
UCLA
UCLA Electronic Theses and Dissertations

Title
Decomposition methods for semidefinite optimization

Permalink
https://escholarship.org/uc/item/1cv6981p

Author
Sun, Yifan

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1cv6981p
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Decomposition methods for semidefinite

optimization

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Yifan Sun

2015

c© Copyright by

Yifan Sun

2015

Abstract of the Dissertation

Decomposition methods for semidefinite

optimization

by

Yifan Sun

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Lieven Vandenberghe, Chair

Semidefinite optimization problems (SDPs) arise in many applications, including

combinatorial optimization, control and signal processing, structural optimiza-

tion, statistics, and machine learning. Currently, most SDPs are solved using

interior-point methods. These methods are typically robust and accurate, and

converge in few iterations. However, their per-iteration cost may be high. At

each iteration, an interior-point method solves a large and generally dense system

of linear equations, and this limits the scalability of these methods. In contrast,

first-order methods may require many iterations to converge and often reach a

much lower accuracy, but have a very low per-iteration complexity and memory

requirement. This allows them to scale to much larger problems. However, both

interior-point methods and first-order methods have difficulty exploiting sparsity

in SDPs, because the matrix inequality constraint introduces a nonlinear coupling

between all the elements of the matrix variable.

In this thesis, we present decomposition methods for sparse semidefinite opti-

mization. The techniques exploit partial separability properties of cones of chordal

sparse matrices with a positive semidefinite completion. They can be used for gen-

eral sparsity patterns by applying them to chordal extensions. Partial separability

allows us to break the large semidefinite constraint into a set of smaller constraints

ii

that can be handled by decomposition and splitting algorithms. We first use these

methods to solve large sparse matrix nearness problems, in which a large symmet-

ric matrix is projected on the set of sparse matrices with a positive semidefinite

or Euclidean distance matrix completion. Second, we present a method that com-

bines a proximal splitting method with an interior-point method to solve large

linear SDPs. In both cases, the decomposition techniques are shown to effectively

exploit sparsity in very large problems, and offer a significant reduction in memory

and runtime over existing methods.

iii

The dissertation of Yifan Sun is approved.

Alan Laub

Kung Yao

Tetsuya Iwasaki

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2015

iv

To my parents.

v

Table of Contents

1 Introduction . 1

1.1 Optimization over sparse matrix cones 1

1.2 Semidefinite optimization . 5

1.3 Euclidean distance matrices . 7

1.4 Algorithms . 10

1.5 Contributions . 14

2 Convex optimization . 16

2.1 Convex analysis . 16

2.2 Gradient methods . 23

2.3 Dykstra’s algorithm and dual block coordinate ascent 25

2.4 Proximal splitting methods . 31

2.5 Linear conic optimization . 41

3 Matrix cones . 44

3.1 Euclidean distance matrices . 44

3.2 Decomposition of sparse matrix cones 48

3.3 Minimum rank completion of chordal sparse matrices 57

4 Decomposition methods for sparse matrix nearness problems . 70

4.1 Partially separable convex cones 73

4.2 Dual decomposition for partially separable cones 79

4.3 Douglas-Rachford for partially separable cones 86

4.4 Matrix nearness problems . 93

vi

4.5 Discussion . 109

5 Decomposition methods for sparse linear SDPs 112

5.1 Sparse SDPs . 113

5.2 The conversion method . 115

5.3 The Spingarn-IPM method . 124

5.4 Linear semidefinite optimization 129

5.5 Numerical results . 136

5.6 Discussion . 150

6 Conclusion . 152

References . 154

vii

List of Figures

2.1 Projection on dual cones. Any vector in Rn can be decomposed in

terms of its projection on a convex cone C and its negative dual

cone −C∗. Here, z = ΠC(x) and y = Π−C∗(x) = −ΠC∗(−x), and the

vector x = y + z. 17

3.1 Small example. Left: a sparsity pattern for a set of 6 × 6 matri-

ces. Note that by default the diagonal is included in the pattern.

Right: the corresponding undirected graph, with 6 vertices, and

edges between vertices corresponding to nonzeros in the sparsity

pattern. 49

3.2 Small example. Left: a sparsity graph for a set of 6 × 6 matrices.

Center: corresponding intersection graph. Right: a spanning tree

of intersection graph where every topological ordering satisfies the

running intersection property. 62

4.1 UF matrices example. Top: sparsity patterns for a matrix of or-

der p = 38, 434, with 0.014% nonzeros (GHS indef/mario001 in the

UF matrix collection). The original pattern (left), the pattern after

AMD permutation (center), and the chordal extension of the per-

muted pattern (right) are given. Bottom: histogram of the clique

sizes in the decomposed problem. This is representative of most of

the examples in which our decomposition methods are successful;

the average clique size is around 25-50, and the maximum clique

size is around 100-200. 97

viii

4.2 Convergence. Relative error in objective |f(X i)− f(X⋆)|/|f(X⋆)|
for the projection of a matrix C on the cone of sparse matrices

with PSD completion. The plot compares the two dual decompo-

sition methods and the Douglas-Rachford method. The matrix C

is 1601× 1601, with chordal sparsity, and with 1.24% nonzeros. . 99

4.3 Sensor network example. Top left: zoomed in version of a 2-D sen-

sor network with 5000 sensors in a unit square, with a radio range

of 0.001. Top right: corresponding (permuted) sparsity pattern.

Bottom: histogram of clique sizes for a chordal extension of the

sparsity pattern. 105

4.4 Spectral norm example. Top: aggregate sparsity pattern of prob-

lem (4.25), where the pattern of U is 26, 722×11, 028 with sparsity

level 0.035% (labeled psse0 in the UF sparse matrix collection).

Bottom: corresponding histogram of clique sizes. 108

5.1 The subspaces V and V⊥. The figures show three vertices of the

intersection tree. The left-hand figure illustrates V. We associate

the subvector x̃k of x̃ = (x̃1, . . . , x̃l) with vertex k in the tree and

associate a consistency constraint Pσj
(P T

γj
x̃j − P T

γk
x̃k) = 0 with the

edge between vertex j and its parent k. Then (x̃1, . . . , x̃l) is in V
if and only if the consistency constraints are satisfied. The right-

hand figure illustrates V⊥. Here we associate the subvector vk of

v = (v1, . . . , vl) with vertex k in the tree and a vector uj ∈ R|σj | with

the edge between vertex j and its parent k. Then v ∈ V⊥ if and only

there exist values of uk such that vk = Pγk(P
T
σk
uk−

∑
γj∈ch(γk) P

T
σj
uj). 120

ix

5.2 Sparsity of Schur complement matrix. Left: sparsity pattern of

Ã1H̃
−1Ã1, where Ã1 = AJ , and J is as defined in (5.9). For this

particular problem, if Ã1 is picked this way, the Schur complement

matrix of the converted problem is not very sparse. Right: sparsity

pattern of Ã2H̃
−1Ã2 where A2 is chosen to optimize the sparsity in

the Schur complement matrix. Note that for general problems, the

optimal converted coefficient may not be so obvious. 129

5.3 Custom proximal operator. Runtime required for a single proximal

operator evaluation (5.31) on a dense subproblem with one clique

(l = 1) of size p = |β1| and m = p constraints (averaged over

10 trials). The CPU time of the general-purpose solver SDPT3,

called directly or via CVX, is compared against the CPU time of a

customized fast proximal operator. 134

5.4 Choice of constant step size. Primal residual ‖rip‖2/‖x̃i‖2 and dual

residual ‖rid‖2/‖vi‖2 versus iteration number i for three constant

values of ti: ti = 10 (left), ti = 100 (center), and ti = 1000 (right). 137

5.5 Adaptive step size. Primal and dual residuals versus iteration num-

ber with adaptive selection of ti, starting with a value 10 (top left),

100 (center), 1000 (right). The graphs on the bottom row show the

values of ti during the three runs of the algorithm. 138

5.6 EDM example. Top: nearest-neighbor network for a problem with

500 nodes in two dimensions. Two nodes are connected if one of the

two is among the 5 nearest neighbors of the other node. Bottom

left: corresponding sparsity pattern after AMD permutation and

chordal extension. Bottom right: corresponding sparsity pattern

after clique merging. Before clique merging, there are 359 cliques

with an average of 5 elements. After clique merging, there are 79

cliques with an average of 5 elements. 142

x

5.7 Convergence. Relative primal and dual residuals versus iteration

number for networks with 500 (left) and 2000 (right) nodes. For

n = 500, there are 82 cliques, and for n = 2000, there are 310

cliques. A constant steplength parameter tk = 0.2 is used. 143

5.8 Block-arrow example. Top: illustration of block-arrow sparsity pat-

tern for l cliques. The order of the matrix is ld + w. The first l

diagonal blocks in the matrix have size d, the last block column

and block row have width w. The cliques therefore have size d+w.

Bottom: corresponding clique tree. Each clique in the clique tree

is partitioned in two sets: the top row shows αk = βk∩par(βk); the

bottom row shows ηk = βk \ αk. 144

5.9 Performance. Solution time for randomly generated SDPs with

block-arrow sparsity patterns. Times are reported for SEDUMI

(SED.) and SDPT3 applied to the original (‘unc.’) and converted

(‘conv’) SDPs, and the Spingarn method applied to the converted

SDP. The figure on the left shows the times as function of arrow

width w, for fixed dimensions l = 100, d = 20, s = 10. The figure

on the right shows the times versus number of cliques l, for fixed

dimensions w = 20, d = 20, s = 10. 147

5.10 Accuracy and steplength. Left: number of iterations for of Spin-

garn’s method based on the desired accuracy, for a problem instance

with d = 20, w = 20, s = 10, and using a fixed steplength param-

eter tk = 0.2. Right: number of iterations for the same problem

with ǫ = 10−4 and different choices of steplength. 149

xi

List of Tables

4.1 Sparse matrix problems. Thirteen symmetric sparsity patterns from

the University of Florida sparse matrix collection. For each pattern

we give the matrix order p and the density, defined as (p+2|E|)/p2. 95

4.2 Chordal extensions. The table shows the density, the number of

cliques (m), and the average and maximum clique size, after a

chordal extension, with no clique merging, for the patterns listed

in table 4.1. 96

4.3 Clique merging. The table shows the density, the number of cliques

(m), and the average and maximum clique size, after a chordal

extension and clique merging, for the patterns listed in table 4.1. . 96

4.4 Projection on chordal PSD completable matrices. CPU times (in

seconds) for the projection on ΠE(S
p
+). The total runtimes and

times per iteration are given. The algorithms are: dual fast pro-

jected gradient method (F-PG), dual block coordinate ascent (BCD),

primal Douglas-Rachford method (P-DR), and dual Douglas-Rachford

method (D-DR). 99

4.5 Projection on chordal EDM completable matrices. CPU times (in

seconds) for the projection on ΠE(D
p). The total runtimes and

times per iteration are given. The algorithms are: the dual fast

projected gradient method (F-PG), the dual block coordinate as-

cent (BCD), the primal Douglas-Rachford method (P-DR), and the

dual Douglas-Rachford method (D-DR). 100

xii

4.6 Projection on nonchordal PSD completable matrices. CPU times

(in seconds) for the projection on ΠE(S
p
+). The Douglas-Rachford

method is applied to the primal and dual problem form (P-DR and

D-DR). The total runtimes and times per iteration are given, and

compared against the runtime for a single eigenvalue decomposition

of the full p× p matrix C. 102

4.7 Sensor network localization problem parameters. Average problem

statistics (density of the patterns E and E ′, number of cliques and

average size of cliques) are given. 104

4.8 Sensor network localization runtimes. Average runtime of decom-

position methods, compared against a single eigenvalue decompo-

sition. 106

4.9 Projection on the unit spectral norm ball. Problem statistics and

total CPU runtimes for the primal Douglas-Rachford method are

given. The runtimes are compared against a single SVD, which

represents a single iteration in a first-order method that does not

use chordal decomposition. 109

5.1 Accuracy. Relative differences between solutions, computed by Sp-

ingarn’s method and an interior-point method, and the number of

iterations in Spingarn’s method, for varying exit conditions in Sp-

ingarn’s method and the proximal operator evaluations. The first

column is the tolerance in the proximal operator evaluations. The

second column shows the tolerances in Spingarn’s method. 150

xiii

Acknowledgments

First I want to thank my PhD advisor, Lieven Vandenberghe for his tremendous

help through every aspect of my PhD. His insights helped me understand and

contextualize very difficult topics, and his suggestions and critiques helped ensure

that everything I put out there would be something I could be proud of. I am

very grateful to have had such an awesome advisor.

I thank my committee members, Alan Laub, Kung Yao, and Tetsuya Iwasaki,

for their helpful comments and playing an important part of making my PhD

possible. I also thank the EE departmental staff, who helped me through many

sticky situations.

I owe a great amount of thanks as well to my classmates at UCLA for their

helpful discussions and jovial camaraderie. I especially thank my labmates Daniel

O’Conner, Jinchao Li, Suzi Chao, Cameron Gunn, and Rong Rong, for their

general awesomeness. I also would like to thank Martin Andersen for introducing

me into the world of chordal SDPs, and for continuing to answer my random

email questions on this subject. Additionally, I thank my cubicle mates Jun

Wang, Tsung-Yi Chen, Tom Courtade, Adam Williamson, Sina Caliskan, Ayça

Balkan, Kasra Vakilinia, Sudarsan Ranganathan, Haobo Wang, Kirti Dhwaj, Ning

Wang, Cheng-Yi Lin, and Chris Curwen, and other UCLA friends Ryan Gabrys,

Dave Gingrich, Shaunak Mishra, Can Karakuş, Jad Hachem, Navid Vadfaee, Mihir

Laghate, and so many others, for making UCLA a fantastic experience. Outside of

UCLA, I thank Chris Brinton, Vicente Malave, Madeleine Udell, and many other

wonderful people in the greater optimization community, who never hesitated to

discuss random topics over Skype. I sincerely apologize to anyone I missed!

I would like to thank the AT&T Labs Fellowship Program and National Science

Foundation Graduate Research Fellowship Program for their generous financial as-

sistance throughout my graduate experience. In particular, I thank my mentors

xiv

at AT&T Labs, Xiang Zhou and Lynn Nelson, for their support and advice, espe-

cially at that first summer internship. I also thank Prashanth Iyengar at Masimo

Corporation and Niyant Krishnamurthi, and George, Jacob, and Joseph Yadegar

at UtopiaCompression, for awesome summer internships, where I gained an ap-

preciation of many important applications and also learned how to play ultimate

frisbee. I also want to thank my friends and professors at Olin College, especially

Siddhartan Govindasamy, who was never too cool to chat with a former student

about grad school experiences.

Finally, I owe the greatest thanks to my parents, Xiaoduo Sun and Weihe

Chen, who inspired me to math and science, and continue to guide me through

life. This thesis is dedicated to them and their many sacrifices, as a result of which

I was always shielded from life’s greatest difficulties.

xv

Vita

2006-2010 B. S. Student

Electrical and Computer Engineering Department

F. W. Olin College of Engineering, Needham, Massachusetts.

2010-2011 M. S. Student

Electrical Engineering Department

University of California, Los Angeles (UCLA).

2013-2014 Teaching Assistant

Electrical Engineering Department

University of California, Los Angeles (UCLA).

2012-2015 Ph. D. Student

Electrical Engineering Department

University of California, Los Angeles (UCLA).

Publications

Yifan Sun, Martin S. Andersen, and Lieven Vandenberghe. “Decomposition in

conic optimization with partially separable structure.” SIAM Journal on Opti-

mization, 24:873-897, 2014

Yifan Sun and Lieven Vandenberghe. “Decomposition methods for sparse matrix

nearness problems.” 2015. Under review.

xvi

CHAPTER 1

Introduction

1.1 Optimization over sparse matrix cones

In this thesis we consider optimization problems of the general form

minimize
X

f(X)

subject to tr(AkX) = bk, k = 1, . . . , m

X ∈ C

(1.1)

where X is a symmetric p×pmatrix variable, C is a convex cone, and f is a convex

function. We focus on two cases of f . In the first case, f is a linear function

f(X) = tr(CX) =
∑

i,j

CijXij,

and (1.1) is a linear conic optimization problem. The best known example is a

semidefinite program (SDP), where C is the set of positive semidefinite (PSD)

matrices (denoted S
p
+). This class of conic problems has been studied intensely

since the 90s, and is discussed further in section 1.2. In the second case, f is

quadratic of the form

f(X) = ‖X − C‖2F =
∑

i,j

(Xij − Cij)
2

1

andm = 0. Problems of this form are called matrix nearness problems, and arise in

many applications, including finance [Hig02], statistics [BX05], and computational

biology [AKG13]. Although we focus on linear and quadratic functions, many of

our algorithms extend to any separable sum of convex functions; that is,

f(X) =

p∑

i,j=1

fij(Xij)

where fij is a convex function.

We are interested in optimization problems where X is constrained to be a

matrix with a specific sparsity pattern. We define a sparsity pattern E as a subset

of index pairs representing the off-diagonal nonzeros in a symmetric matrix, and

we denote S
p
E as the set of p× p symmetric matrices with sparsity pattern E:

S
p
E = {X ∈ Sp | Xij = 0 for all i 6= j where {i, j} 6∈ E}.

(Here, Sp is the set of p × p symmetric matrices.) We focus on three types of

sparse matrix cones C, which capture multiple types of problem sparsity.

In the first case, C is the set of PSD matrices with sparsity pattern E

C = S
p
E,+ = {X ∈ S

p
E | X � 0}.

For example, this constraint appears when optimizing over covariance matrices

with imposed sparsity patterns, and a zero in the sparsity pattern indicates that

two random variables are independent.

In the second case, C is the set of matrices with sparsity pattern E that have

a PSD completion

C = ΠE(S
p
+) = {ΠE(X) | X � 0}.

This sparse matrix set can be used in a reformulation of a dense problem with

2

sparse parameters. For example, consider the simple SDP

minimize
Z

tr(CZ)

subject to diag(Z) = 1

Z � 0

(1.2)

where C is a sparse matrix with sparsity pattern E. (This problem appears as a

popular relaxation of the MAX-CUT problem; see [GR00] for more details.) The

matrix variable Z is in general dense; however, the problem can be reformulated

with a change of variables X = ΠE(Z), as

minimize
X

tr(CX)

subject to diag(X) = 1

X ∈ ΠE(S
p
+).

(1.3)

This is an instance of problem (1.1) with C = ΠE(S
p
+). For an optimal solution X⋆

to problem (1.3), any positive semidefinite completion Z⋆ of X⋆ (that is, Z⋆ � 0

and ΠE(Z
⋆) = X⋆) will be an optimal solution to (1.2). In this thesis, we are

interested in specific choices of a sparsity pattern E, in which computing such a

Z⋆ from X⋆ can be done efficiently. (Algorithms for such completions are given in

section 3.3.) However, in many applications, a full completion may not be needed.

A similar reformulation can be done for matrix nearness problems with a sparse

parameter C. Applications involving this choice of set C are discussed further in

section 1.2.

In the third case, C is the of sparse matrices with a Euclidean distance matrix

(EDM) completion

C = ΠE(D
p) = {ΠE(X) | X ∈ Dp}.

3

Here Dp is the set of Euclidean distance matrices of order p, i.e. matrices with

entries that can be expressed as squared Euclidean distances between pairs of

points

Dp = {X ∈ Sp | Xij = ‖ui − uj‖22, for points u1, . . . , up}.

For example, consider the noisy EDM completion problem

minimize
Z

∑
{i,j}∈E

(Zij − Cij)
2

subject to Z ∈ Dp

(1.4)

where C contains a partial noisy reading of pairwise distances, and has sparsity

pattern E. (A variation of this problem appears in sensor network node local-

ization, molecular conformation recovery, and multidimensional scaling.) Then

problem (1.4) can be reformulated as

minimize
X

‖X − C‖2F
subject to X ∈ ΠE(D

p).

(1.5)

These two problems (1.4) and (1.5) are equivalent in the sense that, at optimality,

X⋆ = ΠE(Z
⋆). As in the previous case, we consider problems where the dense

completion Z⋆ is easy to compute from X⋆, though a full EDM completion may

not always be needed. More examples of this type of problem can be found in

section 1.3.

For the first two cases of C, problem (1.1) is an instance and a reformulation of

an SDP. In the third case of C, problem (1.1) is a reformulation of an optimization

problem over the set of EDMs. In the next two sections, we give a more detailed

introduction of these two classes of optimization problems, followed by an overview

of important algorithms in section 1.4.

4

1.2 Semidefinite optimization

Semidefinite matrix constraints arise naturally in many applications. (See, for

example, the surveys [PL03, VB95, VB99, KW12, WSV00].) In statistics, PSD

matrices appear as covariance or correlation matrices, for example in the prob-

lem of finding a sparse covariance estimate [BL08] or inverse covariance esti-

mate [Dem72, dBE08] for a Gaussian model, or in adjusting noisy correlation

measurements [Hig02, Mal04, HM12]. In machine learning, SDPs also appear

in dimensionality reduction [WS06] and in learning nonlinear kernel matrices

[LCB04].

The most common occurrence of SDPs is as the backbone of general purpose

solvers like CVX [GB12] and Yalmip [Lof04]. These solvers reformulate general

convex problems as conic problems, where C is a product of nonnegative orthants,

second order cones, and (most generally) PSD cones; the problem is then solved

using a state-of-the-art interior-point method.

Solving an SDP can also be used as a polynomial-time approximation of NP-

hard problems, and to compute bounds on the optimal value. For example, SDPs

are often used as a relaxation of combinatorial problems [BV96, Par03], such as in

relaxations of MAX-CUT [DH73, GW95], approximating the graph chromatic and

independence number [Lov79, GLS88, LS91] and finding the maximum weight

equipartition [KR98]. Because SDP relaxations are tighter than LP relaxations of

combinatorial problems, SDP solvers can be used to construct faster converging

branch-and-bound solvers [Hu06, BV08, KMR14]. And, it has also been shown

that polynomial optimization problems can be approximated using a hierarchy of

SDPs [Las01, Par00]. As an example, we show how SDPs arise from relaxations

of quadratically constrained quadratic programs (QCQP), a popular subset of

nonconvex optimization problems.

5

Example: Nonconvex optimization Many nonconvex optimization problems

can be reformulated as QCQPs

minimize
x

xTA0x+ bT0 x+ c0

subject to xTAix+ bTi x+ ci ≤ 0, i = 1..., m

(1.6)

where Ai ∈ Sp and may be sparse, bi ∈ Rp, and ci ∈ R for i = 0, . . . , m. (Here, Sp is

the set of p×p symmetric matrices.) This problem covers many types of nonconvex

objectives and constraints, since the matrices Ai may not be PSD. (For example,

the constraint x ∈ {−1, 1} can be written as x2 = 1, which is a combination of

two quadratic inequalities.) We can write (1.6) as a matrix optimization problem

using a change of variables X = xxT . The convex relaxation comes by replacing

this equality with an SDP constraint

X � xxT ⇐⇒


X x

xT 1


 � 0,

resulting in the following convex relaxation of (1.6)

minimize
X

tr(A0X) + bT0 x+ c0

subject to tr(AiX) + bTi x+ ci ≤ 0, i = 1, ..., m
X x

xT 1


 � 0.

(1.7)

Problem (1.7) is an SDP with aggregate sparsity pattern E if the matrices


Ai bi

bTi ci


 ∈ S

p
E , for all i = 0, . . . , m.

This type of problem and relaxations appear in several applications, such as com-

binatorial optimization over graphs [GR00]. Recently, this SDP relaxation is

6

used as a relaxation of the optimal power flow problem [Low14a, Low14b, LL12,

Jab12, BHF08, MLD14, AHV14]. Here, solving the relaxation (1.7) provides use-

ful bounds on the solution to the original problem (1.6). In these applications, the

sparsity of the relaxed problem corresponds to the underlying network topology

of the application, which tends to be very sparse.

1.3 Euclidean distance matrices

The problem of finding an EDM completion [BJ95] or projection [Hig88, GHH90],

[GM89, §5.3] appears many seemingly unrelated fields, such as dimensionality

reduction for machine learning, sensor network node localization, and molecu-

lar conformation recovery. For example, in sensor network node localization, the

objective is to recover the configuration of a family of sensors based on noisy

distance measurements between nearby pairs [BY04b, KW12]. This can be done

by first finding an (approximate) low-rank EDM completion and then directly

transforming it into a configuration matrix. A closely related problem is to find

the atomic configuration of macromolecules based on noisy bond length measure-

ments [Tro97, CH88, Wut89, AKG13]. In both cases, the desired EDM must

be for points in R2 or R3, making the problem nonconvex. However, finding an

EDM without this dimension restriction (the convex relaxation) can be solved

using an SDP, and is often used as an important substep to finding the feasible

completion [AKG13].

In general, EDM optimization problems can be interpreted as an SDP, since

EDM constraints can be expressed equivalently as semidefinite and affine con-

straints. They can also be regarded as an instance of the general distance matrix

completion problem, and solved using a very different set of techniques [CH88,

MLL12]. Surveys for Euclidean distance problems include [KW12, Dat10, AKW99].

The problem will be discussed in more detail in section 3.1.

7

Example: Sensor network node localization In this application (described

by Biswas and Ye [BY04b]) low-cost sensors are arbitrarily distributed across

some topology. These sensors communicate noisily with other nearby sensors to

estimate their pairwise distances, and the problem is to recover the node config-

urations from these noisy, partial distance readings. This is done by first finding

the best fitting EDM to the partial noisy measurements

minimize
X

∑
{i,j}∈E

(Xij − D̂ij)
2

subject to X ∈ Dp

X has embedding dimension r,

(1.8)

where E is the sparsity pattern of D̂ ({i, j} ∈ E if sensor i and j are close) and r is

the dimension of the topology (usually 2 or 3). (We say that an EDM X has em-

bedding dimension r if X is the EDM for p points uk ∈ Rr for each k = 1, . . . , p.)

Applications in biology [AKG13] and multidimensional scaling [Kru64] involve

similar problems. A difficulty with solving problem (1.8) is the nonconvex con-

straint that X has embedding dimension r. In section 4.4.3, we discuss solving

the convex relaxation, where this constraint is dropped; in this case, (1.8) is a

convex sparse matrix nearness problem, with E as its aggregate sparsity pattern.

Example: Maximum variance unfolding A convex optimization method

that heuristically finds low-rank EDM completions is maximum variance unfold-

ing, proposed by Weinberger and Saul [WS06]. This is in the context of machine

learning, where dimensionality reduction of high-dimensional features is neces-

sary for computational efficiency. The hypothesis is that these features live on a

low-dimensional nonlinear manifold, making it difficult to use linear methods like

PCA to extract low-rank solutions. Maximum variance unfolding addresses this

by first “stretching” the nonlinear manifold so that it fits in a linear subspace.

8

This is done by solving the following linear SDP

maximize
X

tr(X)

subject to Xii +Xjj − 2Xij = ‖ûi − ûj‖22, for all ‖ûi − ûj‖22 < ρ

X1 = 0

X � 0.

(1.9)

Here, ûi are the given feature vectors, and X � 0 is the Gram matrix of the

recovered points. (Xij = uT
i uj where ui are the estimated points lying in a low-

dimensional subspace.) In the objective, tr(X) =
p∑

i=1

‖ui‖2, is maximizing the

variance of points (blowing them apart). The first constraint forces the local

configuration to stay constant, and the constraint X1 = 0 (where 1 is the vector

of all 1’s) keeps the center of mass of the points at the origin. (Otherwise, the

problem would be unbounded.) Often, the solution to (1.9) is low rank, and can

be converted to a EDM

D = diag(X)1T + 1diag(X)T − 2X

where the embedding dimension of D is the rank of X . (Here, diag(X) ∈ Rp

contains the diagonal of X .) The derivation of this linear map is discussed further

in section 3.1.

Both (1.8) and (1.9) are examples of important sparse matrix problems, and

demonstrate the close relationship between the PSD cone and the EDM cone.

In both cases, the sparsity pattern is given by the underlying network. As a

convex heuristic for finding a low-rank solution, maximum variance unfolding is

surprisingly successful; however, in practice it is difficult to solve for large matrices,

as it requires solving a large SDP.

9

1.4 Algorithms

In this thesis, we explore two common classes of algorithms for semidefinite pro-

gramming: interior-point methods and first-order methods. Interior-point meth-

ods are similar in per-iteration complexity to Newton’s method, which at each

iteration requires computing and factoring a Hessian (second order derivative).

This can be costly for large matrix variables. Recently, however, there has been

an increasing trend in developing first-order methods (which do not use second or

higher-order derivatives). These methods are usually capable of handling larger

problems, and often exploit sparsity more readily. The tradeoff is that first-order

methods generally require many iterations to converge, and may taper off at low-

accuracy solutions; in contrast, interior-point methods are known to converge to

high-accuracy solutions fairly quickly (in about 20-50 iterations).

1.4.1 Interior-point methods

An interior-point method solves the following conic optimization problem and its

dual

minimize
x

cTx

subject to Ax = b

x ∈ C

maximize
y,s

bTy

subject to ATy + s = c

s ∈ C∗

(1.10)

where C∗ is the dual cone of C. At each iteration, the interior-point method solves

the linear system 
 H AT

A 0




 ∆x

∆y


 =


 rx

ry


 (1.11)

where H depends on the type of scaling used. In most implementations, the first

block row is eliminated, and the Schur complement system is solved instead:

AH−1AT∆y = AH−1rx − ry.

10

The efficiency of the interior-point method then depends on the ease of forming

and factoring the AH−1AT term. In linear programming, the matrixH is diagonal,

and AH−1AT is sparse if AAT is sparse. Interior-point methods for linear conic

optimization are discussed in more detail in section 2.5.

In the case of semidefinite optimization, it is more convenient to write (1.10)

as two matrix problems

min.
X

tr(CX)

s.t. tr(AiX) = bi, k = 1, . . . , m

X � 0

max.
y,S

bT y

s.t.
m∑
i=1

Aiyi + S = C

S � 0

(1.12)

where, now, C and Ai, i = 1, . . . , m are symmetric p×p matrices. However, unlike

for linear programming, the corresponding H matrix in (1.11) for the semidefinite

cone is not diagonal, and H−1 (and therefore the Schur complement system) is in

general dense. This presents a difficulty in semidefinite optimization, in that it is

not easy to exploit sparsity when factoring the Schur complement system.

However, certain techniques exist. When C and Ak are sparse with pat-

tern E, then the primal problem has aggregate sparsity E, and a dual feasible

S must be sparse with pattern E. Both Choi and Ye [CY00] and Benson, Ye, and

Zhang [BYZ00, BY04a] exploit this in proposing dual scaling methods which can

solve problems up to p = 20, 000. In dual scaling, the Hessian is then efficiently

constructed from the sparse dual intermediate variables. A similar trick can be

applied for primal scaling methods, where the primal variable is substituted by a

sparse matrix variable X ∈ ΠE(S
p
+); see [FKM00, NFF03, YFK03].

The ideas can be combined to construct a primal-dual interior-point method,

11

solving a nonsymmetric reformulation of (1.12)

min.
X

tr(CX)

s.t. tr(AkX) = bk, k = 1, . . . , m

X ∈ ΠE(S
p
+)

max.
y,S

bTy

s.t.
m∑
k=1

ykAk + S = C

S ∈ S
p
E,+

where the sparse cone ΠE(S
p
+) is our second case of C. (This is the method of

Srijuntongsiri and Vavasis [SV04].) Additionally, Andersen et al. gives efficient

implementations for constructing sparse gradients and Hessians for these non-

symmetric cones [ADV10c, ADV10b].

The methods closest to our proposed method are the conversion methods of

Fukuda et al. [FKM00, NFF03, FKK09], which break the sparse conic constraint

into overlapping conic constraints, allowing H−1 to be block diagonal rather than

dense. We discuss this method in more detail in chapter 5.

1.4.2 First-order methods

The term “first-order methods” encompasses a variety of popular algorithms, in-

cluding proximal algorithms (e.g. the proximal gradient method and the alter-

nating direction method of multipliers (ADMM)) and block coordinate descent

methods (e.g. Dykstra’s alternating projection method). It is impossible to give

a comprehensive overview, since the idea of only using first-order information is

so general; however, more details on these two classes of algorithms are given in

sections 2.3 and 2.4.

Unlike interior-point methods, first-order methods may require many iterations

to converge. However, their per-iteration costs are usually significantly lower. This

can be understood intuitively in the context of problem (1.1), where applying a

first-order method typically entails two main steps: the projection on the affine

constraint, and the projection on the conic constraint. The projection on the set

12

Ax = b can be done by computing a factorization of A in preprocessing, and if

A is sparse, this can be done very efficiently. The factors can then be reused

for different intermediate values of b. In contrast, an interior-point method com-

bines both projections in one linear system (1.11), where the matrix H provides

a linearization of the conic constraint at each step, and therefore changes each

time. An interior-point method has to recompute the factorization of AH−1AT at

each iteration (which for SDPs is dense even if A is sparse) and without special

structure, cannot reuse much of this expensive computation.

However, in the applications presented in this thesis, we often find that a simple

application of a first-order method still does not exploit sparsity effectively. In

semidefinite optimization, when C = S
p
E,+, each step requires computing a p × p

eigenvalue decomposition to project on C. This is often much cheaper than forming

and solving AH−1AT at each step; however, for very large matrices, even this may

not be enough, as computing eigenvalue decompositions generally does not scale

well with matrix size.

Example: Projection on the sparse PSD cone Consider the problem of

projecting a p× p matrix C on S
p
E,+:

minimize
X

‖X − C‖2F
subject to X ∈ S

p
E,+

where the conic constraint X ∈ S
p
E,+ simultaneously enforces a sparsity constraint

and a PSD constraint. Without the sparsity constraint, the problem requires a

single eigenvalue decomposition of order p:

X =

p∑

i=1

max{λi, 0}uiu
T
i

13

where λi and ui are the eigenvalues and corresponding eigenvectors of C. With

the sparsity constraint, an intuitive first-order method is to alternately project

on the sparsity and PSD constraint (as described in section 2.3). This requires

not one, but a sequence of expensive dense eigenvalue decompositions, each with

significant complexity if C is large. To get an idea, on a desktop computer with 32

GB RAM and an Intel Xeon CPU E31225 processor, interior-point methods could

not solve problems with p more than a few thousand, where p is the order of the

matrix variable. First-order methods scale slightly better, but a p× p eigenvalue

decomposition will be very slow for p > 10, 000, and will exceed memory for

p > 50, 000. In contrast, using our decomposition methods, we solve problems

with p = 100, 000 without significant memory usage.

