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The inherent time-varying nature of dynamics in chemical processes often limits the lifetime performance of model-based
control systems, as the plant and disturbance dynamics change over time. A critical step in the maintenance of model-based
controllers is distinguishing control-relevant plant changes from variations in disturbance characteristics. In this paper,
prediction error identification is used to evaluate a hypothesis test that detects if the performance drop arises from control-
relevant plant changes. The decision rule is assessed by verifying whether an identified model of the true plant lies outside the
set of all plant models that lead to adequate closed-loop performance. A unified experiment design framework is presented
in the least costly context (i.e., least intrusion of nominal plant operation) to address the problem of input signal design for
performance diagnosis and plant re-identification when the performance drop is due to plant changes. The application of the
presented performance diagnosis approach to a (nonlinear) chemical reactor demonstrates the effectiveness of the approach
in detecting the cause of an observed closed-loop performance drop based on the designed least costly diagnosis experiment.

Keywords: closed-loop performance diagnosis; hypothesis testing; prediction error identification; optimal experiment design

1. Introduction

In most industrial process control applications, the inher-
ent (gradual) time-varying nature of the plant dynamics
diminishes the lifetime performance of model-based con-
trol systems (see MacGregor & Cinar, 2012; Qin, 2012;
Yin, Ding, Haghani, Hao, & Zhang, 2012; Shardt et al.,
2012 for recent reviews on performance monitoring and
diagnosis). Changes in the plant dynamics over time in-
crease the plant-model mismatch, which may eventually
invalidate the model identified at the commissioning stage
of a model-based control system. In these circumstances,
the common approach to restore the initial closed-loop per-
formance level is to re-identify the plant dynamics in or-
der to redesign the controller. However, re-identification
of the plant dynamics often entails a high economic cost
and, therefore, should be performed only when it is abso-
lutely necessary (i.e., when the performance drop has been
caused by a control-relevant plant change). In real practice,
however, the closed-loop performance degradation mostly
results from variations in disturbance characteristics or sen-
sor and actuator failures. Hence, to avoid the excessive eco-
nomic cost of the controller maintenance, a performance
diagnosis step should be performed when a closed-loop
performance drop is observed. The performance diagnosis
should verify whether the performance degradation is due
to a control-relevant plant change or due to variations in
disturbance characteristics.

∗
Corresponding author. Email: mesbah@berkeley.edu

This paper presents a generic approach for the
closed-loop performance diagnosis of model-based con-
trol systems. Figure 1 illustrates the notion of the pro-
posed approach for performance diagnosis and plant
re-identification. The performance of the closed-loop sys-
tem is continuously monitored, e.g., by estimating the
input/output variances and verifying whether the predeter-
mined performance requirements are satisfied (see Huang &
Shah, 1999). Once the performance monitoring algorithm
detects a closed-loop performance drop, the performance
diagnosis approach is launched to detect the cause of the
degraded performance. As in most performance diagno-
sis approaches (Basseville, 1998; Benveniste, Basseville,
& Moustakides, 1987; Gustafsson & Graebe, 1998), the di-
agnosis problem is formulated as a hypothesis test, which
provides a statistical framework for making decisions be-
tween contradictory hypotheses (Kay, 1998). The to-be-
distinguished hypotheses are (1) the performance drop is
only due to variations in disturbance characteristics (hy-
pothesis H0), and (2) the performance drop is due to a
control-relevant plant change1 (and possibly also due to
variations in disturbance characteristics) (hypothesis H1).
Note that when the hypothesis H0 holds, the plant can be
different from that observed at commissioning, but the plant
change does not lead to a performance drop. As shown in
Figure 1, if the performance drop is due to variations in
disturbance characteristics (H0 is the correct hypothesis),

C© 2015 Taylor & Francis
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2 A. Mesbah et al.

Figure 1. Procedure for performance diagnosis and plant re-
identification.

the plant dynamics need not be re-identified and the closed-
loop performance can be restored, e.g., by retuning the con-
troller. On the other hand, if the performance drop is due to
a control-relevant plant change (H1 is the correct hypothe-
sis), the plant dynamics should be re-identified to redesign
the controller.

The presented performance diagnosis approach does
not depend on any a-priori assumptions on the possible plant
and/or disturbance changes that may occur in the course of
plant operation. This makes the performance diagnosis ap-
proach different from the set-based approaches (Olaru, De
Doná, & Seron, 2008; Seron & De Doná, 2010), which can
be used, for example, to detect sensor and actuator fail-
ures. In addition, as opposed to the more classical fault
detection approaches (Basseville, 1998; Basseville & Ben-
veniste, 1983; Benveniste et al., 1987; Huang & Tamayo,
2000; Jiang, Huang, & Shah, 2009), the diagnosis objective
in this paper is not to detect any plant changes, but only those
changes that lead to the closed-loop performance degrada-
tion (i.e., control-relevant changes). As in Gustafsson and
Graebe (1998), Tyler and Morari (1996), the presented di-
agnosis approach is based on cheap identification of the
true system with an economic cost much smaller than that
when full re-identification should be performed for perfor-
mance restoration. The advantage of using an identification
approach as the basis for the diagnosis step is that the data
collected for performance diagnosis can be readily used for
the (eventual) full re-identification step, allowing for reduc-
ing the cost of the re-identification step. Like in Gustafsson
and Graebe (1998), Tyler and Morari (1996), the presented
approach relies on defining a set of all plant dynamics that
result in a satisfactory closed-loop performance (with the
existing controller under the original disturbance level) in
order to examine the decision rule of the hypothesis test.

This paper also presents an optimal experiment design
framework to design the diagnosis experiment in a least
costly manner (see Bombois, Scorletti, Gevers, Van den
Hof, & Hildebrand, 2006 for the notion of least costly iden-
tification). The experiment design problem is intended to
minimize the cost of the diagnosis experiment, while guar-
anteeing a prespecified accuracy for the diagnosis. This
allows for ensuring an optimal tradeoff between the contra-
dictory objectives of obtaining an accurate diagnosis and
of obtaining a cheap diagnosis experiment. To enable us-
ing the data collected during the diagnosis experiment for
plant re-identification when H1 is the true hypothesis (see
Figure 1), the experiment design framework also entails
designing the possible re-identification experiment. The di-
agnosis and re-identification experiments are designed such
that the re-identified model is accurate enough for redesign-
ing the controller when H1 is selected in the decision rule.
This implies that performance diagnosis and controller re-
design can be unified in one framework, with the objective
to reduce the overall cost of the maintenance of model-based
controllers. Such a unified framework is an important step
towards a cost-effective maintenance procedure for model-
based controllers. This paper illustrates that the concept of
least costly identification (Bombois et al., 2006) is a gen-
eral paradigm that is not limited only to generating cheap
and informative data for identification of an appropriate
model for controller design, but can also be extended to
performance diagnosis.

In this paper, the closed-loop performance diagnosis ap-
proach and the proposed decision rule are presented for lin-
ear time-invariant systems with disturbances described by
a zero-mean stochastic process in the H∞-control setting2

(Section 2). The post-performance diagnosis steps to restore
the degraded closed-loop performance are thoroughly dis-
cussed. After formulating the unified optimal experiment
design framework for performance diagnosis and possible
plant re-identification (Section 3), a so-called two-scenario
approach is presented to obtain initial model estimates that
are required for solving the experiment design problem.
The practical considerations pertaining to implementation
of the proposed performance diagnosis approach are dis-
cussed (Section 4), and the effectiveness of the presented
approach is demonstrated using a (nonlinear) CSTR case
study (Section 5).

