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Abstract

Improved medical care of individuals with Down syndrome (DS) has led to an increase in 

life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-

related co-occurring conditions including Alzheimer’s disease (AD). Understanding the factors 

that underlie symptom and age of clinical presentation of dementia in people with DS may provide 

insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the 

Alzheimer’s Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation 

partnered to convene a workshop to explore the state of the research on the intersection of AD and 

DS research; to identify research gaps and unmet needs; and to consider how best to advance the 

field. This article provides a summary of discussions, including noting areas of emerging science 

and discovery, considerations for future studies, and identifying open gaps in our understanding 

for future focus.
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1 | INTRODUCTION

Improved medical care of individuals with Down syndrome (DS) over the past several 

decades has led to a dramatic increase in life expectancy to over the age of 60 years. In 

conjunction with this new aging population of adults with DS, there has been an increase 

in age-related co-occurring conditions including Alzheimer’s disease (AD). Nearly all 

individuals with DS develop AD neuropathology by the age of 40. AD neuropathology can 

also be seen in very early life,1–3 yet not all individuals will develop clinical symptoms of 

AD and the age of onset of clinical symptoms varies substantially. The prevalence of clinical 

dementia in DS doubles approximately every 5 years, from about 9% among individuals in 

their 40s to about 80% in those over age 54 and over 95% in those who live to the age of 

68.4–6 Dementia, cardiovascular disease, and lung pneumonia infections make up the most 

common causes of death in people with DS over the age of 36 years.7

Understanding the factors that underlie the variation in symptom presentation and age 

of clinical presentation of dementia in people with DS may provide insights into 

the pathophysiological mechanisms of both sporadic and DS-associated AD (DS-AD), 

including the association among amyloid beta (Aβ), tau-containing neurofibrillary tangles, 

neurodegeneration, vascular changes, and dementia.3,8 The high incidence of AD in the 

DS population, combined with the ability to readily identify individuals with DS, also 

suggests synergies between research for DS and AD, including the potential for AD-targeted 

therapeutic clinical trials in individuals with DS, including prior to the onset of dementia.9 A 

similar rationale has been used to support clinical studies in people with autosomal dominant 

AD (ADAD).10 The mean age of AD diagnosis in persons with DS is between 53 and 

55,5,11,12 which is somewhat earlier than the mean onset of symptoms in people with ADAD 

(although the mean age of onset may differ in ADAD based on the mutation present).13 

Today, there are as many as 6 million people worldwide living with DS compared to about 

250,000 with ADAD dementia.14

In 2012, the Alzheimer’s Association, the Linda Crnic Institute for Down Syndrome, and 

the Global Down Syndrome Foundation convened a workshop to explore the commonalities 

between DS and AD and to identify opportunities for interdisciplinary engagement within 

the research communities.15 Since then, additional collaborations and increased funding 

from the National Institutes of Health (NIH), two joint funding initiatives of the Alzheimer’s 

Association and the Global Down Syndrome Foundation, as well as interest from other 

research and advocacy organizations and pharmaceutical companies, have encouraged many 

AD researchers to expand their studies to incorporate investigation of AD in DS.

Recognizing the importance of the links between AD and DS, the NIH launched the 

INCLUDE (Investigation of Co-occurring Conditions across the Lifespan to Understand 

Down Syndrome) Project in 2018. This trans-NIH initiative will include studies of multiple 

conditions that occur more or less frequently among people with DS in comparison to the 

general population. People with DS have a higher risk of developing not only AD but 

also leukemia, certain congenital heart defects, diverse autoimmune disorders, autism, and 

other conditions. However, they are at lower risk of developing many types of solid tumor 

cancers, some forms of adult cardiovascular disease (such as hypertension and ischemic 
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heart disease), and lower levels of potentially contributing vascular risk factors. Thus, the 

INCLUDE Project will uniquely provide double benefits by increasing understanding of 

whether and how these co-occurring conditions are associated with AD in DS and will also 

advance understanding of each co-occurring condition and the potential shared biological 

underpinnings.

In March 2019, the Alzheimer’s Association, Global Down Syndrome Foundation, and the 

LuMind IDSC Foundation partnered to convene a workshop to explore the state of the 

research on AD and DS pathophysiology, risk factors, biomarkers, and drug development; to 

identify research gaps and unmet needs; and to consider how best to advance the field. This 

article provides a summary of the discussions at this workshop, including noting areas of 

emerging science and discovery, considerations for future studies, and identifying open gaps 

in our understanding for future focus.