1.5 Contributions

The main contribution of this thesis is the formulation of new decomposition

methods for sparse matrix optimization problems. This involves first transform-

ing problems with aggregate sparsity as optimizations over a sparse matrix vari-

able, and showing that efficient completion methods exist (chapter 3). The sparse

matrix cones are expressed as either partially separable cones or their dual (chap-

ter 3). The decomposition algorithms are formed by applying first-order methods

to optimization problems over partially separable cones, and fall into three cate-

gories:

1. dual decomposition methods (such as dual proximal gradient and dual co-

ordinate descent) for minimizing strongly convex functions over partially

separable cones (chapter 4),

2. a variation of a Douglas-Rachford method on a consensus reformulation

of (1.1) when the projection on the affine constraints is simple (chapter 4),

14

3. and a hybrid Spingarn and interior-point method approach when the affine

constraints are nontrivial (chapter 5).

To demonstrate the scalability of our algorithms, we apply these algorithms to

large sparse SDPs. We give numerical examples with matrix variable sizes ranging

from 1000 to 100,000.

Outline Chapter 2 discusses optimization theory, including convex analysis,

interior-point methods, and first-order methods. Chapter 3 gives the necessary

background for matrices, including EDM properties, sparse matrix decomposition

theorems, and matrix completion methods. Chapter 4 introduces the dual decom-

position and Douglas-Rachford consensus methods for matrix nearness problems.

Finally, chapter 5 introduces a hybrid Spingarn and interior-point method that

tackles SDPs with aggregate sparsity but have nontrivial affine constraints.

15

CHAPTER 2

Convex optimization

In this chapter, we begin by summarizing important concepts related to the prob-

lem formulation in section 2.1. We discuss the fundamental algorithms in sec-

tion 2.2. We then present the existing methods in sections 2.3, 2.4, and 2.5 that

are used to design the decomposition methods in chapters 4 and 5.

2.1 Convex analysis

The following concepts will be used throughout the thesis.

Convex set A set S is convex if, for all x, y ∈ S, the point θx + (1 − θ)y ∈ S
whenever 0 ≤ θ ≤ 1. In general, we use ΠS(x) to denote the Euclidean projection

of x on S and δS to denote the indicator function of C:

δS(x) =





0, if x ∈ S,

+∞, else.

Convex cones A cone or conic set C is a set that is invariant to nonnegative

scaling:

x ∈ C ⇐⇒ αx ∈ C, ∀α ≥ 0.

In this thesis we deal with only convex cones, i.e. cones that are also convex sets.

We say C is pointed if x ∈ C and −x ∈ C implies x = 0. A cone is proper if it is

16

CC

−C∗

z

x

y

Figure 2.1: Projection on dual cones. Any vector in Rn can be decomposed in
terms of its projection on a convex cone C and its negative dual cone −C∗. Here,
z = ΠC(x) and y = Π−C∗(x) = −ΠC∗(−x), and the vector x = y + z.

convex, closed, pointed, and has nonempty interior.

Dual cones The dual cone of C is

C∗ = {y | xT y ≥ 0, ∀x ∈ C},

and is always a closed convex cone, even if C is not. The dual cone to a proper

cone is also always proper. The Euclidean projection on a closed convex cone can

be expressed in terms of the projection on its dual cone

x = ΠC(x) + Π−C∗(x) = ΠC(x)− ΠC∗(−x). (2.1)

(See figure 2.1 for an illustration.) When C = C∗ then C is a self-dual cone. This

is true, for example, if C is the nonnegative orthant, or the set of PSD matrices.

17

Convex functions A function f : Rn → R is convex if dom f (the domain of

f) is convex and Jensen’s inequality is satisfied

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y), ∀x, y ∈ dom f, 0 ≤ θ ≤ 1.

A function is closed when its epigraph

epi f = {(x, y) | x ∈ dom f, y ≥ f(x)}

is closed.

First order condition If the function is differentiable at every point in the

domain, then it satisfies the following first-order condition: for all x in the domain

of f ,

f(x)− f(y) ≤ ∇f(x)T (x− y), ∀y ∈ dom f.

If ∇f(x) = 0 this implies x is a minimizer of f . Points x satisfying this condition

are stability points, and correspond to the global minima of a convex function f .

Conjugate function The function

f ∗(z) = sup
x
(xT z − f(x))

is the convex conjugate (also called the Fenchel or Legendre-Fenchel conjugate) of

f . Regardless of the convexity of f , the conjugate function f ∗ is always closed and

convex. From the definition, it follows that the conjugate of a separable function

is also separable:

f(x) =

n∑

k=1

fk(xk) ⇐⇒ f ∗(z) =

n∑

k=1

f ∗
k (zk),

18

where f ∗
k are the conjugate functions of fk.

Subgradients For convex nondifferentiable f(x), we define a subgradient of

f(x) as a vector g ∈ Rn satisfying

f(y)− f(x) ≥ gT (y − x), ∀y ∈ dom f. (2.2)

The set of all g satisfying (2.2) is the subdifferential of f(x). The subdifferential

∂f : Rn → 2R
n

is an example of an operator, or a point-to-set mapping. If f is

smooth at x, it can be shown that ∂f(x) = {∇f(x)} [Pol87, Ch. 5 L. 5]. As a

small example, consider the absolute value function f : R → R, f(x) = |x|. Then

∂f(x) =





{1}, if x > 0,

{−1}, if x < 0,

[−1, 1], if x = 0.

When the function is smooth, the subdifferential is single-valued. When the func-

tion is nonsmooth, the subdifferential contains the slopes of the supporting hyper-

planes of the function’s epigraph at that point. Additionally, from the definition

(2.2), note that if g = 0, then

f(y)− f(x) ≥ 0, ∀y.

In this case, we say that x is a stability point of f if 0 ∈ ∂f(x), and since f is

convex,

x minimizes f(x) ⇐⇒ 0 ∈ ∂f(x).

19

Subdifferentials of conjugates For a closed convex function f and its convex

conjugate f ∗, the subdifferentials are related through

z ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(z) ⇐⇒ zTx = f(x) + f ∗(z) (2.3)

which is discussed and proven in [Roc70, 23.5]. We can intuitively prove this by

noting that for some vector z,

x = argmax
y

yTz − f(y) ⇐⇒ z ∈ ∂f(x).

From the definition of the conjugate function, it follows that

f ∗(z) = max
y

yTz − f(y) = xT z − f(x). (2.4)

And, since f is a closed, convex function, then (f ∗)∗ = f , and

f(x) = max
y

yTx− f ∗(y) = xT z − f ∗(z).

where the third term is from rearranging (2.4). This implies the following two

statements

z = argmax
y

yTx− f ∗(y) ⇐⇒ x ∈ ∂f ∗(z).

Subgradients are positive homogeneous An important theorem regarding

subgradients is the Moreau-Rockafellar theorem [Roc70, Th. 23.8], [Pol87, Ch.5,

Lemma 10], which says that subgradients are positive homogeneous

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x) and ∂(αf) = α∂f, α > 0, (2.5)

20

if there exists some point in both the relative interiors of the domains of f1 and

f2:

(ri dom f1) ∩ (ri dom f2) 6= ∅.

(Here, ri S is the relative interior of a set S.)

Proximal operator For a closed, convex function f , its proximal operator is:

proxf(z) = argmin
x

f(x) +
1

2
‖x− z‖22.

It can be shown that proxf(z) is unique and exists for all z [Mor65, BC11]. We

often also parametrize the proximal operator by a step size t:

proxtf (z) = argmin
x

tf(x) +
1

2
‖x− z‖22 = argmin

x
f(x) +

1

2t
‖x− z‖22.

We can also interpret proxtf as the gradient of the Moreau-Yosida regularized

form

f̃t(z) = min
x

f(x) +
1

2t
‖x− z‖22.

which can be viewed as a locally smoothed version of f .

The evaluation u = proxtf (z) is itself an optimization problem, with the

optimality condition

0 ∈ ∂(f(u) +
1

2t
‖u− z‖22) ⇐⇒ z − u

t
∈ ∂f(u). (2.6)

Equivalently, we can write this as (I + t∂f)(u) = z, where I(x) = {x} is the

identity operator. It can be shown that if f(x) is closed, then the operator I+ t∂f

is invertible, and the proximal operator can be written equivalently as

proxtf (z) = (I + t∂f)−1z.

21

Properties of the proximal operator The following are some properties of

proximal operators which make them useful for decomposition methods.

1. (Separability) If f(x) is separable, then proxf can be computed in indepen-

dent segments:

f(x) = f1(x1) + f2(x2) ⇒ proxf (z) = (proxf1(z1), proxf2(z2)).

This makes the operator particularly amenable to parallelism.

2. (Moreau decomposition) [Mor65] If f ∗ is the convex conjugate of a closed,

convex function f , then

proxf (x) + proxf∗(x) = x. (2.7)

The property follows from (2.3) and (2.6):

u = proxf(x) ⇐⇒ x− u ∈ ∂f(u)

⇐⇒ u ∈ ∂f ∗(x− u)

⇐⇒ x− u = proxf∗(x).

Note that for f(x) = δC(−x) where C is a closed convex cone, (2.7) reduces

to (2.1).

3. (Firmly nonexpansive) If f is a closed, convex function, then

(u− v)T (x− y) ≥ ‖u− v‖22 where u = proxtf (x) and v = proxtf (y),

a property we call firm nonexpansiveness. This is useful because it is known

that, for firmly nonexpansive operators T (x), the iterates

x+ = (1− ρ)x+ ρT (x), 0 < ρ < 2

22

converge weakly to a fixed point [EB92, Roc76].

Evaluating a proximal operator The evaluation of a proximal operator in-

volves solving an optimization problem, and in general, it may be as difficult as

optimizing f itself. However, there are several key cases where the evaluation is

cheap. For our methods, we will only need three of these simple cases.

• (Indicator functions.) If f(x) = δS(x), then proxtf (z) = ΠS(z).

• (Linear functions.) If f(x) = cTx then proxtf (z) = z − tc.

• (Euclidean distance.) If f(x) = ‖x− c‖22, then proxtf (z) =
tc + 2z

2 + t
.

There also exist many other examples where evaluating proxtf is cheap (e.g. the

shrinkage operator). References for convex analysis include [Pol87, Roc70, BV04,

BC11].

2.2 Gradient methods

In the simplest case, consider the minimization of an unconstrained, smooth con-

vex function f(x), with full domain. Since f is convex, then x⋆ minimizes f if

∇f(x⋆) = 0

Lipschitz gradient and strong convexity We say f has an L-Lipschitz con-

tinuous gradient if

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2,

and is µ-strongly convex if

(∇f(x)−∇f(y))T (x− y) ≥ µ‖x− y‖22, (2.8)

23

or simply strongly convex if there exist some µ > 0 which satisfies (2.8). While

a convex function in general may have many optimal variables, strongly convex

functions always have a unique optimal variable. (Assume that x 6= y but∇f(x) =

∇f(y) = 0. Then (2.8) is clearly violated.) Strong convexity and Lipschitz

continuous gradients are related through duality; if f(x) is closed and µ-strongly

convex, then f ∗(z) is differentiable and defined for all z, where ∇f ∗(z) is 1/µ-

Lipschitz continuous. For twice-differentiable convex functions, the constants L

and µ bound the Hessian:

LI � ∇2f(x) � µI

and the ratio L/µ upper bounds the condition number of ∇2f(x).

Gradient descent A basic method for minimizing a convex differentiable func-

tion f(x) is the gradient descent method, with references dating back to Cauchy

[Cau47, Gol62]. This method uses the iterative scheme

x+ = x− t∇f(x)

where t > 0 is a chosen step size. It is known that, if the optimum exists, then

using 0 < t < 2/L, the iterates converges to the set satisfying the first-order opti-

mality condition 0 = ∇f(x⋆) [Pol87, Ch 1, Th 1] where |f(xi)− f(x⋆)| converges
to 0 at a rate of O(1/i) [BT09, §3]. Polyak also shows that, with t in this range,

the method provably monotonically decreases in function value; for each iteration

i, [Pol87, Ch. 1, Th 2]

f(xi) < f(xi−1).

If f is both µ-strongly convex and with L-Lipschitz continuous gradient, then the

convergence rate is improved to linear [Pol87, Ch. 1, Th. 2, 3],[Nes04, Th. 1.2.4]

‖xi+1 − x⋆‖2 ≤ ci‖xi − x⋆‖2, c = 1− t
2µL

µ+ L
.

24

Of course, most optimization problems are more involved than just minimizing a

differentiable convex function with full domain. When f(x) is nondifferentiable

and its domain is restricted, more interesting gradient methods are needed.

Proximal point method The differentiability condition on f(x) can be dropped

in the proximal point algorithm, which minimizes any closed convex f by repeating

the iteration

x+ = proxtf (x)

for some t > 0 [Roc76, EB92, Mar70]. The proof of convergence follows from two

observations. First, proxtf is a firmly nonexpansive operator, so it converges to

a fixed point. Second, by (2.6),

x− x+ ∈ ∂f(x+) and x = x+ ⇐⇒ 0 ∈ ∂f(x),

which means that any fixed point solution x minimizes f . However, the proximal

point method is not very common in practice, mostly because there are not many

applications where minimizing f(x) + ‖x− z‖22 is much easier than minimizing f .

Further references for these fundamental algorithms include [Pol87, BT09,

Nes04]. In the following sections we present practically efficient first-order meth-

ods that can solve specific classes of convex problems.

2.3 Dykstra’s algorithm and dual block coordinate ascent

We first consider the optimization problem of projecting on the intersection of

convex sets

minimize
x

(1/2)‖x− c‖22
subject to x ∈ C1 ∩ · · · ∩ Cl.

(2.9)

25

A popular method for solving (2.9) is Dykstra’s alternating projection method,

which uses a sequence of projections on each set Ck. For the algorithm to be effi-

cient, we assume that Ck, for k = 1, . . . , l, are simple sets; that is, the projections

ΠCk are easy to compute.

If Ck are all convex cones, then the dual problem of (2.9) is

maximize
s1,...,sl

−(1/2)‖
l∑

k=1

sk + c‖22 + (1/2)‖c‖22

subject to sk ∈ C∗
k , k = 1, . . . , l

(2.10)

and the optimality conditions include primal and dual feasibility, and

x− c =
l∑

k=1

sk. (2.11)

From (2.11), the primal variable can be written in terms of the dual variables,

so solving the dual also solves the primal. However, extracting the dual variable

from the primal solution cannot be done trivially.

Dykstra’s method has been applied to several types of dense matrix nearness

problems in the literature. For example, the problem of finding the nearest EDM

matrix to a given matrix is discussed in [GHH90] and [GM89, section 5.3], and

the nearest correlation matrix problem is discussed in [Hig02, Mal04, HM12].

Additionally, it can be shown that Dykstra’s method is equivalent to the block

coordinate ascent method applied to the dual problem.

2.3.1 Dykstra’s projection algorithm

Von Neumann’s theorem and proof in [Neu50, Th. 13.7] showed that by alternately

projecting a vector x on affine sets C1, . . . , Cl for some finite l, the vector x will

eventually converge on their intersection C1∩· · ·∩Cl. Dykstra extended the method

to projections on general convex sets with a simple correction term [Dyk83, BD86,

26

BB96]. It can be summarized as follows: with variables initialized as

x0
l = c, s0k = 0, k = 1, . . . , l,

compute for cycles i = 1, 2, . . .

xi
k = ΠCk(x

i
k−1 − si−1

k), sik = xi
k − (xi

k−1 − si−1
k), k = 1, . . . , l, (2.12)

with xi+1
0 = xi

l. The method is a special instance of the successive projection

method [Han88, Tse93], which minimizes the convex function f(x) +
m∑
k=1

gk(x)

where f(x) is strongly convex, by cyclically evaluating the proximal operator

of gk(x). The convergence of Dykstra’s algorithm can also be derived by the

convergence of this larger class of algorithms.

2.3.2 Block coordinate ascent

Block coordinate ascent algorithms maximize a function by optimizing over vari-

able blocks one at a time. (Equivalently, block coordinate descent minimizes a

convex function the same way.) There are several schemes in deciding the block

order. The most basic scheme to solve

minimize
x1,...,xn

f(x1, . . . , xn)

is the Gauss-Seidel ordering, where the iterates are updated in order, and always

uses the newest information:

x+
i = argmin

y
f(x+

1 , . . . , x
+
i−1, y, xi+1, . . . , xm).

27

A parallelizable version is the Gauss-Jacobi ordering, where no new information

is used in the same cycle:

x+
i = argmin

y
f(x1, . . . , xi−1, y, xi+1, . . . , xm).

A third popular scheme that requires more optimization is the Gauss-Southwell

scheme, where the newest information is always used, and at each iteration, the

block xi to be updated corresponds to the block of ∇f(x) with smallest norm.

Block coordinate descent algorithms have been around for a long time, but

have drawn much recent attention due to their ability to handle large-scale meth-

ods. Unlike gradient descent or steepest descent methods, in general block coordi-

nate methods are not guaranteed to converge [Pow73]; for special cases, however,

convergence has been proven [Pow73, LT93, Tse88, dE59, SS73, Tse93, Tse01,

BT13, GS00]. Recently, there has been interest in randomized block coordinate

descent, where the choice of block update order is randomized; see, for example,

[Nes12, RT14] and [Wri15] for a survey.

2.3.3 Equivalence of the two methods

When block coordinate ascent with Gauss-Seidel ordering is applied to the dual

projection problem (2.10), it is equivalent to Dykstra’s algorithm [Han88, GM89,

Tse93] for (2.9). One way to show this equivalence when Ck are closed convex

cones is to rewrite (2.12) compactly as

sik = ΠC∗

k

(
−c−

k−1∑

j=1

sij −
l∑

j=k+1

si−1
j

)
(2.13)

which is exactly the coordinate ascent step for the dual problem (2.10), using

Gauss-Seidel ordering. To verify, telescoping the sk update in (2.12) by k, and

28

again by iteration gives

k∑

j=1

(sij − si−1
j) = xi

k − xi
0, and

l∑

j=1

sij = xi+1
0 − c, (2.14)

respectively. It then follows that

si−1
k − xi

k−1 = −c−
k−1∑

j=1

sij −
l∑

j=k+1

si−1
j .

Finally, using the simple relation for dual cones from (2.1),

sik = ΠCk(x
i
k−1 − si−1

k)− (xi
k−1 − si−1

k) = ΠC∗(si−1
k − xi

k−1), (2.15)

and (2.13) follows. This shows that the helper variables sk in Dykstra’s algorithm

are exactly the dual variables in (2.9). Additionally, the equivalence allows us to

use convergence results and stopping criteria interchangeably between dual block

coordinate ascent and Dykstra’s algorithm.

Though this proof is specific for Ck conic sets, the properties extend to Ck any

closed convex sets. In the more general case, the dual update is

sik = proxδ∗
Ck

(
−c−

k−1∑

j=1

sij −
l∑

j=k+1

si−1
j

)

where δ∗C(x) = sup
x∈C

xTy is the support function of C. This can be written in terms

of projections on Ck using the Moreau decomposition (2.7)

sik = −c−
k−1∑

j=1

sij −
l∑

j=k+1

si−1
j −ΠCk

(
−c−

k−1∑

j=1

sij −
l∑

j=k+1

si−1
j

)
.

29

2.3.4 Convergence and stopping condition

We can give a convergence rate by applying a recent result by Beck and Tetru-

ashvili on block coordinate gradient projection algorithms [BT13, Th. 6.3]: since l

is finite, we have for any k the relation f(sik)−f(s⋆k) ≤ τ/i, where τ is a constant,

and is proportional to Lmax, the maximum Lipschitz constant of the gradient of

f corresponding to each variable block. From (2.14) it then follows that

‖xi
l − x⋆

l ‖2 = ‖
∑

k

sik −
∑

k

s⋆k‖2 = O(1/
√
i).

In practice, in cases where Lmax is much smaller than L, block coordinate ascent

methods may converge much more quickly than vanilla gradient methods.

In general, deciding when to terminate the block coordinate ascent method

can be difficult, since the iterates may remain constant for several successive

iterations [Pow73]. However, since the block coordinate ascent applied to this

problem is equivalent to Dykstra’s method, which is guaranteed to converge, an

effective stopping condition is available. Note that by (2.15), sik is always dual

feasible. Additionally, by the second part of (2.14), xi
l and sik, k = 1, . . . , l, always

satisfy stationarity conditions. The sequence has converged to an optimal point

when primal feasibility and complementary slackness is attained.

The stopping condition proposed in [Ray05, eq. (13)] is based on measuring

the residual ri =
∑

k ‖sik − si−1
k ‖2, i.e. the difference between the values of sk at

the end of two successive cycles. It can be shown that if ri = 0 then the iterates

xi
l have remained constant during cycle i. This can be seen from the expression

‖xi
k − xi

0‖2 = ‖
k∑

j=1

sij −
k∑

j=1

si−1
j ‖2 ≤

l∑

j=1

‖sij − si−1
j ‖2 = ‖ri‖2.

In this case,

xi
0 = xi

1 = . . . = xi
l ∈ C1 ∩ · · · ∩ Cl

30

is primal feasible. Additionally, at each iteration, for w = xi
k−1−si−1

k , the iterates

xi
k = ΠCk(w) and sik = ΠCk(w)− w = −Π−C∗

k
(w),

and are orthogonal ((xi
k)

T sik = 0). In the case that xi
k is constant for all k, then

l∑

k=1

(sik)
T (xi

l) = 0

and optimality is achieved. This observation implies that xi
l and sik, k = 1, . . . , l,

are optimal if ri = 0.

2.4 Proximal splitting methods

In this section we investigate a class of first-order methods that use the proximal

operator to handle nondifferentiable functions. Although the history of these

methods extends to the 1950s, their popularity in large-scale convex optimization

is more recent than interior-point methods. The ideas follow from the success

of splitting methods in linear algebra, which reduce the complexity of solving

large linear systems into iteratively solving simpler systems. Similarly, proximal

splitting methods solve problems of the form

minimize
x

f(x) + g(x)

where f and g are closed convex functions, by solving over the f(x) and g(x)

terms separately. Examples of splitting methods include the forward-backward

and double-backward methods [Pas79], and Douglas-Rachford and Peaceman-

Rachford [LM79] methods. In this work, we will only deal with the forward-

backward (proximal gradient) algorithm and Douglas-Rachford methods (dis-

cussed in the next two sections), and refer to the surveys [BC11, EB92, BPC11,

31

PB13, DY14] for more details on the other splitting algorithms.

An instance of the forward-backward algorithm is the gradient projection

method, first presented by Goldstein [Gol64] and Levitin and Polyak [LP66],

which is known to converge at a rate of O(1/i). (See [BT09].) Nesterov’s first

method [Nes83] adds an acceleration scheme to this method, giving an over-

all O(1/i2) rate of convergence, where i is the number of iterations needed to

reach a desired tolerance. The Fast Iterative Shrinkage-Thresholding Algorithm

(FISTA) [BT09] generalizes the projected gradient method to a proximal gradient

method, which handles problems of the form f(x) + g(x) where one of the two

terms may be nondifferentiable. Interestingly, though FISTA is a popular algo-

rithm in many fields, the convergence of iterates to a fixed point (for functions

that are not strongly convex) has only recently been proved [CD14].

More generally, the Douglas-Rachford method solves problems of the type

f(x)+g(x) where both f and g may be nondifferentiable. Both Spingarn’s method

of partial inverses [Spi83, Spi85], and the alternating direction method of multipli-

ers (ADMM) [BPC11] have been shown to be variations of the Douglas-Rachford

splitting. Several important works [CP11b] and surveys [EB92, PB13] have been

written about these methods; see also [BC11] on more general operator theory.

Douglas-Rachford splitting methods are preferred for their generality; unlike prox-

imal gradient methods, they make no assumptions on differentiability, and, unlike

the proximal gradient method, have no restrictions on step size. Additionally,

they are easy to implement in a decomposed manner, where important steps may

be computed concurrently and in parallel.

2.4.1 Proximal gradient method

Consider the problem

minimize
x

f(x) + g(x) (2.16)

32

where f(x) is differentiable and the proximal operator of g(x) is easy to evaluate.

Then (2.16) can be solved using the proximal gradient method, with the iteration

scheme

xi = proxtg

(
xi−1 − t∇f(xi−1)

)
. (2.17)

where t > 0 is a step size. If g(x) = δC(x), then (2.17) is the projected gradient

method: [Pol87, §7.2]
xi = ΠC

(
xi−1 − t∇f(xi−1)

)
.

When C is a conic set, the projections on C can also be expressed in terms of

projections on C∗ via the identity u = ΠC(u)− ΠC∗(−u). (See (2.1).)

Convergence A standard convergence result states that for a fixed step size

t = 1/L (where ∇f is L-Lipschitz continuous) the sequence zi converges to a

minimizer of f over C, even when the minimizers are not unique [Pol87, Ch 7,

Th 1]. (This is the same step size bound as required in the gradient method.)

Moreover the dual optimality gap decreases as

f(xi)− f(x⋆) ≤ L

2i
‖x0 − x⋆‖2, (2.18)

where x⋆ is any optimal solution [BT09, Th. 3.1]. If f(x) is also µ-strongly convex,

then the convergence rate is linear

‖xk+1 − x⋆‖2 ≤ c‖xk − x⋆‖2, c = max{|1− tL|, |1− tµ|},

which is also shown in [Pol87, Ch 7, Th 1]

33

Interpretation as splitting method We can consider the minimization of

f(x) + g(x) as finding x satisfying the optimality condition

0 ∈ ∂f(x) + ∂g(x) = (I + ∂g(x))− (I − ∂f(x)).

Then the proximal gradient algorithm can be interpreted as a splitting method

that deals with these two terms separately

x+ = (I + t∂g)−1(I − t∂f)(x)

and the operators (I − t∂f) and (I + t∂g)−1 are a forward and backward step,

respectively (hence the name forward-backward algorithm). It can be shown that

if 0 < t < 1/L then I − t∂f is firmly nonexpansive. Since proxtg = (I + t∂g)−1 is

also firmly nonexpansive, then the compound operator is also firmly nonexpansive,

and (2.16) converges weakly to a fixed point. To see that all fixed points are also

optimal points, note that

x+ = x ⇒ (I + t∂g)(x) = (I − t∂f)(x) ⇐⇒ 0 ∈ ∂f(x) + ∂g(x).

This is a quick alternative proof for the convergence of the forward-backward

algorithm.

Acceleration An important advantage of the proximal gradient method is the

availability of Nesterov-type accelerations [Nes83, Nes04, Tse08, BT09]. We will

use Beck and Teboulle’s accelerated proximal gradient method, widely known un-

der the acronym FISTA [BT09]; see also [Tse08]. This is a generalization of Nes-

terov’s first accelerated proximal gradient method [Nes83], used when g(x) = δC(x).

34

FISTA applies a proximal gradient update after an extrapolation step:

xi = proxtg(v
i − t∇f(vi)) where vi = xi−1 +

i− 2

i+ 1
(xi−1 − xi−2)

(with the assumption x−1 = x0, so the first iteration is the standard proximal

gradient update). The same step size 1/L is used as in the proximal gradient

method. The accelerated proximal gradient algorithm has the same complexity

per iteration as the basic algorithm. The iterates xi can be shown to converge,

even when the optimal solutions are not unique. This is discussed in the recent

paper [CD14]. The dual optimality gap decreases as 1/i2:

f(xi)− f(x⋆) ≤ 2L

(i+ 1)2
‖x0 − x⋆‖22,

where x⋆ is any optimal solution [BT09, Th. 4.4]. The O(1/i2) convergence rate

in optimal value is an improvement over the O(1/i) rate of the proximal gradient

method.

Stopping conditions Various stopping criteria can be used for these algo-

rithms. For example, one can bound the error with which the iterates satisfy

the optimality condition

x = proxtg(x− t∇f(x)) ⇐⇒ 0 ∈ ∇f(x) + ∂g(x) (2.19)

for problem (2.16), where t is any positive number. In the proximal gradient

algorithm, at each iteration we have

xi−1 = proxtg(x
i−1 − t∇f(xi−1)) + ri

35

with ri = xi−1 − xi. In the fast proximal gradient algorithm we have

vi = proxtg(v
i − t∇f(vi)) + ri

with ri = vi − xi. In both cases, ri = 0 implies optimality (2.19). This suggests

using stopping conditions

‖xi − xi−1‖2
max{‖xi‖2, 1}

≤ ǫ,
‖vi − xi‖2

max{‖xi‖2, 1}
≤ ǫ (2.20)

for the proximal gradient method and the fast proximal gradient method, respec-

tively.

2.4.2 Douglas-Rachford method

The Douglas-Rachford method [LM79, EB92, BC11] is a popular method for solv-

ing

minimize
x

f(x) + g(x)

where f(x) and g(x) are both closed, convex, and possibly nonsmooth functions.

The method is efficient when the proximal operators of both f and g are easy to

compute. It uses the iteration scheme

xi+1 = proxtf (z
i)

yi+1 = proxtg(2x
i+1 − zi)

zi+1 = zi + ρ(yi+1 − xi+1).

(2.21)

The algorithm depends on two algorithm parameters: a positive steplength t and

a relaxation parameter ρk, which can change at each iteration but must remain in

an interval (ρmin, ρmax) with 0 < ρmin < ρmax < 2. More details on the Douglas-

Rachford method and its applications can be found in [Eck94, CP07, BC11, PB13].

36

Convergence It can be shown that if f and g are closed convex functions, with

ri dom f ∩ ri dom g 6= ∅, and the problem (2.23) has a solution, then the

sequences xi and yi converge to a solution [BC11, corollary 27.2]. Recent results

by Davis and Yin [DY14, Th. 7] also give a convergence rate for the objective

value: it is shown that

|(f(xi) + g(xi))− (f(x⋆) + g(x⋆))| = o(1/
√
i).

The bound is improved to O(1/i) in [PSB14, Thm. 3] when f(x) is a convex

quadratic, i.e. f(x) = xTQx+ qTx where Q � 0.

Interpretation as fixed-point iteration The three steps in the Douglas-

Rachford iteration can be combined into a single update

zi = zi−1 − ρG(zi−1)

with the operator G defined as

G(z) = proxtf (z)− proxtg(2proxtf (z)− z).

For ρ = 1 this is a fixed-point iteration zi = zi−1 −G(zi−1) for solving G(z) = 0;

for other values of ρ it is a fixed-point iteration with relaxation (underrelaxation

for ρ < 1, overrelaxation for ρ > 1).

The vector z is a zero of G if and only if

for x = proxtf (z), then x = proxtg(2x− z).

Written as optimality conditions, they give the result

z − x

t
∈ ∂f(x), and

x− z

t
∈ ∂g(x) (2.22)

37

respectively. By positive homogeneity of the subdifferential (2.5), this implies

0 ∈ ∂(f + g)(x), and thus x is a minimizer of f(x) + g(x). Conversely, suppose

that x minimizes f(x) + g(x), and therefore 0 ∈ ∂f(x) + ∂g(x). Then there exists

a vector z satisfying (2.22). Assume there is a method for finding such a z. Then

condition (2.22) is equivalent to x = proxtf (z) = proxtg(2x− z), and z is a fixed

point of G(z).

Stopping condition The Douglas-Rachford iteration reaches optimality for x

when G(z) = 0, so a reasonable stopping condition is when ‖z+ − z‖2 is small, or

equivalently when ‖y − x‖2 is smaller than some tolerance. This suggests using

the stopping condition
‖yi − xi‖2

max{‖xi‖2, ‖yi‖2, 1}
≤ ǫ.

2.4.3 Spingarn’s method

A useful instance of the Douglas-Rachford method is when g(x) is the indicator

function of a subspace V; i.e., we solve

minimize
x

f(x)

subject to x ∈ V.
(2.23)

The Douglas-Rachford method specialized to this problem is also known as Sp-

ingarn’s method, or the method of partial inverses [Spi83, Spi85, EB92]. The

algorithm starts at an arbitrary z0 and repeats the following iteration:

xi+1 = proxtf (z
i)

yi+1 = ΠV(2x
i+1 − zi)

zi+1 = zi + ρ(yi+1 − xi+1).

(2.24)

38

Interpretation as fixed-point iteration We can also interpret (2.21) as a

fixed point iteration for ρ = 1 where

G(z) = proxtf (z)− ΠV(2proxtf (z)− z). (2.25)

Defining x = proxtf (z), we see that G(z) = 0 if and only if x = ΠV(2x− z). This

is satisfied if and only if x ∈ V and x − z ∈ V⊥. From the optimality conditions

of proxtf , if we define v = t−1(z − x) then it follows that v ∈ ∂f(x). This gives

the optimality conditions for (2.23) as

x ∈ V, v ∈ V⊥, v ∈ ∂f(x). (2.26)

Stopping condition From step 1 in the algorithm (2.24) and the definition

of the proximal operator we see that the vector vi = t−1(zi−1 − xi) satisfies

vi ∈ ∂f(xi). If we define

rip = ΠV(x
i)− xi, rid = −ΠV(v

i)

then

xi + rip ∈ V, vi + rid ∈ V⊥, vi ∈ ∂f(xi).

The vectors rip and rid can be interpreted as primal and dual residuals in the opti-

mality conditions (2.26), evaluated at the approximate primal and dual solutions

xi, vi. One can also note from (2.25) that

G(zi−1) = xi − ΠV(x
i − tvi)

= (xi − ΠVx
i)− tΠV(v

i)

= −rip − trid

39

and since the two terms on the right-hand side are orthogonal, then

‖G(zi−1)‖22 = ‖rip‖22 + t2‖rid‖22. (2.27)

A simple stopping criterion is to terminate when

‖rip‖2
max{1.0, ‖xi‖2}

≤ ǫp and
‖rid‖2

max{1.0, ‖vi‖2}
≤ ǫd (2.28)

for some relative tolerances ǫp and ǫd.

