
F. KHAN ET AL. 1

Streaming Solutions for Fine-Grained Network
Traffic Measurements and Analysis

Faisal Khan, Nicholas Hosein, Soheil Ghiasi, Chen-Nee Chuah, Puneet Sharma

Abstract—Online network traffic measurements and analysis
is critical for detecting and preventing any real-time anomalies
in the network. We propose, implement, and evaluate an online,
adaptive measurement platform, which utilizes real-time traffic
analysis results to refine subsequent traffic measurements. Cen-
tral to our solution is the concept of Multi-Resolution Tiling
(MRT), a heuristic approach that performs sequential analysis
of traffic data to zoom into traffic sub-regions of interest.
However, MRT is sensitive to transient traffic spikes. In this
paper, we propose three novel traffic streaming algorithms that
overcome the limitations of MRT and can cater to varying
degrees of computational and storage budgets, detection latency,
and accuracy of query response. We evaluate our streaming
algorithms on a highly parallel and programmable hardware as
well as a traditional software based platforms. The algorithms
demonstrate significant accuracy improvement over MRT in
detecting anomalies consisting of synthetic hard-to-track elephant
flows and global icebergs. Our proposed algorithms maintain
the worst case complexities of the MRT, while incurring only a
moderate increase in average resource utilization.

I. INTRODUCTION

Accurate traffic measurement and monitoring is key to a
wide range of network applications such as traffic engineering,
anomaly detection, and security analysis. A number of critical
network management decisions, such as blocking traffic to a
victim destination, require extraction and analysis of real-time
spatio-temporal patterns in network traffic. The large traffic
volumes seen in today’s high speed networks pose enormous
computational and storage requirements for accurate traffic
measurements.

Traditionally, traffic measurements are performed by config-
uring conservative sampling factors [1] at the routers with very
limited local storage. The collected samples are periodically
sent to high-end servers where they are post-processed to an-
swer some higher level user queries (e.g., traffic volume from
a customer domain) or to perform network troubleshooting
and anomaly detection. Figure 1(a) illustrates this traditional
paradigm.

Sampling solutions, though straightforward, often introduce
inaccuracies in estimating various flow statistics or in preserv-
ing traffic features critical for anomaly detection [2]. To bridge
the gap between accuracy and detection latency, the concept
of programmable measurements was proposed [3] to configure
measurement rules that are representative of user requirements.

F. Khan and N. Hosein are graduate student at the Department of Electrical
and Computer Engineering, University of California, Davis

S. Ghiasi is Associate Professor at the Department of Electrical and
Computer Engineering, University of California, Davis

C. Chuah is Professor at the Department of Electrical and Computer
Engineering, University of California, Davis

P. Sharma is Principal Research Scientist at HP-Labs, Palo Alto

Such measurement specifications may not readily be available,
especially in situations where the adaptation is based on
network behavior rather than a fixed pattern. For instance,
during the search of a volumetric anomaly such as a heavy-
hitter, the measurements need to quickly adapt and track the
evolving anomaly instead of being updated periodically with
static sampling ratios.

Recently, iterative measurements have gained attention as
alternate to sampling based solutions [4], [5]. The idea be-
hind iterative measurements is to perform multiple sequential
measurements and analysis of progressively finer resolutions.
The contention is that repetitive measurements, analysis and
automated refinement of measurement goals, smartly prunes
away uninteresting data in a manner that is tied with the user
requirements.

A high-level description of the iterative measurement
paradigm is presented in Figure 1(b). Central to the scheme
is a tight integration between the measurement requirements
and the actual data collection. This is achieved by breaking
a higher level user-query into multiple measurement rules
and then refining these rules iteratively over time until the
user-query gets answered. The underlying rationale is that
the interesting traffic patterns could be detected or learned
on the fly, via iterative rule based traffic measurements,
online analysis of collected information, and iterative evolution
of subsequent rules for further and finer traffic inspection.
Each round in the iterative process guides the subsequent
measurements towards the goal, thereby reducing redundant
measurements and leading to a more accurate response to user-
query.

The iterative scheme temporally distributes the complexity
in answering the user query by breaking it down into multiple
rules, or rule-sets, that are answered over multiple iterations.
The efficiency of the rule evaluation and synthesis is therefore
crucial in defining the overall effectiveness of the iterative
scheme. Multi-Resolution Tiling (MRT) Algorithm [6] has
been previously proposed in configuring the rule-sets by
performing iterative analysis over collected data. In an online
1 setting, such an iterative refinement of measurement rules is
sensitive to dynamic changes in traffic composition. A naive
solution to the problem could be to aggressively configure
new measurement rules, which will lead to very large rule-
sets. However, the online systems often have limited rule-
processing resources. The challenge is therefore in determining
the optimal set of rules that can accurately answer the user
query in reasonable time, while adhering to computational and
storage budgets.

1also referred as ‘streaming’ in the paper

F. KHAN ET AL. 2

1/n X

Query

Query

Answering

Engine

Answer

Streaming Packets

Sampling

Factor

Correction

Coeff.

Local Storage Server Storage

(a) Traditional Sampling Based Methods

Streaming Packets Query

Answer

Rule Synthsis
Rule

Deployment

Response

Evaluation
Rule Evaluation

(b) Iterative Measurement Framework

Fig. 1: Network Measurement Paradigms

We previously presented an online iterative measurement
framework that provided solution to the above challenges
[7]. Fundamental to our streaming solution are three novel
algorithms that can cater to different levels of computational
and storage budgets, detection latencies, and user level knowl-
edge of the anomaly. Our key design goal is to direct the
limited resources to where they are needed the most. Another
consideration in the design of our algorithms is to maintain
scalability in terms of computational and storage costs, while
achieving the desired anomaly detection accuracy and latency.
Our results demonstrated the merits of our streaming solu-
tions which could quickly and accurately isolate hard-to-track
volumetric anomalies by offering higher stability to traffic
fluctuations, as compared to MRT.

The contributions of this paper are summarized as follows:

• We propose three traffic streaming algorithms, Equilibrium
Rollback, Flow Momentum, and Directed Momentum, to
guide the iterative configuration of measurement rule-
sets by taking into account resource constraints, detection
latency, and measurement goals. We demonstrate how our
proposed algorithms address the shortcomings of MRT.

• With the recent trend towards software defined networking
paradigm and the adoption of OpenFlow [8] in vari-
ous switches, we extend the evaluation of the iterative
measurement framework on both hardware and software
platforms. We examine the actual rule-processing costs
associated with different algorithms, and examine the
trade-offs between cost and accuracy of our algorithms
when implemented on these two different rule-processing
platforms.

• We extend our algorithmic analysis to a distributed frame-
work and show the effectiveness of our algorithms in de-
tecting hard-to-isolate global icebergs. Our results demon-
strate 100% detection accuracy of our algorithms across
the platform choices, with low to moderate utilization of

computation and storage budgets.

The paper is organized as follow. We discuss related
work on traffic measurements and describe MRT algorithm
in Section-II. This is followed by problem statement and
motivation in Section-III. Section-IV presents the three pro-
posed streaming algorithms. We then discuss the state-of-
the-art hardware based rule-processing BURAQ platform [9]
as well as software-based rule-processing in Section-V, with
emphasis on algorithmic implications arising from platform-
specific details. Using real and synthetic traces, we evaluate
the algorithms for both software and hardware based rule-
mapping in Section-VI. We conclude the paper in VII. An
analytical evaluation of the algorithms is presented in our
technical report [10], providing mathematical upper bounds
on the expected false alarms associated with our solutions.
The bounds yield interesting insights that can be leveraged to
fine-tune the desired trade-offs between the system accuracy
and detection latency under specific network conditions and
computational budgets.

II. BACKGROUND AND RELATED WORK

Network traffic measurement fundamentally involves col-
lecting information about a subset of traffic that satisfies some
criteria. Traffic is generally grouped in terms of flows, where
a flow refers to a set of packets that have the same n-tuple
values in their header fields. Typical definitions of the flow
include 6-tuple: {prt, tos, sip, spt, dip, dpt} where, prt is the
protocol field, tos is type of service, sip and dip are the source
and destination IP addresses, and spt and dpt are the source
and destination ports, respectively. We define a flowset to be
an aggregation of flows. For instance, the CIDR prefix is a
particular type of a flowset that aggregates all the flows that
have matching significant bits corresponding to the size of the
prefix.

