a siice of the world coor-
dinate system. Clipping of all graphics primitives can be invoked with respect to either or both of
these planes. The minZ value must be less than the maxZ value. The default value for both parame-
ters is zero, which if depth clipping were evoked, would produce no visible display. However, depth
clipping is turned off by default. Thus, before depth clipping is turned on, valid values for minZ and

maxZ must have been set.

Default : No values defined.

C GENSetWindClip (onoff)
int onoff;

FORTRAN gswclp(onofd)
integer onoff’

Turn clipping to the window on or off. Window clipping can be active with either a 2D or 3D world
coordinate system. In the case of a 2D system it clips all primitives to the window on the world plane.
For the 3D case primitives are clipped to the ‘viewing pyramid’ which extends from the view reference
point. Another way of describing this 3D clipping operation is to imagine that all primatives are pro-
jected onto an infinite projection plane. Then 2D clipping is evoked on the projection plane to leave
only the part of the display that is mapped onto the viewport. When clipping is turned off, all of the
primitives displayed should lie within the specified window. If this is not the case then the effect of the
display of primitives lying partially or wholly outside the window is undefined and will be device

dependent.

Default : Clipping is turned on.

C GENSetFrontClip (onoff)
int onoff;

FORTRAN gsfclp(onoff)
integer onoff-

In the case of a 3D view it is possible to clip primitives to certain depth values as specified by a call to
the GENSetViewDepth routine. The GENSetFrontClip routine is a routine which switches clipping to
the front of these depthplanes (the one nearest the view reference point) either on or off The values
of minZ and maxZ must be set before any depth clipping is turned on.

Default : Clipping to the front depth plane is turned off

17

C GENSetBackClip(onofh
int onoff;

FORTRAN gsbclp(onofD
integer onoff’

Turn clipping to back depth plane on or off. As for the GENSetFrontClip routine except relates to the
back depth plane (the one furthest from the view reference point).

Default : Clipping to the back depth plane is turned offf

5. World Transformations

C GENScale2 (sx,sy)

Sfloat sx,sy;
FORTRAN gscal2(sx,sy)
real sx,sy

Applies scaling in a 2D world system by factors of sx and sy, respectively, in the x and y directions.
Scaling is performed with respect to the origin. Thus, if it is desired to scale relative to any other
point, then this point must first be translated to the original origin, then the scaling operation per-
formed and finally the scaling point must be translated back to its original position.

Default : Uniform scaling, ie. sx = gy = 1.0

C GENTranslate2 (tx,ty)
Soat ox,ty;

FORTRAN gtran2(tx,ty)
real tx,ty

Applies a translation in a 2D world system by offset values of tx and ty, respectively, in the x and y
directions. The same effect, in terms of what will be displayed in the viewport, could be produced by

changing the window values.

Default : No translations in effect, ie. tx = ty = 0.0

C GENRotate2 (angle)
Noat angle;
FORTRAN grot2(angle)
real angle
Applies a rotation to a 2D world system of ang degrees, measured positively in an counter-clockwise
direction.

Default : No rotation in effect, ie. angle = 0.0

18

C GENScaled(sx,sy,s2)

float sx,sy,s2;
FORTRAN gscal3(sx,sy,sz)
real sx,sy,sz

Applies scaling in a 3D world system by factors of $x,sy and sz, respectively, in the x,y and z direc-
tions. See GENScale2 for a description of how to produce scaling with respect to a point other than
the origin.

Default : Uniform scaling, ie. sx = sy = sz = 0.0

C GENTranslate3(tx,ty,tz)
foat e, v, 1z;

FORTRAN gtran3(tx,ty,tz)
real tx,ty,tz

Applies a translation in a 3D world system, by offset values of tx,ty and tz, respectively, in the x,y and
z directions.

Default : No translation in effect, ie. tx = ty = tz = (0.0

C GENRotate3 (axis,angle)
char axis
foat angle

FORTRAN grot3(axis,angle)
character*! axis
real angle

Applies rotations to a 3D world system. The axis, about which the rotation is to be produced and the
angle of rotation to be applied need to be specified. The axis value is a single character and must be
either 'x’, 'y’ or ‘z’ to produce a rotation. The units of angular measurement are degrees.

Default : No rotations in effect, ie. angle = 0 for all axes.

C GENUndoTrans()
FORTRAN gudtmn

Undo the last transformation specified. The result is to produce the combined world transformation
that was in effect before the most recent transformation was evoked. The routine can be called repeat-
edly until the there is no world transformation, that is, only the identity transformation which has no

effect.
This can also be thought of as popping a transformation off the top of a transformation stack.