2. Closed-loop performance diagnosis

2.1 Hypothesis testing framework

Consider a stable linear time-invariant (LTI) single-input
single-output system described by

y(t) = G(z, θ0)︸ ︷︷ ︸
G0

u(t) + H (z, θ0)e(t)︸ ︷︷ ︸
v(t)

, (1)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 B

er
ke

le
y]

 a
t 2

1:
48

 2
9 

Ju
ne

 2
01

5 



International Journal of Control 3

C(θcom) G0
+ ++

-

0
r(t)

u(t)
v(t)

y(t)

Figure 2. Closed-loop system [C(θ com) G0].

where y(t) ∈ R is the system output, u(t) ∈ R is the system
input, θ0 ∈ Rk is the unknown true parameter vector, e(t) is a
white noise signal with a covariance matrix σ 2

e , G(z, θ0) and
H(z, θ0) are stable discrete-time transfer functions. H(z, θ0)
is assumed to be monic and minimum-phase (Ljung, 1999).
z denotes the shift operator.

Consider the closed-loop system in Figure 2 made up of
the true system (1) and the controller C(θ com), which is de-
signed based on a model {G(z, θcom),H (z, θcom), σ̂ 2

e,com} of
the true system (1) identified at the commissioning stage of
the controller. In Figure 2, the excitation signal r(t) is set to
zero. At commissioning, the controller C(θ com) is designed
to adequately reject the disturbance v(t) (i.e., variances of
the input and output signals should be reasonably small).

The H∞-control framework (e.g., see Zames, 1981;
Zhou & Doyle, 1998) is used to measure the ability of
the closed-loop system in rejecting the disturbances v(t) =
H0(z)e(t) at commissioning. For a stable closed-loop sys-
tem [C G], made up of a plant G and a controller C, the
performance measure is defined as

J (G,C,Wl,Wr ) = sup
ω

J̄ (ω,G,C,Wl,Wr ) (2)

with

J̄ (ω,G,C,Wl,Wr )

= σ̄
(
Wl(e

jω)F
(
G(ejω), C(ejω)

)
Wr (ejω)

)
F (G,C) �

(
GC

1+GC
G

1+GC
C

1+GC
1

1+GC

)
, (3)

where σ̄ (A) denotes the largest singular value of A. Wl

and Wr are some prespecified diagonal performance weight
filters. The weight filters can be selected such that the per-
formance measure is stated as a weighted function of C

1+GC

and 1
1+GC

. This enables relating the disturbance v(t) to the
plant inputs and outputs, respectively. The weights are cho-
sen such that the loop [C(θ com) G0] (which satisfies J(G0,
C(θ com), Wl, Wr) ≤ 1) rejects satisfactorily the disturbance
v(t) at commissioning. Next, the sets Dadm(C(θcom)) and
VJ (C(θcom)) are defined to formulate the closed-loop per-
formance diagnosis approach.

Definition 1: Consider the existing controller C(θ com) in
the closed-loop system of Figure 2. Dadm(C(θcom)) is de-
fined as the set of all plant models G that are stabilised

by C(θ com) and lead to the nominal performance level
J(G, C(θ com), Wl, Wr) ≤ 1.

Definition 2: The set VJ (C(θcom)) contains power spec-
tra �v of all disturbances v(t) that are sufficiently rejected
by all loops [C(θ com) G] satisfying J(G, C(θ com), Wl, Wr)
≤ 1. Disturbance v(t) with spectrum �v is considered to be
sufficiently rejected by a loop [C G] if the plant input and
output signals have a reasonably small variance.

Definitions 1 and 2 suggest that the closed-loop per-
formance of a loop [C(θ com) G] is satisfactory only when
G ∈ Dadm(C(θcom)) and �v ∈ VJ (C(θcom)). At commis-
sioning, the controller C(θ com) is designed such that G0 ∈
Dadm(C(θcom)) and �v ∈ VJ (C(θcom)). However, the plant
dynamics G0 or the disturbance spectrum �v or most likely
both plant dynamics and disturbance spectrum may change
over time, possibly leading to the closed-loop performance
deterioration. In the event of an observed performance drop
(increased input/output variances), one of the following sce-
narios holds.

(1) Even though G0 might have changed, it remains in
Dadm(C(θcom)) while the disturbance spectrum no
longer lies inVJ (C(θcom)). This implies that the per-
formance drop is due to the changes in disturbance
characteristics.

(2) G0 has moved outside Dadm(C(θcom)), suggesting
that the changes in the plant dynamics G0 have
contributed to the performance drop (irrespective
of the changes in the disturbance spectrum �v).

Hence, using the performance set Dadm, the hypothesis test
pertaining to the closed-loop performance diagnosis prob-
lem can be formulated as

H0 : G0 ∈ Dadm(C(θcom))

H1 : G0 /∈ Dadm(C(θcom)). (4)

Equation (4) indicates that the observed performance drop
is due to changes in disturbance spectrum when hypothesis
H0 is true, and due to control-relevant plant changes (and
possibly changes in disturbance characteristics) when H1

is true.

Remark 1: When H0 is the correct hypothesis, G0 may
not be the same as the plant dynamics at commissioning.
The hypothesis test (4) indicates that the changes in G0 (if
there are any) do not lead to a performance drop. When
H1 is the correct hypothesis, the disturbance spectrum may
have also moved outside VJ (C(θcom)). In this case, another
hypothesis test can be performed in a similar manner as
above to distinguish between �v ∈ VJ (C(θcom)) and �v �∈
VJ (C(θcom)).
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4 A. Mesbah et al.

2.2 Decision rule

To discriminate between the two hypotheses stated in (4),
the unknown true plant G0 is identified in the closed-loop

operation with the existing controller C(θ com). The signal
r(t) = rdet(t) (which is zero during the routine operation)
is used to excite the closed-loop system for (t = 0, . . . ,
N − 1) in order to collect the data {u(t), y(t) | t = 0, . . . ,
N − 1}det (see Figure 2). It is assumed that a full-order
model parametrisation {G(z, θ ), H(z, θ )} can be constructed
such that θ0 in (1) is the only value of the parameter vector
for which {G(z, θ ), H(z, θ )} represents the true plant. The
parameter vector in this model structure is then identified
based on {u(t), y(t) | t = 0, . . . , N − 1}det using the following
criterion (Ljung, 1999)

θ̂det
N = arg min

θ
V (θ ) (5)

with

V (θ ) = 1

N

N−1∑
t=0

ε2(t, θ ), (6)

where θ̂det
N denotes the parameter vector obtained using the

set {u(t), y(t)}det collected for performance diagnosis. The
residuals ε(t, θ ) = H(z, θ )−1(y(t) − G(z, θ )u(t)) in (6) are
related to r(t) = rdet(t) via the measured signals {u(t), y(t)}det

y(t) = S0v(t) + G0S0r(t)︸ ︷︷ ︸
yr (t)

(7)

u(t) = −CS0v(t) + S0r(t)︸ ︷︷ ︸
ur (t)

, (8)

where S0 is the sensitivity function of the closed-loop sys-
tem. This procedure gives a model Ĝdet

N = G(z, θ̂det
N ) of G0,

along with a model Ĥ det
N = H (z, θ̂det

N ) of H0 (with an esti-
mate σ̂ 2

e = 1
N

∑N−1
t=0 ε2(t, θ̂det

N ) of σ 2
e ).