Traditional measurement schemes typically maintain unique
“per-flow” based statistics. The collected information is post-
processed offline for answering higher-level user-queries [11]
such as detecting an anomalous behavior. The per-flow
schemes, however, require storing information about poten-
tially huge number of flows, straining the limited SRAM
budgets of measurement hardware. The scalability issues of
the per-flow scheme have traditionally been addressed using
packet or flow based sampling approaches [12]. Studies have
shown, however, that sampling leads to inaccuracies in answer-
ing the user-queries [2]. Recently, smart sampling approaches,
such as cSamp [13] and FlexSample [3], are proposed to
balance the monitoring goals with resource constraints through
smarter provisioning of resources based on application require-
ments. However, these schemes require measurement goals
to be defined a priori, which can be challenging with highly
dynamic network or traffic conditions.

More recently, iterative measurement schemes were pro-
posed to address the challenges mentioned above [4], [5].
The key idea is to perform top-down and goal-oriented mea-
surements that directly reflect the requirements of high level
user-queries by taking in account dynamic traffic variations.
In this context, Multi-Tiling Resolution (MRT) algorithm

F. KHAN ET AL. 3

[6] was proposed to answer the user query in an iterative
manner through a progression of finite set of intermediate
measurements, also referred to as rules. A rule can be viewed
as an intermediate question in pursuit of the user-query, that
if answered, can help lead the search in a more intelligent
manner. We will discuss the rules shortly in the context of
MRT (Section II-A).

One of the monitoring applications that needs high-fidelity
traffic measurement as input is network anomaly detection.
Modern networks are often plagued with a variety of Denial of
Service (DoS) attacks, which try to deplete available network
bandwidth through insertion of unwanted traffic into the net-
work. The inserted traffic could be in the form of a few heavy
flows, referred to as Elephant or Heavy-Hitter (HH) flows
[14], or using a large number of small flows, the Mice flows.
Yet, another kind of attack involves distributed participation of
several hosts (or sources) such that the amount of traffic from
an individual host (or destination) may be below the threshold,
but the aggregate is above a threshold. We refer to such an
anomaly as a Global Iceberg (GI).

There is a rich amount of research work that addresses the
above types of attacks. Elephant flow identification approaches
have been proposed [14], [15], which are useful for both traffic
engineering and anomaly detection. Global iceberg detection
has been addressed using sampling [16], sketches [17] as well
as hybrid sampling/sketching solutions [18].

A. Multi-Resolution Tiling Algorithm

Multi-Resolution Tiling (MRT)2 [6] is a recursive top-down
heuristic that relies on a simple but powerful observation that
if a flowset does not contain an anomaly, then no flow in that
flowset can be anomalous. For instance, in the case of elephant
flows, if a flowset does not consume θ-fraction of the entire
network bandwidth, then no flows within that flowset may be
an elephant flow. In terms of CIDR notation, the algorithm
states that if a prefix is not an elephant, then all its constituent
prefixes of larger number of bits (finer granularities) can be
discarded from further consideration.

An MRT iteration for two dimensional tuple space {source,
destination} involving a Zoom Ratio (ZR), or Expansion
Ratio, of four is illustrated in Figure 2. The ZR defines the
rate of exploration within a sub-region. For instance, the ZR of
four in the figure dictates that a given tuple-space is partitioned
into four sub-regions at a time, implying exploring additional
two-bits in the tuple space per iteration. Statistics are collected
for individual sub-regions for a given measurement interval.
This is achieved using rules that partition the traffic into the
four sub-regions. Thus a rule in the context of the MRT can be
viewed as a Boolean bit-mask on specific header bits that helps
qualify the incoming packets. In the case of HH, statistics
corresponding to the traffic mapped to the sub-regions will
be collected. The sub-regions that exceed the threshold θ,
marked with a cross in the figure, are then selected for further
zooming-in, or expansion, in the next-iteration. A zooming-in
corresponding to a selected sub-region, means partitioning it
further into sub-regions as per the ZR. Thus each iteration

2The algorithm is described in Appendix-A.

128.0.0.0/9

Source

D
e
s
ti
n
a
ti
o
n

192.0.0.0/9

x

192.8.0.0/10

X = (192.168.1.2, 128.0.1.4)

128.8.0.0/9

192.8.0.0/9 192.12.0.0/10

128.0.0.0/10

128.4.0.0/10

x

Source

D
e
s
ti
n
a
ti
o
n

Fig. 2: MRT with zoom ratio of four

in the given example results in resolution of two bits. MRT
thereafter continues iterating between partitioning, statistics-
collection, and expansion phases until the anomalous flow is
isolated, or the all the header bits are resolved. Thus, in the
given two tuple-space example, a flow will get isolated in a
maximum of 64 iterations.

The MRT’s worst case expansion scenario corresponds to a
spatio-temporal distribution of flowsets/flows such that every
tracked MRT sub-region passes the threshold test. Assuming
the tracked flowsets/flows remain consistent, the worst case
leads to logΦ(n) MRT iterations, where n being the number
of bits of the search space resolved during the expansion,
referred to as the expansion granularity (or just granularity).
If MRT is viewed as tree structure with nodes defining
the rules and levels describing the MRT iterations, then the
algorithmic complexity of MRT’s decision phase corresponds
to the total number of nodes in the tree structure, given as
Θ[ΦlogΦ(n) − 1/(Φ− 1)].

III. MOTIVATION AND PROBLEM

STATEMENT

The key idea of the MRT is that one can, by observing a
flowset, infer the characteristics of its subsets or objects (the
flows). Therefore, one can selectively zoom into flowsets that
might contain anomalies, such as heavy hitters, while ignoring
others. As the algorithm explores the traffic landscape, it logs
explored regions in a tree structure where nodes represent
monitored regions in the IP-space. The parent nodes represent
regions in IP-space that are supersets of the region covered by
their children nodes, with the root node of the tree covering
the entire IP-space. The expansion ratio corresponds to the
number of children, or arcs, originating from a parent node.

As shown earlier, the MRT algorithm helps guide traffic
measurements in the vast n-tuple search space. However,
the limited visibility, with which the iterative guided mea-
surements have to base their decisions on, can lead to false
negatives and positives in detecting an anomaly. For instance,
a brief spike in activity may lead the MRT to incorrectly
declare the presence of a heavy flow, when it may only be
a transient Flash crowd [19]. Similarly, a brief absence of an
anomaly can lead the MRT to discard a region from future
consideration. Thus when the anomalous behavior returns, the
MRT will have to restart its tracking process from the top
level with coarse granularities, resulting in false negatives
and wastage of measurement resources as well as increased

F. KHAN ET AL. 4

detection latencies. The two scenarios are shown in Figure
3, where the tracked flowset might be above or below the
threshold radars depending on the particular iteration. Such
an intermittent anomalous behavior is missed out by the MRT
(a false-negative), as it keeps toggling between reset and
zooming-in phases, which is also highlighted in the figure. The
highly sensitive nature of MRT with respect to traffic variations
can also be visualized in MRT exploration graph of Figure
4(a), where it could not get past three levels in exploration
hierarchy, constantly resetting back to the root node.

Zoom

Zoom
Reset

Reset

Zoom

Reset
Reset

Reset

Zoom
Zom

Zoom

Reset
Zoom

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Si
ze

Measurement Iterations

Flowset size Average size Threshold()

Fig. 3: Sensitivity of MRT algorithm to dynamic traffic
fluctuations

The issue of false positives in the MRT can easily be
addressed by continuously tracking a declared anomalous
flow. However, solving the problem of false negatives due to
MRT resets (whenever the current tracked size is below the
threshold) is more involved. A naive solution to the problem
could be to increase the measurement intervals, δ, at the cost
of increased tracking latency. However, as the network traffic
is usually bursty and time-varying, it is quite difficult to come
up with an interval that can universally address the problem.
Furthermore, the attacker can easily outsmart the solution by
intentionally reducing the data rate to evade detection.

