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Abstract 

A method is presented for finding the osculating circle, and thus the curvature 

and the normal, of a curve defined by an array of partial volumes. This method is 

applied, within the framework of an enthalpy formulation. to the analysis of a moving 

interface separating ice and supercooled water. For short to moderate times the 

numerical results agree well with available theory; at longer times a morphological 

oscillation is observed. Such an oscillation was seen in earlier calculations but is not 

predicted by linearized stability theory. Some speCUlations regarding its origin are 

offered. 

Running title: Curvature and solidification 

Mailing ad,dress: Mathematics Department, University of California, Berkeley, CA 94720 



2 

Introduction. 

There are a number of problems in which it is necessary to evaluate the curvature 

or to find the normal of a computed surface. for example in combustion theory (see 

e.g .. Markstein [10]. Sethian [16.18]). in the theory of water waves (Stoker [21]) and 

more generally in flows with a free surface (Nichols et al. [12]). and in problems involv­

ing solidification and the growth of dendrites (see e.g .. Langer [7]). Numerical methods . . 

for evaluating curvature are presented. _e.g .. in Nichols et al. [12]. Smith [20]. where 

some of the difficulties are noted. In the present paper we present an iterative algo­

rithm for finding the osculating circle. and thus the curvature and also the normal. of a 

curve defined by an array of partial volumes. The method generalizes easily to the 

evaluation of the mean curvature of a surface in three dimensions. Partial volumes 

have emerged as anatural and effective way for describing moving boundaries, see e.g., 

Noh and Woodward [13], Chorin [2]. Ghoniem at al' [5], .Hirt and Nichols [6], Sethian 

[16; 17]. If the partial volumes are given accurately, the algorithm is accurate and reli-

able, albeit not necessarily inexpensive. 

We apply our algorithm to a problem involving solidification in a supercooled 

environment (the kind of situation where morphological instability and dendrite forma­

tion. can occur). The boundary conditions at the solid's boundary. derived from the 

Gibbs-Thomson relation, involve the boundary's curvature (see e.g .• Turnbull [22], Sek­

erka [15]; Langer [7], Smith [20]). The method of solution relies on a weak "enthalpy" 

formulation, previously studied for simpler problems by Rogers et al. [14], Shamsundar 

and Sparrow [19], Brezis and Crandall [1], Majda [8]. The enthalpy formulation has 

already been adapted to the present problem, along different lines. by Smith[20]. 

Smith observed a discrepancy between his numerical results and the predictions 

of a linearized stability theory after perturbations grow to finite but small size; we had 

expected that a more accurate curvature evaluation and other improvement in the 

method would remove that discrepancy. This has not proved to be the case, and, as far 
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as can be judged from [20], our results are comparable with Smith's. Some specula­

tion is offered about the reason for the discrepancy; one possibility is that linearized 

theory does not faithfully describe the instability in the presence of finite amplitude 

perturbations. 
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Osculating circles and the curvature of a curve defined by partial volumes. 

Consider a plane region D covered by a square grid of mesh width h. In D lies a 

curve r dividing D into several disjoint pieces. Assume for the sake of simplicity that 

there are only two pieces; the discussion extends trivially to the more general case. 

Imagine that one of the regions is black and the other white, and agree that the curva­

ture is positive at a point of r if the center of the osculating circle at that point is on 

the black side of the curve. 

In each mesh cell, of center (ih, jh), i,j integers, we are given a number li.j, 

o ~ lij ~ 1; lij is the black fraction of the area of the cell. The Ii.,j are known as "par­

tial volumes". It is assumed in this section that the I i..j corresponding to r are known 

accurately. If they have been determined by integration it is assumed that appropri­

ate precautions have been taken to ensure that the integrations are accurate (see 

below). All the available information about· ris contained in the array ·of partial 

volumes. 

Consider a cell centered at(ih, jh) crossed by r, i.e., 0 < It.; < 1, as well as the 8 

adjacent cells. We shall be looking for a circle whose intersection with each of these 

nine squares has the same partial volumes as the ones that are given. This circle will 

be taken to be the osculating circle, its radius will be the radius of curvature, the 

inverse of its radius will be the curvature, and the radius vector leading to its center 

will be the normal to r. 

Assume that, as in Figure 1, the block of nine cells has been placed on the second 

quadrant of an auxiliary plane and write the short !I.J = li+I-2.;+J-2. I,J = 1,2,3. 