C GENResetTrans()
FORTRAN grttrn

Reset the world transformation to the identity transformation. This destroys any transformations that
might have been in effect.

19

C GENStartTempTrans
FORTRAN gstemp

Start a temporary transformation sequence or stack. This will override any transformations previously
in effect until the GENEndTempTrans routine is called to restore the original transformations and end
the temporary stack. This routine could be useful for temporarily overriding the current world
transformation or to display primatives with no transformation in effect, such as a coordinate triad.

C GENEndTempTransQ
FORTRAN getemp

End a temporary transformation sequence or stack. This is called to end a temporary stack evoked by
a call to the GENStartTempTrans routine.

C GENDeg(dx,dy)
Sfoat dx,dy;
FORTRAN gdeg(dx,dy)
real dx,dy

This function returns an angle in degrees corresponding to offsets in two mutually perpendicular direc-
tions, dx and dy.

6. Controlling Attributes

C GENDefineColor (colorid,R,G,B)
int colorid, R,G,B;

FORTRAN gdcol(color,red,green,blue)
integer color,red,green, biue

Define a color. The color is identified by the code number colorid. This is specified by giving the
intensity values of the red, green and blue components of which the color is to be composed. The
intensity values for each of the colors can range from 0 to 1000. Thus a color region consisting of a
cube with coordinates ranging from zero to 1000 can be envisaged.

C GENSetColor (colorid)
int colorid;

FORTRAN gscol{(color)
integer color

Set color colorid as the current color.

C GENSetCursorColor(colorl,color2)
int colorl,color2;
FORTRAN gscurc(colorl,color2)
. integer colorl,color2

Set the color of the device cursor, if it has one, to alternate between color! and color?. The colors
alternate only if the device has this capability otherwise only the first color is used.

20

C GENSetBiinker (colorid,r,g,b,onofh
int colorid,r,g,b,onoff"

FORTRAN gsbik(color,r,g,b,onofl)
integer color,r,g,b,onoff

Set color colorid to blink to another color specified by the red, green and biue. The frequency with
which it blinks is specified by the onoff value, which is an integer number of machine refresh cycles.
A single refresh cycle is usually of the order of 1/30th to 1/60th of a second long. This feature is only
available on devices that support it in their hardware/firmware.

C GENDefineLineStyle (styleid,bitarray)
int styleid, bitarray; ‘

FORTRAN gdlisty(style,bitarr)
integer style, bitarr

Define a linestyle. The linestyle is referenced by the code number styleid. The actual style of the line
is specified by giving the repeatable pattern of the line style in the ‘binary’ array bitarray. Thus, if
bitarray was set to a value of decimal 85 (that is, binary ‘01010101°), then the line would displayed as
dotted, with alterate pixels being lit in the current color.

C GENSetLineStyle(styleid)
int styleid;

FORTRAN gsisty(style)
integer style

Set the line style for all subsequent line segments. Styleid could be a default device line style or a user
defined style.

Default : Solid line.

C GENDefineFillPattern (styleid,bitarray)
int styleid, “bitarray;

FORTRAN gdfill (style,bitarr)
integer style bitarr

Define a fillpattern for boxes and other polygons. The fillpattern is referenced by the code number
styleid. The actual pattern is specified by giving the pattern of a small block in the ‘binary’ array bitar-
ray, which is repeated all over the polygons area. Thus, if bitarray was set to the following decimal
values 85, 170, 85, 170, 85, 170, 85, 170, then the two dimensional binary array would be as follows

01010101
10101010
01010101
10101010
01010101
10101010
01010101
10101010

Thus the pattern displayed in a polygon would be one of diagonal stripes with the pixels in each row
being alterately lit in the current color.

21

C GENSetFiliPattern (style)
int style;
FORTRAN gsfill (style)
integer style
Set the fillpattern for all subsequent boxes and polygons. Pattern could be a default device pattern or a
user defined pattern.

Default : Solid fill.

C GENSetWriteMask (maskpattern)
int maskpattern,

FORTRAN gswmsk(mask)
integer mask

Set the device write mask to that of maskpattern. This is only appropriate if the device has multiple
display planes and they can be selectively written to. This routine and GENSetReadMask could be
used to ‘toggle’ between different displays, which are stored in separate display planes. The maskpat-
tern value is interpreted as a binary array with a each bit corresponding to a display plane. If a bit is
set to 1, then the appropriate display plane is written to. If it is set to zero, then the display plane is

not written to (ie., it is masked off).