Choice of steplength In the standard convergence analysis of the Douglas-

Rachford algorithm the parameter t is assumed to be an arbitrary positive constant

[EB92]. However the efficiency in practice is greatly influenced by the steplength

choice and several strategies have been proposed for varying t during the algorithm

[HYW00, WL01, HLW03]. As a guideline, it is often observed that the convergence

is slow if one of the two components of ‖G(zi−1)‖22 in (2.27) decreases much more

rapidly than the other, and that adjusting t can help control the balance between

the primal and dual residuals. A simple strategy is to take

ti+1 =





tiτ i σi > µ

ti/τ i σi < 1/µ

ti otherwise,

(2.29)

where σi is the ratio of relative primal and dual residuals,

σi =
‖rip‖2
‖xi‖2

· ‖v
i‖2

‖rid‖2
,

and τ i and µ are parameters greater than one. A numerical evaluation of this

strategy is given in section 5.5.1.

40

2.5 Linear conic optimization

First-order methods are important historically, and are readily used to solve large,

sparse problems. For smaller problems, often convex optimization problems are

solved by first reformulating it as a linear conic optimization problem and solving it

with an interior-point method. This is the approach used in software packages like

CVX and Yalmip, for example. Linear conic optimization problems are written

in form

minimize
x

cTx

subject to Ax = b

x ∈ C

(2.30)

where x ∈ Rn is a variable and c ∈ Rn, A ∈ Rm×n, b ∈ Rm are problem parameters.

The set C is a proper convex cone. If C = {x | xi ≥ 0} the nonnegative orthant,

then (2.30) is a linear program (LP). If C is the vectorized PSD cone S
p
+, then

(2.30) is a linear SDP.

The Lagrangian dual of problem (2.30) is

maximize
s,y

bT y

subject to s+ ATy = c

s ∈ C∗,

where C∗ is the dual cone of C, and the dual variables y ∈ Rm and s ∈ Rn

correspond to the affine and conic constraints in (2.30). If both the primal and

dual optima are attained, and if there exists a feasible x ∈ int C (the interior of

C) where also Ax = b, then by Slater’s condition, strong duality holds, and at

optimality the primal and dual objectives agree (cTx⋆ = bTy⋆) [Roc70, Th 28.2,

28.4]. In this case, we have

Ax⋆ = b, x⋆ ∈ C, s⋆ + ATy⋆ = c, s⋆ ∈ C∗, (s⋆)Tx⋆ = 0

41

2.5.1 History of linear and conic optimization

Linear conic optimization grew as a generalization of linear programming, whose

history begins around the late 1930s with Kantorovich [Kan39] in economics and

von Neumann and Morgenstern [NM53] in game theory. An early practical algo-

rithm for solving linear programs is the simplex method, given by Dantzig in 1947

(see [Dan63]), which did well in practice but did not have a polynomial worst-

case runtime. Karmarkar’s interior-point method in 1984 is credited as the first

practically efficient and provably polynomial time method for linear program-

ming [Kar84]. A variation of his method is the Mehrotra’s predictor-corrector

method [Meh92], and is the basis of most interior-point solvers today.

The extension of interior-point methods from linear programs to general conic

programs is done by extending the barrier functions, which penalize the objective

to enforce the conic constraint. In the 1990s, Nesterov and Nemirovski [NN94]

provided a series of self-concordant barrier functions for general convex sets, effec-

tively extending Karmakar’s method to conic programming. A similar extension

and proof was offered by Alizadeh [Ali95] for SDPs. Since then, interior-point

methods have become a commonplace tool for conic optimization because of their

practical success, converging to high-accuracy solutions in about 25-50 iterations.

For this reason, general purpose solvers like CVX [GB12] or Yalmip [Lof04] often

solve general nonlinear convex optimization problems by first converting them to

linear conic programs (2.30), and solving them by invoking popular interior-point

solvers. These include the commercial products Mosek [MOS02], and the open-

source products Sedumi [Stu99] and SDPT3 [TTT02]. A detailed discussion of

interior-point methods can be found in [Wri97, Ali95, BV04].

42

2.5.2 Solving a linear conic problem

An interior-point method converges to the optimal solution of (2.30) by iteratively

solving the following linear system


 H AT

A 0




 ∆x

∆y


 =


 rx

ry


 . (2.31)

Here, H is a positive definite scaling matrix that depends on the algorithm used,

the cone C, and the current primal and dual iterates in the algorithm. The sys-

tem (2.31) is often called the Karush-Kuhn-Tucker (KKT) equation. We will

assume that H = ∇2φ(w) where φ(w) is a logarithmic barrier function for C and

w is some point in int C. This assumption is sufficiently general to cover path-

following methods based on primal scaling, dual scaling, and the Nesterov-Todd

primal-dual scaling.

In most implementations, the KKT equation is solved by eliminating ∆x and

solving a smaller system, called the Schur complement system

AH−1AT∆y = AH−1rx − ry. (2.32)

Generally, an interior-point method solves a problem efficiently if forming and

factoring the term AH−1AT can be done efficiently. This is true, for example, in

linear programming if the matrix A is sparse; since H is diagonal, then AH−1A

is sparse if AAT is sparse. Unfortunately, for nonlinear optimization (and specifi-

cally for semidefinite programming) H−1 is dense in general, so AH−1AT is dense

regardless of the sparsity of A, and solving (2.32) has a high computational com-

plexity. In chapter 5, We combat this issue using special reformulations of (2.30).

43

CHAPTER 3

Matrix cones

In this section we review some key theoretical results from matrix algebra. First,

we discuss the important properties and theorems pertaining to the set of Eu-

clidean distance matrices, with no assumptions on sparsity (section 3.1). We then

delve into sparse matrix theory, focusing on the graph theoretic results used in

the clique decomposition theorems (section 3.2). Finally, we give a minimum rank

matrix completion algorithm (section 3.3) to demonstrate that matrix solutions

with chordal sparsity patterns can be completed to the dense form systematically

and efficiently, if needed. Most of the graph theorems are well known and proven

in several texts (i.e. [BP93, VA15]).

3.1 Euclidean distance matrices

A Euclidean distance matrix (EDM) is a matrix X where each element Xij is the

squared Euclidean distance between points ui and uj, for some set of points ui,

i = 1, . . . , p. We denote the set of p×p EDMs as Dp. For any X ∈ Dp, all elements

of X must be nonnegative, and all diagonal elements zero. Distance matrices

are also invariant under translations and rotations of the points they represent.

Specifically, EDMs can be characterized by matrix algebra using Schoenberg’s

condition [Sch35, Sch38], which says that EDMs are negative semidefinite in the

nullspace of 1T :

X ∈ Dp ⇐⇒ diag(X) = 0 and zTXz ≤ 0, ∀z where zT1 = 0.

44

Schoenberg’s condition can be written in matrix form as V TXV � 0, where V

is an orthonormal p × p − 1 matrix whose columns span the nullspace of 1T , for

example,

V =
1

p +
√
p


 (1 +

√
p)1T

11T − (p+
√
p)I


 . (3.1)

We use the notation

D
p
0 = {X ∈ Sp | zTXz ≤ 0, ∀z | 1T z = 0}

= {X ∈ Sp | V TXV � 0}

and the EDMs are the matrices in D
p
0 with zero diagonal. From this it is clear that

the sets Dp and D
p
0 are both intersections of closed convex cones, and therefore

are both closed convex cones. There are two noticeable differences. The cone Dp

has empty interior in Sp , while the interior of Dp
0 is nonempty (it contains the

matrix X = −I). Additionally, Dp is pointed (since it contains only nonnegative

matrices), while D
p
0 is not, as it contains the subspace {a1T + 1aT | a ∈ Rp}.

Embedding dimension An EDM has an embedding dimension r if it is an

EDM for some set of points ui, i = 1, . . . , p, where ui ∈ Rr. Intuitively, it makes

sense that a matrix in Dp can have at most an embedding dimension of p − 1,

since two points can be embedded in a line, three points in a plane, and so forth.

Young and Householder [YH38] showed that the embedding dimension of X ∈ Dp

is exactly the rank of W = X −Xe11
T − 1eT1X , where e1 = (1, 0, . . . , 0) is a unit

vector of length p. Since for any X ∈ Dp,

We1 = Xe1 −Xe11
T e1 − 1eT1Xe1 = X111 = 0

then the rank of W (and therefore the embedding dimension of X) is upper

bounded by p− 1.

45

Linear mappings between Dp and S
p
+ A PSD matrix G � 0 is a Gram matrix

for a set of points ui, i = 1, . . . , p, where

G = UUT where U = [u1, . . . , up]
T .

Specifically, for any G � 0 with rank r < p, G is the Gram matrix for some set of

points ui ∈ Rr. Under a linear transformation, a Gram matrix becomes an EDM;

specifically, if G is the Gram matrix for ui, i = 1, . . . , p, then by definition,

Dij = ‖ui − uj‖22 = Gii − 2Gij +Gjj,

or, written in matrix form, T (G) = D where

T (X) = diag(X)1T + 1diag(X)T − 2X. (3.2)

Note that T : Sp
+ → Dp is onto but not one-to-one, since for any u ∈ Rp,

T (G+ u1T + 1uT) = T (G).

(Physically, this means that distance matrices are invariant to translations in the

points ui, whereas Gram matrices are not.) Therefore T is not invertible unless its

domain is restricted. In this case, Johnson and Tarazaga [JT95] give the family

of inverses as

Gu(D) = −1

2

(
I − 1uT

)
D(I − u1T) (3.3)

where the range of Gu(D) is the set of Gram matrices with u in its nullspace. It

can be shown that for D ∈ Dp, T (Gu(D)) = D and for X � 0, if Xu = 0, then

Gu(T (X)) = X . Additionally, the embedding dimension of D is exactly the rank

of Gu(D), which is at most p− 1.

46

Pseudoinverse of T (X) It can be shown (in [KW12], for example) that taking

c = (1/p)1, Gc is the unique Moore-Penrose pseudoinverse of T . Taking this

choice of u also has a visual interpretation: the mapping

Gc(D) = −1

2

(
I − 1

p
11T

)
D

(
I − 1

p
11T

)

gives the Gram matrix for points centered at the origin. (That is, Gc(D) = UUT

where UT1 = 0.)

Projection on EDMs Formulas for projecting on D
p
0 can be found in [HW88,

GM89, GHH90]. Define Q = [V (1/
√
p)1] where V is as defined in (3.1). In

[HW88, GHH90] the projection of a matrix D ∈ Sp on D
p
0 is computed directly,

as the solution of

minimize
X

‖X −D‖2F
subject to V TXV � 0.

(3.4)

Since Q is orthogonal, the problem is equivalent to

minimize
X

‖QTXQ−QTDQ‖2F
subject to V TXV � 0

.

The objective can be expanded to

QTXQ−QTDQ =
1√
p


 p(V TXV − V TDV)

√
p(V TX1− V TD1)

√
p(1TXV − 1TDV) 1TX1− 1TD1.




From this it is clear that at the optimum, the 1, 1 block of QTXQ is the projection

of V TDV on the negative semidefinite cone and the other blocks are equal to the

47

corresponding blocks of QTDQ. The solution of (3.4) is therefore

ΠD
p
0
(D) =

1√
p
Q




−√
p
(
Π+(−V TDV)

)
V TD1

1TDv 1√
p
1TD1


QT .

An alternative method in [GM89] computes the projection indirectly, via the

projection on the dual cone of Dp
0 and the formula

ΠD
p
0
(D) = D − Π−(Dp

0
)∗(D). (3.5)

(See figure 2.1.) The dual cone is (Dp
0)

∗ = {V ZV T | Z � 0}, so the projection of

D on −(Dp
0)

∗ is the solution of

minimize
Z

‖V ZV T −D‖2F
subject to Z � 0.

Equivalently, since Q is orthogonal, we solve

minimize
Z

‖QT (V ZV T −D)Q‖2F =

∥∥∥∥∥∥


 Z − V TDV −V TDe

−eTDV −eTDe



∥∥∥∥∥∥

2

F

subject to Z � 0

where e = (1/
√
p)1 ∈ Rp. The solution is Z = Π+(V

TDV) and substituting

in (3.5) gives

ΠD
p
0
(D) = D − V Π+(V

TDV)V T .

3.2 Decomposition of sparse matrix cones

We now review concepts pertaining to sparse matrix cones. Specifically, a p × p

symmetric matrix X has sparsity pattern E if Xij = 0 for all i 6= j, {i, j} 6∈ E,

48




• • • •
• • • • •

• • •
• • • •

• • • • •
• • •




5 4

321

6

Figure 3.1: Small example. Left: a sparsity pattern for a set of 6×6 matrices. Note
that by default the diagonal is included in the pattern. Right: the corresponding
undirected graph, with 6 vertices, and edges between vertices corresponding to
nonzeros in the sparsity pattern.

and we denote this set as Sp
E . There are several ways to store a sparse matrix in

memory. For example, in triplet notation, the matrix is stored as three arrays: the

row indices, the column indices, and the values of the nonzeros. In this case, the

cardinality of E directly corresponds to the amount of memory needed to store

the matrix (proportional to |E|+ p).

The sparsity pattern of a sparse symmetric matrix X can be interpreted as

the edge set for an undirected graph G = (V, E) where V = {1, . . . p} are the

graph vertices and E = E are the undirected edges between vertices. (For

example, see figure 3.1.) When it is unambiguous, we can use the shorthand

GE = G({1, . . . , p}, E), or just refer to the graph as E.

3.2.1 Cliques and chordal graphs

Adjacent and simplicial vertices For a general undirected graph G = (V, E),
two vertices u, v ∈ V are adjacent if {u, v} ∈ E . The set of vertices adjacent to v

is denoted

adjG(v) = {u ∈ V | {u, v} ∈ E}.

Note that adj(v) does not include v; we denote cadjG(v) = {v} ∪ adjG(v). In

cases where it is unambiguous, we interchange the notations adjG(v) = adjE(v) =

adj(v), and cadjG(v) = cadjE(v) = cadj(v). We say a graph is complete if there

49

exists an edge between every pair of vertices. A vertex is simplicial if the subgraph

of G induced by the vertices in cadj(v) is complete. A set of vertices Vc ⊆ V forms

a clique if the subgraph of G induced by the vertices in Vc is complete. A clique

that is not a strict subset of another clique is a maximal clique.

Paths and cycles In a graph G, a set of vertices {v1, v2, . . . , vk} form a path if

{vi, vi+1} ∈ E for i = 1, . . . , k − 1. If, in addition, {v1, vk} ∈ E then these vertices

also form a cycle. Two vertices v1 and v2 are connected if there exists a path from

v1 to v2. A graph is connected if every pair of vertices are connected.

Chordal graphs A cycle {v1, v2, . . . , vk} has a chord if, in addition to the edges

(v1, vk) and (vi, vi+1), i = 1, . . . , k − 1, there is an additional edge connecting two

vertices in the cycle. If a cycle has no chord, then the shortest path between

any two vertices in the cycle is along the cycle. A graph (and corresponding

sparsity pattern) is chordal if every cycle with four or more vertices has a chord.

A chordal extension can be computed for graphs that are not chordal; G′ is a

chordal extension of G = (V, E) if G′ = (V, E ′) where E ⊆ E ′ and G′ is chordal.

(Equivalently, we write E ′ is the chordal extension of E .)

3.2.2 Clique decomposition theorems

We now show that when E is an edge set to a chordal graph, then certain sparse

matrix cones with pattern E can be written in terms of smaller, overlapping conic

constraints.

We use the following notation for representing subvectors and submatrices. If

β is an index set (ordered subset) of {1, . . . , p}, we define Pβ as the |β|×p-matrix

(Pβ)ij =





1, j = β(i),

0, otherwise.

(3.6)

50

Multiplying a vector with Pβ selects the subvector indexed by β:

Pβx = (xβ(1), xβ(2), . . . , xβ(r))

if β has r elements, denoted β(1), β(2), . . . , β(r). Similarly, the matrix Pβ can

be used to select a principal submatrix of a p× p matrix:

(PβXP T
β)ij = Xβ(i)β(j).

The multiplication x = P T
β y of a |β|-vector y with the transpose of Pβ gives a

p-vector x with Pβx = y and xj = 0 for j 6∈ β. The operation X = P T
β Y Pβ

creates a p× p matrix X from an r× r matrix, with PβXP T
β = Y and Xij = 0 for

i 6∈ β or j 6∈ β. For example, if p = 5 and β = {1, 3, 4} then

Pβ =




1 0 0 0 0

0 0 1 0 0

0 0 0 1 0


 , P T

β y =




y1

0

y2

y3

0




, P T
β Y Pβ =




Y11 0 Y12 Y13 0

0 0 0 0 0

Y21 0 Y22 Y33 0

Y31 0 Y32 Y33 0

0 0 0 0 0




.

Sparse PSD completable matrices We first consider the set of sparse ma-

trices with a PSD completion:

ΠE(S
p
+) = {ΠE(X) | X ∈ S

p
+}.

The set ΠE(S
p
+) is a closed convex cone, since if ΠE(X) = 0 then the diagonal

of X is zero. Therefore ΠE(X) = 0 and X ∈ S
p
+ imply X = 0. This is a

sufficient condition for the projection ΠE(S
p
+) to be closed [Roc70, Th. 9.1]. The

following theorem gives a characterization of ΠE(S
p
+) when the sparsity pattern

E is chordal [GJS84].

51

Theorem 1 Let E be a chordal sparsity pattern of order p, with cliques βk,

k = 1, . . . , m. A matrix X ∈ S
p
E is in ΠE(S

p
+) if and only if

Pβk
XP T

βk
� 0, k = 1, . . . , m (3.7)

where the matrices Pβk
are as defined in (3.6).

Proof Suppose that for some c ∈ R|β|, cT (Xβ,β)c < 0 for any index set β. Then

define d = P T
β c and, if Z is any completion of X , then

dTZd = cT (Xβ,β)c < 0.

Therefore the condition (3.7) is necessary. To show that (3.7) is sufficient, in sec-

tion 3.3 we give a direct method for completing X ∈ ΠE(S
p
+) when E is chordal. �

If E is nonchordal, condition (3.7) is necessary but not sufficient. The following

simple counterexample is given in Grone et al. [GJS84]:

B =




1 1 ? −1

1 1 1 ?

? 1 1 1

−1 ? 1 1



.

Here E contains the edges for a cycle of length 4 with no chord, and it is clear

that each 2 × 2 principal dense submatrix is PSD. To see that it has no PSD

completion, note that the determinant of Bβ,β where β = {2, 3, 4} is

det







1 1 −1

1 1 α

−1 α 1





 = −(α + 1)2 < 0, ∀α.

52

Sparse positive semidefinite matrices Next, we consider the cone of sparse

PSD matrices:

S
p
E,+ = S

p
E ∩ S

p
+.

This is a closed convex cone for any E, since both S
p
E and S

p
+ are closed convex

cones. The following theorem from [GT84, AHM88] provides a characterization

when the sparsity pattern is chordal.

Theorem 2 Let E be a chordal sparsity pattern of order p, with cliques βk, k =

1, . . . , m. A matrix S ∈ S
p
E is PSD if and only if it can be expressed as

S =

m∑

k=1

P T
βk
ZkPβk

(3.8)

with Zk � 0 for k = 1, . . . , m.

Proof The theorem is equivalent to theorem 1 by duality. By theorem 3.7, the

set of PSD completable matrices can be written as an intersection of cones

ΠE(S
p
+) = K1 ∩ . . . ∩ Km

where Kk = {X | Xβk,βk
� 0}. Since K1, . . . ,Km are closed, convex cones, then

the dual cone is

S
p
E,+ =

m∑

k=1

K∗
k

where K∗
k = {P T

βk
ZPβk

| Z � 0}, which is exactly condition (3.8). �

When E is not chordal, the condition in the theorem is sufficient for the positive

semidefiniteness of S, but not necessary.

53

Sparse EDM completable matrices Finally, we consider the set of sparse

matrices with an EDM completion. The cone of EDM completable matrices

ΠE(D
p) = {ΠE(X) | X ∈ Dp}

is a closed convex cone. To see this, first suppose the sparsity graph GE is con-

nected. If ΠE(X) = 0 for some X ∈ Dp, with Xij = ‖ui − uj‖22 for i, j = 1, . . . , p,

then ui = uj for all {i, j} ∈ E. If the graph is connected, this implies that the po-

sition vectors ui are all equal, i.e., X = 0. Hence ΠE(X) = 0, X ∈ Dp only holds

if X = 0. It then follows from [Roc70, Th. 9.1] that ΠE(D
p) is closed. Next, as-

sume GE has d connected components, with vertex sets α1, . . . , αd ⊆ {1, 2, . . . , p}.
For k = 1, . . . , d, let Ek = {{i, j} | {αk(i), αk(j)} ∈ E} be the edge sets

of the connected components of GE . Since for each k, the graph with ver-

tex set {1, 2, . . . , |αk|} and edge set Ek is connected, the sets ΠEk
(D|αk|) are all

closed convex cones. Additionally, X ∈ ΠE(D
p) if and only if X ∈ S

p
E and

Xαkαk
∈ ΠEk

(D|αk|) for k = 1, . . . , d. Hence ΠE(D
p) is the intersection of closed

convex sets, and therefore is itself a closed convex set.

Bakonyi and Johnson have formulated a clique decomposition theorem for

EDM completion analogous to theorem 1 for PSD completion [BJ95].

Theorem 3 Let E be a chordal sparsity pattern of order p, with cliques βk, k =

1, . . . , m. A matrix X ∈ S
p
E is in ΠE(D

p) if and only if

Xβk,βk
∈ D|βk|, k = 1, . . . , m. (3.9)

Proof If X is an EDM for a set of points ui, i = 1, . . . , m then Xβ,β is the EDM

for the community of points ui, i ∈ β. Therefore (3.9) is necessary, whether or not

E is chordal. To show (3.9) is sufficient, in section 3.3 we will give direct methods

for finding the EDM completion when E is chordal. �

54

If E is not chordal, the condition in the theorem is necessary for X to be in

ΠE(D
p) but not sufficient. Bakonyi and Johnson offer a counterexample (which is

very similar to the one provided by Grone et al. [GT84] for PSD matrices):

B =




0 0 ? 1

0 0 0 ?

? 0 0 0

1 ? 0 0



, E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.

Here, each principal dense submatrix is either


0 0

0 0


 which is an EDM for 2

points at the same location, or


0 1

1 0


, which is an EDM for 2 points spaced 2 unit

apart. However, as a whole B has no EDM completion, since B12 = B23 = B34 = 0

implies the four points are all overlapping, which is contradicted by B14 > 0.

3.2.3 Vertex elimination and ordering

In general, finding the maximal cliques in an undirected graph requires nonpoly-

nomial time computation. (For example, the Bron-Kerbosch algorithm [BK73]

has complexity O(3p).) However, efficient heuristics exist if we are willing to relax

our constraints, and find the maximal cliques in a chordal extension.

For an arbitrary sparsity pattern E of a set of p × p matrices, we can find

the maximal cliques of a chordal extension using the vertex elimination algorithm

(Alg. 1). This is a very well-known algorithm and is described in the early pa-

per [RTL76], as well as in many texts (for example, [BP93, VA15]). The algorithm

results in a set of maximal cliques for a chordal extension G′ = ({1, . . . , p}, E ′)

55

where E ′ are the edges induced by each clique:

E ′ = {{i, j} | ∃k, i ∈ βk, j ∈ βk}.

The extra edges E ′ \ E are added when, for some vertex vk, cadjEk(vk) is not a

complete subgraph. The efficiency of the algorithm (characterized by having the

least number of extra edges) depends on the chosen index ordering.

Algorithm 1 Vertex elimination.

1 Pick an index ordering v1, . . . , vp. Define E1 = E.

2 for k = 1, . . . p

3 Construct a clique. βk = cadjEk(vk).

4 Eliminate. Ek+1 = {{i, j} ∈ Ek | i, j 6= vk}.
5 end

Perfect elimination ordering (PEO) An ordering that ensures that vk is

always simplicial in Ek (and thus βk is a clique in E) is called a perfect elimi-

nation ordering. For example, consider the example in figure 3.1. The ordering

(3, 4, 2, 1, 6, 5) is a perfect elimination ordering, and the maximal cliques generated

are

β1 = {3, 4, 2}, β2 = {4, 2, 5}, β3 = {2, 1, 5}, β4 = {1, 6, 5}.

Fulkerson and Gross [FG65] show that the class of chordal graphs are exactly the

class of graphs that have perfect elimination orderings. Computing the perfect

elimination ordering of a chordal graph can be done in linear time, as demon-

strated by several algorithms. The earliest linear complexity algorithm (in num-

ber of vertices) is the lexicographical breadth-first search by Rose, Tarjan, and

Lueker [RTL76]. A simpler method, the maximum cardinality search, is given by

Tarjan and Yannakakis [TY84]. Additionally, Lewis, Peyton, and Pothen [LPP89]

showed that the maximum cardinality search is equivalent to Prim’s algorithm for

56

finding the maximum weight spanning tree of a weighted undirected graph [Pri57].

Elimination ordering for nonchordal sparsity The situation for general

(nonchordal) sparsity patterns is more complicated. In general, finding the order-

ing that minimizes fill-in is NP-complete [Yan81]. In practice, there are several

tractable algorithms for finding heuristic orderings that reduce fill-in. For exam-

ple, Hegerness [Heg06] gives several minimal degree orderings. (E ′ is a minimal

chordal extension of E if there is no set E ′′ (E ′ that is also a chordal extension of

E.) However, these schemes can still be computationally expensive and may not

always lead to efficient chordal extensions. In practice, a popular heuristic is the

minimum degree ordering, which greedily picks at each step the vertex with the

smallest degree [Mar57, TW67, GL89]. An improvement upon that is the approx-

imate minimum degree (AMD) ordering by Amestoy, Davis, and Duff [ADD96].

This scheme has low computational complexity (O(p|E|)) and typically yields

fewer nonzeros than minimal degree reorderings.

Much of the research on the ordering schemes is motivated by solving large

sparse linear systems Ax = b where A is a PSD matrix with sparsity pattern

E. The problem is usually solved by computing LLTQTx = QT b where Q is

the permutation matrix for the reordering, LLT is the Cholesky factorization for

QTAQ, and Q(L + LT)QT ∈ S
p
E′ where E ′ is the chordal extension of E. If E is

chordal and Q is the permutation matrix for a perfect elimination ordering, then

E ′ = E. For surveys on chordal graphs and sparse matrices, see [BP93, VA15].

3.3 Minimum rank completion of chordal sparse matrices

In this section we offer a minimum rank completion algorithm for matrices A with

chordal sparsity pattern E. The result is represented as factors U ∈ Rp×r where r

is the rank of the minimum rank completion and A = ΠE(UUT). This method is

57

extended to a minimum embedding dimension EDM completion of A ∈ ΠE(D
p),

represented by U = [u1, . . . , up]
T ∈ Rp×r and Aij = ‖ui − uj‖22 for all {i, j} ∈ E.

In general, finding a PSD completion of an arbitrary sparsity pattern E is

not straightforward. However, if the sparsity pattern E is chordal, finding the

completions can be done through direct methods. Grone et al. [GJS84] and Dym

and Gohberg [DG81] give PSD completion algorithms when E is chordal and

block-banded, respectively. (See also [GHJ99].) Along the same lines, Bakonyi

and Johnson [BJ95] give similar results for finding EDM completions when E is

chordal. These methods can be implemented efficiently using clique-tree based

methods such as in [Smi08],[VA15, Alg. 10.2], and are related to the supernodal

Cholesky factorization techniques of [DR83, Liu92]. When the sparse matrix lies

in the interior of ΠE(S
p
+) (that is, when every principal dense submatrix is full

rank) then these methods yield the maximum determinant completion.

In some applications, it is desirable to find the completion with the lowest rank.

For example, an SDP relaxation of a combinatorial problem is tight if the solution

admits a rank-1 completion [GW95, Lov79]. Along the same lines, applications

involving EDMs (such as sensor network node localization [BLW06] or protein con-

formation recovery [AKG13]) require a solution with embedding dimension 2 or 3

(corresponding to points in a physical space). The problem of finding the minimum

rank PSD completion for general sparsity patterns is NP-hard [LV12, ELV13], and

is discussed in many works (see surveys [Joh90, Lau01]. However, again, efficient

methods exist when E is chordal. Dancis [Dan92] provides constructive proofs for

the minimum rank completion of a chordal sparse matrix similar to that found

in [GJS84]. The problem is also discussed in [LV12, HPR89, MAL14] for low rank

PSD completions or [CH88, KW12] for low embedding dimension EDM comple-

tions.

To explain the novel parts of this algorithm, we present the minimum rank PSD

(and minimum embedding dimension EDM) completions for a sparsity pattern

58

consisting of two overlapping diagonal blocks. The extension to general chordal

sparsity patterns is straightforward, and follows from well-known properties of

clique trees [VA15]. We discuss this briefly at the end of this section, and give an

algorithm summarizing the two completions for chordal sparsity patterns.

Notation For nonsymmetric matrices U ∈ Rp×m and a set β ⊂ {1, . . . , p}, we
use the notation Uβ = PβU to represent the submatrix of U composed of the rows

indexed in β.

3.3.1 Minimum-rank PSD completion

The existence of a minimum rank PSD completion is discussed in the following

theorem by Dancis [Dan92, Th. 1.9].

Theorem 4 For some matrix A ∈ ΠE(S
p
+), where E is a chordal sparsity pattern

with maximal cliques β1, . . . , βm, define

r = min
k

rank(Aβk,βk
).

Then for all PSD completions X of A, it must be that rank(X) ≥ r. Additionally,

there exists a completion X where rank(X) = r.

Proof Clearly, the rank of X cannot be less than r. If rank(X) = r̂, then

there exists a factorization X = UUT where U has r̂ columns, and each maximal

dense submatrix of A has a rank r̂ factorization Aβk,βk
= Uβk

UT
βk
, and has rank

< r, which is a contradiction. To show a rank-r completion exists, Alg. 2 gives a

construction. �

We first consider the completion of a matrix with two overlapping diagonal

59

blocks, partitioned as

A =




A11 AT
21 0

A21 A22 AT
32

0 A32 A33


 ∈ ΠE(S

p
+).

Here, the two overlapping blocks are

H(1) =


A11 AT

21

A21 A22


 and H(2) =


A22 AT

32

A32 A33.




Define s1, s2, and s3 as the number of rows in A11, A22, and A33, respectively. The

3, 1 block of A is not specified. (Its indices are not in E.) Define

r = max{rank(H(1)), rank(H(2))},

and by theorem 4, the minimum rank completion of A must have rank r. Our

goal is to find U ∈ Rp×r such that UUT is the rank-r PSD completion of A.

By the definition of r, there exists factorizations

H(1) = U (1)(U (1))T and H(2) = U (2)(U (2))T

where U (1) and U (2) have r columns. A straightforward way to find these factors

is to use an eigenvalue decomposition of H(1) and H(2). Note that the factors U (1)

and U (2) may not have full column rank. We use the following partitioning of U (1)

and U (2)

H(1) =


A11 AT

21

A21 A22


 =


U

(1)
1

U
(1)
2




U

(1)
1

U
(1)
2



T

H(2) =


A22 AT

32

A32 A33


 =


U

(2)
1

U
(2)
2




U

(2)
1

U
(2)
2



T

,

and it is clear that A22 = U
(1)
2 (U

(1)
2)T = U

(2)
1 (U

(2)
1)T .

60

We wish to find an r×r orthogonal matrix Q such that U
(1)
2 = U

(2)
1 Q. One way

to find Q is to use the full singular value decompositions (SVDs) of the overlapping

parts

U
(1)
2 = W (1)Σ(1)(V (1))T , U

(2)
1 = W (2)Σ(2)(V (2))T .

Here, the dimensions of W (1) and W (2) are s2× s2, of Σ
(1) and Σ(2) are s2× r, and

of V (1) and V (2) are r× r. We assume that the singular values in Σ(1) = Σ(2) = Σ

are ordered, so that

Σ11 ≥ Σ22 ≥ . . . ≥ Σr0,r0 ≥ 0

and r0 = rank(X22). Since U
(1)
2 (U

(1)
2)T = U

(2)
1 (U

(2)
1)T , then it must be that

W (1)Σ(1) = W (2)Σ(2), and Q = V (2)(V (1))T . (It is important to ensure that the

SVD is unique, in the sense that the singular vectors corresponding to the nonzero

singular values are ordered and signed consistently for both U
(1)
2 and U

(2)
1 . This

can be done by imposing additional conventions on the SVD computation.) In

the case that X22 is large and the rank of X22 = r, one can also compute this Q

from the QR factorizations of (U
(1)
2)T and (U

(2)
1)T .

The rank-r completion of A is

X = UUT , where U =




U
(1)
1

U
(1)
2

U
(2)
2 V (2)(V (1))T


 .

To verify, it is clear that X � 0 and has rank r. It can also be shown that

ΠE(X) = A by expanding X , and observing that the second principal dense

61

1

2 3

4

5

6 1, 2, 6γ1 2, 5, 6 γ2

3, 5 γ44, 6γ3

2, 6

1
γ1

6

4
γ3

5

2, 6
γ2

3, 5
γ4

Figure 3.2: Small example. Left: a sparsity graph for a set of 6 × 6 matrices.
Center: corresponding intersection graph. Right: a spanning tree of intersection
graph where every topological ordering satisfies the running intersection property.

submatrix of X is


X22 XT

32

X32 X33


 =


 U

(1)
2 (U

(1)
2)T U

(1)
2 V (1)(V (2))T (U

(2)
2)T

U
(2)
2 V (2)(V (1))T (U

(1)
2)T U

(2)
2 (U

(2)
2)T




=


U

(2)
1 (U

(2)
1)T U

(2)
1 (U

(2)
2)T

U
(2)
2 (U

(2)
1)T U

(2)
2 (U

(2)
2)T




which corresponds to the factorization of H(2).

Extension to chordal patterns To extend this method for general chordal

sparsity patterns, we use a clique tree traversal method that is similar to the

methods for efficiently computing a Cholesky factorization of PSD matrices [DR83,

Liu92] and other computations associated with barrier methods [ADV13, VA15].

Specifically, for a chordal sparsity pattern E with maximal cliques β1, . . . , βl, an

intersection graph has vertices 1, . . . , l and an edge between i and j whenever

βi ∩ βj is nonempty. A clique tree is a spanning tree of the intersection graph.

The tree has a topological ordering if all the non-root vertices k are numbered

such that k < par(k). (See figure 3.2.)

We construct a clique tree T for a given chordal sparsity pattern E. We

assume that E is connected. (If it is disconnected, a different clique tree can

be constructed for each connected component, and the final completion can be

62

permuted to a block diagonal matrix where each diagonal block is PSD with rank

r.) The choice of clique tree T determines for each clique βk the contents of three

sets

αk = βk ∩ βpar(k), ηk = βk \ βpar(k), νk = {1, . . . , p} \ βk.

that partition the entire index set

{1, . . . , p} = ηk ∪ αk ∪ νk.