First evaluate the corner sums S 1 = ! 1.1 + 11.2 + 12.1 + f 2.2 etc. and rotate the nine 

cells if necessary so that the blackest corner is near the origin. If the radius of curva­

ture r is positive, the center of curvature (Le., the center of the osculating circle) is 

now in the fourth quadrant. Represent the center of the curvature in polar coordinates 

as (p cos ", - psin "), 0 ~ " ~ 1'1/2. 

to· 
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Assume first that r is positive, and look for p, r and ~ by trial and error, Le .. 

assume values for these quantities. compute the corresponding partial volumes. and 

use these to improve the guess. The volume fractions are easier to evaluate if the arcs 

of the circle are nearer to the horizontal than to the vertical (Figure 2). i.e .. if '19. ~ rr/4. 

One can readily see that : 5; ~ 5; ; if (f 1.2 + 11.2 + I 2.1) ~ (f 2.3 + J S.2 + 13.S)' If this 

condition is. not satisfied. the block of cells is reflected around the line joining f 1.S and 

J 3.1 The partial volumes are computed by the trapezoidal rule. with m points of 

integration per square. 

Let pn. ~n. rn be the tentative parameters describing the osculating circle; let I'f:j 

be the corresponding partial volumes. 

Define 

C=I 2.2 ' .. 

A = L: II.J , 
I.J 

en = IF..2 

0. = arctan 12.3 + 13.2 + 13.3 
11.1 + 11.2 + 12.1 ' 

an = aTctrm IRs + JR2 + IRs 
I n + In + In 1.1 1.2 2.1 

where the I i.j are the given partial volumes. 

There are clearly many sets of values f iJ for which there exist no osculating cir­

cle: we assume first that the problem of finding p, '19., r does have a solution. If en < C 

and An < A. the trial circle is too far and p should be decreased; if en > C but An < A. 

the radius of the trial circle is too small. etc. After much trial and error we came up 

with an iteration scheme which converged in all the problems we tried; the iteration 

recognizes four cases: 

case 1. en > C. An > A (p should decrease). Define the following auxiliary quantities: 

q 1 = min (C. 1 - C) 
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q2 = min (1. qI) 

qs= max (q2, e) 

q4 = hi q5 

PI = q4 1 cn-cl. 

where t is a small quantity (we usually took e between 10-2 to 10-3
); if PI ~ e, then set 

b = PI ' 

otherwise set 

where 

and finally compute 

b is the appropriate decrease in p. The geometrical factors q I, q 2, q 5. q 4 serve to 

modify b in cases where only a small piece of the middle square is either black or white 

and convergence could be very slow. P2 is introduce to modify the change in p so as to 

avoid situations in which a circle that is too small is slowly moved towards the origin 

without an increase in its radius. A moment's thought will explain the geometrical fac­

tors sin '6 and 5. 

Case II. en < C, An < A, (p should increase). b is defined as in case I, and 

p" +1 = pn + b . 

Case III. en < C and An > A (both p and r should increase). Define 

b = min «(pn)2IAn -AI/2h,pn /2), 

and set 
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If N~ < A, one wishes pn+l - pn to be as large as t?ossible, but not so large that the 

correct p will be overshot and oscillation will set in. The factor (pn )2/2h and the res­

triction b s; pn /2 have been found to be satisfactory by trial and error. 

case IV C" > C and An < A (both p and r should decrease). a is deftlled as in Case III, 

and set 

In all cases, we further compute 

and impose the restrictions 

~ .an + 1 ~ .!I... > h > 0 4 "V' 2' P - ,r . 

If that r becomes large, for example r > 100 or r > 1/ e, one concludes that the 

assumption r > 0 is fallacious and one looks for an osculating circle centered on the 

other side of the curve. The same iteration can be used if the nine squares are 

retlected around the line connecting (1.1) with (3,3) and the fu are transformed into 

their complements f 'I.J = 1 - f I,J. If r becomes large a second time, one concludes 

that the boundary is flat. The iteration is stopped when 

I An - A I + I ~n - ~ I + I C" - C I < e . 

If the nine numbers f I.J can be produced by the intersection of a circle with the 

nine cells, the iteration will exhibit that circle. It is possible to alter the "off diagonal" 

f I,J in such a way that the sums in the definition of the quantities ~, A, C are 

unchanged and a circle will still be produced, even though the f I.I individually can no 
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longer be produced by that circle. One can experiment with various least squares and 

other fits in that case, but none seem to be practically superior or better justified than 

simply accepting the circle produced by the algorithm. Finally, there ar~ many situa­

tions in which no circle can produce the given values of -a, A and C; the algorithm will 

then fail to converge. We decide that no convergence has taken place if the number of 

iteration exceeds some preset integer N (we usually used N = 35, a value that is some­

what larger than necessary). 