C GENSetReadMask (maskpattern)
int maskpattern;

FORTRAN gsrmsk(mask)
integer mask

Set the device read mask to that of maskpattern. This is only appropriate if the device has multiple
display planes and they can be selectively read from. As in the case of the GENSetWriteMask routine,
the maskpattern value is interpreted as a binary array with a each bit corresponding to a display plane.

7. Geometric Primitives

C GENMove(x,y)
int x,y;

FORTRAN gmove(x,y)
integer x,y

Move the pen or cursor to the position (x,y) in the actual device coordinate system,

C GENMove2(x,y)
float x,y;
FORTRAN gmove2(x,y)
real x,y
Move the pen or cursor to the position (x,y) in the world system. If a 3D view is in effect then the z
coordinate value defaults to zero.

22

C GENMovel(x,y,z)
Sfloat x,y,2;

FORTRAN gmove3(x,y,z)
real x,y,z

Move the pen or cursor to the position (x,y,z) in the world system. If a 2D view is in effect then the
z coordinate value is ignored.

C GENLine(x,y)
int x,y;

FORTRAN gline(x,y)
integer x,y

Draw a line from the current cursor position to the point (x,y) in the device coordinate system. No
clipping will be performed should any part of the line fall outside of the viewport or display area.

C GENLine2(x,y)
float x,y;

FORTRAN gline2(x,y)
real x,y

Draw a line from the current world cursor position to the (x,y) world system point specified, leaving
the cursor at the point (x,y) whether this is inside the current window or not.

C GENLine3(x,y,z)
foat x,y,z;

FORTRAN gline3(x,y,z)
real x,,z

Draw a line from the current world cursor position to the (x,y,z) world system point specified, leaving
the cursor at the point (x,y,z) whether this is inside the current window or not.

C GENPolyLine(nvert,xy)
int nvert, xy,

FORTRAN gplin(nvert,xy)
integer nvert,xy(]

Draw a series of connected line segments joining the nvert vertices, in the device coordinate system.
No clipping will be performed should any part of the line sequence fall outside of the viewport or
display area. The x and y coordinates are ordered in consecutive pairs in the linear array xy.

C GENPolyLine2 (nvert,xy)
int nvert;
Soat xyl];

FORTRAN gplin2(nvert,xy)
integer nvert
real xy

Draw a series of connected line segments joining the nvert vertices, in the 2D world coordinate system.
The x and y coordinates are ordered in consecutive pairs in the linear array Xy

23

C GENPolyLine3(nvert,xyz)
int nvert;
Sloat xyz(];

FORTRAN gplin3(nvert,xyz)
integer nvert
real xyz

Draw a series of connected line segments joining the nverr vertices, in the 3D world coordinate system.
The x,y and z coordinates are ordered in consecutive triples in the linear array xyz.

C GENArc(x,y,r,astart,astop,s)
int x,y,r,astart,astop,s;

FORTRAN garc(x,y,r,astart,astop,s)
integer x,y,r,astart,astop, s

Display an arc in the device coordinate system with its origin at the point x, y and of radius . The arc
starts at an angle astart measured from the positive direction of the x axis, and goes through to an
angle astop. The arc comprises of s line segments.

C GENArc2(x,y,r,astart,astop,s)
SAoat x,y,r,astart,astop;
int s;

FORTRAN garc2(x,y,r,astart,astop,s)
real x,y,r,astart,astop
integer s

Display an arc in the 2D world coordinate system with its origin at the point x,y and of radius r. The
arc starts at an angle astart measured from the positive direction of the x axis, and goes through to an

angle astop. The arc comprises of s line segments.

C GENBox(x1,y1,x2,y2)
int x1,y1,x2,y2;

FORTRAN gbox(x1,y1,x2,y2)
integer x1,yl,x2,y2;

Display a box with diagonal coordinates (x1,y1) and (x2,y2), where the coordinate values are in device
units. The box will be displayed in the current fillpattern and color.

C GENBox2(x1,y1,x2,y2)
Sfloat x1,y1,x2,y2;

FORTRAN gbox2(x1,y1,x2,y2)
real x1,y1,x2,y2;

Display a box with diagonal coordinates (x1,y1) and (x2,y2), where the coordinate values are in world
units. The box will be displayed in the current fillpattern and color.