2 | INTERSECTION OF AD AND DS: COMMONALITIES AND DIFFERENCES

The link between AD and DS is thought to be related to the triplication of the amyloid 

precursor gene (APP), which is encoded on chromosome 21. A small percentage of 

individuals with DS have partial trisomy of chromosome 21 without an extra copy of 

the APP gene (ie, they are disomic for APP). These individuals do not have the same 

elevated risk to develop AD but instead have a risk more consistent with that of the general 

population.16,17 Furthermore, there are rare families exhibiting autosomal dominantly 

inherited AD caused by three copies of the APP gene due to a small locus of duplication 

on one chromosome 21.18,19 Taken together these findings support the conclusion that three 

copies (ie, an extra dose) of the APP gene are sufficient to cause AD.16,17

Moreover, trisomy of chromosome 21 results in increased gene dosage for all genes on 

this chromosome, including several genes in addition to APP that may also be involved in 

related mechanisms. These include SOD1, which is involved in redox metabolism; ABCG1, 

which is involved in cholesterol metabolism; CSTB, BACE2, and SYNJ1 involved in Aβ 
processing and clearance; DYRK1A, which is involved in tau phosphorylation; RCAN, 

which is involved in mitochondrial dysfunction; S100B involved in inflammatory responses; 

and others involved in neuronal development.20 Chromosome 21 also encodes interferon 

receptor genes (IFNRs). Increased IFNR gene dosage results in IFN hyperactivation, IDO1 

induction, kynurenine (KYN) dysregulation, and the production of quinolinic acid (QA), 

a neurotoxin that induces excitatory toxicity.21,22 QA is associated with cognitive decline 

in older adults with AD and is a potent convulsant involved in epilepsy and seizures.23 

Thus, the clear importance of APP in AD in both the general and DS populations can be 

modulated by other genes.

2.1 | Biological underpinnings of DS and AD

Neuropathological studies of DS brains demonstrate that by age 40, there are changes fully 

consistent with the neuropathological diagnosis of AD. Interestingly, comparisons of DS 

brains from individuals with and without dementia have demonstrated the same differences 

in Aβ burden in the frontal cortex and striatum, but greater tau pathology and atrophy in the 

brains of individuals with dementia.24 Some work suggests that there may be a greater role 
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of tau lesions in the onset of dementia.18 Single gene expression profiling of tau containing 

cortical projection neurons revealed a differential downregulation of several gene classes in 

the brains of individuals with DS and dementia compared to individuals with DS but no 

dementia, including genes related to Aβ and tau biology, neuro-transmission, and cell death, 

suggesting potential novel drug discovery targets.24

Dendritic spines are integral to synaptic plasticity and memory storage. Spine pathology has 

been reported not only in traumatic brain injury and neurodegenerative diseases including 

AD, but has also been reported in DS.25 Spine density declines significantly and early 

in brain regions affected by AD pathology.26 Reduced spine number and altered spine 

morphology also characterize the DS brain. Molecular pathways underlying spine defects 

in DS include those involving DSCR1, which helps regulate spine morphogenesis, and 

DYRK1A, which regulates spine formation and actin dynamics.27

Trisomic astrocytes also play a role in spine pathology and reduced spine density.28 Co-

culture of human DS astrocytes with rat hippocampal neurons showed deficient secretion 

of thrombospondin 1 (TSP-1), a protein that modulates spine density and morphology in 

DS astrocytes.29 Increased interferon (IFN) signaling also inhibits TSP-1 secretion in DS 

astrocytes.30 These overlapping mechanisms suggest the potential for therapeutic approaches 

that target TSP-1, IFN, and amyloid in the DS brain.

Cerebrovascular pathology seen in people with DS-AD differs from those with sporadic 

AD. Cerebral amyloid angiopathy (CAA) occurs more frequently and is more severe in 

individuals with DS-AD compared to those with sporadic AD, probably as a result of APP 
overexpression.31,32 AD-specific neuropathology is also associated with CAA small vessel 

disease, which can contribute to the development of dementia. Further, CAA accumulation 

may reflect an imbalance between Aβ production and clearance and exacerbate Aβ plaque 

deposition,33 although this has not been explored systematically in people with DS. 