The parameter vector θ̂det
N identified through (5) is

asymptotically normally distributed around the true param-
eter vector θ0. Hence, θ̂det

N ∼ N (θ0, Pθ̂det
N

), where Pθ̂det
N

is a
strictly positive definite matrix (Ljung, 1999)

Pθ̂det
N

= σ 2
e

N

(
Ē

(
ψ(t, θ0)ψ(t, θ0)T

))−1
withψ(t, θ )

= −∂ε(t, θ )

∂θ
, (9)

where Ē denotes the expected value. The covariance matrix
can be estimated using θ̂det

N and {u(t), y(t)}det. The inverse
of the covariance matrix (P −1

θ̂det
N

) can be expressed as

P −1
θ̂det
N

= N

(
1

σ 2
e

1

2π

∫ π

−π

Fr (ejω, θ0)Fr (ejω, θ0)∗ �r,det(ω) dω

)
+ N

(
1

2π

∫ π

−π

Fe(ejω, θ0)Fe(ejω, θ0)∗dω

)
︸ ︷︷ ︸


=I(θ0,�r,det)

, (10)

where Fr (z, θ0) = S0
�G(z,θ0)
H (z,θ0) , Fe(z, θ0) = �H (z,θ0)

H (z,θ0) −
C(θcom)S0�G(z, θ0), �G(z, θ ) = ∂G(z,θ)

∂θ
, and

�H (z, θ ) = ∂H (z,θ)
∂θ

. Equation (10) implies that

P −1
θ̂det
N

= I(θ0,�r,det) depends on the true plant (1)

and is an affine function of the spectrum �r, det of rdet(t).
The latter property will enable us to determine an optimal
spectrum �r, det for the diagnosis experiment.

Once a model Ĝdet
N of the true plant is obtained, it can

be used to choose between hypotheses H0 and H1 (see
(4)). The following decision rule is proposed to perform
the hypothesis test

Ĝdet
N ∈ Dadm(C(θcom)) ⇒ choose H0

Ĝdet
N /∈ Dadm(C(θcom)) ⇒ choose H1. (11)

Equation (11) indicates that H0 is chosen as the cor-
rect hypothesis when Ĝdet

N is inside Dadm(C(θcom)),
whereas H1 is the correct hypothesis if Ĝdet

N lies out-
side Dadm(C(θcom)). Verifying that Ĝdet

N ∈ Dadm(C(θcom))
and Ĝdet

N �∈ Dadm(C(θcom)) can be straightforwardly
done by evaluating if J (Ĝdet

N ,C(θcom),Wl,Wr ) ≤ 1 and
J (Ĝdet

N ,C(θcom),Wl,Wr ) > 1, respectively.
The decision rule (11) may lead to erroneous de-

cisions since Ĝdet
N is an estimate of the true plant G0.

Figure 3 illustrates the possibilities of making an erro-
neous decision. The null hypothesis H0 may be chosen
erroneously when Ĝdet

N ∈ Dadm(C(θcom)) has been gener-
ated by G0 /∈ Dadm(C(θcom)). This is in effect a wrong de-
cision since the performance drop is not due to variations

 

 

(a) H0: Ĝdet
N inside Dadm

 

 

(b) H1: Ĝdet
N outside Dadm

Figure 3. Possibilities of making an erroneous decision in the
decision rule (11). (a) H0: Ĝdet

N inside Dadm. (b) H1: Ĝdet
N outside

Dadm.
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International Journal of Control 5

in disturbance characteristics, but due to changes in the
plant dynamics. Conversely, the choice of the alternative
hypothesis H1 is erroneous when G0 ∈ Dadm(C(θcom)).

In hypothesis testing, the accuracy of the decision rule
is determined by two probabilities –the probability PrH0 of
deciding H0 when H0 is true and the probability PrH1 of
deciding H1 when H1 is true

PrH0


= Pr{Ĝdet
N ∈ Dadm(C(θcom))|G0 ∈ Dadm(C(θcom))}

(12)

PrH1


= Pr{Ĝdet
N �∈ Dadm(C(θcom))|G0 �∈ Dadm(C(θcom))}.

(13)

The probability PrH1 is called detection rate, whereas the
probability 1 − PrH0 is called false alarm rate (Kay, 1998).
Clearly, both probabilities PrH0 and PrH1 should be high
for the hypothesis test to be accurate. The probabilities de-
pend not only on the (unknown) true plant dynamics G0

when the diagnosis experiment is performed3, but also on
the accuracy of the identified model Ĝdet

N . A diagnosis ex-
periment leading to a model Ĝdet

N very close to G0 will
increase both probabilities. In Section 3, the diagnosis ex-
periment will be designed optimally to guarantee prespeci-
fied values for both probabilities PrH0 and PrH1 . Next, the
actions that can be performed after performance diagnosis
to restore the closed-loop performance are discussed.

2.3 After performance diagnosis

When an observed performance drop is due to variations
in disturbance characteristics (H0 is the correct hypothe-
sis), it can be decided to let the controller be the same (as
disturbance changes are often temporary) or to restore the
closed-loop performance by retuning the controller using
the knowledge of the new disturbance characteristics Ĥ det

N

identified along with Ĝdet
N . On the contrary, when an ob-

served performance drop is due to a control-relevant plant
change (H1 is chosen in (11)), the controller should be re-
designed based on a model of the new plant dynamics G0

to restore the closed-loop performance to its nominal level.
As the model {Ĝdet

N , Ĥ det
N } may not be sufficiently accurate

for redesigning the controller, the diagnosis step is typically
followed by another identification step when H1 is the true
hypothesis. In this case, a new excitation signal rid(t) is de-
signed and applied to the closed-loop system to collect the
data-set {u(t), y(t) | t = 0, . . . , N − 1}id

4.
Since the proposed performance diagnosis approach re-

lies on system identification, a link is established between
the diagnosis step and the plant re-identification step. This
can be done by identifying the model {Ĝid

N (z), Ĥ id
N (z)} not

only based on the data {u(t), y(t) | t = 0, . . . , N − 1}id,
but also using the data {u(t), y(t) | t = 0, . . . , N − 1}det

obtained during diagnosis. To this end, a regularisation

term in terms of θ̂det
N and its covariance Pθ̂det

N
is defined in

(6). The parameter vector of the re-identified plant model
{Ĝid

N = G(z, θ̂ id
N ), Ĥ id

N = H (z, θ̂ id
N )} is determined by

θ̂ id
N = arg min

θ

1

N

(
N−1∑
t=0

ε2(t, θ ) +
∥∥∥θ − θ̂det

N

∥∥∥2

P −1

θ̂det
N

)
,

where ε(t, θ ) is computed using {u(t), y(t)}id. The covari-
ance matrix of θ̂ id

N is given by

Pθ̂id
N

=

⎛
⎜⎜⎜⎝I(θ0,�r,id ) + I(θ0,�r,det)︸ ︷︷ ︸

P −1

θ̂det
N

⎞
⎟⎟⎟⎠

−1

with I(., .) defined as in (10). Using both data-sets to iden-
tify θ̂ id

N will enable us to increase the accuracy of θ̂ id
N with

respect to the situation where only {u(t), y(t) | t = 0, . . . , N
− 1}id would be used. Note that P −1

θ̂ id
N

is an affine function of

both �r, id and �r, det (the spectra of the excitation signals
rid and rdet). Next, a unified experiment design framework is
presented for designing the diagnosis and re-identification
experiments where requirements on the diagnosis accuracy
are considered along with the requirement on accuracy of
the to-be-re-identified model Ĝid

N (z).