C GENPolygon (nvert,xy)
int nvert,xy;

FORTRAN gpgon(nvert,xy)
integer nvert,xy(]

24

Display a filled polygon, in the current il pattern, defined by nverr vertices, in the device coordinate
system. No clipping will be performed should any part of the polygon fall outside of the viewport or
display area. The x and y coordinates are ordered in consecutive pairs in the linear array Xy.

C GENPolygon2 (nvert,xy)
int nvert;
Sfloat xy(]:

FORTRAN gpgon2(nvert,xy)
integer nvert
real xy

Display a filled polygon, in the current fill pattern, defined by nverr vertices, in the 2D world coordi-
nate system. The x and y coordinates are ordered in consecutive pairs in the linear array xy.

8. Text Primitives

C GENText(string,x,y,pos,ang)
char *string;
int x,y,pos,ang,

FORTRAN gtext(string,x,y,pos,ang)
character*100
integer x,y,pos,ang

Display the text string siring at the device coordinates (x,y) using the relative position code pos at the
angle ang. The relative position code determines how the string will be justified with respect to the
locating coordinates. The position code can be any value from one to nine inclusive. The positions

corresponding to each code are shown below :

C GENText2(string,x,y,pos,ang)
char “string;
foat x,y;
int pos,ang;

FORTRAN gtext2(string,x,y,pos,ang)
character®100 string
real x,y
integer pos,ang

Display the text string string at the world coordinates X,y using the relative position code pos at the
angle ang. The position codes are the same as for GENText above.

25

C GENQuestRepiy(x,y,promtstr,repiystr)
int x,y;
char “promistr, *replysir;
FORTRAN ggrep(x,y,pstr,rstr)
integer x,y
character*100 pstr,rstr
Write a prompt string starting at location (x,y) in device coordinates, to be followed by the users typed
in response, which is returned in the string pointed to by replystr.

9. Coordinate Conversions

C GENWtransform2(x,y)
Sfloar *x, %y,

FORTRAN gtfm2(x,y)
real x,y

Apply the current 2D world transformation to the (x,y) coordinate pair and return their transformed
values. '

C GENWtransform3(x,y,z)
Hoat °x, %, "z,
FORTRAN gtfm3(x,y,z)
foat x,y,z
Apply the current 3D world transformation to the (x,y,z) coordinate set and return their transformed
values.

C GENWinvtransform2 (x,y)

Sfloat x,y;
FORTRAN gitfm2(x,y)

real x,y
Apply the inverse of the current 2D world transformation to the (x,y) coordinate pair and return their
transformed values.

C GENWinvtransform3(x,y,z)
NAoat x,y,z;

FORTRAN gitfm3(x,y,2)
real x,y,z

Apply the inverse of the current 3D world transformation to the (x,y,z) coordinate set and return their
transformed values.

26

C GENWtos2(xv,yv,xs,ys,valid)
Sloat xv,yv;
int *xs, %ys, valid;

FORTRAN gwts2(xv,yv,xs,ys,valid)
real xv,yv
integer xs,ys, valid

Transform the 2D world system coordinate pair (xv,yv) to the corresponding device coordinate pair
(xs,ys). If the point xs,ys is outside of the current viewport then the valid flag is set to zero, other-

wise it is set to 1.

C GENWtos3(xv,yv,zv,xs,ys,valid)
float xv,yv,zv;
int °xs, *ys, valid;

FORTRAN gwts3(xv,yv,zv,xs,ys,valid)
real xv,yv,zv
integer xs,ys, valid

Transform the 3D world system coordinate set (xv,yv,zv) to the corresponding device coordinate pair
(xs,ys). If the point (xs,ys) is outside of the current viewport then the valid flag is set to zero, other-

wise it is set to 1.

C GENStow2 (xs,ys,xv,yv,valid)
int xs,ys;
Sfloat *xv, v,
int valid;

FORTRAN gstw2(xs,ys,xv,yv,valid)
integer xs,ys
real xv,yv
integer valid

Transform the device coordinate pair (xs,ys) to the corresponding 2D world coordinate system pair
(xv,yv). If the point (xs,ys) is outside of the current viewport then the valid flag is set to zero, other-
wise it is set to 1.

10. Ingquiry

10.1 Device Values

C GENIngDevRes (xres,yres)
int *xres, *yres;

FORTRAN gidres(xres,yres)
integer xres,yres

27

The device resolution in the x and y directions is returned. The values correspond to the maximum
addressable values in each direction. It is assumed that the lowest addressable values are zero in both

the x and y directions.