Another solution to the problem of frequent MRT resets
could be to continuously track all the sub-regions. However,
such strategy could lead to tracking a huge number of sub-
regions, or rules, that may deplete the measurement resources
and render the detection infeasible in real-time. A smart mea-
surement solution therefore needs to prune away the irrelevant
rules for better utilization of limited resources. Unfortunately,
it is quite difficult to predict if a rule is relevant to the search
query unless it has been answered. Thus the challenge here is
in determining an optimized rule-set that can yield accurate
answers with minimal latency while adhering to the resource
budgets.

IV. STREAMING ALGORITHMS FOR

SMART GUIDED-MEASUREMENTS

We now present our streaming solutions that aim to ad-
dress the challenges associated with application-aware rule-
based online traffic measurements, with the goal of providing
accurate response despite highly volatile traffic. As discussed

earlier, a key design challenge is in maintaining computation
and storage scalabilities, while offering high accuracies and
minimum latencies in answering the user-query. In this con-
text, we target volumetric anomalies, such as tracking of HHs
and GIs, as our main query.

A. Flow Momentum

The Flow Momentum (FM) algorithm addresses the issue of
MRT resets by taking into account the average bit-rate that is
encountered over a hierarchical path reaching a flowset. This is
in contrast to the original MRT, where the expansion/rejection
decision is solely based on the flowset’s current size. The FM
algorithm thus effectively gives the leaf nodes a grace period in
the active rule-set, to cope with the temporal variations in the
anomaly. The durations of the grace period are proportional
to the intensity, or momentum, of the anomalous flows that
guided the measurements towards the leaf-node in the first
place. Thus in the case of the HH, a leaf node may be more
active if the anomalous flow has larger volume.

The pseudo code for the FM Algorithm is provided in
Appendix-A, while a snapshot of the exploration graph for
FM algorithm is shown in Figure 4(b). As expected, the FM
is more conservative in making a flowset reset decision than
MRT, making it more likely to reach an anomalous flowset,
as is marked by explored nodes shown in red. The price paid
is a potentially bigger active rule-set size corresponding to the
higher number of tracked leaf-nodes. However, the worst case
storage and computational complexities for FM are the same
as that of MRT.

Proposition 1. The computational and space complexity for
Flow Momentum algorithm is Θ[ΦlogΦ(n) − 1/(Φ − 1)] and
θ(2n) per rule respectively.

B. Equilibrium Rollback

The FM algorithm increases the duration where a given
flowset remains covered by active rule-set, until its effective
momentum also falls below the thresholds. In the scenario
where the momentum goes below the thresholds, the FM
also resets its tracking process from the top level, similar to
MRT. The Equilibrium Rollback (ER) Algorithm addresses
the problem of such MRT and FM resets through gracefully
rolling-back, or zooming-out, of the expanded flowsets, instead
of discarding off the flowsets. In doing so, the ER algorithm
effectively tries to filter moderate traffic variations in the
tracked flowsets, thereby achieving an an equilibrium point
over the zoomed hierarchy that just passes the θ threshold
requirements.

The pseudo code for ER is given in Appendix-A. A snapshot
of the exploration graph for ER along with FM is presented
in Figure 4(c). The ER algorithm gracefully degrades the
zoomed granularities as the anomaly goes below the threshold,
helping it to quickly re-expand the flowsets once the anomaly
reappears. The cost of the algorithm is an increase in the
storage requirements to keep the entire traversed hierarchy. It
is to be noted that even though the entire hierarchy is stored,
it is only the leaf nodes that are actively being evaluated, or
constitute the active rule-set.

F. KHAN ET AL. 5

1000

400 100

N1

N2

N5 100300

N3

N4

Explored by MRT Dropped Node

Node Reset

(a) MRT

1000

400 100

300

0 150

10 600

0 100

50 50

N1

N2

N4

N9

F2F1

N5 N6 N7

N3

N11N10N8

10 10

Explored by MRT Dropped Node

Flow Momentum Heavy Flow

100

(b) Flow Momentum

1000

400 100

300

0 150

10 600

0 100

50 50

300

N1

N2

N4

N9

F2F1

N5 N6 N7

N3

N11N10

F3

N8

Explored by MRT

Flow Momentum Heavy Flow

Equilibrium Rollback

100

1010

Node potentially
traversed after rollback

(c) Equilibrium Rollback

Fig. 4: Snapshots of Algorithmic Exploration Graphs with Threshold 400 bytes

Proposition 2. The computational and storage complexity for
Equilibrium Rollback is Θ[ΦlogΦ(n) − 1/(Φ− 1)] per rule.

The computational complexity of ER (decision phase) is the
same as that of MRT, assuming the consistency of the tracked
flowsets/flows as in the case for MRT. However, whereas the
storage complexity of MRT is Θ(2n) per rule in maintaining
just the leaf nodes, the ER algorithm’s storage complexity
corresponds to the storage requirements of the entire hierarchy
for the worst case expansion.

C. Directed Momentum

The streaming algorithms discussed so far are quite generic
in nature, that is, they do not take into account any opportunity
or constraints presented by application or available computa-
tional platform. They are thus best suited for scenarios where
the knowledge of the anomaly or the environment is limited.
However, such a separation between the application/platform
and the algorithm may lead to sub-optimal use of the com-
putational resources. A very large rule-set can throttle the
system by consuming scarce resources to process redundant
or unnecessary rules. An intelligent hacker could actually use
this deficiency to outsmart the detection process in real-time
by injecting a huge number of false flowsets (or leads) to be
tracked. A smart algorithm therefore needs a mechanism to
filter out irrelevant leads from the active rule-set.

As discussed earlier, it is quite difficult to predict how
relevant a given rule is to the user-query unless it has been
evaluated. However, the knowledge of an anomaly can help
to intelligently quantify the rules using their past behavior.
We make use of the anomaly information in designing a
smart Directed Momentum (DM) algorithm that directs the
search process by associating the limited resources where
they are deemed the most useful. We develop the algorithm
in the context of elephant flows. However, the ideas behind
the algorithm are applicable for other types of volumetric
anomalies, such as global iceberg.

A characteristic feature of elephant flows are their higher
longevities. In the context of an iterative search process such as
the Flow Momentum, the long lasting property of the elephant
flows translates into higher expansion of the corresponding
flowsets. We utilize this property in harnessing the Momentum
to be directed towards the anomalous elephant flows by giving
preference to the rules that have higher granularities. The
Directed Momentum algorithm thus formed is tabulated in
Algorithm-1.

Directed Momentum works by scaling the individual flowset
longevities using a measure referred to as Stretch. The Stretch
takes into account the availability of computational resources
and could either be positive or negative. A positive Stretch
describes a scenario where the active rule-set is smaller than
the available rule processing resources. In contrast, a negative
Stretch implies exceeding the computational budget by the
active rule-set. The DM algorithm uses the negative-Stretch
to compute a measure called pull, or algorithmic effort; such
that the higher the pull, the higher the algorithmic effort is in
reducing the active rule-set. The algorithmic pull is combined
with a rule’s granularity to form a measure referred to as
pForce, as shown in the pseudo code.

Proposition 3. The computational and space complexity for
Directed Momentum algorithm is Θ[ΦlogΦ(n)−1/(Φ−1)] and
θ(2n) per rule respectively.

V. MEASUREMENT PLATFORMS

The streaming algorithms discussed in previous sections are
composed of two parts: (a) a data-plane to match incoming
packets with the rule-set along with (b) a control-plane for al-
gorithmic decisions to process rules that lead to measurements
of finer granularities. These two planes have been previously
mapped on software [6], hardware [5] and a software-hardware
co-designed solutions [20]. In this paper, we implement and
evaluate our three streaming algorithms on both hardware and
software platforms, as described in the following sub-sections.