In many practical problems, the values of -a, r and p at the end of the iteration at 

one point will serve as good starting values for the iteration at the next point. 



r 

9 

A Numerical Example. 

There are many problems in which one can display a spectacular agreement 

between a known curvature and the curvature computed by the algorithm of the 

preceding section. In particular, the curvature of circles is reproduced with an accu-

racy that depends only on the number m of points in the quadrature formula and on 

the tolerance e. With m = 15 and e = 10-5 we get three good digits if the curvature is 

0(1). It may be more instructive to consider a l~ss well-behaved problem. 

Consider the curve 1 3. 2 
Y = '2+ 10 sm rrx for O~x~1. Its curvature is 

C(x) = ± 1~~2 sin(2rrx)/ (1 + 2~ rr2 cos2(2rrx »3/2. Place the curve on a 20 x 20 grid 

(h = 210 ). evaluate the corresponding volume fractions, and then evaluate the curva­

ture by our iteration. The partial volumes are defined in the squares ih ~ x ~ (i + l)h. 

jh ~ Y ~ (j + l}h. There· is more than one curvature per given value of i since two 

cells located above each other can be intersected by the curve. In Table I we exhibit 

the computed curvature and compare it with "exact" answers. the "exact answer" II is 

C(x), the exact curvature, evaluated at the points (i - 1I2)h, i.e., in the middle of the 

cells. The "exact answer" I is C(x·) evaluated at x· defined by 

\,) \ ,J !(i-1)h + I· -h if 1--1 - = 0 

x· = (i-1)h + (1 - !i,j)h if Ii.-l,j = 1. 

The point x* is the location of the black/white interface according to a standard recipe 

for reconstructing a surface from partial volumes (see [13]). The numerical parame­

ters are m = 15 and e = 10-3, and an average of about 10 iterations per cell is needed 

for convergence. Note that the curvature changes by a large amount from point to 

point. The smoothness of the computed curvature function can be seen when one con-

siders the arrangement of the points in the plane. 

The agreement between the computed curvature and the exact curvature 

evaluated at x· is better than the agreement between the two "exact" values of the 
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curvature. Other choices of location for the interface also lead to different values for 

the "exact" curvature. The partial volumes do not determine the location of the inter-

face accurately enough for the purpose of deciding where the analytical formula for 
• 

the curvature should be evaluated, and the computed'curvature is a better estimate of 

the curvature of the portion of the curve contained in a given cell ~han the analytical 

formula evaluated at an ill-determined point. Since points on the curve are hard to 

locate, second differences involving their locations are even more problematic, and 

attempts to evaluate the curvature in this case by the algorithms suggested in [12J or 

[20J lead to very large errors. 

Note that the curvature .is antisymmetric around x = 1/2; we display a few values 

for x larger than 1/2 in order to show that the algorithm makes the right decisions 

about the signof the,'curvaturewithout outside prompting. 
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Table I 

Computed vs. Exact Curvature for y = ~ + 1
3
0 sin 2rrx. h = 210' 

i Computed Curvature Exact Value I Exact Value II 

2 12 .55 .45 .77 
2 13 .98 .92 .77 
2 14 1.35 1.26 .77 
3 14 2.09 1.26 2.04 
3 15 3.06 3.23 2.04 
4 15 5.34 3.34 5.49 
4 16 7.30 8.57 5.49 
5 16 9.86 8.58 11.38 
6 15 7.16 5.81 8.58 
6 16 8.93 11.38 8.58 
7 14 2.42 2.12 3.34 
7 15 4.00 5.49 3.34 
8 13 1.02 0.93 1.26 
8 14 1.75 2.04 1.26 
9 11 .27 .24 0.45 
9 12 .52 .49 0.45 
9 13 .84 .77 0.45 

10 9 -.19 -.18 1.84XlO-7 

10 10 8.50xlO-3 1.84xlO-7 1.84xlO-7 

10 11 0.19 .20 1.84XlO-7 

11 7 -0.84 -.76 -0.45 
11 8 -0.52 -.49 -0.45 
11 9 -0.27 -.20 ·0.45 
12 6 .1. 75 -1.72 -1.26 etc. 

r 
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An Enthalpy Formulation of the Stefan Problem 

Before considering the problem of unstable solidification. in which curvature plays 

an important role and to which we shall apply the algorithm of the preceding section, 

we discuss the easier. curvature independent. Stefan problem. A collection of recent 

papers on the subject can be found in [23]. We restrict our attention to the enthalpy 

formulation because it will allow us in the next section to formulate an appropriate 

curvature/phase iteration. We begin with the case of a single space dimension. 