(Here, βpar(k) = ∅ whenever k is a root.) For each clique βk, we partition a

permutation of A and U as




Aνkνk AT
νkαk

0

Aαkνk Aαkαk
AT

αkηk

0 Aηkαk
Aηkηk


 = ΠE







Uνk

Uαk

Uηk







Uνk

Uαk

Uηk




T



.

We then complete the 0 block using the same technique as for the two overlapping

blocks, associating the sets νk, αk, and ηk with the block indices 1,2,3. At each

step, the rows Uηk are computed using the elements in Uαk
, and everything else is

left alone.

To ensure that local correctness implies global correctness, we need to guar-

antee that at each step, all rows in Uαk
have been computed, no rows in Uηk have

been computed, and the sets ηk, k = 1, . . . , l partition the index set {1, . . . , p}.
This is true if every topological ordering of T satisfying the running intersection

property (RIP)

(βk ∩ βpar(k)) ⊆ (βk+1, . . . , βl) (3.10)

and (equivalently) the clique intersection property (CIP),

βi ∩ βj ⊆ βk

63

whenever βk is in the path between βi and βj in T . Clearly, the RIP implies

αk ⊆ (βk+1, . . . , βl), so going in reverse topological order ensures that Uαk
is fully

computed before clique k is reached. From the CIP, it can be shown that the

sets ηk, k = 1, . . . , l, partition {1, . . . , p}. It is known that chordal graphs E

are exactly the set of graphs for which clique trees with the RIP and CIP can

be constructed [Bun74, Gav74, BP93, BP93, VA15], and efficient methods for

constructing such a T are discussed in [Pri57, LPP89, BP93, Tar83].

The entire algorithm for the minimum rank PSD completion is summarized in

Alg. 2.

Algorithm 2 Minimum rank PSD completion.

1 Construct T the clique tree for a chordal pattern E.

2 Compute r = mink rank(Aβkβk
).

3 for k in reverse topological order of T

4 Factor ZZT = Aβkβk
where Z has r columns.

5 Partition the clique βk into ηk = βk \ βpar(k), αk = βk ∩ βpar(k)

6 Find Q ∈ Rr×r where QTQ = I and Uαk
= Pαk

PβT
k
ZQ.

7 Update Uηk = PηkP
T
βk
ZQ.

8 end

3.3.2 Minimum embedding dimension EDM completion

From the close relation between EDMs and Gram matrices (given by the linear

transformations (3.2) and (3.3)), we have the following extension of theorem 4 to

low embedding dimension EDM completions.

Theorem 5 For some matrix A ∈ ΠE(D
p), where E is a chordal sparsity pattern

with maximal cliques β1, . . . , βm, define

r = min
k

emdim(Aβk,βk
).

64

Then for all EDM completions X

emdim X ≥ r

and there exist a completion X where emdim X = r.

Proof Again it is clear that emdim X cannot be less than r. If the embedding

dimension of X is r̂ < r, then there exists p points û1, . . . , ûp ∈ Rr̂, and each dense

principal submatrix Aβk,βk
is an EDM for the community of points ûi, for i ∈ βk.

This implies that for all k, emdim Aβk,βk
< r, which is a contradiction. To show

that a completion with embedding dimension r exists, we give a construction in

Alg. 3. �

We extend this completion method (Alg 2) to matrices A ∈ ΠE(D
p) where

E is chordal by interpreting the PSD matrix in the previous section as a Gram

matrix for a set of points with an EDM. Define the mapping from points to their

EDM as

edm(U) = diag(UUT)1T + 1diag(UUT)T − 2UUT .

Our goal is to find

U =




uT
1

...

uT
p


 ∈ Rp×r where A = ΠE(edm(U)).

We again begin by completing a sparse matrix with two overlapping dense

blocks

A =




A11 AT
21 0

A21 A22 AT
32

0 A32 A33


 ∈ ΠE(D

p), H(1) =


A11 AT

21

A21 A22


 , H(2) =


A22 AT

32

A32 A33


 .

65

The size of the diagonal blocks A11, A22, and A33 are s1 × s1, s2 × s2, and s3 × s3

respectively.

We then find the matrices U (1) ∈ R(s1+s2)×r and U (2) ∈ R(s2+s3)×r for which

H(1) = edm(U (1)) and H(2) = edm(U (2)). These factors can be calculated as

the rank r factorizations of the Gram matrices computed using the transforma-

tion (3.3)

G(1) = U (1)(U (1))T = −1

2
(I − 1cT)H(1)(I − c1T), for some c : cT1 = 1

and

G(2) = U (2)(U (2))T = −1

2
(I − 1dT)H(2)(I − d1T) for some d : dT1 = 1.

Since EDMs are invariant to global translations of the points, there are multiple

choices for U (1) and U (2), parametrized by c and d. The choice of these vectors

will result in factors satisfying (U (1))T c = 0 and (U (2))Td = 0. In expanded form,

the Gram matrices can be partitioned as

G(1) =


G

(1)
11 (G

(1)
21)

T

G
(1)
21 G

(1)
22


 , G(2) =


G

(2)
11 (G

(2)
21)

T

G
(2)
21 G

(2)
22




and if we can find G(1) and G(2) such that G
(1)
22 = G

(2)
11 , then we can find U (1)

and U (2), and the full completion U using the same techniques as in the previous

section. One choice is

c =
1

s2


0s1
1s2


 , d =

1

s2


1s2

0s3


 , (3.11)

which causes G(1) and G(2) to be the Gram matrices for points where the over-

lapping portion is centered at 0. We can verify that this satisfies the consistency

66

condition by expanding the definitions of G(1) and G(2):


G

(1)
11 (G

(1)
21)

T

G
(1)
21 G

(1)
22


 = −1

2


I − 1

s2
11T

0 I − 1
s2
11T




A11 AT

21

A21 A22




 I 0

− 1
s2
11T I − 1

s2
11T


 ,


G

(2)
11 (G

(2)
21)

T

G
(2)
21 G

(2)
22


 = −1

2


I −

1
s2
11T 0

− 1
s2
11T I




A22 AT

32

A32 A33




I −

1
s2
11T − 1

s2
11T

0 I


 ,

and

−2G
(1)
22 = −2G

(2)
11 = (I − 1

s2
11T)A22(I −

1

s2
11T).

We then pick U (1) and U (2) from the factorizations

G(1) = U (1)(U (1))T and G(2) = U (2)(U (2))T ,

and

U =




U
(1)
1

U
(1)
2

U
(2)
2 Q


 (3.12)

where U
(1)
2 = U

(2)
1 Q. To verify, it is clear that, if Z = edm(U), then Z ∈ Dp and

emdim Z = r. To see that ΠE(Z) = A, note that by construction,

H(1) = edm




U

(1)
1

U
(1)
2




 ,

and

H(2) = edm




U

(2)
1

U
(2)
2




 = edm




 U

(1)
2

U
(2)
2 Q




 .

The second equality comes from the property that EDMs are invariant to orthog-

onal transformations of their points.

Alternatively, we can consider a case where the parameter c in (3.11) is un-

67

known. In this case, it is not guaranteed that U
(1)
2 1 = 0. As a result, using d as

defined in (3.11), it is not guaranteed that U
(1)
2 (U

(1)
2)T = U

(2)
1 (U

(2)
1)T . To account

for the mismatch in translation, we compute Q from the demeaned points

U
(2)
1 Q = U

(1)
2 − 1

s2
11TU

(1)
2 .

Such a Q must exist; this follows from the observation that the centered Gram

matrix corresponding to an EDM is unique, and therefore it must be that

U
(2)
1 (U

(2)
1)T = (U

(1)
2 − 1

s2
11TU

(1)
2)(U

(1)
2 − 1

s2
11TU

(1)
2)T .

Then the completion is represented implicitly as

U =




U
(1)
1

U
(1)
2

U
(2)
2 Q + 1

s2
11TU

(1)
2


 . (3.13)

To check that this yields the correct completion, note that U as defined in (3.13)

is just a translated version of U as defined in (3.12), and EDMs are invariant to

the translation of their points.

For general chordal sparsity patterns, we construct a clique tree from the

cliques β1, . . . , βl, with the same properties as in the previous section. For the most

part, the completion method for EDMs mirrors the algorithm for PSD matrices,

in that it traverses the clique tree T in reverse topological order, filling in all

the rows in Uηk using information in Uαk
. The full algorithm for the minimum

embedding EDM completion is given in Alg. 3

68

Algorithm 3 Minimum embedding dimension EDM completion.

1 Construct T the clique tree for a chordal pattern E.

2 Compute r = mink emdim(Aβkβk
).

3 for k in reverse topological order of T

4 if k is a root

5 Update Uβk
= Z where Z ∈ R|βk|×r is from the factorization

ZZT = −1

2
(I − 1

|βk|
11T)Aβkβk

(I − 1

|βk|
11T).

6 else

7 Partition the set βk as

ηk = βk \ βpar(k), αk = βk ∩ βpar(k).

8 Compute the Gram matrix parametrized by c = Pαk
P T
βk
1

G = −1

2
(I − 1

|αk|
1cT)Aβkβk

(I − 1

|αk|
c1T),

and factor G = ZZT where Z ∈ R|βk|×r.

9 Find Q ∈ Rr×r, QTQ = I where Pαk
U = Pαk

P T
βk
ZQ.

10 Update the new part

Uηk = PηkP
T
βk
ZQ+

1

|αk|
11TUαk

.

11 end

12 end

69

CHAPTER 4

Decomposition methods for sparse matrix

nearness problems

In this chapter1 we discuss decomposition methods for finding the projection of a

given matrix on the set of matrices that satisfy a certain property:

minimize
X

‖X − C‖2F
subject to X ∈ S

(4.1)

where S is one of the three sparse matrix cones: S
p
E,+, ΠE(S

p
+), or ΠE(D

p), and

E is a general (possibly nonchordal) sparsity pattern.

The problem (4.1) is a special instance of a matrix nearness problem [Hig88].

Matrix nearness problems arise in a wide range of applications, including statis-

tics, machine learning, finance, and signal processing, and can take a variety of

different forms. The matrix C may be symmetric or nonsymmetric, square or

rectangular. The constraint set S may be convex or not, and the objective func-

tion may be a Frobenius norm or another norm, or a nonmetric distance function.

We restrict our attention to problems involving symmetric matrix variables and

convex constraints, using the Frobenius norm as the distance function. We also

include an application of a nonsymmetric matrix nearness problem.

Matrix nearness problems with PSD and EDM constraints are among the most

widely studied types of matrix nearness problems. The nearest PSD matrix and

1This chapter is largely based on a submitted journal paper; see [SV15].

70

nearest correlation matrix problems have applications in statistics, finance, and

biology, and are discussed in [RJ99, Hig02, QS10, QS06, Mal04, AA12]. The near-

est EDM problem is studied in multidimensional scaling [You13], and is used in

chemistry and molecular biology to compute molecular structure [Wut89, GHH90,

Tro97, AKG13], and for node localization in sensor networks [KW12, AW05].

These applications all involve fairly simple convex sets and, in principle, they

can be solved by general-purpose convex optimization algorithms. However, due

to the large number of variables (order p2 for dense p×pmatrix variables) the com-

plexity of general-purpose methods grows rapidly with the matrix dimension p.

Research on matrix nearness problems has therefore concentrated on specialized

first-order algorithms, or, when higher accuracy is required, quasi-Newton algo-

rithms. Examples of such first-order methods are alternating projection meth-

ods [GM89, Hig02, GHH90, AA12], dual first-order methods [BX05, HM11], aug-

mented Lagrangian methods [QS11], and alternating direction methods [BHR10].

Algorithms based on quasi-Newton methods in combination with dual reformula-

tions are described in [QS06, Mal04, QXY13].

In comparison, algorithms tailored to sparse matrix nearness problems, i.e.,

problems with an additional sparsity constraint, have received less attention in the

literature. Sparsity constraints arise naturally in large matrix nearness problems

and can have a different meaning depending on the application and the interpre-

tation of the data matrix C. We may be interested in recovering a sparse matrix

with the properties represented as a set S, from a noisy measurement or estimate

of its nonzero elements. A typical example is the estimation of a sparse covariance

or inverse covariance matrix from estimates of its nonzero entries. Or, the sparse

matrix C represents a noisy estimate of a subset of the entries of a dense matrix Z,

which is known to have certain structural properties, represented by a constraint

Z ∈ Ŝ. In this case the matrices in Ŝ that best fit the measurements are dense.

This is an example of a problem with aggregate sparsity, and when the matrix

71

dimensions are large it is of interest to avoid working with a dense matrix variable

and represent it implicitly as a sparse matrix X , with the added constraint that

the matrix has a completion with the desired properties (X ∈ ΠE(Ŝ)).

Many algorithms for sparse matrix optimization problems in the literature

are extensions of algorithms for dense matrix optimization problems. When the

problem has a sparse variable constraint X ∈ S
p
E , one can use a dense matrix

variable and impose the sparsity constraint by adding linear equality constraints.

When the problem has aggregate sparsity, one can use a dense matrix variable

and mask the irrelevant entries in the objective [Hig02, QS11, AKW99, Qi13,

ADS13]. Extensions of this type are still computationally expensive. In particular,

even if the linear constraints can be decoupled, they involve at least eigenvalue

decompositions of order p, used for projecting on the set of PSD matrices or the

set of EDMs.

In contrast, the approach taken in this chapter is to avoid eigenvalue decom-

positions of order p and only use eigenvalue decompositions of smaller dense ma-

trices. By applying decomposition techniques for cones of sparse matrices with

chordal structure, we write the three types of sparse matrix cones in terms of small

dense PSD or EDM cones [GJS84, GT84, AHM88, BJ95]. In combination with

first-order methods, these chordal decomposition techniques allow us to solve the

matrix nearness problems without using eigenvalue decompositions of order p.

This chapter begins by discussing partially separable cones and their dual

cones (section 4.1). We show that the matrix nearness problems of interest can

be reformulated as

minimize
x

‖Pηx− c‖22
subject to x ∈ K

(4.2)

where x ∈ Rn and K is a partially separable cone. We then give decomposi-

tion methods for solving (4.2). These methods are the main contribution of this

chapter. Section 4.2 gives dual decomposition methods when η = {1, . . . , n} and

72

the objective in (4.2) is the Euclidean projection on K, and is strongly convex.

Section 4.3 gives a Douglas-Rachford method for more general η.

We then give numerical results for the sparse matrix nearness problems in

section 4.4, including two applications: the sparse projection of nonsymmetric

matrices on the unit spectral norm ball, and the convex relaxation of the sensor

network node localization problem. To demonstrate the performance gain, we

compare the runtime of our proposed methods against a single eigenvalue decom-

position (or singular value decomposition for nonsymmetric matrices) of order

of the size of the matrix variable. The full eigenvalue decomposition represents

the runtime of a single iteration when applying a typical first-order method to

the matrix problems, but without using clique decomposition. For large prob-

lems (p > 10, 000), our results compare favorably to preexisting methods, and in

particular, we are able to solve very large sparse problems (p = 100, 000) that pre-

viously would not be solvable using a standard Desktop computer and standard

first-order methods.

4.1 Partially separable convex cones

A function g : Rn → R is partially separable if it can be expressed as

g(x) =
l∑

k=1

gk(Ekx),

where each Ek has a nontrivial nullspace, i.e., a rank substantially less than n.

This concept was introduced by Griewank and Toint in the context of quasi-

Newton algorithms [GT82, GT84][NW06, section 7.4]. Here we consider the sim-

plest and most common example of partial separability and assume that Ek = Pγk

for some index set γk ⊆ {1, 2, . . . , n}. This means that f can be written as a sum

73

of functions that depend only on subsets of the components of x:

g(x) =
l∑

k=1

gk(Pγkx) =
l∑

k=1

gk(xγk).

Partial separability generalizes separability (l = n, γk = {k}) and block-separability

(the sets γk form a partition of {1, 2, . . . , n}).

Partially separable cone We call a cone K ⊆ Rn partially separable if it can

be expressed as

K = {x | Pγkx ∈ Ck, k = 1, . . . , l} (4.3)

where Ck is a convex cone in R|γk|. The terminology is motivated by the fact the

indicator function δK of K is a partially separable function:

δK(x) =

l∑

k=1

δCk(Pγkx).

Note that K can also be expressed as an intersection of cones

K = K1 ∩ · · · ∩ Kl

where Kk = {x | Pγkx ∈ Ck}. We assume that each Ck is a closed, nonempty convex

cone. Then the cones Kk are nonempty convex cones, and closed by [Roc70, Th.

9.1], and K is a nonempty, closed convex cone. Additionally, we assume there

exists a shared point in their relative interiors; that is

ri K1 ∩ · · · ∩ ri Kl 6= ∅.

Then the dual of K is the sum of the dual cones

K∗ =

{
l∑

k=1

y | y ∈ K∗
k

}
=

{
l∑

k=1

P T
γk
sk | sk ∈ C∗

k , k = 1, . . . , l

}

74

and is also a closed convex cone [Roc70, Cor. 16.4.2].

Proper cones The following assumptions imply that K is proper,i.e., closed,

pointed, with nonempty interior.

• The index sets γk are distinct, i.e., γi 6⊆ γj for i 6= j, and cover the entire

index set {1, 2, . . . , n}.

• The convex cones Ck are proper.

• There exists a point x̄ with Pγk x̄ ∈ intCk for k = 1, . . . , l.

These assumptions imply that K is itself a proper cone. As already shown, K is

closed since each cone Ck is closed. The cone K is pointed because x ∈ K, −x ∈ K
implies Pγkx ∈ Ck and −Pγkx ∈ Ck for all k. Since the cones Ck are pointed, we

have Pγkx = 0 for k = 1, . . . , l. Since the index sets γk cover {1, 2, . . . , n}, this
implies x = 0. The cone C has nonempty interior because the point x̄ is in its

interior. It also follows that K∗ is proper (since the dual cone of a proper cone is

proper).

This implies the cone ΠE(S
p
+) is proper for chordal E, since each lower dimen-

sional cone Ck = vec(S
|βk|
+) is proper and x̄ = 0 satisfies Pγk x̄ ∈ int Ck for all k.

However, the sparse completable EDM cone is not proper, since the zero-diagonal

restriction means it has no interior.

Example Take n = 6 and

γ1 = {1, 2, 6}, γ2 = {2, 5, 6}, γ3 = {3, 5}, γ4 = {4, 6}.

75

Let C1 ⊆ R3, C2 ⊆ R3, C3 ⊆ R2, C4 ⊆ R2 be proper convex cones. A vector x ∈ R6

is in the cone K defined in (4.3) if

(x1, x2, x6) ∈ C1, (x2, x5, x6) ∈ C2, (x3, x5) ∈ C3, (x4, x6) ∈ C4,

and a vector s ∈ R6 is in the dual cone K∗ if

s =




s11

s12

0

0

0

s13




+




0

s21

0

0

s22

s23




+




0

0

s31

0

s32

0




+




0

0

0

s41

0

s42




for some

s1 = (s11, s12, s13) ∈ C∗
1 , s2 = (s21, s22, s23) ∈ C∗

2 ,

s3 = (s31, s32) ∈ C∗
3 , s4 = (s41, s42) ∈ C∗

4 .

4.1.1 Matrix nearness problems

When a sparsity pattern E is chordal, the matrix sets ΠE(S
p
+) and ΠE(D

p) are

partially separable cones. To see this, we give transformations between matrix

and vector cones. For a p× p symmetric matrix X , we define

vec(X) = [X11,
√
2X12, . . .

√
2X1p, X22,

√
2X23, . . . ,

√
2X2p, . . . , Xpp]

T ∈ Rp(p+1)/2

76

so that tr(XY) = vec(X)Tvec(Y). The inverse operation takes a vector in

Rp(p+1)/2 and transforms it to a matrix in Sp:

mat(x) =




x1 x2/
√
2 . . . xp/

√
2

x2/
√
2 xp+1 . . . xp−1/

√
2

...
...

. . .
...

xp/
√
2 x2p−1/

√
2 . . . xp(p−1)/2




and mat(vec(X)) = X . Similarly, if X ∈ S
p
E , we define vecE(X) to contain the

lower-diagonal elements of X whose indices are either along the diagonal or in E,

scaled so that if X ∈ S
p
E and Y ∈ S

p
E , then tr(XY) = vecE(X)TvecE(Y). The

inverse mapping matE(x) is defined such that matE(vecE(X)) = X .

For sparse matrices with chordal pattern E, we define the sets γ1, . . . , γl so

that

PγkvecE(X) = vec(Pβk
XP T

βk
), k = 1, . . . , l

where β1, . . . , βl are the maximal cliques of E. Then

vecE(ΠE(S
p
+)) = {x | Pγkx ∈ Ck}, where u ∈ Ck ⇐⇒ mat(u) � 0,

and

vecE(ΠE(D
p)) = {x | Pγkx ∈ Ck}, where u ∈ Ck ⇐⇒ mat(u) ∈ D|βk|.

Therefore vecE(ΠE(S
p
+)) and vecE(ΠE(D

p)) are partially separable cones. When

E is chordal, the matrix nearness problem (4.1) for S = ΠE(S
p
+) or S = ΠE(D

p) is

a Euclidean projection on a partially separable cone. When E is nonchordal, then

problem (4.1) can be reformulated as an optimization problem with an objective

77

that is convex, but not strongly convex:

minimize
X

∑
{i,j}∈E

(Xij − Cij)
2

subject to X ∈ ΠE′(Ŝ).

Here, E ′ is a chordal extension of E, and Ŝ corresponds to the dense matrix cones

S
p
+ or Dp.

There is a rich literature on decomposition methods for computing the pro-

jection on an intersection of closed convex sets via a sequence of projections on

each of the sets separately; see, for example, [Dyk83, HL88, Tse90, Tse91] and the

books [BT97, CZ97]. We will discuss three approaches based on duality. In the

first approach (section 4.2.2) the gradient projection method [Pol87, §7.2.1] or ac-
celerated gradient projection method [Nes83, Nes04, BT09] are applied to the dual

problem. These algorithms can be viewed as applications of Tseng’s alternating

minimization method for minimizing a strongly convex function over the intersec-

tion of convex sets [Tse90, Tse91, BT14]. The second approach (section 4.2.3)

is the dual block coordinate ascent method [Tse93]. This method can be inter-

preted as a generalization of Dykstra’s cyclic projection algorithm [Dyk83, BD86]

or Han’s successive projection algorithm [Han88], and also as a dual block coor-

dinate gradient projection method [BT13]. In the third approach (section 4.3),

we apply the Douglas-Rachford method [LM79] to alternately optimize over the

objective and constraints.

Notation We use the shorthand

P =
[
P T
γ1

P T
γ2

· · · P T
γl

]T

78

Note that the matrix P TP is diagonal and that the jth diagonal entry is the

number of index sets γk that contain the index j:

(P TP)jj = |{k | j ∈ γk}|, j = 1, . . . , n. (4.4)

We assume the sets γk cover the entire index set {1, . . . , n}, and therefore P TP

is nonsingular. For a partially separable cone as defined in (4.3), we define the

product of the lower dimensional cones as

C = C1 × C2 × · · · × Cl, C∗ = C∗
1 × C∗

2 × · · · × C∗
l .

Using this notation, we can write compactly

x ∈ K ⇐⇒ Px ∈ C, and P Tz ∈ K∗ ⇐⇒ z ∈ C∗.

4.2 Dual decomposition for partially separable cones

We consider the Euclidean projection of a vector c on a partially separable cone

minimize
x

‖x− c‖22
subject to x ∈ K

(4.5)

where c ∈ Rn is a given matrix and x is in a partially separable cone

x ∈ K ⇐⇒ Px ∈ C ⇐⇒ Pγkx ∈ Ck, k = 1, . . . , l.

The problem has a unique solution x⋆ the orthogonal projection of c on K. The

dual of (4.5) is

maximize
s

−‖s+ c‖22 + ‖c‖22
subject to s ∈ K∗

(4.6)

79

The solution s of the dual is the projection of −c on the polar cone −K∗. By our

assumption, there exists a point x̄ in the intersection of the sets ri Kk, k = 1, . . . , l.

In this case the dual constraint can be written equivalently as

s =

l∑

k=1

P T
γk
zk, where zk ∈ C∗

k .

The solutions x⋆ and s⋆ of the two projection problems are unique and related by

the optimality conditions

c = x⋆ − s⋆, x⋆ ∈ K, s⋆ ∈ K∗, s⋆Tx⋆ = 0,

and one can solve either the primal or the dual problem and compute the other

solution from the relation c = x⋆ − s⋆. The relationship is the same as that illus-

trated in 2.1, where x and −s are orthogonal components of c, and s = −Π−K∗(c).

We can write (4.6) equivalently using a change of variables s = P T z, where

z = (z1, . . . , zl)

maximize
z

−‖P T z + c‖22 + ‖c‖22
subject to z ∈ C∗.

(4.7)

The key benefit of dual decomposition is that the dual constraint is separable:

z ∈ C∗ ⇐⇒ zk ∈ C∗
k , k = 1, . . . , l.

Extension to strongly convex objective The primal and dual problems cor-

responds to the projection of a matrix C on the cone of sparse completable matri-

ces and its dual, when the sparsity pattern E is chordal. However, the methods

80

presented in this section generalize for the optimization problem

minimize
x

f(x)

subject to x ∈ K,

maximize
s

−f ∗(s)

subject to s ∈ K∗

(4.8)

where f is strongly convex with modulus µ, f ∗ is the conjugate of f and has 1/µ-

Lipschitz continuous gradient. The extensions are straightforward and efficient if

the gradient of f ∗ is easy to compute.

4.2.1 Projection on partially separable cones

The dual decomposition methods we discuss in the next two sections are descent

methods for minimizing

g(z) = (1/2)‖P Tz + c‖22 = (1/2)‖
l∑

k=1

P T
γk
zk + c‖22

where z is optimized over the product cone C∗ = C∗
1 ×C∗

2 ×· · ·×C∗
l . The methods

generate a sequence of dual feasible suboptimal points z. From a dual feasi-

ble z ∈ C∗, approximate primal and dual projections x and s are computed as

x = P Tz + c and s = P T z. The distances to optimality ‖x − x⋆‖2 and ‖s − s⋆‖2
can be bounded in terms of the dual suboptimality g(z)− f(z⋆). To see this, we

note that for any dual optimal solution z⋆ and any z ∈ C∗, we have

‖P T z − P T z⋆‖22 = ‖P T z + c‖22 − ‖P Tz⋆ + c‖22 − 2(Pz⋆ + c)TP T (z − z⋆)

≤ ‖P T z + c‖22 − ‖P Tz⋆ + c‖22.

The inequality holds because

∇g(z⋆)T (z − z⋆) = (P T z⋆ + c)TP T (z − z⋆) ≥ 0

81

for all z ∈ C∗ if z⋆ is optimal. Hence, if z is dual feasible and we define s = P Tz,

x = P Tz + c, then

1

2
‖x− x⋆‖22 =

1

2
‖s− s⋆‖22 =

1

2
‖P T (z − z⋆)‖22

≤ 1

2
‖P Tz + c‖22 −

1

2
‖P Tz⋆ + c‖22

= g(z)− g(z⋆).

The Lipschitz constant of ∇g(x) is the largest eigenvalue of the Hessian ∇2g(z) =

P TP :

L = λmax(P
TP) = max

j=1,...,n
|{k | j ∈ γk}|. (4.9)

(Recall that P TP is diagonal; see (4.4).)

4.2.2 Dual gradient projection method

The gradient projection method for minimizing the function (4.13) over C∗ uses

the iteration

zik = ΠC∗

k

(
zi−1
k − tPγk∇g(P Tz)

)

where t is a positive step size. In terms of the block vectors,

zik = ΠC∗

k
(zi−1

k − tPγk(
l∑

j=1

P T
γj
zi−1
j + c))

= ΠC∗

k
((1− t)zi−1

k − tPγk(
∑

j 6=k

P T
γj
zi−1
j + c)).

On line 2 we use the fact that PγkP
T
γk

= I. The projections on C∗
k can also be

expressed in terms of projections on Ck via the identity u = ΠCk(u)− ΠC∗

k
(−u).

Recall from section 2.4.1 and equation (2.18) that if t = 1/L for L given in (4.9)

82

then the sequence zi converges to a minimizer of g over C∗, and the duality gap

decreases as O(1/i). It follows that for the sequences xi = P T zi+c and si = P Tzi

and their projections x⋆ and s⋆,

‖xi − x⋆‖2 = ‖si − s⋆‖2 = O(1/
√
i).

Similarly, from the O(1/i2) convergence rate in the objective of the accelerated

gradient projection method, it follows that for the sequences xi = P T zi + c and

si = P T zi:

‖xi − x⋆‖2 = ‖si − s⋆‖2 = O(1/i).

We also use Nesterov’s first accelerated gradient projection method [Nes83],

or, more generally, FISTA [BT09, Tse08]. With the assumption z−1 = z0, FISTA

applies a gradient projection update after an extrapolation step is:

zi = ΠC∗(vi − t∇g(vi)) where vi = zi−1 +
i− 2

i+ 1
(zi−1 − zi−2).

As shown in section 2.4.1, the convergence of the duality gap under acceleration is

O(1/i2), which is an improvement over the O(1/i) rate in the gradient projection

method.

The gradient projection algorithm for the projection on K is summarized in

Algorithm 4, and its accelerated version is summarized in Algorithm 5. It is

important to keep in mind that the projection steps reduces to l projections on

C∗
k or Ck, and can be computed in parallel:

zik = ΠC∗

k
(yik) = yik +ΠCk(−yik), k = 1, . . . , l.

The stopping conditions used are given by (2.20).

83

Algorithm 4 Gradient projection method for projecting on K.

1 Set t = 1/L with L defined in (4.9).

2 Choose an initial z0 = (z01 , . . . , z
0
l), and take s0 = P Tz0 and x0 = s0 + c.

3 for i = 1, 2, . . . until convergence

4 Gradient step. Compute yi = zi−1 − tPxi−1.

5 Projection step. Compute zi = ΠC∗(yi), si = P T zi, and xi = si + c.

6 end

Algorithm 5 Fast gradient projection method for projecting on K.

1 Set t = 1/L with L defined in (4.9).

2 Choose an initial z−1 = z0 = (z01 , . . . , z
0
l), and take s0 = P Tz0, x0 = s0 + c.

3 for i = 1, 2, . . . until convergence

4 Extrapolation step. Compute vi = zi−1 + i−2
i+1

(zi−1 − zi−2).

5 Gradient step. Compute yi = vi − tP (P Tvi + c).

6 Projection step. Compute zi = ΠC∗(yi), si = P T zi, and xi = si + c.

7 end

4.2.3 Dual block coordinate ascent

We next apply block-coordinate ascent to the dual problem (4.7), which is simi-

lar to the successive projection algorithm [Han88],[CP11b, Pr. 11] for quadratic

functions. At each step the problem reduces to

minimize
zk

‖zk + Pγk(
∑
j 6=k

P T
γj
zj + c)‖22

subject to zk ∈ C∗
k .

(4.10)

This is a Euclidean projection of the point w = −Pγk

(∑
j 6=k P

T
γj
zj + c

)
on C∗

k .

Recall from (2.1) that the unique solution can be expressed in two equivalent

forms:

zk = ΠC∗

k
(w) = ΠCk(−w) + w. (4.11)

84

We can view (4.10) as a block coordinate gradient projection update. The gradient

of g(z) with respect to zk is

∇zkg(z) = Pγk

(
l∑

j=1

P T
γj
zj + c

)
= zk + Pγk

(
∑

j 6=k

P T
γj
zj + c

)
,

because PγkP
T
γk

= I. Therefore the vector w = zk−∇zkg(z) and ΠC∗

k
(w) is a block

coordinate gradient projection step with step size one.

In general, the block coordinate ascent algorithm is not guaranteed to converge.

Moreover, even when convergence is guaranteed, deciding when to terminate the

block coordinate ascent method can be difficult, since the iterates may remain

constant for several successive iterations [Pow73]. However, Tseng showed that

the block coordinate descent method applied to the dual of (4.8) converges to

the optimal solution if f(x) (the primal objective) is strongly convex and K is a

product of closed convex sets [Tse93]. This result is similar to the earlier results by

Auslender [Aus76] for strictly convex f(x) and Han [Han88, Cor. 4.3, Prop 4.4] for

positive definite quadratic functions. Additionally, as shown in section (4.10), the

block coordinate ascent applied to the projection on K is equivalent to Dykstra’s

algorithm [Dyk83, BD86], which is also proven to converge.

In Algorithm 6 we minimize over z1, . . . , zl cyclically, using the second ex-

pression in (4.11). We also maintain a primal variable xi =
∑l

j=1 P
T
γj
zij + c. The

simplest initialization is to take z0 = 0 and x0 = a. On line 4 we project the point

Pγk

(
∑

j 6=k

P T
γj
zi−1
j + c

)
= Pγkx

i−1 − zi−1
k

on Ck. The update on line 5 is easier to describe in words: xi is equal xi−1 with the

subvector xi−1
γk

replaced by v. Line 6 can also be written as zik = zi−1
k +v−Pγkx

i−1.

85

Hence

zik = zi−1
k + v − Pγk

(
l∑

j=1

P T
γj
zi−1
j + c

)
= v − Pγk

(
∑

j 6=k

P T
γj
zi−1
j + c

)
.

We use the stopping condition proposed in section 2.3.4 (which is based on [Ray05,

eq. (13)]).

Algorithm 6 Dual block coordinate ascent for projecting on K.

1 Choose an initial (z01 , . . . , z
0
l) ∈ C∗ and set x0 = P T z0 + c.

2 for i = 1, 2, . . . until convergence

3 Select the next index: k = (i− 1) mod l + 1.

4 Projection step. Compute v = ΠCk(Pγkx
i−1 − zi−1

k).

5 Update the primal variable. Compute xi = P T
γk
v + (I − P T

γk
Pγk)x

i−1.

6 Update dual variables. Compute

zik = zi−1
k + Pγk(x

i − xi−1), zij = zi−1
j for j 6= k.