3. Experiment design framework

This section formulates the optimal experiment design
problem for performance diagnosis and possible plant re-
identification. The costs associated with performance di-
agnosis and plant re-identification experiments are first es-
tablished. The prespecified level of accuracy of the perfor-
mance diagnosis outcome and the desired accuracy of the
to-be-re-identified model (when H1 is chosen) are stated
in terms of constraints. A so-called two-scenario approach
is then presented to obtain initial model estimates that are
required for solving the experiment design problem.

3.1 Cost of the diagnosis and re-identification
experiments

The objective of the experiment design is to design the
spectra �r, det and �r, id

5 of the excitation signals rdet(t)
and rid(t). The spectra should be designed such that the to-
tal economic cost of performance diagnosis and (possible)
plant re-identification is minimised, while guaranteeing the
accuracy of performance diagnosis and, if H1 is true, the
accuracy of the to-be-re-identified model Ĝid

N (z). Let us first
define the cost of an experiment. Suppose that an experi-
ment of fixed length is performed in the loop [C(θ com) G0]
(see Figure 2) using an excitation signal r(t) with spectrum
�r. As in Bombois et al. (2006), the experiment cost is
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6 A. Mesbah et al.

defined as a linear combination of the power of the pertur-
bation signals yr(t) and ur(t) induced by the signal r(t) (see
(7) and (8))

J (�r, θ0) = βy

(
1

2π

∫ π

−π

|G(ejω, θ0)S0(ejω)|2 �r (ω) dω

)

+βu

(
1

2π

∫ π

−π

|S0(ejω)|2 �r (ω) dω

)
, (14)

where βy and βu are user specified scalars.
The total economic cost of performance diagnosis and

(possible) plant re-identification depends on the outcome
of the hypothesis test (11). When H0 is true, the cost
will only be equal to the cost of the diagnosis experiment
(J (�r,det, θ0)). When H1 is true, the cost will be equal to
the sum of the costs of both diagnosis and re-identification
experiments (J (�r,det, θ0) + J (�r,id , θ0)). However, since
the cause of an observed performance drop is not known
a priori, the experiment design should be performed con-
sidering that both hypotheses can be true. In addition, the
experiment cost in both cases of H0 and H1 depends on
the unknown true system parametrised by θ0. To address
this problem, a so-called two-scenario approach is proposed
(see Section 3.3). The two-scenario approach will deliver
an a-priori estimate θ init

0,H0
of θ0 for the case when H0 is true

and an a-priori estimate θ init
0,H1

of θ0 for the case when H1 is
true. These two estimates can then be used to evaluate the
costs of the experiments.

Another important consideration related to the exis-
tence of two hypotheses is to determine which cost should
be minimised in the optimal experiment design. In this pa-
per, the weighted cost J (�r,det, θ

init
0,H1

) + λJ (�r,id , θ
init
0,H1

)
(corresponding to H1) is minimised, while constraining the
cost J (�r,det, θ

init
0,H0

) (corresponding to H0) to be smaller
than a user specified threshold β, (i.e., J (�r,det, θ

init
0,H0

) <

β); λ denotes some prespecified weight. The threshold β

should be chosen such that it is (much) smaller than the
cost of plant re-identification. Next, the quality objectives
for the experiment design are described.

3.2 Quality objectives for optimal experiment
design

The diagnosis experiment influences the accuracy of the
decision rule (11) through affecting the uncertainty of Ĝdet

N .
The model uncertainty can be described by the covariance
matrix Pθ̂det

N
(see (9)), which is a function of spectrum �r, det

used during the diagnosis experiment. Hence, the accu-
racy of performance diagnosis can be stated in terms of
constraining PrH0 and PrH1 to be higher than some user
specified probabilities α0 and α1

Pr{Ĝdet
N ∈ Dadm(C(θcom))|G0 ∈ Dadm(C(θcom))} ≥ α0

Pr{Ĝdet
N �∈ Dadm(C(θcom))|G0 �∈ Dadm(C(θcom))} ≥ α1.

(15)

Due to the dependence of the above constraints on the un-
known true plant, the a-priori estimates θ init

0,H0
and θ init

0,H1

(determined using the two-scenario approach) are required
to evaluate (15).

In addition to constraints (15), another constraint is re-
quired to guarantee the accuracy of the to-be-re-identified
model Ĝid

N . The latter constraint is defined in terms of the
uncertainty of Ĝid

N , which should be small enough to en-
sure that a controller C(θ̂ id

N ) designed with Ĝid
N achieves

sufficient closed-loop performance (J (G0, C(θ̂ id
N ),Wl,Wr )

≤ 1) with the least (user specified) probability level αid. The
uncertainty of Ĝid

N is described in terms of the covariance
matrix Pθ̂id

N
, which is a function of �r, det and �r, id. Note

that the re-identification constraint depends on the true plant
knowledge, which will be approximated by the estimate
θ init

0,H1
of θ0 obtained from the two-scenario approach.

3.3 Two-scenario approach

It follows from the previous sections that the optimal ex-
periment design depends on the (unknown) plant dynamics
(1). In the event of a performance drop, the model {G(z,
θ com), H(z, θ com)} obtained at commissioning is no longer
(fully) valid. The diagnosis experiment design is further
compounded by the fact that it is not known a priori whether
the performance drop is due to changes in disturbance char-
acteristics (H0 is true) or due to plant changes (H1 is true).
Hence, the experiment design for performance diagnosis
should be performed considering both possible hypothe-
ses. The following hypothetical scenarios are considered to
estimate the plant dynamics when H0 and H1 are true.

(1) Scenario 1. If H0 is true, the performance drop is
only due to changes in disturbance characteristics,
while the plant dynamics remain the same as that at
commissioning. Hence, an adequate model for G0

is G(z, θ com), and an estimate for H0 is identified
from routine operating data.

(2) Scenario 2. If H1 is true, the performance drop is
only due to changes in the plant dynamics, while the
disturbance characteristics are the same as those at
commissioning. Hence, an adequate model for H0

is H(z, θ com), and an estimate for G0 is identified
from routine operating data.

The above scenarios allow for determining the estimates
θ init

0,H0
and θ init

0,H1
of θ0 using routine operating data, which

correspond to the hypothesesH0 andH1, respectively6. The
model estimates obtained in Scenarios 1 and 2 are denoted
by {G(z, θ init

0,H0
),H (z, θ init

0,H0
)} and {G(z, θ init

0,H1
),H (z, θ init

0,H1
)},

respectively. To reformulate the constraints (15) in terms of
the estimates θ init

0,H0
and θ init

0,H1
, the following properties of

the estimates with respect to Dadm(C(θcom)) are used
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G
(
z, θ init

0,H0

) = G(z, θcom) ∈ Dadm(C(θcom)) (16)

G
(
z, θ init

0,H1

) �∈ Dadm(C(θcom)). (17)

These properties follow directly from the definition of Sce-
narios 1 and 2. Note that (17) can only be guaranteed asymp-
totically.