F. KHAN ET AL. 6

Control
Proc

Data-Engine

Results
Collection

Unit

Data
Proc

Control &

Analysis

Front-End

Data Processing FPGA Unit

Hardware

Resource

Manager

Response Analysis

and Rule Evolution

Engine

Dynamic Rule

Synthesizer

User

Interface

(a) Platform Overview

Yes/No

Bytes

Counter
Count Logic

Data Valid

Rule-Matching

Rule-Counting & Control

Synchronization

Logic

ID_count_in

Control_Valid_in

Enable

Reset

Count

Enable

Ack_inAck_out

Reset

LUT

ID_count_out
Socket_ID_Socket_Count

Source

LUT-2

4

LUT-4

4

LUT-5

4

LUT-1

4

LUT-3

4

LUT-6

4

LUT-8

4

LUT-7

4

LUT-2

4

LUT-4

4

LUT-5

4

LUT-1

4

LUT-3

4

LUT-6

4

LUT-8

4

LUT-7

4

Destination

Interrupt

Size

Timer Logic

Timer LUTs

Control_Valid_out

(b) Dynamically Reconfigurable Socket

Fig. 5: BURAQ Measurement Platform [9]

Algorithm 1: Directed Momentum
input : R: Active rule-set
input : Q{}: Set of Rule Processors
input : Φ: The expansion/zoom ratio
input : δ: Measurement Interval
output: Ef{}: set of elephant-flows
Stretch← |R| − |Q|
Pull ← |min(Stretch, 0)|
/* Measurement Phase */

1 while t ≤ δ do
2 for Ri ∈ R do
3 if Ri = Pt then
4 Ri.Size← Ri.Size + Pt.Size
5 Ri.M ← Ri.M + Pt.Size

/* Decision Phase */
6 for Ri ∈ R do
7 if (Ri.Size > SizeTh) then
8 if Granularity(Ri) = MAX then
9 Ef ← Ef + Ri

10 else
11 R.replace {Ri, Expand (Ri,Φ)}
12 Rexpanded.M ← Rparent.M
13 Rexpanded.Static← 0

14 else if pForce(Ri, Pull)/λ ≥ θ then
Ri.Static← Ri.Static+ 1
Ri.Hold

15 else Ri.Drop

/* Calculates Directed Momentum */
procedure PFORCE(Ri, Pull)
λi ← (Ri.M/k ∗ δ)
dni ← exp(Pull∗Ri.Static/Granularity(Ri)) /* pForce */
return (λi/d

n
i)

end procedure

A. BURAQ Hardware Mapped Rule-Processing System

For hardware platform, we adopt the closed-loop BURAQ
measurement and analysis framework [9], which combines the
speed of a customized FPGA based rule-processing engine
with the flexibility of a software based controller, as shown
in Figure 5(a). By combining the speed with flexibility, the

BURAQ represents an online measurement framework that can
measure and analyze streaming traffic in real-time. We present
an overview of the system and discuss the various constraints
and challenges pertaining to online traffic measurement and
analysis.

1) Rule Processing Data-Plane: BURAQ’s data-plane is a
custom architecture on an FPGA unit that combines a rule pro-
cessing unit, the Data-Engine, with associated synchronization
and data transfer logic. The Data-Engine itself is composed
of a number of parallel rule processing units, dubbed as
sockets, that are arranged similar to a systolic array as shown
in Figure 5(a). The sockets are programmable rule matching
units that are optimized to match the programmed rules and
count the size of streaming network packets, independently
and concurrently, in real-time. However, unlike the systolic
arrays, the sockets only pass their results on to the next socket
in a chain. These results from parallel chains in the Data-
Engine are collected by the associated logic and communicated
to higher control and analysis layers for further processing.

A high level description of a socket that can process two
tuple {sip, dip} rule is shown in Figure 5(b). The socket is
composed of an array of Look-up-Tables (LUTs) that map the
rules in the form of Boolean bit-vectors. As new rules get gen-
erated on-the-fly during algorithmic iterations, the LUTs are
reprogrammed with updated Boolean bit-vectors correspond-
ing to the new rules. One of the core features of the BURAQ
framework is its novel use of fine grained Partial Dynamic
Reconfiguration (PDR) of FPGA fabric in (re)programming
the LUTs. The PDR programming paradigm does away with
traditional just-in-time compilation of FPGA configuration
data, a highly latency intensive operation. Instead, the socket
(re)programming is based on minute logic changes involving
specific LUTs whose entries are dynamically and directly
updated in the FPGA’s configuration memory. The dynamic
nature of the PDR implies that only the operation of the LUT
being (re)programmed is effected while the rest of the design
operates as usual. We refer the interested reader to [9] for the
details of the socket and its (re)programming paradigm.

2) Control & Analysis Front-End: The BURAQ’s Control
and Analysis Front-End is where user programs the high-level

F. KHAN ET AL. 7

formulation of the measurement requirements. It incorporates a
Dynamic Rule Synthesizer that translates the user requirements
into socket deployable Boolean bit-vectors. The synthesizer
also works in closed-loop with the measurements reported by
the data-plane and a Response-Evaluation Engine in automat-
ing the exploration of the vast search space. It is the response-
evaluation engine where the discussed streaming algorithms
provide the streaming automation. The response evaluation
engine analyzes the intermediate results from the back-end
in assisting the dynamic synthesis of intermediate rules on-
the-fly. The controller also maps the synthesized rules at the
sockets using Hardware Resource Manager that performs a
resource aware rule deployment at the data-plane.

B. Software Mapped Rule-Processing

A software based solution has more flexibility in maintain-
ing and processing complex data-structures, trading computa-
tion with increased memory use. Traditionally, the software
mapped rule-processing is done by making efficient use of
a tree based data-structure, the radix trie [21]. The radix-
trie works by mapping a given rule-set on a tree structure,
whose maximum depth corresponds to the worst case number
of required match operations. For instance, the 64-bit two tuple
{source, destination} pair could be mapped onto a tree with
maximum depth of 64 nodes, requiring at most 64 comparisons
with an incoming packet to declare a match (or a mis-match).
This worst case represents significant improvements from
naive sequential rule-set matching where an incoming packet
may need to be tried with the complete rule-set, leading to the
worst case number of match operations equal to the size of the
rule-set. The price paid is a slight increase in rule-set mapping
latency, as the graph structure corresponding to a given rule-
set has to be populated before being available for matching
operations.

C. Practical Constraints

Any rule-processing solution is faced with a number of
computational and communication constraints. A core con-
straint is the availability of computational resources for rule-
processing. As rule-set grows, digging deeper in the vast n-
tuple search space, it puts additional strain on the limited
computational resources. The standard practice for a hardware
is to pipeline, or roll-over, the additional rules, over the limited
resources in multiple steps. Such a rule-pipelining increases
the overall latency in yielding the final answer. For instance, in
a platform employing N parallel rule-processing units, it takes
ceil(N/|R|) measurement cycles (each having measurement
interval δ) for processing a rule-set of size |R| in any given
algorithmic iteration.

The active rule-sets may also not be an integer multiple
of N , and therefore there may exist unused rule-processing
resources in certain algorithmic iterations. In practice, the
controller can maximize the hardware resource utilization by
simultaneously mapping new rules for successive measurement
along with portions of previous rule-sets. However, it makes
the design and analysis of an algorithm quite cumbersome.
For simplicity, we therefore detach the rule-sets in discrete

measurement cycles by assuming the controller only adapts
new rules once a given rule-set is completely processed. We
refer to such a controller implementation as blocking.

The synthesis of rules, deployment and collection of their
results from the computing platform involves finite latencies,
during which streaming packets may miss observation. We
aggregate the above latencies together as reprogramming la-
tency, denoted by ε. The BURAQ platform uses PDR to
maximize the FPGA utilization in increasing the number of
rule-processing sockets. A higher rule-processing opportunity
reduces the pipelining effects, however the downside of PDR
is a slight increase in reprogramming latencies as compared to
a static solution [20]. Similarly, depending on the rule-set size,
the reprogramming latency of software mapped solution could
be significant as the trie structure needs to be populated. Both
rule pipelining and reprogramming latencies effect accuracy of
reported results. We discuss accuracy measures for the Flow
and Directed Momentum Algorithms with a more detailed
analytical analysis in our technical report [10].