The x axis is divided into disjoint sets I, W; I is filled with a solid called "ice" and W 

is filled with "water". A temperature field is given at t = O. At points interior to either 

I or W the evolution of the temperature is described by the heat equation; for the sake 

of simplicity we assume the thermal diffusivities of both "ice" and "water" are equal to 

1 (the case of phases With non-equal diffusivities can be readily handled by the method 

of alternate phase truncation [14].) In r. T = TJ ~O; in W. T = TY( ~. O.The latent heat 

of change of phase is H > O. At the boundary between I and W we require that 

T=O (la) 

_ aT 'if + a TJ = BV 
ax ax (lb) 

where V is the velocity of the ice/water interface. counted as positive if water is fre~z­

ing. For the sake of simplicity. it is assumed that the heat capacity of both water and 

ice is 1. Equation (lb) expresses the conservation of energy at the interface. 

Define the enthalpy u by 

[ 

T for 
u-

T + H for 

T~O 

T>O 

T can be expressed in terms of u by 
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T( u) = !: -H ~:~ ~ : ~ 
o for 0 <u < H. 

The solution of the problem is the weak solution of the equation 

Ut = (T(u»;= (2) 

where t is the time and the subscripts denote differentiations. Equation (2) can be 

solved numerically. Existence, convergence, and uniqueness theorems can be found in 

[1], [8], [14]; it follows from [14] that if equation (2) is discretized in time and space. 

then under broad conditions the leading term in the error is O(k log (t I k ))112. when k 

is the time step. 

Pick the simplest approximation to equation (2): write u.n == u(ih.nk). Tf = T(u.n ). 

and let 

'l4.n +1 -U;.n = :2 (:rr+1 + Tf-l - 2:rr) . (3) 

This scheme converges for kl h 2 ~ 1/2. The following heuristic argument explains why 

the scheme converges. 

In both J and W. equation (2) reduces to a standard heat equation. for which the 

scheme (3) is a reasonable approximation. Assume that for i < io we have ice, for 

i > io we have water. and at io we have 0 < Uj,n < H, Le .• the phase is undefined and we 

have "mush". At io equation (3) reduces to 

[
T!'+1 -0 

ut+ 1 -ul; =k '0 h 
T!' -0 1 
~ h (h. (4) 

(11;+1 -O)lh is an approximation to B:Tp(. if we assume that the interface is at 

Zo =ioh. Similarly. (0 - Tio)lh is a.n approximation to 8:TJ. The value ofu is chang­

ing at a rate approximately proportiona.l to (B: T, - B: TJ)I h. Suppose the area of 

occupied by water is expanding. During the timeioh is a mush point ~ changes from 

o to H; thus the front moves a distance h during the time it takes ~ to grow from 0 to 
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H at the rate (0: Tp( -oz T[)/ h and equation (lb) is satisfied on the average. Of course, 

the freezing point is not located exactly at i"h during all this time and thus the bal­

ance equation (4) is correct only in an average sense. Most importantly, one also con­

cludes that '!l.t / H is the approximate volume fraction of water in the cell 
D ~ 

{ia - 1/2)h ~ x ~ {ia + 1/2)h. 

One can use the last remark to construct a better approximation to to the solution 

of the Stefan problem. It is easy to see (see Table II below) that error is generated 

mainly at the interface. One can try to locate' the interface accurately with the help of 

the computed partial volumes, and then apply condition (lb) accurately in the neigh­

borhood of that interface. A construction in that spirit was given by Smith [20] in the 

two-dimensional case. Our experience has been that such constructions increase the 

accuracy at the beginning of the calculation, but that the increased accuracy does not 

surVive for long; we omit the details of the construction. 

In Table 11 we exhibit the results of a calculation with a one-dimensional test prob­

lem. The region of integration is 0 ~ x ~ 1; H is equal to L The initial conditions are: 

!eXP(0.5 - x) - 1. for x > 0.5 
u{x ,0) = 

2exp(0.5 - x) - 1 for x < 0.5 . 

The boundary conditions are: 

u(O,t) = exp(t + 0.5) - 1 , 

u(l,t) = 2exp(t - 0.5) - 1 . 

'The solution of the problem is: 

!exP(t -x + 0.5) -1. for t -x> 0.5 
u{x,t) = 

2exp(t -x + 0.5) -1 for t -x < 0.5. 