3.4 Formulation of the optimal experiment design
problem

The optimal experiment design problem is formulated using
the a-priori estimates θ init

0,H0
and θ init

0,H1
of the true plant, the

properties (16) and (17), the definition of Dadm(C(θcom)),
and the distribution of θ̂det

N . The experiment design prob-
lem is defined as determining the spectra �r, det and �r, id

through minimising the objective function

J (
�r,det, θ

init
0,H1

) + λJ (
�r,id , θ

init
0,H1

)
(18)

under the constraints

J (
�r,det, θ

init
0,H0

)
< β (19)

Pr
{

J
(
G

(
θ̂det
N

)
, C(θcom),Wl,Wr

)
≤ 1 | θ̂det

N ∼ N
(
θ0


= θ init
0,H0

, Pθ̂det
N

) }
≥ α0 (20)

Pr
{

J
(
G

(
θ̂det
N

)
, C(θcom),Wl,Wr

)
> 1 | θ̂det

N ∼ N
(
θ0


= θ init
0,H1

, Pθ̂det
N

) }
≥ α1 (21)

and a constraint for guaranteeing the accuracy of the to-be-
re-identified model, for which θ init

0,H1
is used as an estimate

of the true plant (see (25)). Note that in (20) and (21),
the covariance matrix Pθ̂det

N
will be evaluated in terms of

I(θ init
0,H0

,�r,det)−1 and I(θ init
0,H1

,�r,det)−1, respectively.
To determine the optimal spectrum �r, det, the con-

straints (20) and (21) are reformulated using a confidence
region U that can be constructed based on the normal
distribution of θ̂det

N . Assuming that θ̂N ∼ N (θ0, P ), then
Pr(θ̂N ∈ U (θ0, P

−1, α)) = α, where

U (θ0, P
−1, α)


= {θ | (θ − θ0)T P −1 (θ − θ0) < X (α)}
(22)

and X is a real constant such that Pr
(
χ2(k) < X (α)

) =
α. χ2(k) is a chi-square distributed random variable with
k degrees of freedom (i.e., the number of parameters of
G(z, θ )).

Following Jansson and Hjalmarsson (2005), sufficient
conditions for the constraints (20) and (21) are

J (G(θ ), C(θcom),Wl,Wr ) ≤ 1 ∀ θ ∈ U
(
θ init

0,H0
, I0, α0

)
(23)

J (G(θ ), C(θcom),Wl,Wr ) > 1 ∀ θ ∈ U
(
θ init

0,H1
, I1, α1

)
,

(24)

where I0 = I(θ init
0,H0

,�r,det) and I1 = I(θ init
0,H1

,�r,det).
Equations (23) and (24) directly follow from the constraints
(20) and (21) when the confidence region U contains θ̂det

N

with a probability α0 and α1, respectively. Tighter condi-
tions for constraints (20) and (21) can also be obtained (see
Katselis, Rojas, Hjalmarsson, & Bengtsson, 2012 for the
finite sample case), but the conditions (23) and (24) are
used in this paper.

The constraint on the accuracy of θ̂ id
N is fulfilled if

J
(
G(θ ), C

(
θ init

0,H1

)
,Wl,Wr

) ≤ 1 ∀ θ ∈ U
(
θ init

0,H1
, Iid , αid

)
(25)

with Iid = I(θ init
0,H1

,�r,det) + I(θ init
0,H1

,�r,id ). θ init
0,H1

is used

here as an estimate of the unknown θ̂ id
N and, there-

fore, U (θ init
0,H1

, Iid , αid ) contains the true parameter vec-
tor θ0 with a probability αid. Equation (25) ensures that
J (G0, C(θ̂ id

N ),Wl,Wr ) ≤ 1 with a probability of at least
αid. Since the disturbance characteristics are assumed to
be the same as those at commissioning (see Scenario 2
in Section 3.3), J (G0, C(θ̂ id

N ),Wl,Wr ) ≤ 1 will guarantee
satisfactory closed-loop performance.

3.5 Solution of the experiment design problem

To solve the experiment design problem, the power spectra
�r, det and �r, id are parameterised as

�r (ω) = Rr (0) + 2
m∑

i=1

Rr (i)cos(iω) ≥ 0 ∀ω, (26)

where m is a positive integer7. The sequences Rr, det(i) and
Rr, id(i) (i = 0. . .m) are the decision variables of the experi-
ment design problem. An LMI constraint should be defined
in terms of the sequences Rr, det(i) and Rr, id(i) to ensure the
positivity of �r, det and �r, id (see Bombois et al., 2006).
The objective function (18) is a linear function of �r, det

and �r, id and, consequently, the decision variables Rr, det(i)
and Rr, id(i) (i = 0. . .m). The same holds for the constraint
(19).

Using (3), the constraints (23) and (25) are equivalent to
the following frequency-dependent constraints that should
hold at each frequency ω ∈ [0 π ]

J̄ (ω,G(θ ), C(θcom),Wl,Wr ) ≤ 1 ∀ θ ∈ U
(
θ init

0,H0
, I0, α0

)
(27)
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8 A. Mesbah et al.

J̄
(
ω,G(θ ), C

(
θ init

0,H1

)
, Wl, Wr

) ≤ 1 ∀ θ ∈ U
(
θ init

0,H1
, Iid , αid

)
.

(28)

Note that instead of griding the frequency axis, the Kalman–
Yakubovich–Popov lemma can be used to obtain a fre-
quency independent LMI (Jansson & Hjalmarsson, 2005).

The interval [0 π ] is discretised to obtain a frequency
grid � and, consequently, a finite number of constraints.
The constraints (27) and (28) can be formulated as LMI
constraints in the decision variables Rr, det(i) and Rr, id(i) (i
= 0. . .m). This follows from the fact that (27) and (28) can
be transformed into LMI constraints in the variables I0 and
Iid , respectively, and that the covariance matrices are affine
functions of �r, det and �r, id (Bombois et al., 2006). On the
other hand, the constraint (24) is satisfied if for any given
frequency ω∗

J̄ (ω∗, G(θ ), C(θcom), Wl, Wr ) > 1 ∀ θ ∈ U
(
θ init

0,H1
, I1, α1

)
,

(29)

where the frequency ω∗ can be chosen as

ω∗ = arg max
ω

J̄
(
ω,G(θ init

0,H1
), C(θcom),Wl,Wr

)
. (30)

The constraint (29) is transformed into an LMI constraint
in the variables I1 (see Appendix 1) and, consequently, in
the decision variables Rr, det(i) (i = 0. . .m)).

It follows from above that if �r, det and �r, id are param-
eterised as in (26), the optimal experiment design problem
presented in Section 3.4 can be stated as an LMI optimisa-
tion problem

min
�r,det,�r,id

J (
�r,det, θ

init
0,H1

) + λJ (
�r,id , θ

init
0,H1

)
s.t.: J (

�r,det, θ
init
0,H0

)
< β

J̄ (ω,G(θ ), C(θcom),Wl,Wr ) ≤ 1,

∀ θ ∈ U (θ init
0,H0

, I0, α0), ∀ω ∈ �

J̄ (ω∗,G(θ ), C(θcom),Wl,Wr ) > 1,

∀ θ ∈ U (θ init
0,H1

, I1, α1)

J̄ (ω,G(θ ), C(θ init
0,H1

),Wl,Wr ) ≤ 1,

∀ θ ∈ U (θ init
0,H1

, Iid , αid ), ∀ω ∈ �. (31)

Remark 2: Instead of choosing ω∗ as in (30), the op-
timisation problem (31) can be solved for different val-
ues of ω∗. The optimal spectra are those corresponding
to the frequencies ω∗ that result in the smallest objective
function.