7 end

With the initialization x0 = c, z0 = 0, this is Dykstra’s algorithm for comput-

ing the projection on
⋂l

k=1Kk [Dyk83]. Algorithm 6 is a special case of Tseng’s

dual block coordinate ascent algorithm [Tse93, §3] and convergence follows from

[Tse93, Th. 3.1]. Recall also from section 2.3.4 that f(zi) − f(z⋆) ≤ τ/i, where

τ is a constant [BT13, theorem 6.3], and therefore xi and si = P T zi satisfy

‖xi − x⋆‖2 = ‖zi − z⋆‖2 = O(1/
√
i).

4.3 Douglas-Rachford for partially separable cones

We now solve the problem

minimize
x

‖Pηx− c‖22
subject to x ∈ K,

(4.12)

86

using decomposition methods based on the Douglas-Rachford splitting method

[LM79, EB92, BC11]. Here, the objective is the squared distance between the

subvector Pηx = xη and a given |η|-vector c:

‖Pηx− c‖22 =
|η|∑

k=1

(xη(k) − ck)
2,

and is not strongly convex in general. The sets γ1, . . . , γl are index sets (or-

dered subsets of {1, 2, . . . , n}), and Ck, k = 1, . . . , l are closed convex cones. If

η = {1, 2, . . . , n} and Pη = I then problem (4.12) is equivalent to the projec-

tion (4.5). When η 6= {1, 2, . . . , n} the problem is to project c on PηK, the

projection of K on the subspace of vectors with support η. This problem appears

in applications where data is incomplete; if x̂ is an estimate of x, and only the

elements x̂i for i ∈ η are reliable, then the best feasible prediction is the solution

to (4.12) where c = Pηx̂.

If for all x ∈ K, Pηx = 0 ⇒ x = 0, then the set PηK is closed. This is a special

instance of Rockafellar’s theorem 8.1 [Roc70], which states that if K is a closed

convex cone and has a nontrivial intersection with the nullspace of B, then BK
is a closed convex cone. In this case, the problem (4.12) has a unique optimal

solution for the subvector Pηx
⋆. However, the components of x⋆ outside η are not

necessarily unique.

Problem (4.13) can be written equivalently by introducing u = PηP
Tz:

maximize
u,z

−‖u+ c‖22 + ‖c‖22
subject to P T

η u = P Tz

z ∈ C∗

(4.13)

where the solution u⋆ is the projection of −c on the dual cone of PηK, which is

given by (PηK)∗ = {u | P T
η u ∈ K∗}. The optimality conditions that relate the

87

two projections are

c = Pηx
⋆ − u⋆, x⋆ ∈ K, P T

η u
⋆ ∈ K∗, u⋆TPηx

⋆ = 0.

Again, the primal and dual approaches are not completely equivalent. From the so-

lution x⋆ of the primal problem (4.12) one obtains the dual solution u⋆ = Pηx
⋆ − c.

However from the dual solution u⋆ one only finds a partial primal solution Pηx
⋆

and not the values x⋆
i for i 6∈ η. The problem (4.13) without the conic constraint

can be reformulated as the unconstrained minimization of

g(z) = −‖P T z + P T
η c‖22 + ‖c‖22

and it is clear that g does not have a Lipschitz continuous gradient. For this reason,

the dual decomposition methods cannot be applied to the nearness problem.

4.3.1 Consensus formulation for Douglas-Rachford method

We apply the Douglas-Rachford method to a reformulation of (4.12) and (4.13)

that uses extra dummy variables and a consensus constraint. This similar to

formulations mentioned in previous works (for example, problem 16 in [CP11b]).

Primal Douglas-Rachford We reformulate the primal in (4.12) as

minimize
x,yk

(1/2)‖Pηx− c‖22 +
l∑

k=1

δCk(yk)

subject to Pγkx = yk, k = 1, . . . , l.

The variables are x ∈ Rn and an additional splitting variable y = (y1, y2, . . . , yl).

This problem has the form (2.23) if we take x̃ = (x, y), and

g(x, y) = (1/2)‖Pηx− c‖22 +
l∑

k=1

δCk(yk), V = {(x, y) | y = Px}.

88

The function g is separable with proximal operator

proxtg(x, y) =


 (I + tP T

η Pη)
−1(x+ tP T

η c)

ΠC(y)


 . (4.14)

Note that the inverse in the first block is the inverse of a strictly positive diagonal

matrix, since P T
η Pη is diagonal with (P T

η Pη)ii = 1 if i ∈ η and (P T
η Pη)ii = 0

otherwise. The projection on C in the second block reduces to l independent

projections ΠC(y) = (ΠC1(y1), . . . ,ΠCl(yl)). The projection on the subspace

V = {(x, y) | Px = y}

is

ΠV(x, y) =


 I

P


 (I + P TP)−1(x+ P Ty), (4.15)

which is also simple to compute since P TP is diagonal; see (4.4). A summary of

this method is given in Algorithm 7.

Algorithm 7 Douglas-Rachford method for primal problem (4.17).

1 Choose parameters t > 0, ρ ∈ (0, 2), initial z, w1, . . . , wl.

2 for i = 1, 2, . . . until convergence

3 Compute xi = proxtf1(z
i−1) using (4.14).

4 Compute ui
k = ΠC∗

k
(wi−1

k) for k = 1, . . . , l.

5 Compute (yi, vi) = ΠV(2x
i − zi−1, 2ui − wi−1) using (4.15).

6 Update zi and wi:

zi = zi−1 + ρ(yi − xi),

wi
k = wi−1

k + ρ(vik − ui
k), k = 1, . . . , l.

7 end

89

Dual Douglas-Rachford To apply the Douglas-Rachford method to the dual

problem (4.13) we write it as

minimize
s,zk

(1/2)‖s+ c‖22 +
l∑

k=1

δC∗

k
(zk)

subject to
l∑

k=1

P T
γk
zk = P T

η s.

This is in the form (2.23) with x̃ = (s, z),

g(s, z) = (1/2)‖s+ c‖22 +
l∑

k=1

δC∗

k
(zk), and V = {(s, z) | P T

η s = P T z}.

The proximal operator of g is

proxtg(s, z) =


 (1 + t)−1(s− tc)

ΠC∗(z)


 .

The projection on V can be written as

ΠV(s, z) =


 s

z


+


 −Pη

P


 (P T

η Pη + P TP)−1(P T
η s− P Tz). (4.16)

Here, P T
η Pη +P TP is diagonal and positive definite, since by assumption the sets

γk cover the entire index set {1, . . . , n}. The Douglas-Rachford method applied

to the dual problem is given in Alg. 8.

90

Algorithm 8 Douglas-Rachford method for alternate dual problem (4.13).

1 Choose parameters t > 0, ρ ∈ (0, 2), initial u0, v01, . . . , v
0
l .

2 for i = 1, 2, . . . until convergence

3 Compute ui = (wi−1 + tc)/(1 + t)

4 Compute zik = ΠC∗

k
(ri−1

k) for k = 1, . . . , l.

5 Compute (vi, qi) = ΠV ′(2ui − wi−1, 2zi − ri−1) using (4.16).

6 Update wi and ri:

wi = wi−1 + ρ(vi − ui)

rik = ri−1
k + ρ(qik − zik), k = 1, . . . , l.

7 end

4.3.2 Extensions

Problems (4.12) and (4.13) are instances of a more general optimization problem

minimize
x

f(x)

subject to Ax = b

x ∈ K

maximize
z,u

−f ∗(P Tz + ATu) + bTu

subject to P T z ∈ K∗

(4.17)

where the primal variable is x ∈ Rn, and the dual variables are u ∈ Rm and

z = (z1, . . . , zl) are multipliers for the affine and conic constraints. Here, the

matrix A ∈ Rm×n, and m is small. The function f(x) is convex, but may not

be strongly convex, and is assumed to have an easy-to-compute proximal opera-

tor. We also assume that f(x) is a separable function, i.e. f(x) =
n∑

i=1

fi(xi) and

f1, . . . , fn are all convex functions with easy proximal operators. (An example of a

separable f that we have not yet discussed is the one-norm: f(x) = ‖x‖1 =
∑

i |xi|,
in which proxtf is the well-studied shrinkage operator.)

As an example, the projection on ΠE(D
p) can be written in the primal form,

where Ax = b captures the 0-diagonal constraint, and K is a partially separable

cone with Ck the vectorized lower dimensional proper cones D
|βk|
0 .

91

Primal extension There are two ways of handling the affine constraint in the

primal problem. One is to incorporate it as an additional conic constraint. In this

case, K is no longer proper, but is still closed, and the methods in this section

can be easily extended if the proximal operators of f and f ∗ are easy to compute.

Another way is to incorporate it in the objective, reformulating the primal of (4.17)

as

minimize
x,u

f1(x) + f2(u)

subject to Px = u

where f1(x) = f(x) + δ{0}(Ax − b) and f2(u) = δC(u). The Douglas-Rachford

method at each iteration computes the proximal operator of f1(x) + f2(u) (which

is separable) and the projection on the consensus constraint. This extension is

similar in computational complexity to Algs. 7 and 8 if f(x) and A are such that

the optimization problem

minimize
ξ

f(ξ) + 1/(2t)‖ξ − x‖22
subject to Aξ = b

(4.18)

is easy to solve. For example, if Ax = b is a sparsity constraint Pνx = 0 (as

in a reformulation of the EDM projection) then the solution to (4.18) is simply

Πν(proxtf (x)) (and is cheap if proxtff(x) is cheap).

Dual extension The Douglas-Rachford method applied to the dual problem

in (4.17) can then be rewritten as a minimization of f1(z)+ f2(y)+ f3(z) over the

dual consensus constraint

maximize
s,y,z

− f ∗(s) + bTy + δC∗(z) subject to P T z + ATy = s.

Solving this using the Douglas-Rachford method is computationally cheap if the

proximal operator of f ∗ is easy to compute and the matrix I + AAT is easy to

92

factor. This is because the projection on the subspace

V = {(s, y, z) | P T z + AT y = u}

is

ΠV(s, y, z) =




s

y

z


+




−I

A

P


 (I + P TP + ATA)−1(s− P T z −ATy),

where, from the Sherman-Morrison-Woodbury inversion lemma,

(I + P TP + ATA)−1 = D +DAT (I + AAT)−1AD

and D = (I + P TP)−1 is diagonal. In other words, if (I +AAT) is easy to factor,

then ΠV is easy to compute.

In our numerical experiments, we do not use these extensions. Instead, we

represent the affine constraints (diag(X) = 0 for EDMs and diag(X) = 1 for

spectral norm constraints) as additional (non-proper) conic constraints. However,

the extension may be interesting for different instances of f(x).

4.4 Matrix nearness problems

We now apply the methods discussed in this section to solve the matrix near-

ness problem (4.1). We test the proposed algorithms on problems with sizes

ranging from 1000 to 100, 000. The problems in the first set of experiments

are constructed from thirteen symmetric sparsity patterns in the University of

Florida sparse matrix collection [DH11]. In the second set of experiments, we

consider a family of randomly generated sensor network node localization prob-

lems [BY04b, KW12, AW05]. The experiments are performed on an Intel Xeon

CPU E31225 processor with 32 GB RAM, using MATLAB version 8.3.0 (2014a).

93

4.4.1 Matrix nearness with chordal sparsity

We first present the numerical results for solving the matrix nearness problems

when C = ΠE(S
p
+) and C = ΠE(D

p), where E is chordal. Recall that in this case

C can be interpreted as a partially separable cone. We apply the dual decompo-

sition methods discussed in section 4.2 and the Douglas-Rachford method for the

consensus formulation, discussed in section 4.3. (In the latter case, we use Alg. 7

where η = {1, . . . , n}.)

In the dual gradient projection and Douglas-Rachford algorithms the main

step per iteration is the projection on l dense PSD or EDM cones, and these

projections can be done in parallel. In the dual block coordinate ascent method,

some of the projections can be computed in parallel, if they are scheduled using

a topological ordering on a clique tree [BP93]. Since the projections are the

most expensive part of the algorithms, exploiting parallelism would result in a

significant speedup. This possibility was not exploited in the code used for the

experiments, which computes the projections sequentially.

Problem generation The patterns generated in this section are chordal exten-

sions of thirteen nonchordal sparsity patterns from the University of Florida sparse

matrix collection [DH11]. Table 4.1 gives some statistics for the patterns before

the extension. The sparsity graphs of three of the larger patterns (mario001,

c-60, c-67) are not connected, but since the largest connected component con-

tains almost all the vertices (as shown in the table), we did not remove the smaller

connected components.

The chordal extensions are computed in two steps. We first use graph elim-

ination (or symbolic Cholesky factorization) using a fill-reducing reordering (the

MATLAB amd reordering) to generate a first chordal extension. We then merge

some of the smaller cliques of this extension according to heuristics discussed

in [SAV14, §6.2]. Table 4.2 gives the statistics of the chordal extensions without

94

pattern p density

ex4 1601 1.24e-2
g3rmt3m3 5357 7.24e-3
barth4 6019 1.13e-3
c-37 8204 1.11e-3

tuma2 12992 2.92e-4
crack dual 20141 1.98e-4
biplane-9 21701 1.79e-4
mario001 38434 1.39e-4

c-60 43640 1.57e-4
c-67 57975 1.58e-4

rail 79841 79841 8.69e-5
luxembourg osm 114599 1.82e-5

Table 4.1: Sparse matrix problems. Thirteen symmetric sparsity patterns from
the University of Florida sparse matrix collection. For each pattern we give the
matrix order p and the density, defined as (p+ 2|E|)/p2.

clique merging, and table 4.3 gives the statistics after clique merging. This step

is clearly advantageous, as the sparsity is not much increased, but the number of

cliques drastically decreases. The average clique size also increases, but this is not

a disadvantage, since the runtime of a eigenvalue decomposition does not differ

significantly when p < 50.

For each pattern E, we compute five instances of C with lower triangular

nonzeros generated from independent normalized Gaussian distributions. The

numerical results in the following tables are averages over the five instances. An

example of a sparsity pattern (before and after permutation and chordal embed-

ding) for a large matrix (p = 38, 434) is given in figure 4.1. Also given is the

histogram of clique sizes, which can be used to analyze the efficiency of the de-

composition methods on a particular problem.

Sparse PSD cones We first consider projections on the sparse PSD and PSD

completable cones. When E is a chordal pattern, the projection of C on ΠE(S
p
+)

95

p density m avg. clique max. clique
size size

1601 3.24e-2 598 18.0 74
5357 2.97e-2 577 52.9 261
6019 6.12e-3 3637 11.1 89
8204 4.05e-3 7158 7.1 257
12992 2.90e-3 11051 5.7 241
20141 1.21e-3 17053 6.5 168
21701 1.41e-3 16755 8.0 147
38434 5.36e-4 30917 6.0 188
43640 1.37e-3 39468 6.2 954
57975 2.45e-4 52404 5.5 132
79841 5.31e-4 61059 8.7 337
114599 4.34e-5 113361 2.9 45

Table 4.2: Chordal extensions. The table shows the density, the number of cliques
(m), and the average and maximum clique size, after a chordal extension, with no
clique merging, for the patterns listed in table 4.1.

p density m avg. clique max. clique
size size

1601 4.94e-2 94 46.3 74
5357 3.27e-2 267 80.8 261
6019 1.11e-2 317 42.2 89
8204 9.54e-3 1121 21.5 257
12992 5.22e-3 704 37.2 241
20141 2.80e-3 1098 35.7 168
21701 2.99e-3 1099 40.7 147
38434 1.25e-3 2365 28.1 188
43640 2.56e-3 6175 19.5 954
57975 9.04e-4 8875 14.9 132
79841 9.71e-4 4247 44.4 337
114599 2.02e-4 7035 18.9 58

Table 4.3: Clique merging. The table shows the density, the number of cliques
(m), and the average and maximum clique size, after a chordal extension and
clique merging, for the patterns listed in table 4.1.

96

38434 x 38434 matrix, 220216 nonzeros

Sparsity pattern

38434 x 38434 matrix, 220216 nonzeros

After permutation

0 100 200 300

0

50

100

150

200

250

300

350

nz = 4071

Chordal extension

0 10 20 30 40 50 60 70 80 90 100 110
0

100

200

300

400

clique length bins

no
 c

liq
ue

 in
 b

in
s

Histogram of clique sizes

Figure 4.1: UF matrices example. Top: sparsity patterns for a matrix of order
p = 38, 434, with 0.014% nonzeros (GHS indef/mario001 in the UF matrix col-
lection). The original pattern (left), the pattern after AMD permutation (center),
and the chordal extension of the permuted pattern (right) are given. Bottom:
histogram of the clique sizes in the decomposed problem. This is representa-
tive of most of the examples in which our decomposition methods are successful;
the average clique size is around 25-50, and the maximum clique size is around
100-200.

97

simplifies to

minimize
X

‖X − C‖2F
subject to Pβk

XP T
βk

� 0, k = 1, . . . , m,

(4.19)

where β1, . . . , βm are the cliques of the sparsity pattern. The dual of this problem

is

maximize
Z1,...,Zm

−
∥∥∥∥

m∑
k=1

P T
βk
ZkPβk

+ C

∥∥∥∥
2

F

+ ‖C‖2F

subject to Zk � 0, k = 1, . . . , m,

(4.20)

and is equivalent to the projection of −C on S
p
E,+.

We apply the fast projected gradient and block coordinate ascent methods to

the dual problem (4.20), and the Douglas-Rachford method to the primal problem

(4.19) and the dual problem (4.20). The step size in the fast projected gradient

method is t = 1/L. In the Douglas-Rachford methods we used t = 1, ρ = 1.75. (A

different choice of t and ρ may accelerate the Douglas-Rachford methods.) A sam-

ple evolution plot comparing the three methods is given in figure 4.2. A tolerance

ǫ = 10−3 was used in the the various stopping conditions given in chapter 2. The

algorithms were terminated when the CPU time exceeded a maximum four hours.

The runtimes are averages over five instances; we did not observe a significant

variance in runtime or number of iterations for the different instances. To reduce

computational overhead, the stopping conditions are tested every 25 iterations.

The results are given in table 4.4.

Sparse EDM cones Table 4.5 shows the results of a similar experiment for the

projection on the EDM completable cone by solving

minimize
X

‖X − C‖2F
subject to Pβk

XP T
βk

∈ D
|βk|
0 , k = 1, . . . , m

diag(X) = 0

(4.21)

98

50 100 150 200 250 300 350 400 450 500
10

−8

10
−6

10
−4

10
−2

10
0

iteration

re
la

tiv
e

er
ro

r
in

 o
bj

ec
tiv

e

Dykstra
Accel. grad. projection
Douglas−Rachford

Figure 4.2: Convergence. Relative error in objective |f(X i)− f(X⋆)|/|f(X⋆)| for
the projection of a matrix C on the cone of sparse matrices with PSD completion.
The plot compares the two dual decomposition methods and the Douglas-Rachford
method. The matrix C is 1601 × 1601, with chordal sparsity, and with 1.24%
nonzeros.

p
total runtime time/iteration eig.

F-PG BCD P-DR D-DR F-PG BCD P-DR D-DR dcp.

1601 2.7e1 3.5 4.4 5.0 1.2e-1 1.4e-1 1.8e-1 2.0e-1 1.5
5357 4.8e2 8.4e1 4.6e1 5.2e1 1.3 1.7 1.8 2.1 6.7e1
6019 1.2e2 9.6 1.3e1 1.6e1 3.4e-1 3.8e-1 5.1e-1 6.2e-1 9.4e1
8204 2.6e3 7.1e1 1.1e2 1.1e2 9.5e-1 1.4 1.4 1.5 2.4e2
12992 2.4e2 6.2e1 3.6e1 4.2e1 9.5e-1 1.2 1.4 1.7 9.2e2
20141 2.5e2 3.9e1 3.8e1 4.6e1 9.9e-1 1.6 1.5 1.9 3.4e3
21701 3.3e2 3.4e1 4.6e1 5.8e1 1.2 1.4 1.8 2.3 4.2e3
38434 4.7e2 4.7e1 6.2e1 7.8e1 2.1 1.9 2.5 3.1 2.3e4
43640 > 4hr 1.9e3 1.6e3 1.5e3 1.0e1 1.9e1 1.6e1 1.5e1 3.5e4
57975 > 4hr 1.4e2 1.1e3 1.1e3 3.5 5.7 6.4 6.2 OOM
79841 2.4e3 3.0e2 2.4e2 3.0e2 6.3 7.6 9.7 1.2e1 OOM
114599 5.3e2 5.5e1 1.0e2 1.2e2 2.6 2.2 4.0 4.6 OOM

Table 4.4: Projection on chordal PSD completable matrices. CPU times (in sec-
onds) for the projection on ΠE(S

p
+). The total runtimes and times per iteration

are given. The algorithms are: dual fast projected gradient method (F-PG), dual
block coordinate ascent (BCD), primal Douglas-Rachford method (P-DR), and
dual Douglas-Rachford method (D-DR).

99

p
total runtime time/iteration

F-PG BCD P-DR D-DR F-PG BCD P-DR D-DR

1601 7.6e1 1.2e1 5.7 5.2 1.5e-1 1.6e-1 2.3e-1 2.1e-1
4307 1.9e3 3.2e1 2.1e1 2.0e1 2.9e-1 4.1e-1 4.2e-1 3.9e-1
5357 1.1e3 2.3e2 5.6e1 5.3e1 1.5 1.9 2.2 2.1
6019 3.9e2 2.7e1 1.7e1 1.6e1 4.4e-1 5.0e-1 6.9e-1 6.2e-1
8204 8.6e3 2.7e2 8.5e1 8.3e1 1.2 2.7 1.7 1.7
12992 6.8e2 1.8e2 4.5e1 4.1e1 1.2 1.5 1.8 1.6
20141 9.1e2 1.3e2 5.0e1 4.4e1 1.3 1.7 2.0 1.8
21701 1.1e3 1.6e2 6.2e1 5.4e1 1.6 2.1 2.5 2.2
38434 1.4e3 8.6e2 8.3e1 7.2e1 2.1 6.1 3.3 2.9
43640 > 4hr 1.1e4 9.1e2 9.3e2 1.4e1 7.1e1 1.8e1 1.9e1
57975 > 4hr 4.6e3 5.5e2 5.6e2 4.8 3.7e1 7.3 7.5
79841 8.8e3 9.8e2 3.2e2 2.8e2 9.5 9.8 1.3e1 1.1e1
114599 2.5e3 1.3e2 1.3e2 1.1e2 3.3 5.4 5.1 4.5

Table 4.5: Projection on chordal EDM completable matrices. CPU times (in
seconds) for the projection on ΠE(D

p). The total runtimes and times per iteration
are given. The algorithms are: the dual fast projected gradient method (F-PG),
the dual block coordinate ascent (BCD), the primal Douglas-Rachford method
(P-DR), and the dual Douglas-Rachford method (D-DR).

where β1, . . . , βm are the cliques in the chordal pattern E. The strictly lower-

triangular nonzero values of C are assigned according to a uniform distribution

in [0, 1]. The diagonal of C is set to zero. The constraint set is treated as a

partially separable set composed of m+1 lower dimensional constraints. The first

m cones are the proper cones Ck = D
|βk|
0 , k = 1, . . . , m. The m + 1th cone is the

zero-diagonal constraint Cm+1 = {X | diag(X) = 0}. This partially separable

cone K is closed but not proper.

In all cases when the method converged, the final objective values for the

different algorithms are equal to two or three significant digits. (The unaccelerated

projected gradient method in general took much longer than all other methods to

converge, and the results are not included.) In general, the fast projected gradient

method converged more slowly than the other methods. In all but four instances,

the dual fast projected gradient method took between 200 and 1000 iterations and

in two instances exceeded the time limit. In comparison, the dual block coordinate

100

ascent and Douglas-Rachford algorithms took between 25 and 150 iterations to

converge. (For the block coordinate ascent algorithm, we count one cycle through

all l cones as one iteration.)

4.4.2 Matrix nearness with nonchordal sparsity

In the next two sets of experiments we consider problems with nonchordal spar-

sity patterns. We first consider a reformulation of the projection on the PSD

completable cone

minimize
X

∑

{i,j}∈E
(Xij − Cij)

2

subject to Pβk
XP T

βk
� 0

(4.22)

where β1, . . . , βm are the cliques of E ′, the chordal extension of E. Here, the

parameter C has sparsity pattern E and the primal variable X is sparse with

pattern E ′. The formulation (4.22) can also be used in cases where it is desirable

to compute some elements of Xij where {i, j} 6∈ E, but the full completion of X

is not needed. In this case, E ′ is the chordal extension of E plus the indices of

the additional desired elements.

The dual of (4.22) is

maximize
S,Zk

−‖S + C‖2F + ‖C‖2F

subject to S =
m∑
k=1

P T
βk
ZkPβk

Sij = 0, ∀{i, j} ∈ E ′ \ E
Zk � 0, k = 1, . . . , m

Here, the dual solution S⋆ is also the projection of −C on the sparse PSD cone,

and ΠE(X)− S = C.

We use the patterns listed in table 4.1 as E and the chordal extensions listed in

table 4.3 as E ′. For each sparsity pattern E, we consider five randomly generated

101

p
total runtime time/iteration
P-DR D-DR P-DR D-DR Eig. dcp.

1601 3.5e1 2.8e1 1.6e-1 1.6e-1 1.5
5357 4.4e2 3.8e2 1.6 1.7 6.7e1
6019 1.3e2 1.1e2 4.5e-1 4.8e-1 9.5e1
8204 4.1e2 3.6e2 1.3 1.3 2.4e2
12992 1.9e2 1.3e2 1.2 1.3 9.2e2
20141 2.6e2 2.1e2 1.3 1.4 3.4e3
21701 5.2e2 4.3e2 1.6 1.7 4.2e3
38434 2.4e2 1.7e2 2.4 2.3 2.3e4
43640 4.1e3 3.6e3 1.3e1 1.3e1 3.5e4
57975 1.4e3 1.2e3 5.6 5.3 OOM
79841 2.1e3 1.8e3 8.6 9.1 OOM
114599 7.1e2 4.5e2 3.7 3.6 OOM

Table 4.6: Projection on nonchordal PSD completable matrices. CPU times (in
seconds) for the projection on ΠE(S

p
+). The Douglas-Rachford method is applied

to the primal and dual problem form (P-DR and D-DR). The total runtimes
and times per iteration are given, and compared against the runtime for a single
eigenvalue decomposition of the full p× p matrix C.

matrices C ∈ S
p
E , with lower-diagonal nonzero values chosen from a normal Gaus-

sian distribution. The results for the primal and dual Douglas-Rachford methods

(Algorithms 7 and 8) are given in table 4.6. Both the primal and dual method

equivalently solves for S⋆. However, while the primal method also solves for X⋆,

the dual method can only solve for ΠE(X
⋆).

Compared to the chordal problems (4.19), solving the nonchordal problems in

general took more iterations (between 75 to 300 iterations). The final objective

values for the primal and dual Douglas-Rachford methods are equal to around 2

or 3 significant digits.

4.4.3 Example: Sensor network node localization

We consider the sensor network node localization problem [BY04b, KW12, AW05]

as an application of a matrix nearness problem. In this scenario, low-cost sensors

are randomly scattered through space, and communicate to nearby sensors that

102

are within a radio range to estimate pairwise distances. Since the sensors are

cheap, the pairwise distance estimates are noisy. The sensor network node local-

ization problem is to recover the position of the sensors using the partial noisy

distance readings, and can be written as an optimization problem

minimize
D

∑

{i,j}∈E
(Dij − D̂ij)

2

subject to D ∈ Dp

emdim(D) = r

(4.23)

where the p×p matrix D̂ contains the partial squared pairwise distance measure-

ments, and {i, j} ∈ E if node i and j are within radio range. The final solution D

is the EDM for the recovered positions U = [u1, . . . , up]
T , which can be computed

from a factorization

(1/2)JDJ = UUT where J = I − (1/p)11T .

The points u1, . . . , up are possibly translated or rotated estimates of the true

configuration. Finally, r is the dimension of the node positions, and is usually 2

or 3, corresponding to physical space.

Problem (4.23) is nonconvex because of the constraint on the embedding di-

mension. (For interesting problems, p ≫ r.) We solve the convex relaxation

of (4.23), where the embedding dimension constraint is dropped.) We construct

problems with p varying from 1000 to 100, 000 and uniformly distributing p sen-

sors in 3-D space. We then link nodes within radio range, with a decreasing

range so that the sparsity pattern remains manageable. For some problems with

p ≥ 10, 000, this resulted in graphs that were not connected. However the largest

connected component contained over 95% of the vertices, so we did not remove

these instances. Next we add noise to the nonzero elements of D to construct a

103

p range (R) density density avr. # avg. clique
(extens.) cliques size

1000 5.00e-2 3.67e-2 2.56e-1 46.2 122.8
1000 1.00e-1 9.15e-2 4.39e-1 36.6 206.3
5000 1.00e-2 3.93e-3 6.89e-2 228.0 121.6
5000 2.00e-2 1.03e-2 1.58e-1 191.4 240.7
10000 5.00e-3 1.47e-3 3.20e-2 474.4 102.1
25000 2.00e-3 3.96e-4 9.22e-3 1277.4 71.3
50000 1.00e-3 1.48e-4 2.70e-3 2821.4 46.3
75000 6.67e-4 8.34e-5 1.17e-3 4779.4 32.9
100000 5.00e-4 5.56e-5 6.04e-4 7214.4 24.4

Table 4.7: Sensor network localization problem parameters. Average problem
statistics (density of the patterns E and E ′, number of cliques and average size of
cliques) are given.

matrix C ∈ S
p
E :

Cij =





Dij +Nij, {i, j} ∈ E,

0, otherwise

where for each i, j, the noise Nij = Nji is drawn from a Gaussian distribution

with mean zero and standard deviation 0.1. As a 2-D example, figure 4.3 shows

a zoomed-in view of 5000 nodes connected in a unit square, along with the cor-

respondng (permuted) sparsity pattern, and the histogram of clique sizes. We

observe that though the network looks dense, the resulting sparsity level is very

low; this is often true in applications where the sparsity pattern is determined by

a network topology.

We solve problem (4.21) using the Douglas-Rachford method for the primal

formulation (Algorithm 7). Table 4.7 gives the problem statistics and table 4.8

gives the runtime results, averaged over five instances. In general, each problem

converged after 200 to 400 iterations.

104

0 50 100 150
0

10

20

30

40

clique size

fr
eq

ue
nc

y

Figure 4.3: Sensor network example. Top left: zoomed in version of a 2-D sensor
network with 5000 sensors in a unit square, with a radio range of 0.001. Top right:
corresponding (permuted) sparsity pattern. Bottom: histogram of clique sizes for
a chordal extension of the sparsity pattern.

105

p range (R) total time/ eigen.
runtime iteration decomp.

1000 5.00e-2 1.5e2 6.9e-1 1.4
1000 1.00e-1 4.1e2 1.6 1.5
5000 1.00e-2 1.6e3 5.3 1.4e2
5000 2.00e-2 5.0e3 1.9e1 1.4e2
10000 5.00e-3 3.6e3 1.0e1 9.8e2
25000 2.00e-3 6.4e3 1.8e1 1.4e4
50000 1.00e-3 5.4e3 1.8e1 OOM
75000 6.67e-4 3.7e3 1.6e1 OOM
100000 5.00e-4 2.6e3 1.3e1 OOM

Table 4.8: Sensor network localization runtimes. Average runtime of decomposi-
tion methods, compared against a single eigenvalue decomposition.

4.4.4 Example: Projection on unit spectral norm ball

The spectral norm of a nonsymmetric matrix U is the absolute value of its max-

imum singular value (denoted as ‖U‖2). In terms of vector norms, the spectral

norm can be defined as

‖U‖2 = max
x:‖x‖2=1

‖Ux‖2.

We solve the following matrix nearness problems for nonsymmetric matrices C in

Rm×n:

minimize
U

‖U − C‖2F
subject to Uij = 0, ∀(i, j) 6∈ F

‖U‖2 ≤ 1.

(4.24)

The sparsity pattern F ⊆ {1, . . . , m} × {1, . . . , n} is a set of ordered index pairs

and C is a noisy measurement. In the absence of the sparsity constraint (where

F = {1, . . . , m}×{1, . . . , n}), the solution can be computed using a singular-value

decomposition (SVD)

U∗ =
r∑

i=1

σ̂iqiv
T
i , where σ̂i =





σi, |σi| ≤ 1,

σi

|σi| , else,

106

where σi are the singular values of C, qi and vi the corresponding left and right

singular vectors of C, and r is the rank of C. With the sparsity pattern, the

problem can be solved using Dykstra’s method, by alternating the projection on

the spectral and sparsity constraint. However, this involves a sequence of m × n

singular value decompositions, which may be costly if both m and n are large.

Alternatively, the problem can be framed as a problem with a PSD constraint

minimize
U

‖U − C‖2F
subject to Uij = 0, ∀(i, j) 6∈ F

 I U

UT I


 � 0.

(4.25)

The equivalence of these two formulations (4.24) and (4.25) can be shown by

taking Schur-complements: for all t > 0,


 tI U

UT tI


 � 0 ⇐⇒ tI − 1

t
UTU � 0 ⇐⇒ ‖U‖22 ≤ t.

Without the sparsity constraint, solving (4.25) (which requires an eigenvalue de-

composition of order m + n) can be much more expensive than solving (4.24)

(requiring only an order min{m,n} singular value decomposition). However, with

the sparsity constraint, problem (4.25) is a matrix nearness problem with an affine

constraint (unit diagonal), and can be solved using the Douglas-Rachford method

applied to the consensus formulation (Algs 7 and 8).

We test the runtime of our algorithms in solving the unit spectral norm pro-

jection problem using sample nonsymmetric sparsity patterns from the University

of Florida sparse matrix collection. An example of a sparsity pattern and result-

ing histogram of clique sizes is given in figure 4.4. The problem parameters and

runtimes are given in table 4.9, and is compared (favorably) against the runtime

107

 242614 nonzeros

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

clique length

fr
eq

ue
nc

y

Figure 4.4: Spectral norm example. Top: aggregate sparsity pattern of prob-
lem (4.25), where the pattern of U is 26, 722× 11, 028 with sparsity level 0.035%
(labeled psse0 in the UF sparse matrix collection). Bottom: corresponding his-
togram of clique sizes.