The water/ice interface starts at x = 0.5 and moves with velocity one in the direction 

of increasing x. 'The numerical parameters are h = ~. ,k/ h 2 = 0.5. 

'1, 
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Table II 

Errors in one dimensional model Stefan problem 

Straightforward 
Enthalpy Formulation 

(1) after one step (t = 617 10-3) 

-3.95 10-ti 
-3.5610-5 

-3.17 10-5 

-1.02 10-5 

-5.1110-4 

-1.02 10-5 

-9.11 10-6 

(2) after 10 steps (t = 6.17 10-2) 

-8.29 10-3 

-2.06 10-2 

-4.12 10-2 

-7.55 10-2 

-3.75 10-2 

-1.98 10-2 

-8.43 10-3 

(3) after 40 steps (t = 0.247) 

-3.9510-3 

-7.32 10-3 

-7.73 10-8 

-9.25 10-3 

-1.18 10-2 

-2.4210-2 

-9.8610-3 

Modified Formulation 

-3.95 10-5 

-3.56 10-5 

-3.17 10-5 

-8.69 10-5 

-4.10 10-5 

-1.02 10-5 

-9.11 10-6 

3.60 10-4 
8.89 10-4 

1.51 10-3 

2.08 10-3 

1.56 10-3 

1.08 10-3 

5.7410-4 

-1.52 10-3 

-3.59 10-3 

-8.57 10-3 

-1.00 10-2 

-1.67 10-2 

-1.51 10-2 

-3.90 10-3 
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In table II we display the errors in ~he solution of this problem, Le., the differences 

between the computed and the exact solution. for x = m, i = 1 ..... 8. At the point where 

o < u < H, i.e., boundary point between ice and water, there is no reasonable definition 

of the error. As one can see from the table, the error n3.diates from the discontinuity; 

the more "accurate" method has a decided advantage over the straightforward solu-

tion for the first 10-20 steps. but by step 40 the two are comparable. We have no 

analysis of this phenomenon. except for the observation that similar phenomena have 

been observed in the case of hyperbolic equations with discontinuous solutions (see [9], 

[11]. [4]). Higher accuracy can be recovered in linear hyperbolic problems if appropri-

ate processing is applied to the data and/or the solution; if such processing exists for 

the Stefari problem. we have not been able to find it. The variation of the error as a 

function of k and h agrees with the results in [14] and will not be displayed . 

. . The enthalpy method generalizes to multi~imensional problems. In two space 

dimension equation (2) becomes 

Ut = II T (u). !::. = La:plac e operator . (5) 

The boundary condition al lhe water/ice inlerface become, 

T=O (6a) 

_ {J T, + {J TJ = EY. 
an an n 

(6b) 

8 
where,tm. de~otes differentiation in the direclion normal to the interface. and Vn is 

the normal velocily of lhe interface. On the border of I U W a boundary condition on u 

or T is also needed. 

The difference approximation (3) can be readily generalized lo the case of two 

dimensions; analysis and examples can be found in . [1]. [14]. The error 

O(k log (t / k )112 will restrict us lo small time steps. and we see no reason to abandon 

explicit schemes. 

,. 
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It is important to point out that the boundary condition (6b) will be satisfied only 

on the average in space as well as on the average in time. This is due to grid effects, 

which can be best understood by example. Consider a front separating ice and water, 

and suppose !:J.T is computed by the usual five point formula (Figure 3). It is easy to see 

that in both cases (a) and (b) of Figure 3, in which the directions of the fronts are quite 

different from each other, the effective normal to the interface in the evaluation of the 

boundary condition (6b) is the same. This grid effect can be reduced by constructing 

approximations to the Laplacian which have as much rotation invariance as possible. A 

construction suggested by the Huygens principle of [2] is 

::n' _ 1 
h-~h T - 1+{3 (Ti,j+l + Ti,j-l + Ti,+l,j + Ti-1,i - .41;,j) (7) 

+ 2(t+{3) (Ti+l,j+l + Ti-1,j-l + Ti+l,j-l + Ti -l.j + 1 - 4T1,j) 

. Numerical experiment suggests that the vaJ.ue {3 = 1/.-..12 .is best. Equation (5) can now 

be approximated by 

This scheme is stable if 

1E-< l.. P + 1 
h 2 - 4 1 + {j/2 

In the problem discussed in the present section, the difference between the solutions 

obtained with the usual 5-point approximation and the one obtained with ~h is not 

significant. 
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Unstable solidification. 