4. Performance diagnosis and plant re-identification
in practice

Before illustrating the experiment design procedure with a
simulation case study, this section discusses how the results
of the experiment design will be implemented in practice.
The outcomes of the experiment design are the optimal
spectra �r, det and �r, id. When the latter spectra are com-
puted, the performance diagnosis experiment is performed
by applying the signal rdet with spectrum �r, det to the
closed-loop system [C(θ com) G0]. Based on the collected
data, a model Ĝdet

N of G0 is identified and, subsequently,
it is verified whether Ĝdet

N lies in Dadm(C(θcom)) (see the
decision rule (11)).

If Ĝdet
N �∈ Dadm(C(θcom)), plant re-identification should

be performed. An excitation signal with spectrum �r, id

(determined together with �r, det) can be used for plant
re-identification. Alternatively, the spectrum �r, id can be
redesigned using θ̂det

N as an estimate for the true system
(instead of using θ init

0,H1
). Clearly, the estimate θ̂det

N provides
a more accurate description of the true system, since it has
been identified using an external excitation signal.

Note that the optimal performance diagnosis experi-
ment is designed to guarantee a prespecified diagnosis ac-
curacy (PrH0 > α0 and PrH1 > α1). Since the choice ofH1

would necessitate plant re-identification with high accuracy
(which typically incur high economic cost), the decision
rule (11) can be modified slightly to reduce the false alarm
rate (i.e., the probability of choosing H1 when H0 is true).
The modified decision rule then consists in choosing H1

only when the following two conditions are met:

(1) Ĝdet
N �∈ Dadm(C(θcom))

(2) There does not exist a model G within
Dadm(C(θcom)) that can explain the data {u(t), y(t) | t
= 0, . . . , N − 1}det with a fit similar to the one of
the model Ĝdet

N �∈ Dadm(C(θcom)).

The implementation of the modified decision rule is dis-
cussed in Appendix 2.

5. Case study: a continuous stirred tank reactor

The presented performance diagnosis approach is applied
to a continuous stirred tank reactor (CSTR), in which the
exothermic reaction A → B occurs. The process dynamics
are described by

V
dCA

dt
= F (CA,in − CA) − V R

ρV Cp

dT

dt
= ρFCp(Tin − T ) + 
HV R − UA(T − Tc),

(32)
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Table 1. Linearised models of the nonlinear process model (32) obtained for the different operating scenarios. Scenario 1 pertains to a
change in the variance of the feed composition C̄A,in (defined in terms of a white-noise process with variance σ 2

e ), whereas Scenario 2
pertains to a shift (due to a permanent process disturbance) in the operating point around which (32) is linearized.

Nominal operation: C̄A =

G0︷ ︸︸ ︷
19.52z−1 + 4.58z−2

1 + 0.38z−1 + 0.04z−2
F̄ +

H0︷ ︸︸ ︷
33.18z−1 + 7.79z−2

1 + 0.38z−1 + 0.04z−2
C̄A,in σ 2

e = 1.0

Scenario 1: C̄A =

G0︷ ︸︸ ︷
19.52z−1 + 4.58z−2

1 + 0.38z−1 + 0.04z−2
F̄ +

H0︷ ︸︸ ︷
33.18z−1 + 7.79z−2

1 + 0.38z−1 + 0.04z−2
C̄A,in σ 2

e = 5.0

Scenario 2: C̄A =

G0︷ ︸︸ ︷
19.52z−1 + 3.89z−2

1 + 1.1z−1 + 0.99z−2
F̄ +

H0︷ ︸︸ ︷
33.18z−1 + 6.44z−2

1 + 1.1z−1 + 0.99z−2
C̄A,in σ 2

e = 1.0

where the reactant concentration CA (kg/m3) and the reactor
temperature T (K) comprise the system states; V denotes the
reactor volume (m3); F denotes the feed flow rate (m3/s);
CA, in denotes the reactant concentration in the feed (kg/m3);
ρ and Cp denote the density (kg/m3) and the specific heat
capacity (J/kgK) of the reaction medium; 
H denotes the
heat of reaction (J/kg); UA denotes the overall heat transfer
coefficient (J/sK); Tc denotes the temperature of the cooling
medium (K); and R denotes the reaction rate defined by

R = k0e
−Ea
RT C2

A

with k0, Ea, and R being the reaction rate constant (m3/kgs),
the activation energy (J/mol), and the universal gas constant
(J/mol K), respectively (see Russo & Bequette, 1997 for a
detailed description of the process model).

The process model (32) has been linearised around its
steady state in order to describe the dynamics of the mea-
sured process output CA in response to variations in the
process input F (feed flow rate) and the process distur-
bance CA, in (feed composition) around the nominal oper-
ating point. The plant model G(z, θ0) and the disturbance
model H(z, θ0) obtained for the (desired) nominal oper-
ating point are given in Table 1 in terms of the deviation
variables C̄A, F̄ , and C̄A,in. Assuming that the knowledge
of the true plant is available, the nominal plant model in
Table 1 has been used to design an H∞-controller C(θ com).
The performance weight filters in (2) have been selected
as

Wl = diag

(
0,

0.52z−1 − 0.46z−2

1.2 − 0.99z−1 + 0.51z−2

)
and

Wr = diag(0, 1),

which allow for defining the measure J uniquely in terms of
the sensitivity function (relating v(t) = H0(z)e(t) and y(t)).

The weight Wl2 has been chosen such that

∣∣∣∣ 1

1 + C(ejω, θcom)G0(ejω)

∣∣∣∣ <
∣∣Wl2(ejω)

∣∣−1
,

which implies that J(G0, C(θ com), Wl, Wr) ≤ 1 or, equiva-
lently, G0 ∈ Dadm(C(θcom)) at commissioning. The perfor-
mance of the closed-loop system is assessed in terms of the
variance of the output signal. The controller C(θ com) has
been designed such that it leads to a sufficiently small vari-
ance of the output signal at commissioning. At the commis-
sioning stage of the controller, the variance of the process
output is σ 2

y = 1.47.
Next, two cases that pertain to two different opera-

tion scenarios of the CSTR are considered to demonstrate
the presented experiment design approach for performance
diagnosis.

Scenario 1 (changes in characteristics of the feed
composition CA, in).

Scenario 1 corresponds to a change in the variance of
the feed composition CA, in, which has undergone a five-
fold increase (see Table 1 for the process model under this
operation scenario). In real practice, such changes in the
feed composition of the reactor often arise from variations
in the upstream units of the reactor, and can be regarded
as temporary disturbances. The change in characteristics
of the disturbance CA, in leads to a significant increase in
the variance of the process output (σ 2

y = 4.27), suggesting
that the closed-loop performance has deteriorated. Note that
since the plant is the same as that under the nominal op-
eration scenario, G0 still lies in Dadm(C(θcom)). Therefore,
hypothesis H0 is the correct hypothesis.