108

pattern p× q density no. avg. cl. total SVD
cliques size time

model8 2896×6464 1.4e-3 1035 30.0 1.5e3 4.4e1
deter4 3235×9133 6.5e-4 1183 16.1 9.0e1 7.2e1
deter8 3831×10905 5.3e-4 548 36.2 1.4e2 1.2e2
deter6 4255×12113 4.8e-4 608 36.2 1.6e2 1.7e2
fxm3 6 6200×12625 7.4e-4 2529 14.5 2.5e2 3.9e2
deter7 6375×18153 3.2e-4 908 36.3 2.4e2 5.2e2
psse0 26722×11028 3.5e-4 3269 16.5 1.7e2 2.2e3

scsd8-2c 5130×35910 6.1e-4 8711 11.1 1.3e3 2.9e2
stormg2-27 14441×37485 1.7e-4 6460 16.8 1.2e3 4.7e3
stormg2-125 66185×172431 3.8e-5 28661 17.9 1.1e4 OOM

Table 4.9: Projection on the unit spectral norm ball. Problem statistics and to-
tal CPU runtimes for the primal Douglas-Rachford method are given. The run-
times are compared against a single SVD, which represents a single iteration in a
first-order method that does not use chordal decomposition.

of a single singular value decomposition of C. In general, if U is either very tall or

very wide, then finding the SVD of U may be very quick compared to finding the

eigenvalue decomposition of the augmented matrix in (4.25). For this reason, the

runtimes in the SVD columns seem much smaller than in previous experiments.

However, keeping in mind that the SVD runtime represents only one iteration in

a method that does not use decomposition, then the decomposition methods still

offer noticeable runtime reduction.

4.5 Discussion

We have presented decomposition methods for projections on sparse PSD, PSD

completable, and EDM completable cones. By combining clique decomposition

theorems for chordal sparsity patterns and first-order convex optimization al-

gorithms, we are able to solve large problems with sizes ranging from 1000 to

100, 000. The key feature of the algorithms is that they involve only small dense

eigenvalue decompositions, corresponding to the cliques in the chordal extension

of the sparsity pattern. To underscore the importance of this property, we briefly

109

outline some alternative first-order methods that do not use the clique decompo-

sition. The first problem (a projection on the sparse PSD cone) can be viewed

as projection on the intersection S
p
E ∩ S

p
+ of two sets. One can apply Dykstra’s

algorithm and solve the problem by alternating projection on the set of sparse

matrices S
p
E and the dense PSD cone S

p
+. Similarly, the projections on the PSD

completable and EDM completable cones (problems II and III) can be viewed as

minimizing a sum f(X) + g(X), where

f(X) =
∑

{i,j}∈E
(Xij − Cij)

2, g(X) = δC(X)

where C = S
p
+ or Dp. The Douglas-Rachford method for minimizing the sum

requires projections on C. Hence, at every iteration of these algorithms, a sin-

gle eigenvalue decomposition of order p is needed. However, a full eigenvalue

decomposition quickly becomes impractical for p greater than 10,000. On the ma-

chine used for our experiments, a single dense eigenvalue decomposition of order

p = 20, 000 takes 15 minutes to compute, and exceeds memory for p ≥ 50, 000.

Sparse eigenvalue decomposition methods also pose difficulties. Even when the

initial and final matrix variables in the algorithms are sparse, the intermediate

variables (and in particular, the arguments to the projections on S
p
+ and Dp) are

dense and, unless the method has almost converged, have close to p/2 positive

and negative eigenvalues. On the same machine, a single full matrix projection

using a sparse eigenvalue decomposition took more than an hour for a problem

of size p = 8204 and more than eight hours for a problem of size p = 12, 992. In

comparison, the runtimes of the decomposition methods discussed in the paper

depend less strongly on p and more on the sparsity pattern and density; a test

problem with order p = 21, 701 converged in 3 minutes, using about 2 seconds per

iteration. In none of the test problems were we close to running out of memory.

There are also some interesting differences among the decomposition methods.

110

The dual block-coordinate ascent method (Dykstra’s method) and the Douglas-

Rachford method seem to converge in fewer iterations than the accelerated dual

projection method. This is perhaps due to the fact that the Lipschitz constant

L as defined in (4.9) is usually very large. In addition, the Douglas-Rachford

methods are more general and can be applied to the problems with nonchordal

sparsity patterns. However they converged more slowly on the test problems with

nonchordal patterns. This is perhaps a result of the loss of strong convexity in

the objective when E is nonchordal. We did not observe a difference in efficiency

between the primal and dual Douglas-Rachford methods.

A general difficulty when applying the Douglas-Rachford algorithm is the sen-

sitivity to the choice of the problem parameters t and ρ. We used the same fixed

values for all the experiments, and it is possible that the performance can be

further improved by tuning the parameters.

111

CHAPTER 5

Decomposition methods for sparse linear SDPs

In this chapter1 we discuss the optimization problem

minimize
X

tr(CX)

subject to tr(AiX) = bi, i = 1, . . . , m

X � 0.

(5.1)

Here, the primal variable is a symmetric matrix X ∈ Sp, and the problem data are

the vector b ∈ Rm and the matrices C, Ai ∈ Sp. The main difference between this

problem and those discussed in the previous chapter is that the affine constraints

tr(AiX) = bi may be nontrivial. (That is, projecting on the affine set defined

by those equalities is computationally expensive.) However, we assume that the

coefficient matrices C and A1, . . . , Am have some sparsity; we refer to the union

of their sparsity patterns as the problem’s aggregate sparsity. As described in

the introduction, SDPs with aggregate sparsity appear in many applications, for

example, in the relaxations of combinatorial problems [GR00, GLS88, LS91],

polynomial optimization [Las01, Par00], and more. As an example, in section 5.5.2

we explore an SDP reformulation of the nearest EDM completion, using a ℓ1 norm

distance penalty. The aggregate sparsity here corresponds to the network topology

of the nodes.

Problem (5.1) can be reformulated as an optimization problem over partially

separable cones using similar techniques demonstrated in the previous chapter.

1This chapter is largely based on a previous journal paper; see [SAV14].

112

Additionally, we integrate the techniques similar to the conversion methods of

[KKM11, FKM00]. These methods use a reformulation of the sparse SDPs which

is easier to handle by interior-point algorithms. The decomposition method dis-

cussed in this paper follows this conversion approach and solves the reformulated

problem using Spingarn’s method.

In section 5.1 we begin by discussing SDPs with aggregate sparsity, and for-

mulate the problem over a partially separable cone. When the sparsity pattern is

chordal, the subsets corresponding to the lower dimensional cones can be arranged

as vertices in a tree satisfying the running intersection property. In section 5.2, we

describe the clique conversion method of [KKM11, FKM00] for linear conic opti-

mization over partially separable cones. This method is used to exploit sparsity

in the Schur complement of the KKT system, but can introduce many additional

affine constraints. To mitigate this, in section 5.3 we apply a Douglas-Rachford

method in which each subproblem is solved using a customized interior-point

solver. In section 5.4 we use this method for linear semidefinite optimization, and

give numerical results, with a short discussion in section 5.6.

5.1 Sparse SDPs

Problem (5.1) has aggregate sparsity pattern E if the matrices C,Ai ∈ S
p
E . The

dual of (5.1)

maximize
y,S

bTy

subject to
m∑
i=1

yiAi + S = C

S � 0

(5.2)

with variables y ∈ Rm and slack matrix S ∈ Sp. The dual variable S is necessarily

sparse at any dual feasible point, with the same sparsity pattern E. The primal

variable X in (5.1) on the other hand, is dense in general, but one can note that

the cost function and the equality constraints only depend on the entries of X in

113

the positions of the nonzeros of the sparsity pattern E. The other entries of X

are arbitrary, as long as the matrix is positive semidefinite.

The primal (5.1) and dual problems (5.2) can therefore be viewed alternatively

as conic linear optimization problems with respect to a pair of non-self-dual cones:

min.
X

tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . , m

X ∈ ΠE′(Sp
+)

max.
y,S

bTy

s.t.
m∑
i=1

yiAi + S = C

S ∈ S
p
E′,+

(5.3)

where E ′ is a chordal extension of E. Here, the primal and dual variables X and

S are both matrices in S
p
E′, though a feasible S has the added restriction of being

in S
p
E . The clique decomposition theorems from section 3.2 show that since E ′ is

chordal, then ΠE′(Sp
+) is a partially separable cone. Using the same notation as

in chapter 4, we denote

K = vecE′(ΠE′(Sp
+)) = {vecE′(X) | Xβk,βk

� 0}

the partially separable vector cone and

K∗ = vecE′(ΠE′(Sp
+)) = {

l∑

k=1

P T
βk
ZkPβk

| Zk � 0}

its dual, where β1, . . . , βl are the maximal cliques of E ′. The cones K and K∗ can

also be expressed in terms of their lower dimensional cones

K = {x | Pγkx ∈ Ck, k = 1, . . . , l}, K∗ = {
l∑

k=1

P T
γk
zk | zk ∈ C∗

k , k = 1, . . . , l}

where the index sets γk are chosen such that

PγkvecE′(X) = vec(Xβk,βk
), (5.4)

114

and Ck = vec(S
|βk|
+) = C∗

k . For this choice of Ck, as shown in section 4.1, K and

K∗ are proper convex cones: closed, pointed, and with nonempty interior. (We do

not consider the sparse EDM cone in this chapter.)

Tree representation As discussed in section 3.3, if E ′ is chordal with cliques

β1, . . . , βl, then there is a clique tree T such that every topological ordering satisfies

the running intersection property (3.10). The sets βk can then be partitioned as

ηk ∪ αk, where

αk = βk ∩ βpar(k), ηk = βk \ βpar(k).

Similarly, the sets γk as defined in (5.4) have a one-to-one relation with the cliques

βk. Therefore we do not have to distinguish between a clique tree T for E ′ and

a spanning tree with the running intersection property spanning the intersection

graph of the sets γk. The sets

σk = γk ∩ γpar(k), νk = γk \ γpar(k) (5.5)

are in a one-to-one relation to the sets αk and ηk respectively; for any Z ∈ ΠE′(Sp
+):

Pσk
(vecE′(Z)) = vec(Zαkαk

),

and Pνk(vecE′(Z)) contains the elements in Zβkβk
not included in Zαk,αk

.

5.2 The conversion method

We consider the linear optimization problem over partially separable cones

minimize
x

cTx

subject to Ax = b

Pγkx ∈ Ck, k = 1, . . . , l

(5.6)

115

Here, A ∈ Rm×n, c ∈ Rn, and b ∈ Rm are the problem parameters. The index sets

γk are subsets of {1, . . . , n}. We assume the index sets cover the entire index set;

that is,
⋃l

k=1 γk = {1, . . . n}. The primal variable is x ∈ Rn, and the primal conic

constraint can be written compactly as

Px ∈ C, P =




Pγ1

...

Pγl


 , C = C1 × · · · × Cl.

The dual of (5.6) is

maximize
y,z

bTy

subject to P Tz + ATy = c

zk ∈ C∗
k , k = 1, . . . , l.

The dual variables are y ∈ Rm and z = (z1, . . . , zl) where the subvectors zk are of

length |γk|. Equivalently, we write the dual conic constraint as

z ∈ C∗, C∗ = C∗
1 × · · · × C∗

l .

5.2.1 Problem reformulation

The objective of the conversion method is to reformulate (5.6) over “converted

variables” x̃ ∈ C, under certain equality constraints, in order to decouple the

variables and exploit sparsity in the Schur complement system of the KKT equa-

tions. The reformulation introduces a change of variables x̃ = Px and the primal

116

problem in (5.6) is rewritten as

minimize
x̃

c̃T x̃

subject to Ãx̃ = b

x̃ ∈ V
x̃ ∈ C.

(5.7)

Here, V = range(P) and the subspace constraint x̃ ∈ V ensures that there exists

x where Px = x̃. The vector c̃ and matrix Ã are chosen such that P T c̃ = c and

ÃP = A, and can be partitioned as

Ã =
[
Ã1 Ã2 · · · Ãl

]
, c̃T =

[
c̃T1 c̃T2 · · · c̃Tl

]
(5.8)

where Ãk and c̃k are blocks of size |γk|. It is straightforward to find Ã and c̃ that

satisfy these conditions. For example, one can take Ã = AJ , c̃ = JT c where J is

a left inverse of P ; for example,

J =
[
P T
ν1
Pν1P

T
γ1

P T
ν2
Pν2P

T
γ2

· · · P T
νl
PνlP

T
γl

]
(5.9)

where νk ⊆ γk, k = 1, . . . , l are chosen to partition {1, . . . , n}. (For example,

νk = γk \ γpar(k) where par(k) is the parent of vertex k in the clique tree T .) We

will see later that different constructions of Ã may offer certain advantages.

117

5.2.2 Example: conversion

Consider the linear optimization problem over x ∈ R5

minimize cTx

subject to




a11 a12 0 0 0

a21 a22 a23 0 0

0 a32 a33 a34 0

0 0 0 a44 a45







x1

x2

x3

x4

x5




=




b1

b2

b3

b4




(x1, x2) ∈ C1, (x2, x3, x4) ∈ C2, (x4, x5) ∈ C3.

(5.10)

One possible reformulation of (5.10) is

minimize


c1
c2




T 
(x̃1)1

(x̃1)2


+




0

c3

c4




T 


(x̃2)1

(x̃2)2

(x̃2)3


+


 0

c5




T 
(x̃3)1

(x̃3)2




subject to


a11 a12

a21 a22


 x̃1 +


0 0 0

0 0 a24


 x̃2 =


b1
b2


 (5.11)

[
a32 a33 a34

]
x̃2 = b3 (5.12)

[
a44 a45

]
x̃3 = b4 (5.13)

(x̃1)2 = (x̃2)1, (x̃2)3 = (x̃3)1 (5.14)

x̃1 ∈ C1, x̃2 ∈ C2, x̃3 ∈ C3. (5.15)

The objective can be written more compactly as c̃T x̃ where

c̃1 = (c1, c2), c̃2 = (0, c3, c4), c̃3 = (0, c5)

118

and c̃ = (c̃1, c̃2, c̃3). The constraints (5.11), (5.12), and (5.13) correspond to the

affine constraint Ãx̃ = b, where

Ã1 =




a11 a12

a21 a22

0 0

0 0

0 0




, Ã2 =




0 0 0

0 0 a24

a32 a33 a34

0 0 0

0 0 0




, Ã3 =




0 0

0 0

0 0

0 0

a44 a45




and Ã =
[
Ã1 Ã2 Ã3

]
. The constraint (5.14) are the consistency constraints that

ensures there exists a feasible x to (5.10) where Px = x̃. The final constraint (5.15)

decouples the overlapping conic constraints in (5.10) into three separate conic

constraints.

5.2.3 Representation of consistency set

For x̃ = (x̃1, . . . , x̃l), the consistency constraint x̃ ∈ V is needed to ensure that

the variables x̃k can be interpreted as copies x̃k = Pγkx of overlapping subvectors

of some x ∈ Rn. One way to do this is to enforce

x̃ ∈ V ⇐⇒ Pσ(P
T
γj
x̃j − P T

γk
x̃k) = 0

for each pair of sets γj, γk whenever σ = γj ∩ γk is nonempty. However, enforcing

consistency for every pair of overlapping cliques may result in many redundant

constraints. Since γk also have the special property that they can be arranged

as vertices of a tree T satisfying the RIP, it suffices to only enforce consistency

between adjacent cliques in T . With the sets νk and σk as defined in (5.5), then,

x̃ ∈ V ⇐⇒ Pσj
(P T

γj
x̃j − P T

γk
x̃k) = 0, k = 1, . . . , l, γj ∈ ch(γk). (5.16)

119

σj

γj \ σj
x̃j

σk

γk \ σk
x̃k

σi

γi \ σi
x̃i

Pσj
(P T

γj x̃j − P T
γk
x̃k)=0

Pσk
(P T

γk
x̃k − P T

γi x̃i)=0

. .
. . . .

. . .

. . .

σj

γj \ σj

vj

σk

γk \ σk

vk

σi

γi \ σi

vi

uj

uk

. .
. . . .

. . .

. . .

Figure 5.1: The subspaces V and V⊥. The figures show three vertices of the
intersection tree. The left-hand figure illustrates V. We associate the subvec-
tor x̃k of x̃ = (x̃1, . . . , x̃l) with vertex k in the tree and associate a consistency
constraint Pσj

(P T
γj
x̃j − P T

γk
x̃k) = 0 with the edge between vertex j and its par-

ent k. Then (x̃1, . . . , x̃l) is in V if and only if the consistency constraints are
satisfied. The right-hand figure illustrates V⊥. Here we associate the subvector vk
of v = (v1, . . . , vl) with vertex k in the tree and a vector uj ∈ R|σj | with the edge
between vertex j and its parent k. Then v ∈ V⊥ if and only there exist values of
uk such that vk = Pγk(P

T
σk
uk −

∑
γj∈ch(γk) P

T
σj
uj).

Likewise, a vector v = (v1, . . . , vl) is in V⊥ if and only if there exist uj ∈ R|σj |,

j = 1, . . . , l, such that

vk = Pγk(P
T
σk
uk −

∑

γj∈ch(γk)
P T
σj
uj), k = 1, . . . , l. (5.17)

The spanning trees for both the primal and dual consistency constraints are illus-

trated in the left and right hand side of figure 5.1, respectively.

We can express (5.16) in terms of matrices as follows. Define an l × l matrix

K with elements

Kij =





1 i = j

−1 i = par(j)

0 otherwise.

The matrix K is the transpose of the vertex-arc incidence matrix of the spanning

120

tree T , if we direct the arcs from children to parents. Then the equations (5.16)

and (5.17) can be written succinctly as

Bx̃ = 0, v = BTu,

for some u = (u1, . . . , ul) ∈ R|σ1| × · · · × R|σl| and

B =




Pσ1
· · · 0

...
. . .

...

0 · · · Pσl


 (KT ⊗ In)




P T
γ1

· · · 0
...

. . .
...

0 · · · P T
γl


 . (5.18)

Here, In is the n × n identity matrix and K ⊗ In is the Kronecker product. The

matrix B is an l × l block matrix with diagonal blocks Pσk
P T
γk
, k = 1, . . . , l,

and −Pσj
P T
γk

in block row j and block column i, where k = par(j). The rest of

the matrix B is zero. If the vertices of the intersection tree are numbered in a

topological ordering (i.e., each vertex receives a lower number than its parent),

then the matrix K is lower triangular. Note that the sparsity pattern of BTB

can be embedded in the sparsity pattern of PP T . The matrix BBT , on the other

hand, is not necessarily sparse.

5.2.4 Interior-point method

The conversion method of [KKM11, FKM00] solves the reformulated problem (5.7)

using an interior-point method. In this section we explain the main advantage

of this reformulation. We also describe its limitations, and in the next section,

propose a first-order splitting method that overcomes this limitation.

Recall from section 2.5 that the main step per iteration of an interior-point

121

method is to solve the KKT system, which for (5.6) is


 H AT

A 0




 ∆x

∆y


 =


 dx

dy


 .

Here we will assume thatH = φ(w) where φ is a logarithmic barrier function for K,

and w is some point in int K. In most implementations, the KKT equation (5.20)

is solved by eliminating ∆x̃ and solving the Schur complement system

AH−1AT∆y = AH−1dx − dy. (5.19)

For nonpolyhedral cones (and specifically, for the vectorized PSD cone) the Hes-

sian of the logarithmic barrier is dense. Therefore, the Hessian H of the loga-

rithmic barrier for the partially separable cone K consists of overlapping principal

dense submatrices, and H−1 is in general dense.

In contrast, after conversion, the KKT system for problem (5.7) solves a larger

system 


H̃ ÃT BT

Ã 0 0

B 0 0







∆x̃

∆y

∆u


 =




dx̃

dy

du


 (5.20)

where now, H̃ = diag(H1, . . . , Hl) is a positive definite block-diagonal scaling

matrix and H̃−1 is block diagonal. Here, B is as defined in (5.18). The Schur

complement system of (5.20) after eliminating ∆x̃ is


 ÃH̃−1ÃT ÃH̃−1BT

BH̃−1ÃT BH̃−1BT




 ∆y

∆u


 =


 ÃH̃−1dx̃ − dy

BH̃−1dx̃ − du


 . (5.21)

The sparsity of ÃH̃−1ÃT depends on the choice of Ã, and as will be shown,

motivates different choices of Ã. The 2,2 block BH̃−1BT of (5.21) on the other

hand may be quite dense.

122

An interior-point method for the reformulated problem can exploit the sparsity

of ÃH̃−1ÃT by solving (5.21) using a sparse Cholesky factorization method. This

matrix has the same sparsity pattern as the system obtained by eliminating ∆u

in (5.21), i.e.,

M1 = Ã(H̃−1 − H̃−1BT (BH̃−1BT)−1BH̃−1)ÃT .

The matrix M1 is often dense (due to the BH̃−1BT term), even if ÃH̃−1ÃT is

sparse. Alternatively, if ÃH̃−1ÃT is nonsingular, one can also explicitly eliminate

∆y and reduce it to a dense linear equation in ∆u with coefficient matrix

M2 = B(H̃−1 − H̃−1ÃT (ÃH̃−1ÃT)−1ÃH̃−1)BT .

To form matrix M2 one can take advantage of sparsity in ÃH̃−1ÃT . (This is the

approach taken in [KKK08].) Whichever method is used for solving (5.21), the

advantage of the enhanced sparsity resulting from the sparse 1,1 block ÃH̃−1ÃT

must be weighed against the increased size of the reformulated system (5.21). This

is especially important for semidefinite programming, where the extra variables

∆u are vectorized matrices, so the difference in size of the two Schur complement

systems is very substantial.

In the regime where the number of rows in B is small compared to than

that in Ã, an interior-point method applied to (5.7) will be much more efficient

than when applied to (5.6). In this chapter we consider the opposite regime,

where we show in section 5.4 that even for modest amounts of overlap in the

sets γk, solving (5.21) becomes expensive, even when compared to solving the

original, unconverted problem. However, the per-iteration cost of solving (5.7)

using an interior-point method is significantly reduced if we remove the consistency

constraint.

123

5.3 The Spingarn-IPM method

Motivated by the high cost of solving the KKT equations (5.21) of the converted

problem we now examine the alternative of using a first-order splitting method to

exploit the sparsity of ÃH̃−1ÃT . The converted problem (5.7) can be written as

minimize
x̃

f(x̃) = c̃T x̃+ δ(Ãx̃− b) + δC(x̃)

subject to x̃ ∈ V
(5.22)

where δ and δC are the indicator functions for {0} and C, respectively. The function
f(x̃) is closed if there exists x̃ ∈ C where Ãx̃ = b; see [Roc70, theorem 9.3]. We

apply Spingarn’s method of partial inverses (section 2.4.3). Starting at some z0,

the following three steps are repeated:

x̃i = proxtf (w
i−1)

ui = ΠV(2x̃
i − wi−1)

wi = wi−1 + ρ(ui − x̃i).

The algorithm depends on two parameters: a positive steplength t and a relaxation

parameter ρ, which must remain in the interval 0 < ρ < 2. We refer to section 2.4.3

for more analysis on Spingarn’s method in general (i.e. convergence properties and

stopping conditions).

5.3.1 Projection on consistency constraints

It can be shown that the Euclidean projection of x̃ on V is

ΠV(x̃) = P (P TP)−1P T x̃,

124

which is easy to compute; as in the previous chapter, it simply averages the

overlapping terms. (The matrix P TP is a diagonal matrix where (P TP)ii is the

number of cliques containing the index i.)

For each i ∈ {1, 2, . . . , n}, define M(i) = {k | i ∈ γk} the set of cliques that

include i. The sets γk for k ∈ M(i) define a subtree (this is a consequence of

the running intersection property). Then x̄ = (P TP)−1P T x̃ is the n-vector with

components

x̄i =
(
∑

k∈M(i) P
T
γk
x̃k)i

|M(i)| , i = 1 . . . , n,

a simple average of the corresponding components of x̃k, for the sets γk that

contain i. In other words, each element of x̄i can be computed using only the

subvectors x̃k where k ∈ M(i) (which can be significantly fewer than the total

number of cliques). This property may be exploited in distributed computing.

5.3.2 Evaluation of the proximal operator

The value x̃ = proxtf (w) of the prox-operator of the function f in (5.22) is the

primal solution in the pair of conic quadratic optimization problems (conic QPs)

min.
x̃

c̃T x̃+
1

2t
‖x̃− w‖22

s.t. Ãx̃ = b, x̃ ∈ C

max.
y,s̃

bT y − t

2
‖c̃− ÃTy − t−1w − s̃‖22

s.t. s̃ ∈ C∗

(5.23)

with primal variables x̃ and dual variables y, s̃. Equivalently, x̃, y, s̃ satisfy

Ãx̃ = b, ÃTy+s̃+t−1(w−x̃) = c̃, x̃ ∈ C, s̃ ∈ C∗, x̃T s̃ = 0. (5.24)

We will assume that the proximal operator of f is computed exactly, i.e., we do

not explore the possibility of speeding up the algorithm by using inexact proximal

operator evaluations. This is justified if an interior-point method is used for

solving (5.23), since interior-point methods achieve a high accuracy and offer only

125

a modest gain in efficiency if solutions with low accuracy are acceptable. Using

the optimality conditions (5.24) that characterize x̃i = proxtf (w
i−1) we can then

be more specific about the accuracy of x̃i as an approximate solution of the conic

LP (5.7). By solving the primal and dual conic QPs we find x̃i, yi, s̃i that satisfy

x̃i ∈ C, s̃i ∈ C∗, and

Ãx̃i = b, ÃT yi + s̃i + vi = c̃, (x̃i)T s̃i = 0 (5.25)

where vi = t−1(wi−1−x̃i). These are exactly the primal-dual optimality conditions

for the conic LPs (5.7), except for the constraints involving V and V⊥. The primal

and dual residuals rip = PV(x̃
i) − x̃i and rid = −PV(v

i) measure the deviation of

x̃i from V and of ṽi from V⊥.

We now comment on the cost of evaluating the proximal operator by solving

the conic QPs (5.23). An interior-point method applied to this problem requires

the solution of KKT systems of the form


 t−1I +H ÃT

Ã 0




 ∆x̃

∆y


 =


 dx̃

dy




where H is a block-diagonal positive definite scaling matrix. As before, we as-

sume that the diagonal blocks of H are of the form Hk = ∇2φk(wk) where φk

is a logarithmic barrier of Ck. The cost per iteration of evaluating the proximal

operator is dominated by the cost of assembling the coefficient matrix

Ã(t−1I +H)−1ÃT =

l∑

k=1

Ãk(t
−1I +Hk)

−1ÃT
k (5.26)

in the Schur complement equation

Ã(t−1I +H)−1ÃT∆y = Ã(t−1I +H)−1dx − dy

126

and the cost of solving the Schur complement system. For many types of conic

LPs the extra term t−1I in (5.26) can be handled by simple changes in the interior-

point algorithm. This is true in particular when Hk is diagonal or diagonal-plus-

low-rank, as is the case when Ck is a nonnegative orthant or second-order cone.

For positive semidefinite cones the modifications are more involved and will be

discussed in section 5.4. In general, it is therefore fair to assume that in most ap-

plications the cost of assembling the Schur complement matrix in (5.26) is roughly

the same as the cost of computing ÃTH−1ÃT . Since the Schur complement matrix

in (5.26) is sparse (it has the same sparsity as ÃH̃−1ÃT), it can be factored at a

smaller cost than its counterpart (5.21) for the reformulated conic LPs. Depend-

ing on the sparsity level of the Schur complement system, one evaluation of the

proximal operator via an interior-point method can be substantially less expensive

than solving the reformulated problems by an interior-point method.

5.3.3 Sparsity in the Schur complement system

The efficiency in both the conversion method of [KKM11] and in our splitting

method depends on the sparsity level of the matrix ÃH̃−1ÃT . In the conversion

method, it is the 1,1 block in the Schur complement system (5.21), and in the

splitting method, it is representative of the sparsity in the Schur complement

system of the proximal operator (5.26). Recall that H̃ and H̃−1 are block diagonal

matrices, where each block is of the order of |γk|.

As an example, consider a small conic LP with m = 4, n = 6, with index sets

γ1 = {1, 2, 6}, γ2 = {2, 5, 6}, γ3 = {4, 6}, γ4 = {3, 5}

and clique tree as given in figure 3.2. Specifically, 2 = par(1), 2 = par(3), and

127

4 = par(2), and the sets

ν1 = {1}, ν2 = {2, 6}, ν3 = {4}, ν4 = {3, 5}

partition the space {1, . . . , 6}. Consider a constraint matrix A with zeros in the

following positions:

A =




A11 A12 0 0 0 A16

0 A22 0 0 A25 A26

0 0 0 A34 0 A36

0 0 A43 0 A45 0



.

In other words, in this example, equality i in Ax = b involves only variables xk

for k ∈ γi. The primal reformulated problem has a variable x̃ = (x̃1, x̃2, x̃3, x̃4) in

R3 × R3 × R2 × R2. If we define Ã (following (5.8) and (5.9)), we obtain

Ã1 =




A11 0 0 A12 0 A16 0 0 0 0

0 0 0 A22 0 A26 0 0 0 A25

0 0 0 0 0 A36 A34 0 0 0

0 0 0 0 0 0 0 0 A43 A45



.

With this choice the 4 × 4 matrix Ã1H̃
−1ÃT

1 has sparsity pattern shown on the

left of figure 5.2. On the other hand, if we choose

Ã2 =




A11 A12 A16 0 0 0 0 0 0 0

0 0 0 A22 A25 A26 0 0 0 0

0 0 0 0 0 0 A34 A36 0 0

0 0 0 0 0 0 0 0 A43 A45



,

then the sparsity pattern of Ã2H̃
−1ÃT

2 is diagonal, as shown on the right of fig-

ure 5.2. In cases where the matrix ÃH−1ÃT is block diagonal with b blocks,

128




• • • 0
• • • •
• • • 0
0 • 0 •







• 0 0 0
0 • 0 0
0 0 • 0
0 0 0 •




Figure 5.2: Sparsity of Schur complement matrix. Left: sparsity pattern of
Ã1H̃

−1Ã1, where Ã1 = AJ , and J is as defined in (5.9). For this particular
problem, if Ã1 is picked this way, the Schur complement matrix of the converted
problem is not very sparse. Right: sparsity pattern of Ã2H̃

−1Ã2 where A2 is
chosen to optimize the sparsity in the Schur complement matrix. Note that for
general problems, the optimal converted coefficient may not be so obvious.

then the evaluation of the proximal operator (5.23) decomposes into b separate

problems, which can be solved in parallel.

In general, an automated way of finding the optimal choice of Ã remains an

open problem. However, as illustrated in this small example, sometimes there are

obvious solutions. It may be advantageous to use a heuristic algorithm, which

for each constraint, greedily finds cliques that best covers the nonzeros in that

constraint.

5.4 Linear semidefinite optimization

We now return to the sparse semidefinite optimization problems (5.3). The spar-

sity pattern E ′ is the chordal extension of the problem’s aggregate sparsity pat-

tern E, and E ′ has maximal cliques β1, . . . , βl. We construct a clique tree T such

that every topological ordering of T satisfies the RIP (3.10). The subsets of βk,

k = 1, . . . l are defined as

αk = βk ∩ βpar(k), ηk = βk \ βpar(k)

and par(k) and ch(k) are the parent and children of k in T .

129

The reformulated primal problem is

min.
X̃k

l∑
k=1

tr(C̃kX̃k)

s.t.
l∑

k=1

tr(ÃikX̃k) = bi, i = 1, . . . , m

Pαj
(P T

βk
X̃kPβk

− P T
βj
X̃jPβj

)P T
αj

= 0, k = 1, . . . , l, j ∈ ch(k)

X̃k � 0, k = 1, . . . , l

(5.27)

with variables X̃k ∈ S|βk|, k = 1, . . . , l. The second set of equality constraints

in (5.27) are the consistency constraints that ensure that the entries of X̃k agree

when they refer to the same entry of X . The coefficient matrices C̃k and Ãik are

chosen so that

C =
l∑

k=1

P T
βk
C̃kPβk

, Ai =
l∑

k=1

P T
βk
ÃikPβk

(5.28)

which forces tr(CW) =
l∑

k=1

tr(C̃kWβkβk
) and tr(AiW) =

l∑
k=1

tr(ÃikWβkβk
) for all

W ∈ S
p
E′. One choice, which is analogous to the technique suggested in sec-

tion 5.2.1 is

C̃k = Pβk

(
C − Pαk

CP T
αk

)
P T
βk
, Ãik = Pβk

(
Ai − Pαk

AiP
T
αk

)
P T
βk
. (5.29)

Using this choice, the definitions (5.28) simplify as

C̃k =


 Cηk ,ηk Cηk,αk

Cαk ,ηk 0


 , Ãik =


 (Ai)ηk,ηk (Ai)ηk,αk

(Ai)αk,ηk 0


 .

130

The converted dual problem is

max.
y,Uk,S̃k

bTy

s.t.
m∑
i=1

yiÃik + Pβk
(P T

αk
UkPαk

− ∑
j∈ch(k)

P T
αj
UjPαj

)P T
βk

+ S̃k = C̃k,

k = 1, . . . , l

S̃k � 0, k = 1, . . . , l,

(5.30)

with variables y, S̃k ∈ S|βk|, and Uk ∈ S|αk|, k = 1, . . . , l. The reformula-

tions (5.27) and (5.30) also follow from the clique-tree conversion methods pro-

posed in [KKM11, FKM00]. Note that the matrices Uk in the dual problem play

an identical role as the update matrices in a multifrontal supernodal Cholesky

factorization [ADV13].

Consistency constraints The variables X̃k in (5.27) are interpreted as copies

of the dense submatrices Xβkβk
. The second set of equality constraints in (5.27)

are the consistency constraints that ensure that the entries of X̃k agree when they

refer to the same entry of X . If we partition X̃k and Xβkβk
conformally as

X̃k =


 X̃k,11 X̃T

k,21

X̃k,21 X̃k,22


 , Xβkβk

=


 Xηk,ηk Xηk,αk

Xαk,ηk Xαkαk




then the consistency equations reduce to

X̃j,22 − Pαj
(P T

βk
X̃kPβk

)P T
αj

= 0, k = 1, . . . , l, j ∈ ch(k).