A relatively simple problem involving unstable solidification and possible dendrite 

formation is discussed in Langer [7], Sekerka [15] and Smith [20]. It involves two 

phases, "ice" and "supercooled water. " Le .• water that has been allowed to cool below 

zero without freezing. At the interface between ice and water. the following conditions 

,are imposed: 

T=-/CC. (8a) 

aT, aTI - a;:-+ on = HYn (8b) 

Equation (8b ) is identical to equation (6b). with T'I( denoting the temperature of super­

cooled water. Equation (8b) is a form of the Gibbs-Thomson relation (see e.g., [21]); /C 

is a constant and C denotes the curvature of the interface. taken as a positive if the 

circle of curvature lies on the ice side of the interface. 

The enthalpy formulation of the preceding section can be adapted to this problem. 

Equation (5) survives: ut = t.T(u). However. the relation between T and u must be 

reexamined. It is clear from physical considerations and from the requirement that 

our problem have a unique solution that supercooled water can be allowed to freeze 

only where·it is adjacent to ice, and conversely ice can be allowed to melt only when it 

touches water (see Smith [20]). Suppose at t = 0 we have a region I occupied by ice, a 

region W occupied by water, and a region M of mathematical mush between I and W; 

M is made up of cells which are crossed by the water lice interface. III I, T = u; 

w. T = u -H even if T ~ 0; in M. T(u) must be chosen so that condition {Sa) 

satisfied; condition (Bb) will be satisfied if conservation of energy is enforced. T 

in 

is 

is 

assumed given at the boundary of TU W. The first problem is to determine which cells 

belong to M. 

Each cell has eight neighbors, all of which participate in the difference operator 

(7). M is a subset of those cells which do not contain ice but have a neighbor contain-

" 

'. 

'" 



19 

ing ice. However. not all the cells which are neighbors of I necessarily belong to M. It 

is easy to see, that just as in the case of ordinary, non-supercooled water, the calcula­

tion can occasionally produce a cell of water and a cell of ice lying next to each other. 

A reasonable test for deciding whether a mesh cell (i,i) abutting on ice contains water 

or mush is the following: Consider those neighbors of (i,j) that are known to contain 

water as well as their neighbors. and determine by linear interpolation a reasonable 

water temperature '1\.j in (i,j). If~.j - H < Ti,j' (i,j) is filled with mush, and if 

Uj"j - H ~ T \.j' (i,j) is filled with water. Having determined M, the mush region, one 

can determine the curvature C of the interface and then set T = -ICC in M. 

The determination of C involves an iteration (similar in principle, but not in detail, 

to the iteration described in [20]). Indeed, the curvature C depends on the array of 

volume fractions of ice in the cells of M. but these volume fractions depend on the tem-

. perature of change of phase and therefore on C. The natural iteration proceeds as fol­

lows: One starts with a guess for the array of C's (an appropriate guess is always avail­

able from the previous step or from the initial conditions). Suppose u in a cell believed 

to be in M satisfies u ~ -ICC + H, then the cell really belongs to W and is removed from 

M. Suppose u ~ -ICC, then the cell belongs to I. If neither of these conditions holds, 

then the ice volume fraction in the cell is 1 - (u + ICC)/ H. One now finds new C's by 

the curvature algorithm described above. For convergence, one must underrelax, i.e., 

the new curvature at a point at the end of an iteration is set equal to the average of the 

newly computed curvature and of the curvature available at end of the previous itera­

tion. The relative ease with which this iteration can be set up within the framework of 

the enthalpy formulation is that formulation's main attraction. However, the iteration 

converges slowly; as many as 30 iterations may be needed with a reasonable criterion 

for convergence and the expense is considerable. The reason for the slow convergence 

is likely to be the ill-conditioned nature of the phase/curvature relation. A small 

change in the shape of the ice region can produce a large change in curvature and thus 

a substantial change in the temperature of phase transition. It is rather surprising that 
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the iteration converges at all except when all the perturbations are small. One should 

note that the finite cell size imposes a bound on the possible perturbations in curva­

ture, and one may well wonder if the problem does remain well posed when the cell size 

shrinks to zero. In fact, one may wonder whether linear perturbation theory applies to 

the solidification problem in a supersaturated medium unless one can somehow res­

trict oneself to smooth perturbations (for further comments, see beloW). 

Having found the curvature C,one has T(u) everywhere and one can use a 

difference scheme to advance the enthalpy. The scheme [7] is both experimentally and 

theoretically preferable to a scheme with a smaller stencil and will be used throughout 

the calculations of the present section. Having determined u, new domains I, W and M 

can be determined, new values of C can be found, etc. 