To perform the optimal experiment design procedure,
the two-scenario approach presented in Section 3.3 is used
to obtain the initial estimates θ init

0,H0
and θ init

0,H1
through collect-

ing 1000 samples of {u(t), y(t)} during the routine closed-
loop operation. The latter plant estimates are used to solve
the experiment design problem (31) with the settings listed
in Table 2 8. The designed optimal spectrum �r, det is used
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10 A. Mesbah et al.

Table 2. Settings of the experiment design problem.

Scenario 1 Scenario 2

N 500 500
β 0.1 0.1
α0 95.0% 50.0%
α1 80.0% 95.0%
αid 99.8% 99.8%

Figure 4. Depiction of the identified parameters in Scenario 1
(i.e., G0 ∈ Dadm) when the designed detection signal is applied to
excite the closed-loop system under 500 different noise realisa-
tions.

to generate a signal rdet of length N = 500 for the perfor-
mance diagnosis experiment 9. The signal rdet is applied to
the closed-loop system made up of the controller C(θ com)
and the true plant (given in Table 1) to collect data for
the identification of G(θ̂det

N ). The diagnosis experiment is
repeated 500 times with different noise realisations. The re-
sults of the Monte Carlo simulation are shown in Figure 4,
where θg1 and θg2 denote two of the parameters of the iden-
tified plant models G(θ̂det

N ). The simulation results suggest
that approximately 97% of the identified models G(θ̂det

N ) lie
in the set Dadm(C(θcom)) and, therefore, the decision rule
(11) will lead to the correct decision H0 in 97% of the
cases. Hence, the constraint PrH0 > α0 is fulfilled.

Table 3 lists the excitation costs J (�r,det, θ0) associ-
ated with the optimal excitation spectrum �r, det. The exci-
tation cost for detection will be approximately 11% lower
when the closed-loop system is excited with the designed
signal rdet as compared to excitation with an input signal
with flat spectrum (m = 0). Note that in this scenario, re-

Table 3. Excitation costs (for detection and plant re-
identification) associated with the optimal excitation signals and
signals with flat spectrum.

Scenario 1 Scenario 2

Flat Flexible Flat Flexible
spectrum spectrum spectrum spectrum

J (�r,det, θ0) 0.097 0.897 0.0017 0.0014
J (�r,id , θ0) NA NA 0.0014 0.0012

identification of the plant dynamics for redesigning the con-
troller will not be performed, as the observed closed-loop
performance drop has originated from (temporary) process
disturbances.

Scenario 2 (changes in the plant dynamics due to a shift
in the operating point).

Scenario 2 corresponds to a shift in the operating
point of the reactor, which has arisen from an upset (per-
manent process disturbance) in the temperature of the
cooling medium regulating the reactor temperature. The
nonlinear process model (32) has been linearised around
the new operating point to obtain the linear plant model
given in Table 1. The closed-loop operation of the con-
troller C(θ com) (developed at the commissioning) with the
new plant leads to higher variance of the process output
(σ 2

y = 2.37), which indicates that the closed-loop perfor-
mance has degraded with respect to the nominal operating
conditions. In Scenario 2, J(G0, C(θ com), Wl, Wr) > 1 and,
therefore, G0 �∈ Dadm(C(θcom)). Hence, H1 is the correct
hypothesis in the decision rule (11).

Similar to Scenario 1, the two-scenario approach is used
to obtain the initial estimates θ init

0,H0
and θ init

0,H1
for solving the

experiment design problem (31) with the settings listed
in Table 2. The optimal power spectrum �r, det is used to
generate a signal rdet for the diagnosis experiment. The
signal rdet is applied to the loop made up of the controller
C(θ com) and the true plant to collect data for identification
of G(θ̂det

N ). The diagnosis experiment has been repeated
500 times with different noise realisations. As shown in
Figure 5, the results of the Monte Carlo simulation indicate
that 100% of the identified models G(θ̂det

N ) lie outside the
set Dadm(C(θcom)) and, therefore, the constraint PrH1 > α1

is satisfied.
Since H1 is chosen in the decision rule (11), a re-

identification experiment should follow the diagnosis ex-
periment. This is to obtain a model G(θ̂ id

N ) of the true plant
to design a new controller C(θ̂ id

N ) for restoration of the de-
graded closed-loop performance. Thus, the spectrum �r, id

determined together with �r, det by the optimal experiment

Figure 5. Depiction of the identified parameters in Scenario 2
(i.e., G0 /∈ Dadm) when the designed detection signal is applied to
excite the closed-loop system under 500 different noise realiza-
tions.
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Figure 6. Depiction of the identified parameters of model Ĝid
N

in Scenario 2 (under 500 different noise realizations) obtained
using the designed re-identification signal. The identified model
Ĝid

N is used to design a new controller C(θ̂ id
N ) that restores the

closed-loop performance.

design problem (31) is used to excite the closed-loop sys-
tem. The re-identification signal rid with the optimal power
spectrum �r, id is applied to the closed-loop system to col-
lect data of length N = 500 for plant re-identification. The
re-identified model is then used to redesign the controller
based on the weight filters given above. The re-identification
experiment (and the subsequent controller redesign) is re-
peated 500 times under different noise realisations. The
results of the Monte Carlo simulation suggest that 100%
of the redesigned controllers ensure satisfactory closed-
loop performance (J (G0, C(θ̂ id

N ),Wl,Wr ) ≤ 1), which is
higher than the prespecified probability αid = 99.8% (see
Figure 6). Table 3 indicates that the overall excitation
cost J (�r,det, θ0) + J (�r,id , θ0) with the designed signals
is smaller than the case in which the diagnosis and re-
identification experiment designs are performed indepen-
dently using signals with a flat spectrum (m = 0). The
unified experiment design framework reduces the overall
excitation cost by approximately 13%.

6. Conclusions

A methodology is developed to address the problem of the
closed-loop performance diagnosis. The proposed method-
ology uses the closed-loop system identification to detect
whether an observed performance drop is due to changes in
the plant dynamics or due to variations in disturbance char-
acteristics. An experiment design framework is presented
for optimal design of the excitation signal used for perfor-
mance diagnosis, taking into account that a re-identification
experiment can follow the diagnosis experiment. The
experiment design framework minimises the overall excita-
tion cost incurred for performance diagnosis and plant re-
identification, while achieving a desired diagnosis accuracy
and a predetermined accuracy for the to-be-re-identified
model. The application of the presented framework to a
CSTR demonstrates the capability of the performance di-
agnosis approach in detecting the cause of an observed
closed-loop performance drop under fairly realistic (non-
linear) process settings.
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Notes
1. This work does not consider sensor and actuator failures,

even though such failures can in principle be accounted
for in the plant dynamics. E.g., self-validating sensors and
actuators (Henry & Clarke, 1993; Yang & Clarke, 1999) can
be used for dealing with sensor and actuator failures.

2. The closed-loop performance diagnosis approach is ex-
tended for model predictive control systems in Bombois,
Potters, and Mesbah (2014).

3. In other words, PrH0 and PrH1 will be different for different
plant changes.

4. For notational simplicity, it is assumed that the measurement
sets {u(t), y(t)}det and {u(t), y(t)}id have the same length N.

5. The length of the experiments is supposed fixed a priori.
6. When the routine operating data is not sufficiently infor-

mative (i.e., when the data leads to estimates with a large
variance), a white-noise signal can be used to excite the
plant to collect input/output data for the two-scenario ap-
proach (e.g., see Gevers, Bazanella, Bombois, & Miskovic,
2009.