Further, the presence of CAA may lower the threshold for the development of cognitive 

impairments.34 However, other vascular pathologies such as hypertension, atherosclerosis, 

and arteriosclerosis are rarely seen in DS, and in comparison with individuals with 

duplication of APP (thus a similar overdose of amyloid protein), which would suggest 

that individuals with DS appear to have some degree of protection against severe CAA.35 

However, given that CAA is higher in DS, it is likely that APP overexpression overrides 

these systemic protective factors. The consequences of increased CAA in the DS and 

sporadic AD brain include an increased frequency of microhemorrhages, which increase 

exponentially with age and can contribute to earlier onset of dementia.31,36 CAA magnetic 

resonance imaging (MRI)-related abnormalities including micro-and macrohemorrhages and 

white matter malformations are found more frequently in DS (and in ADAD) than in 

sporadic AD or healthy controls, however; this is likely due to a multitude of factors 

and may be independent of one another.37 If mechanisms contributing to AD pathology 

are different in DS-AD compared to sporadic AD, this may have implications regarding 

therapeutic development for DS-AD.

Even non-DS forms of AD may result, in part, from the occur-rence of chromosome 

21 trisomy in other cells—a phenomenon known as mosaic aneuploidy caused by 
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nondisjunction during mitosis.38 Trisomy 21 mosaicism has been observed in cells from 

people with sporadic AD, familial AD, and autosomal dominant presenilin mutations.39 

The number of hyperploid neurons increases in relation to AD-related pathophysiological 

changes in the brain but decreases at later stages of disease progression because hyperploid 

neurons are more prone to cell death.40 Increased aneuploidy and apoptosis have also been 

observed in other neurodegenerative diseases such as frontotemporal lobar degeneration 

(FTLD)41 and Huntington’s disease (HD)42 and in developmental disorders such as 

autism.43 These findings suggest that genomic instability may represent a common 

mechanism across neurodegenerative and neurodevelopmental diseases and could be a 

therapeutic target. They further suggest that DS-AD and other co-occurring conditions may 

arise in people with DS through both developmental and aging-related cell cycle defects 

leading to variable mosaic aneuploidy in addition to trisomy 21. This could explain the high 

level of variability.44

2.2 | Regional pathology

In DS, amyloid pathology begins in the late teens with deposits of diffuse plaques initially 

within the temporal lobe consistent with Thal phase 1,45 then spreading to neocortical 

regions and the hippocampus (Thal phase 2), reaching subcortical regions (Thal phases 3 

and 4) and the cerebellum (Thal phase 5) by the late 40s. After 50 years of age, every region 

of the brain, including the cerebellum, is littered with amyloid plaques (Thal phase 5).45 

Over the lifespan, amyloid pathology begins as early as age 13 years with a pattern typical 

of AD typically reached by 55 years of age.46 CAA begins at ≈40 years of age, ≈25 years 

after initial deposition of Aβ as plaques.31

The earliest sites of tau pathology include the entorhinal and transentorhinal cortex, 

spreading to the hippocampus, then temporal cortex and eventually to other regions of 

cerebral cortex, finally reaching the visual association cortex and primary visual cortex.46 

Tau pathology begins at ≈35 years of age within the hippocampus and spreads to neocortical 

regions after 45 years of age.

2.3 | Co-occurring conditions in DS-AD

Hypothyroidism, epilepsy, anemia, and weight loss are more common in people with DS and 

dementia compared to those without dementia.47 Early-onset epilepsy and multi-morbidity 

may be associated with earlier onset of dementia;48 however, the contribution of other 

co-occurring conditions (such as hypothyroidism) to both age of onset and survival of 

individuals with DS-AD appears relatively modest.11 Diagnostic issues may explain some 

of the variability in age of onset. Individuals with more severe intellectual disability and 

sensory impairment may be more difficult to diagnose. In addition, studies suggest that 

individuals living at home rather than in care facilities are diagnosed earlier, possibly 

because families are more sensitive to subtle changes in cognition and function.11

In individuals with DS, dementia is also associated with a five-fold increase in mortality 

rate compared to individuals without dementia; age is also a confounder that should be 

considered.48 In individuals with DS, it is unclear if apolipoprotein E (ApoE) ε4 impacts 

AD and mortality risk as in the general population; some studies suggest the risk is similar 
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and some studies have suggested otherwise.49–51 Seizures are also linked to dementia in 