Some precautions must be observed: 

(i). As stated above, water can freeze and ice· can melt only after a passage through a 

state of mush. 

(ii) T is typically at a maximum in M, since both ice and supercooled water can be 

colder than zero. If, in the application of the dift'erence scheme, we allow Wand I 

to be neighbors, the maximum will be smeared and the region of mush will spread 

uncontrollably. On the other hand, the mush region M as determined above may 

fail to separate I and W. and thus additional, artificial and temporary mush cells 

must occasionally be created. To avoid a systematic bias, we create them alter­

nately on the water side and on the ice side of the water lice interface. An 

appropriate curvature at these extra mush points is found by averaging the curva­

ture at the neighboring points of the mush region M. 

(iii) The variation of the values of u at the cells of M clocks the passage of the inter­

face through these cells. The first time a cell joins M the" clock" may fail to be at 

zero since the values of u and C depend on the history of the cell and of its neigh­

bors and on the gradients of T in the region of supercooled water. An adjustment 
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must be made to the value of u at a newly identified cell in M. and that cell must 

then be exempted from tests that may reassign it immediately back to I or W. 

(iv) The curvature algorithm may fail to converge. If that happens. it is preferable to 

use an old value of C or an average of neighboring values of C rather than rely on 

a possibly meaningless number. 

We try our method on the first test problem of Smith [20]. At t :;: 0 a cylinder of 

ice of radius Ro = .15 is surrounded by supercooled water. At r = .../x2 + y2 = .5 we 

impose the boundary condition T = -1. and set H = 2. In the quasi-stationary approxi­

mation (in which it is assumed that the front moves slowly compared to the speed with 

which the heat distribution relaxes to equilibrium (see [7]. [15]). there is a solution 

satisfying these conditions: 

j
-ICI R. + alog(r I R) 

r(r) = .. 
-/CI R 

r~R 

r < R. 

where ex = (1 - /CI R)I log (2R). and R is the radius of the growing cylinder of ice. The 

growth velocity is 

. _ dR _ (1 - /CI R) 
R - d.t - HR log (1/ 2R) (9) 

We impose initial conditions on T compatible with this solution. The stability of this 

solution is discussed in [7]. [15]. We pick /C = 0.01; the interface should then be stable. 

]n Table III we exhibit the computed R = "'AI fr. where A = the area of ice. the com­

puted growth velocity R = (R(t + k) - R(t)1 k. where k is the time step. the average 

computed R. averaged from t = 0 to the current time. and the value of i? given by the 

quasi-stationary approximation. with h = i5 and k at the limit of numerical stability. 

k = 2.88 X 10-4• For the times exhibited, the agreement is excellent. and it remains 

excellent for a long time; when R = 20. the average computed i? is 2.55 while the 

quasi-stationary i? given by formula (9) is 2.59. The two step oscillation in i? observed 
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Table III 
Solution of Solidification Problem 

R Computed R Averaged Computed R Quasi-stationary R 

0.14999 .000 0.000 2.584 
0.15075 2.611 2.611 2.582 
0.15150 2.614 2.612 2.581 
0.15228 2.700 2.642 2.580 
0;15308 2.770 2.674 2.579 
0.15389 2.801 2.699 2.578 
0.15470 2.824 2.720 2.576 
0.15552 2.841 2.737 2.575 
0.15634 2.841 2.750 2.574 
0.15716 2.817 2.758 2.574 
0.15796 2.794 2.761 2.573 
0.15876 2.750 2.760 2.572 
0.15950 2.557 2.743 2.571 
0.16005 1.933 2.681 2.571 
0.16101 3.319 2.727 2.570 
0.16131 1.030 2.613 2.570 
0.16223 3.184 2.649 2.569 
0.16244 .733 2.536 2.569 
0.16335 3.161 . 2.571 .2.568 
0.16476 2.865 2.557 2.567· 
0.16550 2.582 2.558 2.567 
0.18643 3.229 2.589 2.566 
0.16717 2.548 2.587 2.566 
0.16798 2.814 2.596 2.566 
0.16879 2.792 2.604 2.566 
0.16982 3.573 2.641 2.565 
0.17052 2.438 2.634 2.565 
0.17122 2.425 2.626 2.565 
0.17199 2.649 2.627 2.565 
0.17260 2.127 2.611 2.565 
0.17331 2.445 2.605 2.565 
0.17392 2.120 2.590 2.565 
0.17442 1.735 2.564 2.565 
0.17525 2.869 2.573 2.566 
0.17590 2.528 2.564 2.566 
0.17670 2.760 2.570 2.566 
0.17736 2.279 2.562 2.566 
0.17820 2.937 2.572 2.567 ... 