Theorem 1. (Measurement Accuracy) If dn
i represents pForce

in an algorithmic iteration j, then the Measurement Accuracy
is given by δ/(

∑n
j=1

⌈
N

|Rj |
⌉
(δ + ε).dni), where dji = 1 for

Flow Momentum and |Rj| represents the size of rule-set in
algorithmic iteration j. (N = Rj for software-mapped rule-
processing)

Proof:
For the measurement to be accurate, the observed measure-

ments should match with ideal measurements. If E[αj
i] and

E[βj
i] represent expected values for observed and ideal mea-

surements in an algorithmic iteration j for Flow or Directed
Momentum algorithms, then for the system to be accurate

Measurement Accuracy = E[αj
i]/E[βj

i] ≤ 1

Equating the expressions for the expected values as de-
scribed in our technical report [10] leads to the desired result.

Corollary 1. The Measurement Accuracy is less than 1 in a
blocking measurement system.

In a blocking implementation, the reprogramming (ε), and
observation (δ) latencies do not overlap in time. This is
to say that the controller only adapts new rules at fixed
time durations, rather than reading and reprogramming the
sockets at different times to spread the load. In other words,
the measurement and reprogramming phases are sequentially
chained in blocking implementation, thereby leading to the
above observation.

The system’s accuracy in detecting streaming anomalies is
not only a function of platform’s measurement inaccuracies,
but also to the algorithmic aspects. The algorithmic inaccu-
racies occur due to various abstractions that limit the com-
plexity of the problem. For instance, the finite measurement
intervals of the iterative paradigm, though helpful in curtailing
the complexity of the measurement framework, also leads
to limitations in traffic observation. Such limitations raise

F. KHAN ET AL. 8

possibilities of false positives and false negatives during the
anomaly detection process. We discuss these possibilities in
more detail and provide mathematical bounds to the presence
of false alarms for heavy flow identification in our technical
report [10]. The bounds provide tuning knobs for a user to fine-
tune the system’s accuracy and latency for any given platform
and network conditions.

D. Cross-cutting Issues

Theorem-1 may appear to suggest that the pForce has a
strictly inverse relationship with the system accuracy, leading
to a conclusion that FM algorithm must always have superior
accuracy than the DM algorithm. However, pForce also
influences the rule-set size, that has its own influence on the
system accuracy. As stated earlier, a rule-set that exceeds the
available rule-processing resources on hardware will have to
be rolled over the platform’s limited resources in successive
measurement intervals. The rolling process leads to measure-
ment disentanglement between the parent and the children
rule-sets. Such a disentanglement reduces system accuracy
and is represented by the factor

⌈
N
|R|

⌉
in the measurement

accuracy equation. Increasing pForce reduces the effects of
the measurement disentanglement by reducing the rule-set
sizes, and as such can positively influence the system accuracy.
However, a very high pForce can also be counter-productive,
as the factor

⌈
N
|R|

⌉
is bounded by the minimum value of 1. A

balanced pForce is therefore essential in maximally utilizing
system resources. We will discuss the issue more when we
present the results in the next section.

The preceding discussion may lead one to argue that soft-
ware based iterative solutions may offer superior accuracies
to the hardware counterparts as they do not have to face the
blocking and pipelining effects. However, software solutions
face two additional overheads: (1) increased latencies in for-
warding packets from a streaming network to the point of
measurement (in cases where measurement framework is re-
motely located), and (2) latencies involved in moving packets
up the software stack where rule-processing takes place. The
exact latencies are a function of network layout, CPU speed,
operating system, and software stack. Furthermore, mirroring
the packets for remote processing could additionally consume
network bandwidth, and may well interfere with the actual
network traffic, leading to measurement inaccuracies. Such
additional overheads may well limit the feasibility of software
based iterative framework in coming up with accurate and/or
quick answers to user-queries.

VI. EMPIRICAL EVALUATION

In this section, we present our empirical evaluation of the
proposed algorithms utilizing BURAQ hardware and Radix-
Trie software based rule-processing platforms. We begin by
discussing the rule-set sizes created by the algorithms that have
a direct implication on running costs of the algorithms. We
then map the algorithms on BURAQ platform and demonstrate
their accuracies in its context. This is followed by a discussion
on the effects of tuning Zoom-Ratio parameter towards the

accuracy and detection latencies of the solutions. We next
evaluate the algorithms on software platform and analyze the
latencies that contribute in both hardware and software mapped
solutions. Finally, we apply our algorithms to a distributed
measurement framework and demonstrate its effectiveness in
isolating distributed anomalies.

The experiments are performed using a PC based work-
station on Intel Core i7 Q740 Quad-core processor running
at 1.73-GHz and having 4 GB memory. The BURAQ’s rule-
processing engine is mapped on a Xilinx Virtex-II Pro FPGA,
XCV2VP30, running at 100-MHz, and employing N = 169
parallel sockets. The rule composition and results analysis is
performed at the PC based controller, that is connected with
the processing-engine over Ethernet. The complete system
setup is shown in Figure 5(a). Unless stated otherwise, the
experiment are based on default values for threshold θ = 1%,
Zoom Ratio Φ = 2, and measurement interval δ = 1s.

We evaluate the proposed algorithms by injecting varying
degrees of high volumetric flows in CAIDA Backscatter data
traces [22]. The injected 10 heavy flows contribute from 0.5%
to 1.4% of the total traffic in the traces, such that their intensity
at various snapshots mirrors the random traffic activity of the
trace data. The piggybacking of trace data variations imply that
the inserted flows inherit the real network traffic variations.
We used heavy-hitter threshold value θ to be 1%. As such,
the inserted flows split evenly between true heavy-hitters (that
algorithms need to isolate/announce) and heavy flows (not to
be isolated/announced) around the threshold value, thereby
producing stress test cases for evaluating the algorithms.

We define a parameter Score to quantify the progress of the
algorithms in identifying the inserted flows. Mathematically,

Score =

∑
max|Ri|∑ |fi|

where |Ri| represents the size, or expansion granularity, of
a rule, Ri, in an algorithmic iteration that matches an inserted
flow fi of size |fi| bits. In cases where multiple rules match
an inserted flow, we use longest prefix matching rule or the
rule with highest number of matching bits with the inserted
flow in the calculations. The parameter thus represents the
degree by which an algorithm has either correctly identified the
inserted heavy-hitters (referred to as true-score), or incorrectly
identified the inserted heavy-flows below threshold as heavy-
hitters (referred to as false-score), with the maximum value
of 1 implying all the flows being completely identified and
announced.

A. Rule-Set Size Comparison

We start with exploring the different rule-set sizes generated
by the discussed algorithms, that reflects the rule-processing
costs associated with them. The variations of rule-set sizes
with algorithmic iterations is presented in Figure 6. We also
combine presented algorithms in various combinations as
shown in the figure. The results show that MRT rule-sets
suffer from frequent resets, owing to its sensitivity to traffic
variations. In contrast, the rule-set size for ER algorithm is
fluctuating around a steady state value, corresponding to the

F. KHAN ET AL. 9

0

100

200

300

400

500

600

700

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

R
u

le
 S

e
t
 S

iz
e

Iterations

MRT ER FM FM+ER DM DM+ER

Fig. 6: Rule Set Size with algorithmic iterations

toggling between the expansion and rollback phases. The four
variations of Momentum type algorithms, however, vary in the
rule-set costs, with FM and FM+ER yielding steady increase
in rule-set sizes. As noted earlier, a larger rule-set size may
adversely effect an algorithm’s convergence time in reaching
to a decision. The issue is addressed by the DM algorithm,
which maintains a steady rule-set size. A combination of DM
with ER (DM+ER) also shows similar steady state rule-size
convergence, albeit with a larger bias. This is because the rules
that were being discarded by DM are now being caught in the
Rollback catch-net.

B. Streaming Algorithms Analysis on BURAQ

The rule-set size variations provide an estimate on the
running costs of the algorithms, though their actual effec-
tiveness depends on the latencies and degrees of accuracies
they offer. We discuss the algorithms’ effectiveness in terms
of progression of True/False Scores with respect to clock time.
The algorithmic latency is a function of algorithmic iterations,
that in turn is derived from rule-set sizes and available rule-
processing resources. As each measurement cycle on BURAQ
takes constant amount of time ((δ + ε) ≈ 1.71 seconds)
across the algorithms, a difference in latency implies effects
of pipelining of large rule-sets on limited set of resources.