7. The parameters Rr(i) in (26) can be considered as the au-
tocorrelation sequence of a signal that has been generated
by passing a white-noise signal through an finite impulse
response (FIR) filter of length m + 1.

8. The experiment design settings in Table 2 are user spec-
ified and are largely dependent on the dynamical charac-
teristics of the system under investigation. Clearly, larger
values for probabilities α0, α1, and αid will lead to more
accurate performance diagnosis and plant re-identification
results. However, this will be achieved at the expense of
a higher experimentation cost β, which should be chosen
sufficiently large to ensure the feasibility of the experiment
design problem.

9. Note that the optimal �r, id will not be used in Scenario 1.
10. The frequency ω∗ can be chosen as ω∗ =

arg maxω J̄ (ω,G(θ̂det
N ), C(θcom),Wl, Wr ).
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Appendix 1. LMI formulation of constraint (29)

Proposition 1: Consider the performance measure J̄ in (3), the
constraint

J̄ (ω,G(θ ), C,Wl, Wr ) > 1, ∀ θ ∈ U (θ0, I, α) (A1)

at a given frequency ω with U being the confidence region (22),
a controller C(z) = X(z)/Y(z), and a parametrisation of the plant
G(z, θ ) defined by

G(z, θ ) = ZN (z)θ

1 + ZD(z)θ
(A2)

with the known vectors ZN and ZD. The constraint (A1) is equiva-
lent to the existence of τ (ω) > 0, τ (ω) ∈ R such that

(
Re(a11) Re(a12)
Re(a∗

12) Re(a22)

)
− τ

(
R −Rθ0

−(Rθ0)T θT
0 Rθ0 − 1

)
< 0, (A3)

where

a11 = QZ∗
1Z1 − (

Z∗
NW ∗

l1Wl1ZN + Z∗
DW ∗

l2Wl2ZD

)
a12 = QZ∗

1Y − W ∗
l2Wl2Z

∗
D

a22 = QY ∗Y − W ∗
l2Wl2

Z1 = XZN + YZD

Q = 1

X∗W ∗
r1Wr1X + Y ∗W ∗

r2Wr2Y

R = I
X (α)

Wl(z) = diag(Wl1, Wl2) and Wr = diag(Wr1, Wr2). (A4)

Inequality (A3) is affine in the matrix R and, consequently, is affine
in the matrix I.

Proof: Using the definition of G(z, θ ) in (A2), the closed-loop
transfer matrix H(z, θ ) = WlF

(
G(z, θ ), C

)
Wr is expressed as

H(z, θ ) =

⎛
⎜⎜⎝

Wl1ZNθXWr1

Y + Z1θ

Wl1ZNθYWr2

Y + Z1θ

Wl2(1 + ZDθ )XWr1

Y + Z1θ

Wl2(1 + ZDθ )YWr2

Y + Z1θ

⎞
⎟⎟⎠ ,

(A5)
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where Z1 = XZN + YZD. Since H is a rank one matrix, (A5) can
be rewritten as

H(z, θ ) =

⎛
⎜⎜⎝

Wl1ZNθ

Y + Z1θ

Wl2(1 + ZDθ )

Y + Z1θ

⎞
⎟⎟⎠ (

XWr1 YWr2

)
. (A6)

According to (3), J̄ (ω,G, C, Wl, Wr ) > 1 implies

σ̄
(H(ejω, θ )

)
> 1, (A7)

which is equivalent to

λ̄
(H(ejω, θ )∗H(ejω, θ )

)
> 1 (A8)

with λ̄(A) being the largest eigenvalue of A. Owing to the fact that
H is a rank one matrix, (A8) can be written as

1 −
( Wl1ZN θ

Y+Z1θ

Wl2(1+ZDθ)
Y+Z1θ

)∗ ( Wl1ZN θ

Y+Z1θ

Wl2(1+ZDθ)
Y+Z1θ

)
(X∗W ∗

r1Wr1X − Y ∗W ∗
r2Wr2Y )

< 0, (A9)

where (·)∗ denotes the conjugate transpose. The remainder of the
proof is similar to that given in Bombois, Gevers, Scorletti, and
Anderson (2001).

Appendix 2. Modified decision rule

Suppose that the model Ĝdet
N identified using data of the

performance diagnosis experiment lies outside Dadm(C(θcom))
(J (Ĝdet

N , C(θcom), Wl, Wr ) > 1). In the modified decision rule, the
aim is to verify that there does not exist a model G(z, θ ) ∈
Dadm(C(θcom)) that can describe the data {u(t), y(t) | t = 0, . . . ,
N − 1}det with a fit similar to the one of the model Ĝdet

N . The
identification cost function V(θ ) (see (6)) computed with the data
{u(t), y(t) | t = 0, . . . , N − 1}det can be used to verify if all transfer
functions G(z, θ∗) ∈ Dadm(C(θcom)) fulfil

V (θ∗) − V
(
θ̂ det
N

)
≥ κ (A10)

for some (large) value κ .
The condition (A10) can be verified using a Taylor expansion

around θ0, where the expected value of V(θ ) for a given θ is
approximated by Hjalmarsson (2009)

EV (θ ) ≈ EV (θ0) + 1

N
(θ − θ0)T P −1

θ̂det
N

(θ − θ0) (A11)

with Pθ̂det
N

defined as in (9). Expression (A11) can be approximated

further by replacing θ0 with its estimate θ̂det
N and by neglecting the

expected value

V (θ ) ≈ V
(
θ̂ det
N

)
+ 1

N

(
θ − θ̂ det

N

)T

P −1
θ̂det
N

(
θ − θ̂ det

N

)
. (A12)

Hence, the condition (A10) holds for all transfer functions
G(z, θ∗) ∈ Dadm(C(θcom)) if

{ G(z, θ ) | θ ∈ U
(
θ̂det
N , P −1

θ̂det
N

, ακ

)
} ∈ CDadm(C(θcom)) (A13)

with CDadm(C(θcom)) being the complement of Dadm(C(θcom)) and
U defined as in (22) such that Pr

(
χ 2(k) < Nκ

) = ακ .

θ̂ det
N ∼ N (θ0, Pθ̂det

N
) implies that θ0 lies in U (θ̂det

N , P −1
θ̂det
N

, ακ )

with probability ακ . Therefore, (A13) indicates that there exists
a confidence ellipsoid for θ0 (with a large probability level) that
lies entirely outside Dadm(C(θcom)). In other words, the likelihood
that G0 ∈ Dadm(C(θcom)) is negligible.

The condition (A13) is equivalent to

J (G(θ ), C(θcom), Wl,Wr ) > 1, ∀ θ ∈ U
(
θ̂det
N , P −1

θ̂det
N

, ακ

)
,(A14)

which is satisfied if at frequency ω∗10

J̄ (ω∗, G(θ ), C(θcom), Wl, Wr ) > 1, ∀ θ ∈ U
(
θ̂det
N , P −1

θ̂det
N

, ακ

)
.

(A15)

Note the similarity of (A15) to the constraint (29) of the experi-
ment design problem. It follows from Appendix A that (A15) can
be verified in terms of a convex feasibility problem. The largest
value of κ (or ακ ), for which (A15) holds, can be determined using
a set of linear matrix inequalities.
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