DS, with new-onset epilepsy often appearing in the early stages of dementia.52 Seizures 

may eventually occur in >70% of individuals with DS-AD,6 which are associated with 

accelerated cognitive decline53 and increased mortality.48

2.4 | Risk factors in DS-AD

In the general population, studies have shown an association between risk of developing AD 

and lifestyle factors such as diet, physical activity, and social and cognitively stimulating 

leisure activities.54–56 Adults with DS often have maladaptive lifestyles (eg, low physical 

activity and few social or leisure activities); thus, researchers have begun to investigate 

the association between lifestyle factors and biomarkers of early AD neuropathology and 

cognitive decline in DS. In a recent study, adults with DS without dementia who engaged in 

higher levels of cognitively stimulating and social leisure activity experienced less decline 

across three years in episodic memory. Moreover, leisure activity at baseline mitigated the 

association between an increase in Aβ assessed via positron emission tomography (PET) 

imaging and decline in episodic memory across three years, suggesting that these behaviors 

could play a role in benefiting cognition in the early stages of AD in DS.57

In the general non-DS population, high blood pressure, hypertension, and other vascular risk 

factors appear to increase the risk of developing dementia as well as cerebrovascular and AD 

pathology, presumably by putting white matter at risk of injury.58 Although hypertension 

is low in DS, high rates of cerebrovascular disease (CVD) including microbleeds are seen, 

suggesting vascular contributions to the DS-AD phenotype need to be better understood.37 It 

is possible that lifestyle factors that reduce risk of vascular disease could potentially also be 

an important target for intervention of dementia.

Sleep is another factor that may play a bi-directional role in the development of AD.59 Sleep 

disorders are not only more prevalent in AD but also may predict future development of 

AD.60 Sleep is thought to increase the clearance of toxins such as amyloid.61 Adults with 

DS frequently experience sleep disruption, which could have multiple causes, and also have 

a high prevalence of obstructive sleep apnea (OSA),62 which is a risk factor for AD.63 OSA 

has been hypothesized to be associated with cognitive decline in DS.64 In large population 

studies of elderly individuals without DS, OSA is associated with increased amyloid burden 

as individuals age.65 The high prevalence of sleep disruption in DS suggests that this 

population may provide a window into understanding the links among sleep, amyloid, and 

dementia.62

Cognitive reserve is the idea that individuals who engage in more cognitively stimulating 

lifestyles, often measured by level of formal education or complexity of employment and 

mentally engaging activities (eg, crossword puzzles), better tolerate early AD pathology.66 

Specifically, such lifestyles are posited to promote the recruitment of alternative neural 

networks and/or foster more efficient use of existing networks to cope with early 

AD pathophysiologic insult (Stern, 2012).67 In aging non-DS populations, cognitively 

stimulating lifestyles have been found to be associated with reduced Aβ accumulation68 and 

a longer preclinical AD stage, in which early AD neurodegeneration is present but cognitive 

functioning remains intact (eg, Kemppainen et al.69). Historically, adults with DS have 
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experienced lifestyles with low cognitive stimulation as a result of limited adult disability 

services, low community involvement, and a lack of employment opportunities.70,71 

However, more recent shifts in the disability and employment system have provided a 

pathway for more cognitively stimulating lifestyles. The extent to which these shifts, and/or 

variability in level of cognitive stimulation, delay the onset of AD in the DS population 

needs more research attention.

3 | AD BIOMARKERS IN DS

Diagnosing AD in people with DS is complicated in part because of the need for tools to 

distinguish intellectual disability from cognitive decline.72 Biomarkers can help mitigate this 

challenge but require studying AD biomarkers in DS populations because the diagnostic 

and prognostic performance may be different from that seen in non-DS AD. Biomarker 

(measures of biological activity, function, and/or change) studies in DS populations could 

also elucidate differences in AD pathophysiology in DS, as compared to AD in the general 

population and ADAD, and may be able to predict onset of dementia as well as potential 

success of preventive treatments aimed at lowering AD pathology. Some biomarkers have 

been validated in DS populations and would be helpful for participant selection and for 

monitoring treatment efficacy in clinical trials for all types of AD.