The progression of True-Score (TS) for the presented al-
gorithms is shown in Figure 7(a). It can be seen from the
figure that the MRT algorithm performs quite poorly, resetting
periodically and unable to isolate/announce any of the inserted
flows. In contrast, the ER algorithm avoids such resets by
rolling an expanded rule back to its parent granularity if it
falls below the threshold, thereby showing TS improvement
in the results. However, the bursty nature of the traffic means
that the algorithm keeps fluctuating between the rollback and
expansion phases, thus settling with a steady state score below
1, and also being unable to announce any of the inserted flows.
The difficulties in isolating the anomalous flows are addressed
by the Momentum type algorithms that only saturate with the
unit-score, that is, after identification and announcement of
all the induced heavy-hitter flows. In our earlier work [7], we
showed that the Momentum type algorithms have only slight
differences with respect to algorithmic iterations in achieving

a unity score. However when time is taken in account, the DM
algorithm shows its superiority over FM by reaching the unity
scores earlier as shown in the figure. This confirms to our
contention that DM algorithm works intelligently to prune out
the irrelevant rules, thereby focusing or directing the search
towards the user defined goals.

The False-Score (FS) progression for the various algorithms
is shown in Figure 7(b). A FS value shows that the algorithms
have narrowed down to certain rules that match the induced
false heavy-hitters with varying degrees. However, the FS
value does not mean that some of the induced flows have been
completely identified/announced. This implies that although
we have a False-Score, the algorithm did not yield a false-
positive. Indeed, in our experiments, none of the heavy flows
below threshold ever got detected. We note that the FS gen-
erally follows the variations in rule-set sizes. Such variations
further highlight the fact that the FS is a by-product of rules
that have randomly matching granularities with the induced
heavy flows, rather than an actual algorithmic progression
towards them. It is also to be noted that although we do not
empirically have a false-positive, there is still a small but finite
probability of false-positive.

The 10 inserted flows provide a distribution of true/false
positives and negatives across the algorithms in the above ex-
periments. These values are tabulated in Table-I, and combined
using the standard F1 measure to produce an aggregate score
for the algorithms. As can be noted, the proposed DM and
FM algorithms offer marked 100% accuracy improvement over
conventional MRT.

Algorithm tp tn fp fn F1 Score
MRT 0 5 0 5 0
ER 0 5 0 5 0
FM 5 5 0 0 1
DM 5 5 0 0 1

TABLE I: Accuracy Comparison

The results yield an interesting observation that in a
practical hardware rule-mapped system, the efficiency of an
anomalous flow detection may not necessarily be improved by
increasing the rule-set size. In contrast, an intelligent search
directed towards the most reliable leads can produce equivalent
accuracy while reducing the detection latency. The notion of
‘intelligence’ is of course application dependent. The results
demonstrate the significant gains that can be achieved by
incorporating such application knowledge.

C. Zoom Ratio

The Zoom (or Expansion) Ratio (ZR), has conventionally
been associated with the speed of parsing through the search
space. As discussed in Section-II-A, a higher ZR conceptually
translates into quicker drilling down to finer granularities, and
therefore should accelerate the isolation of an anomaly. We
hereby investigate such a relation of the ZR using the realistic
BURAQ measurement system.

Figure 8 shows the latencies in isolating the five anomalous
heavy flows with increasing ZRs using the DM algorithm.
The results, to our surprise, indicate that for a practical

F. KHAN ET AL. 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

T
r
u

e
 S

c
o

r
e

Time(sec)

MRT ER FM FM+ER DM DM+ER

(a) True Score

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

0 100 200 300 400 500 600 700

Fa
ls
e
Sc
or
e

Time(sec)

MRT ER FM FM+ER DM DM+ER

(b) False Score

Fig. 7: Score progression with time on BURAQ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000

T
r
u

e
 S

c
o

r
e

Time (sec)

ZR=2 ZR=4 ZR=8 ZR=16

Fig. 8: Variation of Zoom Ratio (ZR)

measurement system, the ZR actually demonstrates an inverse
relationship with the detection latencies3. A closer inspection
reveals some interesting characteristics of the streaming algo-
rithms. We note that the higher ZRs translate into an increased
zoom granularity of the tracked rules (sub-regions). However,
generally a network is mostly anomaly free and as such, the
increased amounts of inspections with the higher ZRs translate
into tracking sub-regions that do not contribute to isolation of
the anomalies. In practical terms, the above implies allocation
of resources to non-interesting rules/regions, thereby wasting
of resources. Thus, although the higher ZRs reduce the number
of iterations (not shown), in practice such a reduction in the
algorithmic length may not translate into improved latencies
in isolating anomalies.

The results in Figure 8 reveal yet another interesting ob-
servation: that with higher ZRs, the DM exhibits difficulties
preserving continuous true-score progression. This can be
observed in the brief plateaus and dips in its TS. This is
because of the way DM aggressively tries to offset increase
in the rule-set sizes at higher ZRs. As a result, some relevant
rules may end up being dropped from active rule-set. Such a

3We observe similar inverse relationship using other algorithms as well

Fig. 9: Software Mapping on PC and Blade Server

scenario leads to a loss in momentum, or TS, of the algorithm.
The issue can be quickly resolved by adjustments in the
algorithmic Stretch parameter, giving increased leniency with
increasing ZRs, at the cost of larger rule-set sizes.

D. Algorithm Analysis for Software Mapped Rule-Processing

Software defined networking paradigm and the adoption of
OpenFlow enable a central controller to reconfigure the packet
forwarding/processing tasks in routers/switches. Previous work
have demonstrated case studies where OpenFlow can be lever-
aged to control how packets are forwarded, and well as how
traffic measurements [5], [23] are done. With OpenFlow-like
capability, our streaming algorithms can easily be implemented
in software (as opposed to the hardware counterpart), and as
such, we are motivated to characterize its performance.

For evaluation purposes, we employ radix-trie based rule-
processing over two platforms: the previously discussed PC
platform as well as an HP Blade server Open Networking
Environment [24]. The HP Blade comprises of Intel Core 2
Duo T 7500 processor, running at 1.2 GHz and having 4 GB
of memory. To isolate the performance of the algorithms on
the software based rule-processing from issues arising from
rule-processing at higher application layers (as discussed in

F. KHAN ET AL. 11

Section-V), we emulate the network at the application layer
using the same data as before, and insert the same number of
heavy-hitters and heavy flows.

We begin by comparing the relative performance of the two
software platforms. The comparison employing FM algorithm
is shown in Figure 9. We observed similar identical behaviors
for other algorithms, indicating their neutrality over the choice
of platform.

We next compare the performance of the two top performing
algorithms, the FM and DM along with the ER enhancement,
on software framework. The performance of the algorithms in
terms of their true and false scores in isolating the injected
flows is shown in Figure 10. Compared to 600 seconds
detection time of BURAQ platform, the software mapped
algorithms were able to completely identify all the heavy-
hitters in less than 200 seconds. There are two core reasons
behind the difference:

• The software based rule-mapping is independent of
blocking and pipelining effects as faced by hardware
(since N = Rj for software).

• The software simulations are based on data-traces running
at the same algorithmic application layer (ε ≈ 0).

The latter point emphasizes the nature of our simulations,
that do not employ remote data collection or its movement
up the software stack. As discussed in Section-V, such laten-
cies are deployment and platform specific. The results thus
imply the expected performance of our algorithms in an ideal
deployment having zero communication overheads. We shall
shortly discuss these latencies to understand their impact on
the overall systems’ performance.

The question of which platform to use is tied to the needs
of the application, and is tangential to the performance of the
proposed algorithms. However, the results emphasize that in
situations where the rule-set size is a relaxed constraint, such
as the software or a hardware platform with vast number of
rule-matching resources, the combination of FM+ER is more
effective than the DM+ER combination. This is because the
significant overheads of rule-set pipelining can be avoided.
However in situations where measurements take place in real-
time, the use of hardware such as BURAQ becomes a necessity
and one may have to constrain the growth of rule-set size with
smart algorithms such as DM+ER.