C GENIngNumColors (maxnum)
int *maxnum;

FORTRAN gincol (numcol)
integer numcol

The maximum number of colors a device can simultaneously display is returned. This value must
always be greater or equal to two, since even a monochrome device has one foreground and one back-

ground color.

C GENIngNumBitPlanes (maxnum)
int *maxnum;

FORTRAN ginbit(numcol)
integer numcol

The number of bit planes the device uses to display images is returned. This value must always be
greater or equal to one, since a monochrome device has a single bit plane.

C GENIngNumBlinkers (maxnum)
int *maxnum;

FORTRAN ginblk (numblk)
integer numblk

The number of simultaneously blinking colors the device can support is returned.

C GENIngNumLines(maxnum)
int *maxnum;

FORTRAN ginlin(numlin)
integer numlin

The maximum number of linestyles a device can simultaneously addressed is returned. The device
may be capable of having many more types of linestyle displayed, however, they can not be address

simultaneously.

C GENIngNumPatterns (maxnum)
int *maxnum;
FORTRAN ginfil(numfl)
integer numfil
The maximum number of fillpatterns a device can simultaneously addressed

is returned.
The device may be capable of having many more types of fillpatterns
displayed, however, they can not be addressed simultaneously.

28

C GENInqTextSize (xtext,ytext)
int *xtext, *ytext;

FORTRAN gitsz(xtext, ytext)
integer xtext,ytext

The size of the text character block is returned. The width is returned as xtext, and the height as
ytext.

C GENIngNumButtons (num)
int *num;

FORTRAN ginbut(num)
integer num

The number of buttons the pointing device has is returned.

C GENInqButton (button,num)
int button, *num;

FORTRAN gibut (button,num)
integer button,num

The number returned when button number button is activated on the pointing device is returned.

C GENIngMasks (maskbool)
int *maskbool;

FORTRAN gimask (mbool)
integer mbool

A boolean value indicating whether the device has read and write masks is returned. If the value is 1
the device has masks and if the value is 0 it does not.

10.2. Viewport Values

C GENIngCurView (curview)
char *curview;

FORTRAN gicvp(vpname)
character*10 vpname

The alpha-numeric name of the currently enabled viewport is returned. If a viewport is not enabled a
null string is returned.

C GENIaniewport(vminX,vmaxX,vminY,vman)
Sfloat *vminX, “vmaxX, *vminY, *vmaxY:

FORTRAN givp(vminx,vmaxx,vminy,vmnxy)
real vminx, vmaxx, vminy, vmaxy

The NDC values of the bounds of the viewport are returned.

29

C GENIngVratio{vratio)
Noat ®vratio;

FORTRAN givrat(vratio)
real vratio

The aspect ratio of the viewport is returned. This is the ratio of the vertical range of the viewport to
its horizontal range.

C GENIngDimension (currentdim)
int *currentdim;

FORTRAN gidim(dim)
integer dim

The dimensionality of the world system associated with the viewport is returned. This value will be
either two or three for a 2D or 3D system, respectively.

C GENIngWorldRes (xres,yres)
Sloar *xres, *yres;

FORTRAN giwres(xres,yres)
real xres,yres

The world coordinate distances corresponding to one addressable unit on the display device is
returned. In the case of a 2D world system these values is easily definable. In the case of a 3D world
system these values are the distances measured on projection plane. The values can be of use when
determining at what scale to display certain types of data.

10.3 Viewing Values

C GENInqWindow (wminX,wmaxX,#minY,wmaxY)
Sfloat *wminX, *wmaxX, *wminY, *wmaxY:

FORTRAN giwd(wminx,wmaxx,wminy,wmaxy)
Wminx, wmaxx, wminy, wmaxy

The values of the window bounding edges are returned.

C GENInqViewPoint (xref,yref,zref)
float “xref, *yref, *zref;
FORTRAN givpt(xref,yref,zref)
real xref,yref,zref

If the world system is a 3D system the view reference point coordinates are returned.

C GENInqViewDir(vdirdx,vdirdy,vdirdz)
Sfloar “vdirdx, *vdirdy, *vdirdz;
FORTRAN givdir(dx,dy,dz)
real dx,dy,dz

If the world system is a 3D system the view direction vector values are returned.

30

C GENIngViewUp(upangie)
Sloat *upangle;

FORTRAN givup(upang)
real upang

If the world system is a 3D system the view up angle value is returned.