The National Institute on Aging (NIA) and the Eunice Kennedy Shriver National Institute 

of Child Health and Human Development (NICHD) launched the 5-year Alzheimer’s 

Biomarker Consortium-Down Syndrome (ABC-DS) initiative in 2015, funding two research 

teams—the Neurodegeneration in Aging Down Syndrome (NiAD) research group and the 

Alzheimer’s Disease in Down Syndrome (ADDS) research group. In Europe, the Horizon 

21 consortium, which includes several groups such as the Down Alzheimer Barcelona 

Neuroimaging Initiative (DABNI) and the LonDownS study in the United Kingdom are 

working together to establish a trial-ready cohort to study AD biomarkers in DS.14 Such 

efforts aim to recapitulate in the DS population the work of the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), which has illuminated the pathogenesis of sporadic AD. In 

combination, there are significant collaborative efforts internationally to establish biomarker 

studies and clinical trial ready cohorts.

3.1 | Imaging biomarkers

Neuroimaging provides insight into the pathogenesis and progression of AD, enables 

diagnosis, and provides biomarkers for drug discovery and clinical trials.73 When Jack et al. 

published the landmark hypothetical model of dynamic biomarkers of the AD pathological 

cascade in 2010, the major imaging modalities included PET to assess fibrillar Aβ plaque 

deposition (Aβ PET) and two measures of neurodegeneration: fluorodeoxyglucose PET 

(FDG-PET), a measure of brain metabolism, and structural MRI to assess brain atrophy.74 

It is worth noting that while these tools have advanced biomarker development, they 

may not yet detect the earliest protein deposits, containing diffuse, non-fibrillar plaques. 

Over the years, many other imaging modalities have been applied to the study of AD 

and related dementias; examples of these modalities include additional PET ligands 

to image tau and other pathologies, functional MRI (fMRI) to examine the functional 
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activity of brain networks, diffusion weighted MRI (DW-MRI) to assess microstructure, 

electroencephalography, and retinal imaging.75

Cross-sectional studies of individuals with DS without dementia evaluated with Pittsburgh 

compound B (PiB-PET) demonstrated that when compared to individuals without DS, there 

was a similar prevalence of elevated amyloid in the absence of cognitive symptoms. In 

addition, it appears that the deposition of Aβ follows a similar time course, becoming 

evident about 20 years before the median age of symptom onset, however, at an earlier 

age of onset.76–79 There is a wide variability in the age of PiB-PET positivity onset.57 

Individuals with DS show a pattern of Aβ accumulation—initiating in the striatum—similar 

to patterns seen in people with ADAD but different from what is seen in sporadic AD in 

which Aβ deposition predominates in the neocortex.45,80 Longitudinal studies suggested 

that AD pathogenesis shifts from Aβ-negative to Aβ-positive earlier in DS compared to the 

general population but does not progress at a faster rate.81

Assessment of tau burden by PET scanning in people with DS shows similarities to the 

binding pattern and progression observed in non-DS AD.82 Specifically, tau accumulation is 

associated with amyloid positivity and age, as well as with progressive neurodegeneration 

measurable using FDG and MRI. Accumulation of tau correlates with cognitive decline, as 

do AD-specific hypometabolism and atrophy.82 Studies are ongoing to assess longitudinally 

the relationship of tau burden to cognitive and behavioral measures in DS.

The ABC-DS Project includes a study examining the correlation among Aβ burden, 

hypometabolism, and gray matter volume reductions in people with DS. FDG-PET can 

be used to assess brain metabolism; it is thought to provide a measure of glucose uptake 

and may mirror synaptic activity. In this same study, regional brain volume is assessed by 

MRI. In sporadic AD, changes in glucose uptake are seen prior to AD clinical symptom 

development and follow a characteristic pattern. In ADAD, one study suggests that glucose 

metabolism declines about 5 to 8 years before symptom onset and in another 14 years 

before expected onset.83,84 In DS-AD as in sporadic AD, glucose hypometabolism and 

AD-related gray matter volume reductions occur only in older subjects with higher Aβ 
burden.85 Interestingly, early work using FDG-PET in nondemented adults with DS suggests 

hypermetabolism in the entorhinal cortex prior to the development of dementia, suggesting 

a possible compensatory effect.86 These studies confirm that glucose hypometabolism and 

brain atrophy both represent biomarkers of neurodegeneration in DS.