E. Latency Analysis

We next discuss the various latencies involved in the iter-
ative measurement frameworks. The latencies not only play
a significant role in deciding the aggregate delay in getting
response from the measurement framework, but as shown
in Theorem-1, the latencies directly affect the accuracy of
the response. A better understanding of the latencies is thus
essential in making informed decision about the trade-offs
involved in accuracy and delays in response.

The various latencies involved in the two measurement
frameworks discussed in this work are tabulated in Table-
II. The values present the latencies associated with running
the better performing DM + ER for hardware, and FM + ER

for software based solutions, over 212 algorithmic iterations,
while employing default parametric values.

It can be seen that the major chunk in the latency budget
for BURAQ is the communication latency, which is an aggre-
gation of the delays associated with transferring the sockets’
statistics and (re)programming bit-vectors across the Ethernet.
The statistics collection is the second major component of
the latency. The third major component, the rule deployment
latency, is associated with delays involved in (re)programming
of the sockets for deployment of new rules. Finally, the actual
delay involving the rules’ evaluation and synthesis at the
algorithmic layers is almost negligible.

The above latencies can be sub-divided into algorithmic and
platform-specific latencies. In particular, the rule synthesis and
statistics collection are functions of the algorithm whereas the
other two are by-products of the platform and deployment.
Among the algorithmic latencies that are of interest to us,
we can isolate the rule synthesis latency as being the base
cost of our streaming algorithms. The base cost relates the
discussed algorithmic complexities in empirical figures. Note
that the base cost of our streaming solutions is quite minimal.
In practical terms, this implies that there will be fewer packets
that will miss inspection during rule evaluation and synthesis,
thereby increasing the confidence in reported results. However,
that the base cost for software mapped solution is magnitudes
higher than that for hardware. Such a difference is expected, as
the software has much higher overheads in populating complex
graph based structures for rule-processing.

As highlighted earlier, the rule deployment and communica-
tion overheads are functions of deployment. These overheads
along with algorithmic base costs yield the aggregate latency
overheads for the measurement framework, ε. Thus depending
on the deployment and aggregate latency overheads, one needs
to select the value for measurement interval to satisfy the
accuracy goals, while keeping the total response delay within
the budgets.

Rule Rule Statistics Communication
Synthesis Deployment Collection

BURAQ 0.0004 101 212 363
Software 0.6 NA 212 NA

TABLE II: Latency Comparison (seconds)

F. Distributed Measurements

Lastly, we evaluate the effectiveness of our algorithms in
a distributed framework to isolate global icebergs and utilize
the distributed setup to evaluate the effects of sampling on the
performance of the algorithms. For this purpose, we used data
from Abilene network [25]. The data was collected over 11
distributed sites in 2007 and contains 8 distributed icebergs
that lie above 1% threshold value. However, for the purposes
of stress testing, we insert 10 global icebergs, 5 of them just
above the threshold (true-icebergs) while the remaining being
just below the threshold (false-icebergs).

We emulate the distributed network in software by running
parallel threads, corresponding to 11 distributed network sites.

F. KHAN ET AL. 12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

T
ru

e
 S

co
re

Time(sec)

FM+ER DM+ER

(a) True Score

0

0.05

0.1

0.15

0.2

0.25

-50 50 150 250 350

F
a

ls
e

 S
c
o

r
e

Time (sec)

FM+ER DM+ER

(b) False Score

Fig. 10: Score Progression for software-mapped solution

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

Li
n

k
 R

a
te

 (
G

b
p

s)

T
ru

e
 S

co
re

Time (sec)

1 out of 1 1 out of 10 1 out of 100 Link Rate

(a) Using Flow Momentum Algorithm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

Li
n

k
-R

a
te

(G
b

p
s)

T
ru

e
S

co
re

Time(sec)

1 out of 1 1 out of 10 1 out of 100 Link Rate

(b) Using Directed Momentum Algorithm

Fig. 11: True score progression for Distributed Measurements

Each of the distributed site contains an independent rule-
matching unit that collects the programmed statistics pertain-
ing to its network site. The rule-matching units are managed by
a central map/reduce software layer, that handles the mapping
of the measurement requirements coming from the higher
algorithmic layer. Furthermore, it also aggregates (reduce) the
collected statistics from the rule-matching units for further
processing by the algorithmic layer. The algorithmic layer
is where our proposed algorithms process the results and
make their decisions about future refined measurements in the
distributed network.

The True-Score results for FM + ER and DM + ER
algorithms are shown in Figure 11(a) and Figure 11(b), respec-
tively. As expected, the accuracy of the algorithms decreases
with decrease in sampling rate. However, the algorithms
demonstrate robust performance despite sampling, achieving
more than 50% of the True-Score even with a low sampling
rate of 1 out of every 100 packets. The False-Score with the
low sampling rate, however, led the DM+ER to announce one
false iceberg as shown in Figure 12. Though not presented,
the False-score for FM+ER algorithm has only been slightly
less than DM+ER.

We finally present a comparison of rule-set sizes for the
proposed algorithms in the distributed setting as shown in
Figure 13. As expected, the DM + ER algorithm was able
to have a more stable rule-set size as compared to FM +
ER algorithm. The question on which algorithm to utilize for
distributed measurements is again dependent on the choice of
platform, with DM + ER a more suitable candidate for fast but
limited hardware based rule-matching engines such as BURAQ
and FM + ER being a better choice for more latency relaxed
software environments.

VII. CONCLUSION

Iterative measurements offer streaming measurements and
analysis, and help overcome the offline nature of traditional
measurements. However, the effectiveness of iterative mea-
surements are heavily tied with smart algorithms that can
efficiently make use of constraints as imposed by the measure-
ment platforms. The state-of-the-art Multi-Resolution Tiling
(MRT) algorithm is too sensitive to specific traffic patterns,
and is blind to any constraints or opportunities arising from
measurement platforms. We address the issues with three
iterative streaming algorithms that cater to varying degrees

F. KHAN ET AL. 13

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

F
a
ls
e
 S
c
o
r
e

Time (sec)

1 out of 1 1 out of 10 1 out of 100

Fig. 12: False Score progression for DM+ER algorithm

0

50

100

150

200

250

300

350

400

450

500

1

1
7
5

3
4
9

5
2
3

6
9
7

8
7
1

1
0
4
5

1
2
1
9

1
3
9
3

1
5
6
7

1
7
4
1

1
9
1
5

2
0
8
9

2
2
6
3

2
4
3
7

2
6
1
1

2
7
8
5

2
9
5
9

3
1
3
3

R
u

le
S

e
t
 S

iz
e

Iterations

FM+ER DM+ER

Fig. 13: Rule-set size comparison

of computational and storage budgets, detection latency, and
accuracies of query response. We evaluate the streaming
algorithms on diverse hardware and software based measure-
ment platforms, for local as well as distributed measurement
settings. The results demonstrate a marked 100% improvement
in detection accuracy compared to MRT, with a moderate
increase in storage and computational complexities.

REFERENCES

[1] “Cisco NetFlow,” http://www.cisco.com/warp/public/732/Tech/netflow.
[2] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled

data sufficient for anomaly detection?” in Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, ser. IMC ’06.
New York, NY, USA: ACM, 2006, pp. 165–176. [Online]. Available:
http://doi.acm.org/10.1145/1177080.1177102

[3] A. Ramachandran, S. Seetharaman, and N. Feamster, “Fast monitoring
for traffic subpopulations,” in IMC ’08: Proceedings of the 8th ACM
SIGCOMM conference on Internet measurement, 2008, pp. 257–270.

[4] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” in SIGCOMM, 2003.

[5] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches,” in Hot-ICE’11, 2011, pp. 13–13.

[6] L. Yuan, C.-N. Chuah, and P. Mohapatra, “ProgME: towards pro-
grammable network measurement,” in SIGCOMM ’07: Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, 2007, pp. 97–108.

[7] F. Khan, N. Hosein, C.-N. Chuah, and S. Ghiasi, “Streaming solu-
tions for fine-grained network traffic measurements and analysis,” in
Proceedings of the Seventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ser. ANCS ’11, 2011.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[9] F. Khan, S. Ghiasi, and C.-N. Chuah, “A dynamically reconfigurable
system for closed-loop measurements of network traffic,” IEEE Trans-
actions on Computers, vol. 99, p. 1, 2012.