0.17892 2.478 2.569 2.567 
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Table IV. 
Computed Curvatures in the Growing Circular Icicle Problem 

Computed Curvature 
(exact value: 5.89) 

8 8 7.57 
8 9 7.58 
8 10 4.71 
8 11 4.53 
8 12 4.71 
8 13 7.58 
8 14 7.57 
9 8 7.58 
9 14 7.58 

10 8 4.71 
10 14 4.71 
11 8 4.53 
11 14 4.53 
12 8 4.71 
12 14 4.71 
13 8 7.58 
13 14 7.58 
14 8 7.57 
14 9· 7.58 
14 10 4.71 
14 11 4.53 
14 12 4.71 
14 13 7.58 
14 14 7.57 
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from time to time is due to the alternation in the location of the temporary mush cells 

described under precaution (ii) above, and has no particular significance. It is natural 

to compare the analytical solution with an average solution, for the reasons described 

in the preceding section. 

The agreement is however not perfect in other respects. The shape of the ice 

region remains as perfectly circular as can be decided on the basis of the available 

partial volumes until R ,.... .18, but then it begins to oscillate slightly. The curvature C 

is never perfectly constant. In Table III we exhibit some values of C at R ...... 18, drawn 

from a calculation with h :: 1/20. There is a bulge at the four corners corresponding 

to the lines y :: ±x. This bulge will eventually be damped, and, after R ,.... .18, the shape 

of the frozen area will oscillate, and the distance between the center of the ice and a 

point on the interface will eventually vary by as much as 10%. This phenomenon is 

hl . d d· t f h . . t 1 h 1 Th· b ·t· . roug ym apen eil 0 m our expenmen s, 20~ ~ 60" ese. 0 serva Ions are 

apparently in agreement with the observations of Smith, and are surprising because 

according to linear stability theory we are in a stable regime. The validity of the 

quasi-stationary approximation can be checked on the computer and is not in question· 

with our parameter values. 

The oscillation can be partially ascribed to numerical error. The curvature is 

dependent on second derivatives of the functions that describe the interface, and can-

not be accurate if that interface. is not computed accurately. Here one should 

emphasize the significance of the" grid effects" mentioned earlier. Suppose one solves 

a differential equation and obtains a numerical solution that is accurate to some order. 

If the error has an asymptotic error expansion, then the computed solution can be 

differenced and yield approximations to the derivatives of the solution of the same 

order of accuracy as the approximation of the solution itself. In the presence of "grid 

effects" the functions that describe the interface do not have an asymptotic error 

expansion. and the curvature algorithm, accurate though it may be, is at least partly 
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stymied by the inadequacy of the data on which it operates. 

This is not however a fully satisfactory explanation. One would expect that small. 

numerically induced perturbations on a stable surface would be damped quickly. and 

this does not happen; the bumps in the surface. though they do not grow catastrophi­

cally. oscillate and do not decay as the linear theory predicts. A possible explanation is 

that. as in other front stability problems. the linearized theory does not predict 

correctly the response of the system to a perturbation of finite amplitude. For exam­

ple. Landau instability of flames does not occur because flame fronts develop cusps 

(see Sethian[18,18]). Fronts in porous media respond to perturbations as per the pred­

ictions of the linear theory only when the perturbations are extremely small (see [3]). 

The ill-conditioned nature of the phase/curvature relation. discussed above. casts a 

further doubt on the validity of a linearized stability theory in which it is assumed the 

the perturbations are smooth. Thus. the numerical errors in the shape of. the surface 

may be interacting with a underlying physical finite amplitude instability to create a 

morphological oscillation. A finite amplitude morphological instability. distinct from 

the instability predicted by the linearized theory. may be necessary anyway to explain 

the strong relation between crystalline symmetry and the symmetry of observed den­

drites. 

Note: The programs used above can be obtained from the author. 

Acknowledgement: I would like to thank Chris Anderson. Richard Ghez. Ole Hald. 

Andrew Majda. and James Sethian for very helpful discussions. 
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list of figure captions: 

Figure 1: The auxiliary plane for computing curvature. 

Figure 2: Precautions in the computation of volume fractions. 

Figure 3: Origin of grid effects with a five-point Laplacian. 
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