With lower rates of hypertension compared to the general population, people with DS 

provide a window into the role of CVD in dementia without the confound of systemic 

vascular disease.87 CVD does not appear to be associated with elevated levels of Aβ (as 

measured by PET), suggesting that these features are not driven by Aβ pathophysiological 

changes. CVD seen in individuals with DS may be related to specific AD pathophysiological 

changes or may be independent; this is an area of further research needed to better 

understand the roles these factors may play related to clinical progression. In DS, markers 

of CVD visualized with MRI—white matter hyperintensities (WMH), micro-bleeds, infarcts, 

and enlarged perivascular spaces—increase in a dose-response manner across dementia-

related diagnostic groups.
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Changes in structural connectivity in white matter, which are detectable using DW-MRI, are 

also under investigation as potential biomarkers of AD progression in studies of individuals 

with DS-AD. As young as 35 years of age, people with DS show frontal white matter 

integrity losses that correlate with cognitive function.88 In sporadic AD, regional structural 

changes in white matter across the continuum of disease begin in the preclinical stage, 

with decreased connectivity associated with increased Aβ burden.89 Functional connectivity 

deficits of the default mode network assessed using fMRI90 also show changes correlating 

with amyloid deposition in people with DS.

3.2 | Non-imaging biomarkers

Low levels of cerebrospinal fluid (CSF) Aβ42 (soluble) and elevated levels of total tau (t-

tau) and phosphorylated tau (p-tau) are detectable in people with mild cognitive impairment 

(MCI) or AD. There have been a limited number of CSF studies in individuals with DS. 

These studies show that elevated levels of Aβ42 and other amyloid species are apparent in 

early childhood, although CSF tau levels remain low. As these individuals age, however, 

CSF Aβ42 levels decline and CSF tau levels increase.91 To understand Aβ and tau dynamics 

in individuals with DS, further CSF studies are needed, as well as studies of other blood-

based biomarkers that would not require individuals to undergo lumbar puncture (LP).

The DABNI study demonstrated good diagnostic performance of CSF AD-associated 

biomarkers and plasma neurofilament light (NfL, a component of the axonal cytoskeleton, is 

a marker of neuronal damage and degeneration92) in adults with DS;93 and that LP is a safe 

procedure in this population.94

While not specific to AD,95 CSF NfL concentrations increase during disease progression.96 

In the context of DS, in which the differential diagnosis often involves non-degenerative 

conditions (comorbidities) that do not elevate NfL levels, it is also specific for measures 

related to neurodegeneration. Similarly, plasma NfL concentrations increase as cognition 

declines in the non-DS population, and importantly, NfL is the only biomarker for which 

there is good correlation between plasma and CSF levels.97 In the ADAD population, 

serum NfL predicted both cortical thinning and cognitive change in the presymptomatic 

stage of disease.98 In people with DS, plasma NfL levels appear to increase with age, can 

distinguish between DS and DS-AD, and are associated with decreased adaptive behavior 

scores, supporting its role as a predictive biomarker of dementia in DS.93,99–101 Plasma 

NfL levels correlate with standard biomarkers of AD pathology such as amyloid PET along 

with markers of neurodegeneration (regional cerebral glucose metabolism as assessed with 

FDG-PET and hippocampal atrophy) as well as cognitive and functional decline.102

Endophenotype strategies are also being used to identify biomarker profiles for diagnosing 

or predicting risk of AD in different populations, including DS.103 This approach 

groups individuals by endophenotypes established using cognitive, biochemical, genetic, 

neuroimaging, and behavioral markers to identify subgroups who may respond to different 

therapeutic approaches. For example, a proinflammatory endophenotype may be able 

to predict who would respond to anti-inflammatory therapy. Metabolic and depressive 

endophenotypes may also prove relevant to better understanding and developing treatments 

for DS-AD.
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Exosomes are small, endosomal-derived vesicles released into the bloodstream from all 

cells, including neurons, that contain proteins, lipids, messenger RNA, long non-coding 

RNA, and microRNA, as well as cell-identifying surface markers. Exosomes may have 

potential to provide more accurate disease biomarkers, because their cargo contains specific 

cellular content from the cell of origin, that is, brain tissue.104 Exosomes facilitate cell 

signaling and transfer of cellular pathogens among cells and help in the removal of 

waste products.105 In AD, exosomes are thought to play a role in Aβ clearance and 

possibly in the cell-to-cell spread of tau and Aβ peptides.97 It has been shown that 