C GENInqViewDist (vdist)
Soar *vdist;

FORTRAN givdst(vdist)
real vdist

If the world system is a 3D system the distance to the projection plane from the view reference point
is returned.

C GENInqCurWpos (curx,cury,curz)
Sfloat *curx, *cury, *curz;

FORTRAN giwpos(curx,cury,curz)
real curx,cury,curz

The world coordinates of the present cursor position are returned.

C GENInqCurSpos (screenx,screeny)
int *screenx, “screeny;

FORTRAN gispos(scx,scy)
integer scx,scy

The device coordinates of the present cursor position are returned.

10.4 Transformation Values

C GENIngTrans (trans)
Sfoat trans(4](4];
FORTRAN gitran(trans)
real trans
dimension trans(4,4)

The 4 by 4 final transformation matrix is returned. This matrix is the combination of the world
transformation matrix and the projection transformation matrix. If the world system is a 2D system
then the first, second and fourth columns and rows contain the appropriate 3 by 3 matrix.

31

C GENIngWorldTran(woridiran)
Sfoat worldtran(4](4];
FORTRAN giwtrn(wtran)
real wtran
dimension wtran(4,4)

The 4 by 4 world transformation matrix is returned. If the world system is a 2D system then the first,
second and fourth columns and rows contain the appropriate 3 by 3 matrix.

C GENInqViewTran(viewtran)
Sfloat viewtran{4][4];
FORTRAN givtrn(vtran)
real vtran
dimension vtran(4,4)

The 4 by 4 viewing projection transformation matrix is returned. If the world system is a 2D system,
then this matrix will be the identity matrix, since no projection is performed.

10.5 Clipping Values

C GENInqWindClip(clipbool)
int *clipbool;

FORTRAN giwcip(enoff)
integer onoff

A Boolean flag indicating whether or not window clipping is in effect is returned. If the flag is 1 clip-
ping is in effect and if the flag is zero, it is not.

C GENIngFrontClip(frontbool)
int *frontbool;

FORTRAN gifclp(onoff)
integer onoff

A Boolean flag indicating whether or not clipping to the front depth plane is in effect is returned. If
the flag is 1 clipping is in effect and if the flag is zero, it is not.

C GENIngBackClip(backbool)
int *backbool;

FORTRAN gibcip(onofh
integer onoff

A Boolean flag indicating whether or not clipping to the back depth plane is in effect is returned. If
the flag is 1 clipping is in effect and if the flag is zero, it is not.

C GENInqViewDepth (minz,maxz)
Aoat *minz, *maxz;

FORTRAN givdth(minz,maxz)
real minz, maxz

The distances to the front and back depth planes are returned.

10.6 Attribute Values

C GENInqCurColor (currentcolor)
int *currentcolor;

FORTRAN giccol(color)
integer color

The value of the identity of the currently defined foreground color is returned.

C GENIngLineStyle(linestyle)
int “linestyle;

FORTRAN gilsty(Istyle)
integer Istyle

The value of the identity of the currently defined linestyle is returned.

C GENIngFiliPattern (fillpattern)
int *fillpattern;

FORTRAN gifpat(filpat)
integer filpat

The value of the identity of the currently defined fillpattern is returned.

11. General Control

C GENEraseAll()
FORTRAN geall

Erase everything displayed on the display surface.

C GENEraseView()
FORTRAN gevp

Erase everything within the viewport. The viewport is left displaying the background color.

33

C GENHalt()
FORTRAN ghait

Suspend graphics mode operation. The line modes that were previously in effect are reinstated. This
may be useful when putting a job in background mode.

C GENInit()
FORTRAN ginit

Initialize the device for graphics mode, usually after GENHalt has been called at an eariier time. The
appropriate line modes for graphics are set. This may be useful when bringing a job from a back-
ground state into foreground operation.

C GENPoint(xpoint,ypoint,key,button, valid)
int *xpoint, *ypoint;
char *key;
int *button, *valid;

FORTRAN gpoint(xpoint,ypoint,key,button, valid)
integer xpoint,ypoint
character*l key
integer button, valid

Enable the device’s pointing device to select a point on the display surface. The device coordinates of
the point (xpoint,ypoint) are taken when the stylus point is depressed (if a stylus is being used) or when
a mouse button is depressed (if a mouse is being used) or when a keyboard key is hit (if the keyboard
keys are being used). The key number key or mouse button number button are returned, if appropri-
ate. Also a Boolean flag valid is returned and set to 1, if the selected point is within the currently

enabled viewport and set to zero, if it is not.