5.4.1 Proximal operator

In the clique tree conversion methods of [NFF03, KKM11] the converted SDP

(5.27) is solved by an interior-point method. A limitation to this approach is the

large number of equality constraints added in the primal problem or, equivalently,

131

the large dimension of the auxiliary variables Uk in the dual problem. In section 5.3

we proposed an operator-splitting method to address this problem. The key step

in each iteration of the splitting method is the evaluation of a proximal operator,

by solving the quadratic conic optimization problem (QP)

minimize
l∑

k=1

tr(C̃kX̃k) + 1/(2t)
l∑

k=1

‖X̃k − Zk‖2F

subject to
l∑

k=1

tr(ÃikX̃k) = bi, i = 1, . . . , m

X̃k � 0, k = 1, . . . , l.

(5.31)

Solving this problem by a general-purpose solver can be quite expensive and most

solvers require a reformulation to remove the quadratic term in the objective

by adding second-order cone constraints. However the problem can be solved

efficiently via a customized interior-point solver, as we now describe. A similar

technique was used for handling variable bounds in SDPs in [NWV08, TTT07].

The Newton equation or KKT system that must be solved in each iteration of

an interior-point method for the conic QP (5.31) has the form

(1/t)∆X̃k +Wk∆X̃kWk +

m∑

i=1

∆yiÃik = Rk, k = 1, . . . , l (5.32)

l∑

k=1

tr(Ãik ∆Xk) = ri, i = 1, . . . , m, (5.33)

with variables ∆X̃k, ∆y, where Wk is a positive definite scaling matrix. The

first term (1/t)∆X̃k results from the quadratic term in the objective. Without

this term it is straightforward to eliminate the variable ∆X̃k from first equation,

to obtain an equation in the variable ∆y. To achieve the same goal at a sim-

ilar cost with a customized solver we first compute eigenvalue decompositions

Wk = Qkdiag(λk)Q
T
k of the l scaling matrices, and define l matrices Sk ∈ S|βk|

132

with entries

(Sk)ij =
t

1 + tλkiλkj
, i, j = 1, . . . , |βk|.

We can now use the first equation in (5.32) to express ∆X̃k in terms of ∆y:

∆X̃k = Qk (Sk ◦ (R̂k −
m∑

i=1

∆yiÂik))Q
T
k

with R̂k = QT
kRkQk, Âik = QT

k ÃikQk, and where ◦ denotes the Hadamard

(component-wise) product. Substituting the expression for ∆X̃k in the second

equation of (5.33) gives an equation H∆y = g with

Hij =
l∑

k=1

tr(Âik(Sk ◦Âjk)), gi = ri−
l∑

k=1

tr(Âik(Sk ◦Rk)), i, j = 1, . . . , m.

(5.34)

The cost of this solution method for the KKT system (5.32)–(5.33) is comparable

to the cost of solving the KKT systems in an interior-point method applied to

the conic optimization problem (5.31) without the quadratic term. The proximal

operator can therefore be evaluated at roughly the same cost as the cost of solving

the converted SDP (5.27) with the consistency constraints removed.

To illustrate the value of this technique, we compare in figure 5.3 the time

needed to solve the semidefinite QP (5.31) using several methods: the general-

purpose conic solver SDPT3 for MATLAB, called directly or via CVX (version 2.0

beta) [GB12, GB08], and an implementation of the algorithm described above in

CVXOPT [ADV10a, ADL12]. The problems are dense and randomly generated

with l = 1, m = p = |β1|, and t = 1. The figure shows CPU time versus the order

p of the matrix variable, computed on an Intel Xeon CPU E3-1225 processor with

4 cores, 3.10 GHz clock speed, and 32 GB RAM. For the fast proximal operator

implementation, CPU time is measured using the Python module psutils (available

at code.google.com/p/psutil). For CVX and SDPT3, we used the CPU times

reported by the solver.

133

0 50 100 150 200 250
10

−2

10
0

10
2

10
4

CVX
SDPT3 1
SDPT3 2
SDPT3 3
Fast prox.

matrix order (p = |β1|)

ti
m
e
(s
ec
)

Figure 5.3: Custom proximal operator. Runtime required for a single proximal
operator evaluation (5.31) on a dense subproblem with one clique (l = 1) of size
p = |β1| and m = p constraints (averaged over 10 trials). The CPU time of the
general-purpose solver SDPT3, called directly or via CVX, is compared against
the CPU time of a customized fast proximal operator.

The fast algorithm uses the cone QP solver in CVXOPT with the default

termination criteria. In the CVX code the function sum_square() was used to

represent the quadratic term in the objective. The three SDPT3 curves correspond

to different ways of converting the problem to a conic LP using the equivalence

uTu ≤ v ⇐⇒

∥∥∥∥∥∥


 2u

v − 1



∥∥∥∥∥∥
2

≤ v + 1.

In the first formulation (‘SDPT3 1’) we replace the squared norm in the objective

with a variable w and add the constraint ‖X̃−Z‖2F ≤ w via a single second-order

cone constraint of order p(p + 1)/2 + 1. In the second formulation (‘SDPT3 2’),

we replace the quadratic term with a sum of p(p+1)/2 auxiliary variables wij, for

1 ≤ i ≤ j ≤ p, and add p(p+1)/2 second-order cone constraints of dimension two

to express (X̃ij−Zij)
2 ≤ wij. In the third formulation (‘SDPT3 3’) we replace the

quadratic term with the sum of p variables wi, subject to the constraint that wi

is an upper bound on the Euclidean norm of the lower-triangular part of the ith

134

column of X̃−Z. As can be seen, the choice between the conic LP reformulations

has an effect on the efficiency of a general-purpose solver. However the experiment

also confirms that the fast proximal operator evaluation is orders of magnitude

faster than general-purpose solvers applied to equivalent conic LPs.

Block diagonal correlative sparsity The efficiency of the decomposition

method depends crucially on the cost of the proximal operator evaluations, which

is determined by the sparsity pattern of the Schur complement matrix H (5.34),

i.e., the correlative sparsity pattern of the reformulated problems [KKK08]. Note

that in general the scaled matrices Âik used to assemble H will be either com-

pletely dense (if Ãik 6= 0) or zero (if Ãik = 0). Therefore Hij = 0 if for each k at

least one of the coefficient matrices Ãik and Ãjk is zero. This rule characterizes

the correlative sparsity pattern.

As pointed out in section 5.3.3, the sparsity of the Schur complement matrix

can be enhanced by exploiting the flexibility in the choice of parameters of the

reformulated problem (the matrices Ãik). The definition (5.29) is one possible

choice, but any set of matrices that satisfy (5.30) can be used instead. While

the optimal choice is not clear in general, it is straightforward in the important

special case when the index set {1, . . . , m} can be partitioned in l sets υ1, . . . , υl,

with the property that if i ∈ υj, then all the nonzero entries of Ai belong to the

principal submatrix (Ai)βjβj
. In this case,

Ai = P T
βj
Pβj

AiP
T
βj
Pβj

for all i ∈ υj,

and a valid choice for the coefficient matrices Ãik is to take

Ãij = Pβj
AiP

T
βj
, Ãik = 0, k 6= j,

when i ∈ υj. With this choice, the matrixH can be re-ordered to be block-diagonal

135

with dense blocks Hυiυi . Moreover the QP (5.31) is separable and equivalent to l

independent subproblems

minimize tr(CkX̃k) + 1/(2t)‖X̃k − Zk‖2F
subject to tr(ÃikX̃k) = bi, i ∈ υk

X̃k � 0.

5.5 Numerical results

In this section we present the results of numerical experiments with the decompo-

sition method applied to SDPs. First, we describe how steplength selection can

significantly affect (and impair) convergence speed and show how a simple adap-

tive steplength scheme can make the method more robust. Then, we apply the

decomposition method to an approximate Euclidean distance matrix completion

problem, motivated by an application in sensor network node localization, and il-

lustrate the convergence behavior of the method in practice. The problem involves

a sparse matrix variable whose sparsity pattern is characterized by the sensor net-

work topology, and is interesting because in the converted form the system has

block diagonal correlative sparsity regardless of the network topology. Finally, we

present extensive runtime results for a family of problems with block-arrow ag-

gregate sparsity and block-diagonal correlative sparsity. By comparing the CPU

times required by general-purpose interior-point methods and the decomposition

method, we are able to characterize the regime in which each method is more

efficient.

Software specifications The decomposition method is implemented in Python

(version 2.6.5), using the conic quadratic optimization solver of CVXOPT (version

1.1.5) [ADL12] for solving the conic QPs (5.31) in the evaluation of the proximal

operators. SEDUMI (version 1.1) [Stu99] and SDPT3 (version 4.0) in MATLAB

136

0 50 100 150 200

iteration

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

0 10 20 30 40 50 60 70 80 90

iteration

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

0 50 100 150 200

iteration

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

Figure 5.4: Choice of constant step size. Primal residual ‖rip‖2/‖x̃i‖2 and dual
residual ‖rid‖2/‖vi‖2 versus iteration number i for three constant values of ti:
ti = 10 (left), ti = 100 (center), and ti = 1000 (right).

(version 2011 b) are used as the general-purpose solver.

5.5.1 Adaptive step length selection

The first experiment illustrates the effect of the choice of the steplength parameter

tk and explains the motivation behind the adaptive strategy (2.29). We pick a

randomly generated SDP with a block-banded sparsity pattern E of order p = 402

with l = 50 cliques of size |βk| = 10. The cliques correspond to overlapping

diagonal blocks of order 10, with an overlap of size 2. The correlative sparsity

pattern in the converted SDP has a block-arrow structure with 50 diagonal blocks

of size 10× 10 and 10 dense rows and columns at the end. The number of primal

constraints and dual variables is m = 510.

Figure 5.4 shows the primal and dual residuals ‖rip‖2/‖xi‖2 and ‖rid‖2/‖vi‖2
for three constant values of the steplength parameter: ti = 10, 100, and 1000. As

can be seen, the choice of ti has a strong effect on the speed of convergence. The

figures suggest that when ti is too small the dual residual decreases more slowly

than the primal residual, and when ti is too large, the primal residual decreases

more slowly. For a good value of ti in between, the two residuals decrease at about

the same rate. This observation motivates the adaptive strategy (2.29). Figure 5.5

shows the residuals if the adaptive strategy is used, with µ = 2, τ i = 1 + 0.9i,

137

0 10 20 30 40 50 60 70 80

iteration

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

0 10 20 30 40 50 60 70 80

iteration

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

0 20 40 60 80 100 120

iteration

10
−4

10
−3

10
−2

10
−1

10
0

re
si
d
u
a
l

primal

dual

0 10 20 30 40 50 60 70 80

iteration

10
−2

10
−1

σ
k

0 10 20 30 40 50 60 70 80

iteration

10
−2

10
−1

σ
k

0 20 40 60 80 100 120

iteration

10
−3

10
−2

10
−1

σ
k

Figure 5.5: Adaptive step size. Primal and dual residuals versus iteration number
with adaptive selection of ti, starting with a value 10 (top left), 100 (center), 1000
(right). The graphs on the bottom row show the values of ti during the three runs
of the algorithm.

and starting at three different values of ti (10, 100, 1000). Figure 5.5 shows the

resulting values of tk versus the iteration number i.

The convergence graphs indicate that a simple heuristic for adapting the

steplength can improve the speed of convergence and make it less dependent on

the initial steplength. The specific convergence behavior depends on the param-

eter µ and the decay rule for τ i, but is much less sensitive to the choice of t0.

While in general the convergence with adaptive steplength is not faster than with

a carefully tuned constant steplength, the adaptive strategy is more robust than

picking an arbitrary constant steplength.

5.5.2 Approximate Euclidean distance matrix completion

In this section, we consider the problem of fitting a EDM to measurements D̂ij

of a subset of its entries. This and related problems arise in many applications,

including, for example, the sensor network node localization problem [BY04b,

138

CY07, KKW09, KW12].

From chapter 3 it is shown that D is a p× p EDM if and only if there exists

a PSD matrix X ∈ Sp such that

Dij = tr(AijX), Aij = (ei − ej)(ei − ej)
T , i, j = 1, . . . , p

where X � 0 is the Gram matrix (Xij = xT
i xj) and ei denotes the ith unit vector

in Rp.

In the EDM approximation problem we are given a set of measurements D̂ij

for entries in a sparsity pattern {i, j} ∈ E. The problem of fitting a EDM to the

measurements can be posed as

minimize
∑

{i,j}∈E
|tr(AijX)− D̂ij |

subject to X � 0,

(5.35)

with variable X ∈ Sp. Now let E ′ ⊇ E be the chordal embedding of the aggregate

sparsity pattern E of the matrices Aij . Then, without loss of generality, we can

restrict the variable X in (5.35) to be a sparse matrix in S
p
E′ and we obtain the

equivalent problem

minimize
∑

{i,j}∈E
|tr(AijX)− D̂ij |

subject to X ∈ ΠE′(Sp
+).

(5.36)

This problem is readily converted into a standard conic LP of the form (5.1), which

can then be solved using the proposed decomposition method. An interesting

feature of this application is that the correlative sparsity associated with the

converted problem is block-diagonal.

The conversion method and the block-diagonal correlative sparsity can also be

139

explained directly in terms of the problem (5.36). Suppose E has l cliques βk,

k = 1, . . . , l. Suppose we partition the set E in l sets Ek with the property that

if {i, j} ∈ Ek then i, j ∈ βk. Then (5.36) is equivalent to

minimize
l∑

k=1

∑
{i,j}∈Ek

|tr(AijP
T
βk
X̃kPβk

)− D̂ij |

subject to Pαj
(P T

βk
X̃kPβk

− P T
βj
X̃jPβj

)P T
αj

= 0, k = 1, . . . , l, βj ∈ ch(βk)

X̃k � 0, k = 1, . . . , l,

(5.37)

with variables X̃k ∈ S|βk|, k = 1, . . . , l. This problem can be solved using Spin-

garn’s method. At each iteration we alternate between projection on the subspace

defined by the consistency equations in (5.37) and evaluation of a prox-operator,

via the solution of

minimize
l∑

k=1

∑
{i,j}∈Ek

|tr(AijP
T
βk
X̃kPβk

)− D̂ij |+ 1/(2t)
l∑

k=1

‖X̃k − Zk‖2F

subject to X̃k � 0, k = 1, . . . , l.

(5.38)

Note that this problem is separable because if {i, j} ∈ Ek, Aij is nonzero only in

positions that are included in βk × βk. The problems (5.38) can be solved effi-

ciently via a straightforward modification of the interior-point method described

in section 5.4.

We now illustrate the convergence of the decomposition method on two ran-

domly generated networks. An example of a network topology is shown in fig-

ure 5.6 (top) for a problem with 500 nodes. The network edges are assigned using

the following rule: a pair {i, j} is in the sparsity pattern E if one of the nodes is

among the five nearest neighbors of the other node.

To compute a chordal embedding E ′, we use an approximate minimum degree

(AMD) reordering, which gives a permutation of the sparsity pattern that reduces

140

fill-in (figure 5.6, bottom left). Often, the resulting embedding contains many

small cliques and for our purposes it is more efficient to merge some neighboring

cliques, using algorithms similar to those in [RS09, HS10]. Specifically, traversing

the tree in a topological order, we greedily merge clique k with its parent if

(|βpar(k)| − |αk|)(|ηk|) ≤ tfill or max(|ηk|, |ηpar(k)|) ≤ tsize

where tfill is a threshold based on the amount of fill that results from merging

clique k with its parent, and tsize is a threshold based on the cardinality of the

sets ηpar(k) and ηk. In figure 5.6 (bottom right) we show the result of this clique-

merging technique using the values tfill = tsize = 5. This reduced the 359 original

cliques with an average of 5 nodes each to 79 cliques with an average of 10 nodes.

A typical convergence plot of the resulting problem is given in figure 5.7 for a

network with 500 nodes (left) and 2000 nodes (right). A constant value tk = 0.2 is

used for the steplength parameter. The greedy clique merging strategy described

above was used, with the same threshold values.

5.5.3 Block-arrow sparsity

In this experiment we compare the efficiency of the splitting method with general-

purpose SDP solvers. We consider a family of randomly generated SDPs with a

block-arrow aggregate sparsity pattern E and a block-diagonal correlative sparsity

pattern. The sparsity pattern E and corresponding clique tree are defined in

figure 5.8. It consists of l diagonal blocks of size d × d, plus w dense final rows

and columns. We take the clique

βl = {(l − 1)d+ 1, . . . , ld, ld+ 1, . . . , ld+ w}

141

0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 2938
0 100 200 300 400 500

0

50

100

150

200

250

300

350

400

450

500

nz = 18064

Figure 5.6: EDM example. Top: nearest-neighbor network for a problem with 500
nodes in two dimensions. Two nodes are connected if one of the two is among the 5
nearest neighbors of the other node. Bottom left: corresponding sparsity pattern
after AMD permutation and chordal extension. Bottom right: corresponding
sparsity pattern after clique merging. Before clique merging, there are 359 cliques
with an average of 5 elements. After clique merging, there are 79 cliques with an
average of 5 elements.

142

0 200 400 600 800

10
−4

10
−3

10
−2

10
−1

10
0

primal
dual

iteration

re
si
d
u
al

0 200 400 600 800 1000

10
−4

10
−3

10
−2

10
−1

10
0

primal
dual

iteration

re
si
d
u
al

Figure 5.7: Convergence. Relative primal and dual residuals versus iteration
number for networks with 500 (left) and 2000 (right) nodes. For n = 500, there
are 82 cliques, and for n = 2000, there are 310 cliques. A constant steplength
parameter tk = 0.2 is used.

(with αl = ∅) as root of the clique tree. The other l − 1 cliques βk and the

intersections αk = βk ∩ par(βk) with their parent cliques are

βk = {(k−1)d+1, . . . , kd}∪αk, αk = {ld+1, ld+2, . . . , ld+w}, k = 1, . . . , l−1.

We generate matrix cone programs with m = ls primal equality constraints, par-

titioned in l sets

υk = {(k − 1)s+ 1, (k − 1)s+ 2, . . . , ks}, k = 1, . . . , l,

of equal size |υk| = s. If i ∈ υk, then the coefficient matrix Ai contains a dense

βk × βk block, and is otherwise zero. We will use the notation

(Ai)βkβk
=


 Ui Vi

V T
i Wi


 ,

143

d

w

d w

ld+ 1, . . ., ld+ w

1, . . ., d

ld+ 1, . . ., ld+ w

d+ 1, . . ., 2d

ld+ 1, . . ., ld+ w

(l − 2)d+ 1, . . ., (l − 1)d

(l − 1)d+ 1, . . ., ld+ w

Figure 5.8: Block-arrow example. Top: illustration of block-arrow sparsity pattern
for l cliques. The order of the matrix is ld + w. The first l diagonal blocks in
the matrix have size d, the last block column and block row have width w. The
cliques therefore have size d+w. Bottom: corresponding clique tree. Each clique
in the clique tree is partitioned in two sets: the top row shows αk = βk ∩ par(βk);
the bottom row shows ηk = βk \ αk.

144

for the nonzero block of Ai if i ∈ υk. The primal and dual SDPs can therefore be

expressed as

minimize tr(CX)

subject to A(X) = b

X � 0

maximize bT y

subject to A∗(y) + S = C

S � 0

(5.39)

with a linear mapping A : S(ld+w)×(ld+w) → Rls defined as

A(X)i = tr




 Ui Vi

V T
i Wi




 Xkk Xk,l+1

Xl+1,k Xl+1,l+1




 , i ∈ υk, k = 1, . . . , l,

where Xij denotes the i, j block of X . (These blocks have dimensions Xii ∈ Sd

for i = 1, . . . , l, Xl+1,l+1 ∈ Sw, Xl+1,i ∈ Rw×d for i = 1, . . . , l.) The adjoint

A∗ : Rls → S(ld+w)×(ld+w) is

A∗(y) =




∑
i∈υ1

yiUi 0 · · · 0
∑
i∈υ1

yiVi

0
∑
i∈υ2

yiUi · · · 0
∑
i∈υ2

yiVi

...
...

. . .
...

...

0 0 · · · ∑
i∈υl

yiUi

∑
i∈υl

yiVi

∑
i∈υ1

yiV
T
i

∑
i∈υ2

yiV
T
i · · · ∑

i∈υl
yiV

T
i

m∑
i=1

yiWi




.

In the reformulated problem, the variable X is replaced with l matrices X̃k =

Xβkβk
, i.e., defined as

X̃k =


 (X̃k)11 (X̃k)12

(X̃k)21 (X̃k)22


 =


 Xkk Xk,l+1

XT
k,l+1 Xl+1,l+1


 , k = 1, . . . , l,

145

and the primal SDP is converted to

minimize
l∑

k=1

tr(C̃kX̃k)

subject to tr




 Ui Vi

V T
i Wi




 (X̃k)11 (X̃k)12

(X̃k)21 (X̃k)22




 = bi, i ∈ υk, k = 1, . . . , l

(X̃k)22 = (X̃l)22, k = 1, . . . , l − 1

X̃k � 0, k = 1, . . . , l

(5.40)

where

C̃k =


 Ckk Ck,l+1

CT
k,l+1 0


 , k = 1, . . . , l − 1, C̃l =


 Cll Cl,l+1

CT
l,l+1 Cl+1,l+1


 .

With this choice of parameters, the correlative sparsity pattern of the converted

SDP (5.40) is block-diagonal, i.e., except for the consistency constraints (X̃k)22 =

(X̃l)22 the problem is separable with independent variables X̃k ∈ Sp+w. This

allows us to compute the proximal operator by solving l independent conic QPs.

Problem generation The problem data are randomly generated as follows.

First, the entries of Uk, Vk, Wk are drawn independently from a unit-variance

normal distribution. A strictly primal feasible X is constructed as X = Z + αI

where Z ∈ S
p
E is randomly generated with unit-variance normal distribution i.i.d.

entries and α is chosen so that Xβkβk
= Zβkβk

+αI ≻ 0 for k = 1, . . . , l. The right-

hand side b in the primal constraint is computed as bi = tr(AiX), i = 1, . . . , m.

Next, strictly dual feasible y ∈ Rm, S ∈ S
p
E are constructed. The vector

y has Gaussian i.i.d. entries and S is constructed as S =
∑l

k=1 P
T
βk
S̃kPβk

, with

S̃k = Zk + αI, where Zk ∈ S|βk| has Gaussian distribution generated entries, and

α chosen so that S̃k ≻ 0. Finally, the matrix C is constructed as C = S+
∑

i yiAi.

146

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

SED. (unc.)
SDPT3 (unc.)
SED. (conv.)
SDPT3 (conv.)
Spingarn

ti
m
e
(s
ec
)

w (arrow width)
0 20 40 60 80 100 120 140

10
0

10
1

10
2

10
3

10
4

10
5

SED. (unc.)
SDPT3 (unc.)
SED. (conv.)
SDPT3 (conv.)
Spingarn

ti
m
e
(s
ec
)

l (number of cliques)

Figure 5.9: Performance. Solution time for randomly generated SDPs with block-
-arrow sparsity patterns. Times are reported for SEDUMI (SED.) and SDPT3
applied to the original (‘unc.’) and converted (‘conv’) SDPs, and the Spingarn
method applied to the converted SDP. The figure on the left shows the times as
function of arrow width w, for fixed dimensions l = 100, d = 20, s = 10. The
figure on the right shows the times versus number of cliques l, for fixed dimensions
w = 20, d = 20, s = 10.

Comparison with general-purpose SDP solvers In figure 5.9 we com-

pare the solution time of Spingarn’s algorithm with the general-purpose interior-

point solvers SEDUMI and SDPT3, applied to the unconverted and converted

SDPs (5.1) and (5.27). In the decomposition method we use a constant steplength

parameter tk = 0.2 and relaxation parameter ρk = 1.75. The stopping criterion

is (2.28) with ǫp = ǫd = 10−4. For each data point we report the average CPU

time over 5 instances.

To interpret the results, it is useful to consider the linear algebra complexity

per iteration of each method. The unconverted SDP (5.39) has a single matrix

variable X of order p = ld+w. The cost per iteration of an interior-point method

is dominated by the cost of forming and solving the Schur complement equation,

which is dense and of size m = sl. For the problem sizes used in the figures (w

small compared to ld) the cost of solving the Schur complement dominates the

overall complexity. This explains the nearly constant solution time in the first

figure (fixed l, s, p, varying w) and the increase with l shown in the second figure.

147

The converted SDP (5.40) has l variables X̃k of order d + w. The Schur

complement equation in an interior-point method has the general structure (5.19)

with a leading block-diagonal matrix (l blocks of size s × s) augmented with a

dense block row and block column of width proportional to lw2. For small w,

exploiting the block-diagonal structure in the Schur complement equation, allows

one to solve the Schur complement equation very quickly and reduces the cost per

iteration to a fraction of a cost of solving the unconverted problem, despite the

increased size of the problem. However the advantage disappears with increasing

w (figure 5.9 left).

The main step in each iteration of the Spingarn method applied to the con-

verted problem is the evaluation of the prox-operators via an interior-point method.

The Schur complement equations that arise in this computation are block-diagonal

(l blocks of order s) and therefore the cost of solving them is independent of w

and linear in l. As an additional advantage, since the correlative sparsity pattern

is block-diagonal, the proximal operator can be evaluated by solving l indepen-

dent conic QPs that can be solved in parallel. This was not implemented in the

experiment, but could reduce the solution time by a factor of roughly l.

Accuracy and steplength selection The principal disadvantage of the split-

ting method, compared with an interior-point method, is the more limited accu-

racy and the higher sensitivity to the choice of algorithm parameters. Figure 5.10

(left) shows the number of iterations versus l for different values of the tolerance ǫ

used in the stopping criterion. The right-hand plot shows the number of iterations

versus l for two different constant values of the steplength parameter tk (tk = 1.0

and tk = 0.2) and for an adaptively adjusted steplength.

So far we have assumed that the error in the proximal operator evaluations

is negligible compared with the exit tolerances used in Spingarn’s method. In

the last experiment we examine the effect of inexactness of the proximal operator

148

0 50 100 150
10

0

10
1

10
2

10
3

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

l (number of cliques)

n
u
m
b
er

of
it
er
at
io
n
s

0 50 100 150
10

2

10
3

10
4

σ
k
 = 1.0

σ
k
 = 5.0

adaptive

l (number of cliques)

n
u
m
b
er

of
it
er
at
io
n
s

Figure 5.10: Accuracy and steplength. Left: number of iterations for of Spingarn’s
method based on the desired accuracy, for a problem instance with d = 20, w = 20,
s = 10, and using a fixed steplength parameter tk = 0.2. Right: number of
iterations for the same problem with ǫ = 10−4 and different choices of steplength.

evaluations. As test problem we use an instance of the family of block-arrow

problems, with d = 10, l = 25, w = 10, s = 10. The accuracy of the conic QP

solver used to evaluate the prox-operators is controlled by three tolerances that

bound the error in the optimality conditions (5.25). The tolerance ǫfeas is an upper

bound on the relative error in the primal and dual equality constraints, ǫabs is an

upper bound on the duality gap, and ǫrel is an upper bound on the relative duality

gap. In the experiment we set these tolerances to ǫfeas = ǫabs = ǫrel/10 = ǫprox/10,

for three values of ǫprox: the CVXOPT default value ǫprox = 10−6, and two smaller

values, 10−8 and 10−10. For each value, we run Spingarn’s method with different

tolerances ǫp and ǫd in the stopping condition (2.28). The results are shown in

Table 5.1. In columns 3–5 we compare the solution from Spingarn’s method with

the answer returned by an interior-point solver (SDPT3). The entries in these

columns are defined as

rX =
‖X̃ − X̃ipm‖F

‖X̃ipm‖F
, ry =

‖y − yipm‖2
‖yipm‖2

, robj =
|f(X̃)− f(X̃ipm)|

|f(X̃ipm)|

where X̃ipm and yipm are the optimal primal and dual variables of the converted

149

ǫprox ǫp = ǫd rX ry robj #iterations

10−6 10−4 9.4 10−3 7.6 10−4 1.6 10−5 179

10−8
10−4 9.1 10−3 7.2 10−4 1.5 10−5 180
10−6 1.2 10−4 8.6 10−6 5.7 10−8 443
10−8 2.1 10−5 2.1 10−6 1.8 10−8 2376

10−10
10−4 9.1 10−3 7.2 10−4 1.5 10−5 180
10−6 1.2 10−4 8.2 10−6 4.3 10−8 444
10−8 1.1 10−5 2.8 10−7 1.9 10−8 759

Table 5.1: Accuracy. Relative differences between solutions, computed by Spin-
garn’s method and an interior-point method, and the number of iterations in Spin-
garn’s method, for varying exit conditions in Spingarn’s method and the proximal
operator evaluations. The first column is the tolerance in the proximal operator
evaluations. The second column shows the tolerances in Spingarn’s method.

problem computed by SDPT3, and the function f(X̃) is the primal objective

value. The last column in the table is the number of iterations in Spingarn’s

method. (For ǫprox = 10−6 and ǫp = ǫd = 10−6, the method did not converge in

10000 iterations.)

From the table we can make a few observations. First, when ǫprox ≪ ǫp = ǫd,

the relative error in the solution seems to be comparable in magnitude with the

primal and dual residuals. Second, when running Spingarn’s method with a mod-

erate accuracy (for example, with ǫp = ǫd = 10−4), increasing the accuracy of the

proximal operator evaluation does not improve the convergence or the accuracy

of the result, and the accuracy of an interior-point method with typical default

settings is adequate.

5.6 Discussion

We have described a decomposition method that exploits partially separable struc-

ture in linear conic optimization problems. The basic idea is straightforward: by

replicating some of the variables, we reformulate the problem as an equivalent

linear optimization problem with block-separable conic inequalities and an equal-

ity constraint that ensures that the replicated variables are consistent. We can

150

then apply Spingarn’s method of partial inverses to this equality-constrained con-

vex problem. Spingarn’s method is a generalized alternating projection method

for convex optimization over a subspace. It alternates orthogonal projections on

the subspace with the evaluation of the proximal operator of the cost function.

In the method described in the paper, these prox-operators are evaluated by an

interior-point method for conic quadratic optimization.

When applied to sparse SDPs, the reformulation coincides with the clique

conversion methods which were introduced in [KKM11, FKM00] with the purpose

of exploiting sparsity in interior-point methods for semidefinite programming. By

solving the converted problems via a splitting algorithm instead of an interior-

point algorithm we extend the applicability of the conversion methods to problems

for which the converted problem is too large to handle by interior-point methods.

As a second advantage, if the correlative sparsity is block-diagonal, the most

expensive step of the decomposition algorithm (evaluating the proximal operator)

is separable and can be parallelized. The numerical experiments indicate that

the approach is effective when a moderate accuracy (compared with interior-point

methods) is acceptable. However the convergence can be quite slow and strongly

depends on the choice of steplength.

A critical component in the decomposition algorithm for semidefinite program-

ming is the use of a customized interior-point method for evaluating the proximal

operators. This technique allows us to evaluate the proximal operator at roughly

the same cost of solving the reformulated SDP without the consistency constraints.

As a further improvement one could extend this technique to exploit sparsity in

the coefficient matrices of the reformulated problem, using techniques developed

for interior-point methods for sparse matrix cones [ADV13].

151

CHAPTER 6

Conclusion

This thesis presents a set of decomposition methods for large-scale sparse semidef-

inite and EDM optimization problems. The main contribution is to combine re-

sults of sparse matrix theory with first-order methods and interior-point methods

in order to exploit sparsity more effectively. A key observation is that the sparse

completable PSD and EDM cones can be written in terms of smaller, overlapping

matrix inequality constraints. By applying first-order splitting methods, we reduce

the problem into several smaller subproblems that often can be solved indepen-

dently. Specifically, we use dual decomposition methods and Douglas-Rachford

splitting methods to solve matrix nearness problems, and a hybrid proximal split-

ting method and interior-point method to solve large linear SDPs. To demonstrate

that our methods successfully exploit sparsity, we solve problems involving sparse

matrices as large as 100, 000×100, 000. We compare runtime results against first-

order and interior-point methods that do not use chordal decomposition, showing

a significant reduction in runtime and memory usage.

The goal of the thesis is to offer a small contribution toward the wider set of

large-scale optimization problems. The excitement over “Big Data problems”

seems to have permeated every industry, from software companies like Face-

book [Mar14] and Twitter [Edw14], to the healthcare industry mining patient

data [Der15], to optimally running political campaigns [Lam13]. In optimization,

Big Data applications are driving current research in very large-scale and dis-

tributed optimization, and have been the subject of recent dedicated workshops

152

and a major theme of optimization conferences.

The interest in large-scale optimization has caused a resurgence of classical

methods (e.g. splitting methods, coordinate descent methods, stochastic meth-

ods, etc.) that that are less accurate than interior-point methods, but use very

inexpensive iterations and are therefore better suited for very large problems. (See,

for example, the survey [CBS14].) However, despite the advances in first-order

methods for many types of large-scale nonsmooth convex optimization problems,

success in applying similar methods to sparse SDPs has been more limited. As we

have shown in this thesis, without using decomposition, handling this constraint

usually involves full eigenvalue decompositions, which is expensive in both compu-

tations and memory usage. The issue is not improved when using a Lanczos-type

method, since the intermediate variables are usually dense, and computing a PSD

projection often involves computing much more than a few eigenvectors.

In this thesis we have applied chordal decomposition to solve large sparse

SDPs for two classes of problems: linear conic optimization and matrix nearness

problems. We have described techniques that exploit chordal decomposition to

solve very large, sparse problems. Hopefully, we have illustrated the versatility

of the methods; there are many more first-order methods we did not explore,

but which can also exploit chordal decomposition of SDPs in very similar ways.

Similarly, the extensions to stochastic methods (like stochastic gradient descent

and stochastic coordinate descent) may lead to exciting results.

In almost all the methods presented, the most expensive computations (evalua-

tions of proximal operators) can be parallelized. We explored this in a few informal

experiments, and found that in most cases, it is possible to achieve nearly linear

speedup on a multicore machine. However, when extended to distributed com-

puting across multiple machines, we found that the interprocessor communication

lag diminished any parallelization benefit. A fully distributed implementation of

these methods remains a promising but difficult direction for further research.

153

References

[AA12] S. Al-Homidan and M. AlQarni. “Structure methods for solving the
nearest correlation matrix problem.” Positivity, 16(3):497–508, 2012.

[ADD96] P. Amestoy, T. Davis, and I. Duff. “An approximate minimum de-
gree ordering.” SIAM Journal on Matrix Analysis and Applications,
17(4):886–905, 1996.

[ADL12] M. S. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe. “Interior-point
methods for large-scale cone programming.” In S. Sra, S. Nowozin, and
S. J. Wright, editors, Optimization for Machine Learning, pp. 55–83.
MIT Press, 2012.