[10] F. Khan, N. Hosein, S. Ghiasi, C.-N. Chuah, and P. Sharma, “Streaming
solutions for fine-grained network traffic measurements and analysis,”
UC-Davis, Tech. Rep. ECE-CE-2013-2, UC-Davis, 2013. [Online].
Available: http://www.ece.ucdavis.edu/cerl/techreports/2013-2/

[11] N. Brownlee, C. Mills, and G. Ruth, “Traffic Flow Measurement:
Architecture,” RFC 2722, 1999, http://www.ietf.org/rfc/rfc2722.txt.

[12] N. G. Duffield, “Sampling for passive internet measurement: A review,”
Statistical Science, vol. 19, no. 3, 2004.

[13] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “cSamp: A system for network-wide flow monitoring,”
in Proc. 5th USENIX NSDI, San Francisco, CA, Apr. 2008.

[14] C. Estan and G. Varghese, “New Directions in Traffic Measurement
and Accounting: Focusing on the elephants, ignoring the mice,” ACM
Transactions on Computer Systems, vol. 21, no. 3, pp. 270–313, 2003.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” J. Algorithms,
vol. 55, pp. 58–75, April 2005. [Online]. Available: http://portal.acm.
org/citation.cfm?id=1073713.1073718

[16] Q. G. Zhao, M. Ogihara, H. Wang, and J. J. Xu, “Finding global icebergs
over distributed data sets,” in Proceedings of the 25th ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, 2006.

[17] H. Zhao, A. Lall, M. Ogihara, and J. Xu, “Global iceberg detection over
distributed data streams,” in Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, march 2010.

[18] G. Huang, A. Lall, C.-N. Chuah, and J. Xu, “Uncovering global
icebergs in distributed streams: Results and implications,” Journal of
Network & Systems Management, vol. 19, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s10922-010-9186-5

[19] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash crowds and denial
of service attacks: characterization and implications for CDNs and web
sites,” in 11th International Conference on World Wide Web, 2002.

[20] F. Khan, L. Yuan, C.-N. Chuah, and S. Ghiasi, “A Programmable
Architecture for Scalable and Real-time Network Traffic Measurements,”
in ANCS ’08: Proceedings of the 4th ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems, 2008.

[21] D. R. Morrison, “Patricia - practical algorithm to retrieve information
coded in alphanumeric,” Journal of the ACM, vol. 15(4), 1968.

[22] “CAIDA: Cooperative Association for Internet Data Analysis,” http://
www.caida.org/data/passive/backscatter tocs dataset.xml.

[23] G. Huang, S. Raza, S. Seetharamanh, and C.-N. Chuah, “Dynamic
measurement-aware routing in practice,” in IEEE Networks Special Issue
on Network Traffic Monitoring and Analysis, 2011, pp. 29–34.

[24] “HP Blade Open Network Environment,” http://h18004.www1.hp.com/
products/blades/components/c-class-interconnects.html.

[25] “Internet2 abilene network,” http://abilene.internet2.edu.

Faisal Khan is a Ph.D. from University of Cali-
fornia, Davis, where his research focus has been in
addressing real-time and computationally intensive
problems in network security using reconfigurable
computing. During the course of Ph.D., he also
explored his research interests as a Computational
Intern at Lawrence Livermore National Laboratory.
Prior to joining UC-Davis, Faisal received his M.S.
from KFUPM, Dhahran, Saudi Arabia and B.E. from
NED University, Karachi, Pakistan in 2005 and 2001
respectively. His research interests span in providing

embedded system solutions for mission critical and real-time problems. Faisal
is currently working at Altera, San Jose, where he is involved in developing
IPs for high-speed serial communications.

Nicholas Hosein is a PhD candidate in electrical and
computer engineering at the University of California,
Davis. His research interests include computer ar-
chitecture, cyber-physical systems, and body sensor
networks. He received his B.S. degree from the
University of California, Berkeley in 2008.

F. KHAN ET AL. 14

Chen-Nee Chuah is a Professor in Electrical and
Computer Engineering at the University of Cali-
fornia, Davis. She received her Ph.D. in Electrical
Engineering and Computer Sciences from the Uni-
versity of California, Berkeley. Her research interests
include Internet measurements, network manage-
ment, anomaly detection, online social networks, and
vehicular ad hoc networks. Chuah is an ACM Dis-
tinguished Scientist. She received the NSF CAREER
Award in 2003, and the Outstanding Junior Faculty
Award from the UC Davis College of Engineering

in 2004. In 2008, she was named a Chancellor’s Fellow of UC Davis. She
has served on the executive/technical program committee of several ACM and
IEEE conferences. She was an Associate Editor for IEEE/ACM Transactions
on Networking from 2008 to 2013.

Soheil Ghiasi is an associate professor of electrical
and computer engineering at the University of Cali-
fornia, Davis. His research interests include architec-
ture, design methodologies, and design automation
techniques for embedded systems. He received his
B.S. degree from Sharif University of Technology,
Tehran, Iran in 1998, and his M.S. and Ph.D. in
Computer Science from University of California,
Los Angeles in 2002 and 2004, respectively. He
has served on the organizing and technical program
committees of numerous conferences, and currently

serves as an associate editor of the Journal of Reconfigurable Computing.

Puneet Sharma is a Principal Research Scientist at
HP Labs where he conducts research on Data Center
Networks, Cloud Architectures, Network Monitoring
and Mobility. Prior to joining the HP Labs, he
received his PhD in Computer Science from the
University of Southern California. He also holds
a B.Tech. in Computer Science and Engineering
from IIT Delhi. His work on Mobile Collaborative
Communities was featured in the New Scientist
Magazine. He has participated in various standard-
ization efforts. He contributed to the UPnP’s QoS

Working Group efforts as co-author for QoSv3 standards. Earlier, he had co-
authored the IETF standards’ RFCs on the multicast routing protocol PIM.
Puneet is a Distinguished Scientist of the ACM and a Senior Member of the
IEEE.

APPENDIX A
ALGORITHMS

Algorithm 2: Equilibrium Rollback

/* Decision Phase */
1 for Ri ∈ R do
2 if (Ri.Size > SizeTh) then
3 if Granularity(Ri) = MAX then
4 Ef ← Ef + Ri

5 else R.replace {Ri, Expand (Ri,Φ)}
6 else if Granularity(Ri) > 1 then
7 R.replace {Ri, Collapse (Ri)}

8 else Ri.Drop

Algorithm 3: MRT Algorithm
input : Pt: Packet enumerator at time t
input : Φ: The expansion/zoom ratio
input : R: Active rule-set
input : Ri.Size: Aggregate size for rule Ri

input : δ: Measurement Interval
input : θ: Threshold bandwidth consumption ratio
input : λ: Link rate (bits/second)
output: Ef{}: set of elephant-flows

SizeTh ← λ ∗ θ ∗ δ
/* Measurement Phase */

1 while t ≤ δ do
2 for Ri ∈ R do
3 if Ri = Pt then
4 Ri.Size← Ri.Size+ Pt.Size

/* Decision Phase */
5 for Ri ∈ R do
6 if (Ri.Size > SizeTh) then
7 if Granularity(Ri) = MAX then
8 Ef ← Ef + Ri

9 else R.replace {Ri, Expand (Ri,Φ)}
10 else Ri.drop

Algorithm 4: Flow Momentum
λi : Flow rate for flowset/flow i
k : Algorithmic iteration

/* Measurement Phase */
1 while t ≤ δ do
2 for Ri ∈ R do
3 if Ri = Pt then
4 Ri.Size← Ri.Size+ Pt.Size
5 Ri.M ← Ri.M + Pt.Size

/* Decision Phase */
6 for Ri ∈ R do
7 λi ← Ri.M/k ∗ δ
8 if (Ri.Size > SizeTh) then
9 if Granularity(Ri) = MAX then

10 Ef ← Ef + Ri

11 else R.replace {Ri, Expand (Ri,Φ)}
12 Rexpanded.M ← Rparent.M

13 else if (λi/λ ≥ θ) then
14 Ri.Hold

15 else Ri.Drop