[ADS13] C. M. Aláız, F. Dinuzzo, and S. Sra. “Correlation matrix nearness and
completion under observation uncertainty.” IMA Journal of Numerical
Analysis, 2013.

[ADV10a] M. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A Python
Package for Convex Optimization. www.cvxopt.org, 2010.

[ADV10b] M. Andersen, J. Dahl, and L. Vandenberghe. SMCP: Python Extension
for Sparse Matrix Cone Programs, 2010. abel.ee.ucla.edu/smcp.

[ADV10c] M. S. Andersen, J. Dahl, and L. Vandenberghe. “Implementa-
tion of nonsymmetric interior-point methods for linear optimization
over sparse matrix cones.” Mathematical Programming Computation,
2:167–201, 2010.

[ADV13] M. S. Andersen, J. Dahl, and L. Vandenberghe. “Logarithmic bar-
riers for sparse matrix cones.” Optimization Methods and Software,
28(3):396–423, 2013.

[AHM88] J. Agler, J. W. Helton, S. McCullough, and L. Rodman. “Positive
semidefinite matrices with a given sparsity pattern.” Linear Algebra
and Its Applications, 107:101–149, 1988.

[AHV14] M. S. Andersen, A. Hansson, and L. Vandenberghe. “Reduced-
complexity semidefinite relaxations of optimal power flow problems.”
Power Systems, IEEE Transactions on, 29(4):1855–1863, 2014.

[AKG13] B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson,
and M. Li. “Determining protein structures from NOESY distance
constraints by semidefinite programming.” Journal of Computational
Biology, 20(4):296–310, 2013.

154

[AKW99] A. Y. Alfakih, A. Khandani, and H. Wolkowicz. “Solving Euclidean
distance matrix completion problems via semidefinite programming.”
Computational Optimization and Applications, 12(1-3):13–30, 1999.

[Ali95] F. Alizadeh. “Interior point methods in semidefinite programming
with applications to combinatorial optimization.” SIAM Journal on
Optimization, 5(1):13–51, February 1995.

[Aus76] A. Auslender. Optimisation: Méthodes Numériques. Masson, 1976.

[AW05] S. Al-Homidan and H. Wolkowicz. “Approximate and exact completion
problems for Euclidean distance matrices using semidefinite program-
ming.” Linear Algebra and Its Applications, 406:109–141, 2005.

[BB96] H. H. Bauschke and J. M. Borwein. “On projection algorithms for solv-
ing convex feasibility problems.” SIAM review, 38(3):367–426, 1996.

[BC11] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. Springer, 2011.

[BD86] J. P. Boyle and R. L. Dykstra. “A method for finding projections
onto the intersection of convex sets in Hilbert spaces.” In R. Dykstra,
T. Robertson, and F. T. Wright, editors, Advances in Order Restricted
Statistical Inference, volume 37 of Lecture Notes in Statistics, pp. 28–
47. Springer-Verlag, 1986.

[BHF08] X. Bai, W. Huang, K. Fujisawa, and Y. Wang. “Semidefinite pro-
gramming for optimal power flow problems.” International Journal of
Electrical Power & Energy Systems, 30(6):383–392, 2008.

[BHR10] R. Borsdorf, N. J. Higham, and M. Raydan. “Computing a nearest
correlation matrix with factor structure.” SIAM Journal on Matrix
Analysis and Applications, 31(5):2603–2622, 2010.

[BJ95] M. Bakonyi and C. R. Johnson. “The Euclidian distance matrix com-
pletion problem.” SIAM Journal on Matrix Analysis and Applications,
16(2):646–654, 1995.

[BK73] C. Bron and J. Kerbosch. “Algorithm 457: Finding all cliques of
an undirected graph.” Communications of the ACM, 16(9):575–577,
1973.

[BL08] P. J. Bickel and E. Levina. “Covariance regularization by threshold-
ing.” The Annals of Statistics, pp. 2577–2604, 2008.

[BLW06] P. Biswas, T.-C. Lian, T.-C. Wang, and Y. Ye. “Semidefinite pro-
gramming based algorithms for sensor network localization.” ACM
Transactions on Sensor Networks, 2(2):188–220, 2006.

155

[BP93] J. R. S. Blair and B. Peyton. “An introduction to chordal graphs and
clique trees.” In A. George, J. R. Gilbert, and J. W. H. Liu, editors,
Graph Theory and Sparse Matrix Computation. Springer-Verlag, 1993.

[BPC11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Dis-
tributed optimization and statistical learning via the alternating di-
rection method of multipliers.” Foundations and Trends in Machine
Learning, 3(1):1–122, 2011.

[BT97] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, Belmont, Mass., 1997.

[BT09] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems.” SIAM Journal on Imaging
Sciences, 2(1):183–202, 2009.

[BT13] A. Beck and L. Tetruashvili. “On the convergence of block coordinate
descent type methods.” SIAM Journal on Optimization, 23(4):2037–
2060, 2013.

[BT14] A. Beck and M. Teboulle. “A fast dual proximal gradient algorithm for
convex minimization and applications.” Operations Research Letters,
42:1–6, 2014.

[Bun74] P. Buneman. “A characterization of rigid circuit graphs.” Discrete
Mathematics, 9:205–212, 1974.

[BV96] S. Boyd and L. Vandenberghe. “Semidefinite programming relaxations
of non-convex problems in control and combinatorial optimization.” In
Mathematical Engineering: A Kailath Festschrift, chapter 1, pp. 1–10.
Kluwer, 1996.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Uni-
versity Press, Cambridge, 2004.

[BV08] S. Burer and D. Vandenbussche. “A finite branch-and-bound algorithm
for nonconvex quadratic programming via semidefinite relaxations.”
Mathematical Programming, 113(2):259–282, 2008.

[BX05] S. Boyd and L. Xiao. “Least-squares covariance matrix adjustment.”
SIAM Journal on Matrix Analysis and Applications, 27(2):532–546,
2005.

[BY04a] S. J. Benson and Y. Ye. “DSDP5: A software package implementing
the dual-scaling algorithm for semidefinite programming.” Technical
Report ANL/MCS-TM-255, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, 2004.

156

[BY04b] P. Biswas and Y. Ye. “Semidefinite programming for ad hoc wireless
sensor network localization.” In Third International Symposium on
Information Processing in Sensor Networks, IPSN’04, pp. 46–54, 2004.

[BYZ00] S. J. Benson, Y. Ye, and X. Zhang. “Solving large-scale sparse semidef-
inite programs for combinatorial optimization.” SIAM Journal on Op-
timization, 10:443–461, 2000.

[Cau47] A. Cauchy. “Méthode générale pour la résolution des systemes
d’équations simultanées.” Comp. Rend. Sci. Paris, 25(1847):536–538,
1847.

[CBS14] V. Cevher, S. Becker, and M. Schmidt. “Convex optimization for big
data: Scalable, randomized, and parallel algorithms for big data ana-
lytics.” Signal Processing Magazine, IEEE, 31(5):32–43, 2014.

[CD14] A. Chambolle and C. Dossal. “On the convergence of the iterates of
“FISTA”.” preprint, https://hal.inria.fr/hal-01060130, 2014.

[CH88] G. M. Crippen and T. F. Havel. Distance Geometry and Molecular
Conformation, volume 74. Research Studies Press Taunton, England,
1988.

[CP07] P. L. Combettes and J.-C. Pesquet. “A Douglas-Rachford splitting ap-
proach to nonsmooth convex variational signal recovery.” IEEE Jour-
nal of Selected Topics in Signal Processing, 1(4):564–574, 2007.

[CP11b] P. L. Combettes and J.-C. Pesquet. “Proximal splitting methods in sig-
nal processing.” In H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering, pp. 185–212.
Springer, 2011.

[CY00] C. Choi and Y. Ye. “Solving sparse semidefinite programs using the
dual scaling algorithms with an iterative solver.” Manuscript, De-
partment of Management Sciences, University of Iowa, Iowa City, IA,
52242, 2000.

[CY07] A. M.-C. Cho and Y. Ye. “Theory of semidefinite programming for
sensor network localization.” Mathematical Programming, Series B,
109:367–384, 2007.

[CZ97] Y. Censor and S. A. Zenios. Parallel Optimization: Theory, Algo-
rithms, and Applications. Numerical Mathematics and Scientific Com-
putation. Oxford University Press, New York, 1997.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton Uni-
versity Press, 1963.

157

[Dan92] J. Dancis. “Positive semidefinite completions of partial hermitian ma-
trices.” Linear Algebra and Appl., 175:97–114, 1992.

[Dat10] J. Dattorro. Convex Optimization and Euclidean Distance Geometry.
Lulu. com, 2010.

[dBE08] A. d’Aspremont, O. Banerjee, and L. El Ghaoui. “First-order methods
for sparse covariance selection.” SIAM Journal on Matrix Analysis and
Applications, 30(1):56–66, 2008.

[dE59] D.A. d’Esopo. “A convex programming procedure.” Naval Research
Logistics Quarterly, 6(1):33–42, 1959.

[Dem72] A. P. Dempster. “Covariance selection.” Biometrics, 28:157–175,
1972.

[Der15] M. Derman. “IBM Watson Health, Epic and Mayo Clinic to unlock
new insights from electronic health records.” https://www-03.ibm.

com/press/us/en/pressrelease/46768.wss, May 2015. Accessed:
2015-8-19.

[DG81] H. Dym and I. Gohberg. “Extensions of band matrices with band
inverses.” Linear Algebra and Appl., 36:1–24, 1981.

[DH73] W. E. Donath and A. J. Hoffman. “Lower bounds for the partitioning
of graphs.” IBM Journal of Research and Development, 17:420–425,
1973.

[DH11] T. A. Davis and Y. Hu. “The University of Florida sparse matrix
collection.” ACM Transactions on Mathematical Software, 38:1 – 25,
2011.

[DR83] I. S. Duff and J. K. Reid. “The multifrontal solution of indefinite
sparse symmetric linear equations.” ACM Transactions on Mathemat-
ical Software, 9(3):302–325, 1983.

[DY14] D. Davis and W. Yin. “Convergence rate analysis of several splitting
schemes.”, 2014. arXiv preprint arXiv:1406.4834.

[Dyk83] R. L. Dykstra. “An algorithm for restricted least squares regression.”
Journal of the Americal Statistical Association, 78:837–842, December
1983.

[EB92] J. Eckstein and D. Bertsekas. “On the Douglas-Rachford splitting
method and the proximal point algorithm for maximal monotone op-
erators.” Mathematical Programming, 55:293–318, 1992.

158

[Eck94] J. Eckstein. “Parallel alternating direction multiplier decomposition of
convex programs.” Journal of Optimization Theory and Applications,
80(1):39–62, 1994.

[Edw14] J. Edwards. “Twitter is quietly building a $100 million
business In Big Data.” http://www.businessinsider.com/

twitter-100-million-big-data-business-2014-4, April 2014.
Accessed: 2015-8-19.

[ELV13] M. Eisenberg-Nagy, M. Laurent, and A. Varvitsiotis. “Complexity
of the positive semidefinite matrix completion problem with a rank
constraint.” In Discrete Geometry and Optimization, pp. 105–120.
Springer, 2013.

[FG65] D. R. Fulkerson and O. Gross. “Incidence matrices and interval
graphs.” Pacific Journal of Mathematics, 15(3):835–855, 1965.

[FKK09] K. Fujisawa, S. Kim, M. Kojima, Y. Okamoto, and M. Yamashita.
“User’s manual for SparseCoLO: Conversion methods for sparse conic-
form linear optimization problems.” Technical report, Research Report
B-453, Dept. of Math. and Comp. Sci., Tokyo Institute of Technology,
Tokyo 152-8552, Japan, 2009.

[FKM00] M. Fukuda, M. Kojima, K. Murota, and K. Nakata. “Exploiting
sparsity in semidefinite programming via matrix completion I: general
framework.” SIAM Journal on Optimization, 11:647–674, 2000.

[Gav74] F. Gavril. “The intersection graphs of subtrees in trees are exactly the
chordal graphs.” Journal of Combinatorial Theory Series B, 16:47–56,
1974.

[GB08] M. Grant and S. Boyd. “Graph implementations for nonsmooth convex
programs.” In V. Blondel, S. Boyd, and H. Kimura, editors, Recent
Advances in Learning and Control (a tribute to M. Vidyasagar), pp.
95–110. Springer, 2008.

[GB12] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex
Programming, version 2.0 (beta). cvxr.com, 2012.

[GHH90] W. Glunt, T. L. Hayden, S. Hong, and J. Wells. “An alternating pro-
jection algorithm for computing the nearest Euclidean distance ma-
trix.” SIAM Journal on Matrix Analysis and Applications, 11(4):589–
600, 1990.

[GHJ99] W. Glunt, T.L. Hayden, C.R. Johnson, and P. Tarazaga. “Positive
definite completions and determinant maximization.” Linear algebra
and its applications, 288:1–10, 1999.

159

[GJS84] R. Grone, C. R. Johnson, E. M Sá, and H. Wolkowicz. “Positive
definite completions of partial Hermitian matrices.” Linear Algebra
and Appl., 58:109–124, 1984.

[GL89] A. George and J. W. H. Liu. “The evolution of the minimum degree
ordering algorithm.” Siam review, 31(1):1–19, 1989.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combina-
torics. Springer-Verlag, 1988.

[GM89] N. Gaffke and R. Mathar. “A cyclic projection algorithm via duality.”
Metrika, 36:29–54, 1989.

[Gol62] A. A. Goldstein. “Cauchy’s method of minimization.” Numerische
Mathematik, 4(1):146–150, 1962.

[Gol64] A. A. Goldstein. “Convex programming in Hilbert space.” Bulletin of
the American Mathematical Society, 70:709–710, 1964.

[GR00] M. Goemans and F. Rendl. “Combinatorial optimization.” In
H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors, Handbook of
Semidefinite Programming, chapter 12, pp. 343–360. Kluwer Academic
Publishers, 2000.

[GS00] L. Grippo and M. Sciandrone. “On the convergence of the block non-
linear Gauss–Seidel method under convex constraints.” Operations
Research Letters, 26(3):127–136, 2000.

[GT82] A. Griewank and Ph. L. Toint. “Partitioned variable metric updates
for large structured optimization problems.” Numerische Mathematik,
39:119–137, 1982.

[GT84] A. Griewank and Ph. L. Toint. “On the existence of convex decompo-
sitions of partially separable functions.” Mathematical Programming,
28:25–49, 1984.

[GW95] M. X. Goemans and D. P. Williamson. “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming.” Journal of the Association for Computing Machinery,
42(6):1115–1145, 1995.

[Han88] S.-P. Han. “A successive projection method.” Mathematical Program-
ming, 40:1–14, 1988.

[Heg06] P. Heggernes. “Minimal triangulation of graphs: a survey.” Discrete
Mathematics, 306:297–317, 2006.

160

[Hig88] N.J. Higham. “Computing a nearest symmetric positive semidefinite
matrix.” Linear algebra and its applications, 103:103–118, 1988.

[Hig02] N. J. Higham. “Computing the nearest correlation matrix—a problem
from finance.” IMA Journal of Numerical Analysis, 22(3):329–343,
2002.

[HL88] S.-P. Han and G. Lou. “A parallel algorithm for a class of convex
programs.” SIAM Journal on Control and Optimization, 26(2):345–
355, 1988.

[HLW03] B. S. He, L. Z. Liao, and S. L. Wang. “Self-adaptive operator splitting
methods for monotone variational inequalities.” Numerische Mathe-
matik, 94:715–737, 2003.

[HM11] D. Henrion and J. Malick. “Projection methods for conic feasibility
problems: applications to polynomial sum-of-squares decompositions.”
Optimization Methods & Software, 26(1):23–46, 2011.

[HM12] D. Henrion and J. Malick. “Projection methods in conic optimization.”
In M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite,
Conic and Polynomial Optimization, pp. 565–600. Springer, 2012.

[HPR89] J. Helton, S. Pierce, and L. Rodman. “The ranks of extremal positive
semidefinite matrices with given sparsity pattern.” SIAM Journal on
Matrix Analysis and Applications, 10:407–423, 1989.

[HS10] J. D. Hogg and J. A. Scott. A Modern Analyse Phase for Sparse Tree-
Based Direct Methods. Science and Technology Facilities Council, 2010.

[Hu06] S. Hu. Semidefinite Relaxation Based Branch-and-Bound Method for
Nonconvex Quadratic Programming. PhD thesis, Massachusetts Insti-
tute of Technology, 2006.

[HW88] T.L. Hayden and J. Wells. “Approximation by matrices positive
semidefinite on a subspace.” Linear Algebra and its Applications,
109(0):115 – 130, 1988.

[HYW00] B. S. He, H. Yang, and S. L. Wang. “Alternating direction method with
self-adaptive penalty parameters for monotone variational inequali-
ties.” Journal of Optimization Theory and Applications, 106:337–356,
2000.

[Jab12] R. A. Jabr. “Exploiting sparsity in SDP relaxations of the OPF prob-
lem.” IEEE Transactions on Power Systems, 27(2):1138–1139, 2012.

161

[Joh90] C. R. Johnson. “Matrix completion problems: a survey.” In C. R.
Johnson, editor, Matrix Theory and Applications, volume 40 of Pro-
ceedings of Symposia in Applied Mathematics, pp. 171–189. American
Mathematical Society, 1990.

[JT95] C. R. Johnson and P. Tarazaga. “Connections between the real pos-
itive semidefinite and distance matrix completion problems.” Linear
Algebra and Its Applications, 223/224:375–391, 1995.

[Kan39] L. V. Kantorovich. “The mathematical method of production planning
and organization.” Management Science, 6:363–422, 1939.

[Kar84] N. Karmarkar. “A new polynomial-tme algorithm for linear program-
ming.” Combinatorica, 4(4):373–395, 1984.

[KKK08] K. Kobayashi, S. Kim, and M. Kojima. “Correlative sparsity in primal-
dual interior-point methods for LP, SDP, and SOCP.” Applied Math-
ematics and Optimization, 58(1):69–88, 2008.

[KKM11] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. “Exploit-
ing sparsity in linear and nonlinear matrix inequalities via positive
semidefinite matrix completion.” Mathematical Programming, 129:33–
68, 2011.

[KKW09] S. Kim, M. Kojima, and H. Waki. “Exploiting sparsity in SDP relax-
ations for sensor network localization.” SIAM Journal on Optimiza-
tion, 20(1):192–215, 2009.

[KMR14] N. Krislock, J. Malick, and F. Roupin. “Improved semidefinite bound-
ing procedure for solving Max-Cut problems to optimality.” Mathe-
matical Programming, 143(1-2):61–86, 2014.

[KR98] S. E. Karisch and F. Rendl. “Semidefinite programming and graph
equipartition.” In P. M. Pardalos and H. Wolkowicz, editors, Topics
in Semidefinite and Interior-Point Methods, volume 18 of Fields Insti-
tute Communications, pp. 77–95. The American Mathematical Society,
1998.

[Kru64] J. B. Kruskal. “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis.” Psychometrika, 29(1):1–27, 1964.

[KW12] N. Krislock and H. Wolkowicz. “Euclidean distance matrices and ap-
plications.” In M. F. Anjos and J. B. Lasserre, editors, Handbook
on Semidefinite, Conic and Polynomial Optimization, chapter 30, pp.
879–914. Springer, 2012.

162

[Lam13] A. Lampitt. “The real story of how big data analytics helped Obama
win.” http://www.infoworld.com/article/2613587/big-data/

the-real-story-of-how-big-data-analytics-helped-obama-win.

html, February 2013. Accessed: 2015-8-19.

[Las01] J. B. Lasserre. “Global optimization with polynomials and the problem
of moments.” SIAM Journal on Optimization, 11(3):796–817, 2001.

[Lau01] M. Laurent. “Matrix completion problems.” In C. A. Floudas and
P. M. Pardalos, editors, Encyclopedia of Optimization, volume III, pp.
221–229. Kluwer, 2001.

[LCB04] G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan.
“Learning the kernel matrix with semidefinite programming.” The
Journal of Machine Learning Research, 5:27–72, 2004.

[Liu92] J. W. H. Liu. “The multifrontal method for sparse matrix solution:
theory and practice.” SIAM Review, 34:82–109, 1992.

[LL12] J. Lavaei and S. H. Low. “Zero duality gap in optimal power flow
problem.” Power Systems, IEEE Transactions on, 27(1):92–107, 2012.

[LM79] P. L. Lions and B. Mercier. “Splitting algorithms for the sum of
two nonlinear operators.” SIAM Journal on Numerical Analysis,
16(6):964–979, 1979.

[Lof04] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in
MATLAB, 2004.

[Lov79] L. Lovász. “On the Shannon capacity of a graph.” IEEE Transactions
on Information Theory, 25:1–7, 1979.

[Low14a] S. H. Low. “Convex relaxation of optimal power flow—Part I: formu-
lations and equivalence.” IEEE Transactions on Control of Network
Systems, 1(1):15–27, March 2014.

[Low14b] S. H. Low. “Convex relaxation of optimal power flow—Part II: exact-
ness.” IEEE Transactions on Control of Network Systems, 1(2):177–
189, June 2014.

[LP66] E. Levitin and B. Polyak. “Constrained minimization methods.”
USSR Computational Math. and Math. Physics, 6(5):1–50, 1966.

[LPP89] J. G. Lewis, B. W. Peyton, and A. Pothen. “A fast algorithm for
reordering sparse matrices for parallel factorization.” SIAM Journal
on Scientific and Statistical Computing, 10(6):1146–1173, 1989.

163

[LS91] L. Lovász and A. Schrijver. “Cones of matrices and set-functions and
0-1 optimization.” SIAM J. on Optimization, 1(2):166–190, 1991.

[LT93] Z.-Q. Luo and P. Tseng. “Error bounds and convergence analysis of
feasible descent methods: a general approach.” Annals of Operations
Research, 46(1):157–178, 1993.

[LV12] M. Laurent and A. Varvitsiotis. “The Gram dimension of a graph.”,
2012. arxiv.org/1112.5960.

[Mal04] J. Malick. “A dual approach to semidefinite least-squares problems.”
SIAM Journal on Matrix Analysis and Applications, 26(1):272–284,
2004.

[MAL14] R. Madani, M. Ashraphijuo, and J. Lavaei. “Promises of conic re-
laxation for contingency-constrained optimal power flow problem.” In
Communication, Control, and Computing (Allerton), 2014 52nd An-
nual Allerton Conference on, pp. 1064–1071. IEEE, 2014.

[Mar57] H. M. Markowitz. “The elimination form of the inverse and its appli-
cation to linear programming.” Management Science, 3(3):255–269,
1957.

[Mar70] B. Martinet. “Régularisation d’inéquations variationnelles par approx-
imations successives.” Revue Française d’Informatique et de Recherche
Opérationnelle, 4(3):154–158, 1970.

[Mar14] B. Marr. “How Facebook is using Big Data: the good,
the bad and the ugly.” https://www.linkedin.com/pulse/

20140716060957-64875646-facebook-and-big-data-no-big-brother,
July 2014. Accessed: August 19, 2015.

[Meh92] S. Mehrotra. “On the implementation of a primal-dual interior point
method.” SIAM Journal on Optimization, 2(4):575–601, November
1992.

[MLD14] D. K. Molzahn, B. C. Lesieutre, and C. L. DeMarco. “A sufficient con-
dition for global optimality of solutions to the optimal power flow prob-
lem.” Power Systems, IEEE Transactions on, 29(2):978–979, 2014.

[MLL12] A. Mucherino, C. Lavor, L. Liberti, and N. Maculan. Distance Geom-
etry: Theory, Methods, and Applications. Springer Science & Business
Media, 2012.

[Mor65] J. J. Moreau. “Proximité et dualité dans un espace hilbertien.” Bull.
Math. Soc. France, 93:273–299, 1965.

164

[MOS02] MOSEK ApS. The MOSEK Optimization Tools Version 2.5. User’s
Manual and Reference, 2002. Available from www.mosek.com.

[Nes83] Y. Nesterov. “A method of solving a convex programming problem
with convergence rate O(1/k2).” Soviet Math. Dokl., 27(2):372–376,
1983.

[Nes04] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 2004.

[Nes12] Y. Nesterov. “Efficiency of coordinate descent methods on huge-scale
optimization problems.” SIAM Journal on Optimization, 22(2):341–
362, 2012.

[Neu50] J. v. Neumann. “Functional operators.” In The Geometry of Orthog-
onal Spaces, Ann. Math. Studies No. 22, volume 2. Princeton Univ.
Press Princeton, N. J, 1950.

[NFF03] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota. “Ex-
ploiting sparsity in semidefinite programming via matrix completion II:
implementation and numerical details.” Mathematical Programming
Series B, 95:303–327, 2003.

[NM53] J. Von Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton Univ. Press, third edition, 1953.

[NN94] Yu. Nesterov and A. Nemirovskii. Interior-Point Polynomial Methods
in Convex Programming, volume 13 of Studies in Applied Mathematics.
SIAM, Philadelphia, PA, 1994.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

[NWV08] M. Nouralishahi, C. Wu, and L. Vandenberghe. “Model calibration for
optical lithography via semidefinite programming.” Optimization and
Engineering, 9:19–35, 2008.

[Par00] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis, Cal-
ifornia Institute of Technology, 2000.

[Par03] P. A. Parrilo. “Semidefinite programming relaxations for semialgebraic
problems.” Mathematical Programming Series B, 96:293–320, 2003.

[Pas79] G. H. Passty. “Ergodic convergence to a zero of the sum of monotone
operators in Hilbert space.” Journal of Mathematical Analysis and
Applications, 72:383–390, 1979.

165

[PB13] N. Parikh and S. Boyd. “Proximal algorithms.” Foundations and
Trends in Optimization, 1(3):123–231, 2013.

[PL03] P. A. Parrilo and S. Lall. “Semidefinite programming relaxations and
algebraic optimizations in control.” European Journal of Control, 9(2–
3):307–321, 2003.

[Pol87] B. T. Polyak. Introduction to Optimization. Optimization Software,
Inc., New York, 1987.

[Pow73] M. J. D. Powell. “On search directions for minimization algorithms.”
Mathematical Programming, 4(1):193–201, 1973.

[Pri57] R. C. Prim. “Shortest connection networks and some generalizations.”
Bell system technical journal, 36(6):1389–1401, 1957.

[PSB14] P. Patrinos, L. Stella, and A. Bemporad. “Douglas-Rachford splitting:
Complexity estimates and accelerated variants.” In Decision and Con-
trol (CDC), 2014 IEEE 53rd Annual Conference on, pp. 4234–4239.
IEEE, 2014.

[Qi13] H.-D. Qi. “A semismooth Newton method for the nearest Euclidean
distance matrix problem.” SIAM Journal on Matrix Analysis and Ap-
plications, 34(1):67–93, 2013.

[QS06] H. Qi and D. Sun. “A quadratically convergent Newton method for
computing the nearest correlation matrix.” SIAM journal on matrix
analysis and applications, 28(2):360–385, 2006.

[QS10] H. Qi and D. Sun. “Correlation stress testing for value-at-risk: an
unconstrained convex optimization approach.” Computational Opti-
mization and Applications, 45(2):427–462, 2010.

[QS11] H. Qi and D. Sun. “An augmented Lagrangian dual approach for
the H -weighted nearest correlation matrix problem.” IMA Journal of
Numerical Analysis, 31(2):491–511, 2011.

[QXY13] H.-D. Qi, N. Xiu, and X. Yuan. “A Lagrangian dual approach to the
single-source localization problem.” Signal Processing, IEEE Transac-
tions on, 61(15):3815–3826, 2013.

[Ray05] E. G. Birgin and M. Raydan. “Robust stopping criteria for Dykstra’s
algorithm.” SIAM Journal on Scientific Computing, 26(4):1405–1414,
2005.

[RJ99] R. Rebonato and P. Jäckel. “The most general methodology to cre-
ate a valid correlation matrix for risk management and option pricing

166

purposes.” Quantitative Research Centre of the NatWest Group, 19,
1999.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, sec-
ond edition, 1970.

[Roc76] R. T. Rockafellar. “Monotone operators and the proximal point algo-
rithm.” SIAM J. Control and Opt., 14(5):877–898, August 1976.

[RS09] J. K. Reid and J. A. Scott. “An out-of-core sparse Cholesky solver.”
ACM Transactions on Mathematical Software (TOMS), 36(2):9, 2009.

[RT14] P. Richtárik and M. Takáč. “Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function.”
Mathematical Programming, 144(1-2):1–38, 2014.

[RTL76] D. J. Rose, R. E. Tarjan, and G. S. Lueker. “Algorithmic aspects of ver-
tex elimination on graphs.” SIAM Journal on Computing, 5(2):266–
283, 1976.

[SAV14] Y. Sun, M. S. Andersen, and L. Vandenberghe. “Decomposition in
conic optimization with partially separable structure.” SIAM Journal
on Optimization, 24:873–897, 2014.

[Sch35] I. J. Schoenberg. “Remarks to Maurice Fréchet’s article “Sur la
définition axiomatique d’une classe d’espaces vectoriels distanciés ap-
plicables vectoriellement sur l’espace de Hilbert”.” Annals of Mathe-
matics, 36(3):724–732, 1935.

[Sch38] I. J. Schoenberg. “Metric spaces and positive definite functions.”
Transactions of the American Mathematical Society, 44(3):522–536,
1938.

[Smi08] R. L. Smith. “The positive definite completion problem revisited.”
Linear Algebra and Its Applications, 429:1442–1452, 2008.

[Spi83] J. E. Spingarn. “Partial inverse of a monotone operator.” Applied
Mathematics and Optimization, 10:247–265, 1983.

[Spi85] J. E. Spingarn. “Applications of the method of partial inverses to
convex programming: decomposition.” Mathematical Programming,
32:199–223, 1985.

[SS73] R.W.H. Sargent and D.J. Sebastian. “On the convergence of sequen-
tial minimization algorithms.” Journal of Optimization Theory and
Applications, 12(6):567–575, 1973.

167

[Stu99] J. F. Sturm. “Using SEDUMI 1.02, a Matlab Toolbox for Optimization
Over Symmetric Cones.” Optimization Methods and Software, 11-
12:625–653, 1999.

[SV04] G. Srijuntongsiri and S. Vavasis. “A fully sparse implementation of a
primal-dual interior-point potential reduction method for semidefinite
programming.” 2004. arXiv:cs/0412009.

[SV15] Y. Sun and L. Vandenberghe. “Decomposition methods for sparse
matrix nearness problems.” 2015. Under review.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for
Industrial and Applied Mathematics, 1983.

[Tro97] M. W. Trosset. “Applications of multidimensional scaling to molecular
conformation.” Technical report, Rice University, 1997.

[Tse88] P. Tseng. “A very simple polynomial-time algorithm for linear pro-
gramming.” Report No. LIDS-P-1818, September 1988.

[Tse90] P. Tseng. “Further applications of a splitting algorithm to decomposi-
tion in variational inequalities and convex programming.” Mathemat-
ical Programming, 48:249–263, 1990.

[Tse91] P. Tseng. “Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities.” SIAM Journal on
Control and Optimization, 29(1):119–138, 1991.

[Tse93] P. Tseng. “Dual coordinate ascent methods for non-strictly convex
minimization.” Mathematical Programming, 59:231–247, 1993.

[Tse01] P. Tseng. “Convergence of a block coordinate descent method for
nondifferentiable minimization.” Journal of Optimization Theory and
Applications, 109:475–494, 2001.

[Tse08] P. Tseng. “On accelerated proximal gradient methods for convex-
concave optimization.” 2008.

[TTT02] K. C. Toh, R. H. Tütüncü, and M. J. Todd. SDPT3 version 3.02. A
Matlab software for semidefinite-quadratic-linear programming, 2002.
Available from www.math.nus.edu.sg/~mattohkc/sdpt3.html.

[TTT07] K. C. Toh, R. H. Tütüncü, and M. J. Todd. “Inexact primal-dual
path-following algorithms for a special class of convex quadratic SDP
and related problems.” Pacific Journal of Optimization, 3, 2007.

[TW67] W. F. Tinney and J. W. Walker. “Direct solutions of sparse network
equations by optimally ordered triangular factorization.” Proceedings
of the IEEE, 55(11):1801–1809, 1967.

168

[TY84] R. E. Tarjan and M. Yannakakis. “Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs.” SIAM Journal on Computing, 13(3):566–
579, 1984.

[VA15] L. Vandenberghe and M. S. Andersen. “Chordal graphs and semidef-
inite optimization.” Foundations and Trends R© in Optimization,
1(4):241433, 2015.

[VB95] L. Vandenberghe and S. Boyd. “Semidefinite programming.” SIAM
Review, pp. 49–95, 1995.

[VB99] L. Vandenberghe and S. Boyd. “Applications of semidefinite program-
ming.” Applied Numerical Mathematics, 29:283–299, 1999.

[WL01] S. L. Wang and L. Z. Liao. “Decomposition method with a variable pa-
rameter for a class of monotone variational inequality problems.” Jour-
nal of Optimization Theory and Applications, 109(2):415–429, 2001.

[Wri97] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadel-
phia, 1997.

[Wri15] S. J. Wright. “Coordinate descent algorithms.” Mathematical Pro-
gramming, 151(1):3–34, 2015.

[WS06] K. Q. Weinberger and L. K. Saul. “An introduction to nonlinear di-
mensionality reduction by maximum variance unfolding.” In AAAI,
volume 6, pp. 1683–1686, 2006.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of
Semidefinite Programming, volume 27 of International Series in Oper-
ations Research and Management Science. Kluwer Academic Publish-
ers, Boston, MA, 2000.

[Wut89] K. Wüthrich. “Protein structure determination in solution by nuclear
magnetic resonance spectroscopy.” Science, 243(4887):45–50, 1989.

[Yan81] M. Yannakakis. “Computing the minimum fill-in is NP-complete.”
SIAM Journal on Algebraic and Discrete Methods, 2(1):77–79, 1981.

[YFK03] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and
evaluation of SDPA 6.0 (SemiDefinite Programming Algorithm 6.0).”
Optimization Methods and Software, 18(4):491–505, 2003.

[YH38] G. Young and A. S. Householder. “Discussion of a set of points in
terms of their mutual distances.” Psychometrika, 3(1):19–22, 1938.

[You13] F. W. Young. Multidimensional Scaling: History, Theory, and Appli-
cations. Psychology Press, 2013.

169