AD biomarkers including Aβ and p-tau are present in the cargo of neuron-as well as 

astrocyte-derived exosomes many years before any onset of dementia symptoms in the 

general population.106,126 A study of neuron-derived exosomes purified from the blood 

of individuals with DS suggested that levels of exosomal Aβ peptides and p-tau are 

significantly elevated in early life compared to individuals without DS,105 decades prior 

to the onset of dementia. The findings in that study demonstrated no association between 

age and exosomal Aβ42 levels, but a continuous increase in levels of p-S396-tau with the 

diagnosis of dementia in DS-AD. Levels of these exosomal biomarkers also correlate with 

cognitive measures and with some CSF biomarkers in the DABNI study. Further studies 

in additional cohorts will be needed to validate these findings but initial data suggest that 

exosomal cargo biomarkers may provide a more targeted biomarker method without having 

to perform repeated LPs in those with DS, because we can isolate exosomes originating only 

from neurons and glia from a single blood sample.127

The blood-brain barrier and choroid plexus are likely to play a role in determining pathology 

by controlling which biochemical factors, sub-cellular fractions, or cell subtypes traverse 

into and out of the brain parenchyma; some of which may be putative biomarkers with roles 

such as neuroprotection distributed in various fluid compartments being measured.107,108

4 | FUTURE CLINICAL TRIALS: AD DRUG DEVELOPMENT IN PEOPLE 

WITH DS

Advancing drug discovery in DS-AD will require a better understanding of underlying 

pathophysiological and genetic mechanisms, which requires suitable animal and/or cellular 

models that reflect gene dosage effects and alteration of regulatory sequences in 

chromosome 21. Many mouse models have been generated that duplicate various human 

chromosome 21 (Hsa21) genes. These models have yielded a better understanding of 

genotype-phenotype relationships and enabled the identification and exploration of potential 

therapeutic targets and assessment of new therapeutic approaches.109–112 However, the lack 

of a DS animal model that reproduces the pathological lesions found in DS and AD remains 

a major focus for the DS and AD research communities.

Human models using induced pluripotent stem cells (iPSCs) and directly induced neurons 

(iNs) have also emerged and are proving useful for the study of neurological diseases 

associated with aging including AD and DS-AD. iPSCs provide a pure genetic model but are 

limited in their ability to model age-related changes, at least those linked to changes in the 

epigenome while iNs can maintain age-associated features of aging neurons.113
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4.1 | Pipeline of clinical interventions

At the time of the workshop, only a few clinical trials were focused on DS-AD, yet there 

are many potential pharmacological and non-pharmacological approaches that may be able 

to benefit people with DS-AD. Moreover, successful trials in DS may translate readily to AD 

in the non-DS population.3 There is a strong rationale for testing anti-Aβ therapies in the DS 

population and such approaches may be even more efficacious in this population due to less 

age-related co-occurring conditions and fewer non-amyloid vascular risk factors.

The anti-Aβ vaccine ACI-24 is being evaluated in an NIH-funded phase Ib study in adults 

with DS (NCT02738450). It is a multi-center, double-blind, randomized, placebo-controlled, 

dose-escalation study of the safety, tolerability, and immunogenicity of ACI-24 in adults 

with DS. The study is fully enrolled with 16 adults with DS, aged 25–45 years. Primary 

endpoints include measures of safety, tolerability, and immunogenicity. Secondary endpoints 

include effects on biomarkers of AD pathology as well as cognitive and clinical function. 

Another study in DS involved scyllo-inositol, which is an endogenous myo-inositol isomer 

that has shown amyloid anti-aggregation effects.114,115 It has also shown amyloid-lowering 

effects in CSF and brain and demonstrated beneficial trends on cognition in mild AD.116 A 

phase II randomized, double-blind, placebo-controlled study of oral scyllo-inositol, which 

included pharmacokinetic studies, has been successfully completed in 24 adults with DS.117

Normalization of APP gene dose represents a potential therapeutic strategy to further 

explore. In a mouse model of DS, deleting one copy of APP eliminated endosomal 

pathology.118 Reducing APP gene dose could potentially be accomplished by targeting 

APP mRNA levels with antisense oligonucleotides (ASOs), APP mRNA translation, APP 
processing with γ-secretase modulators, removal of Aβ with immunotherapy, or reducing 

a key regulator of intracellular trafficking, Ras related protein a4 (Rab5), activation with 

ASOs.

Non-Aβ treatment approaches such as those that target tau, microglial function, interferon-

related signal transduction, oxidative stress, or inflammatory events could also be beneficial 

in DS-AD. For example, granulocyte-macrophage colony-stimulating factor (GM-CSF), a 

cytokine produced by the innate immune system, has been shown to reduce Aβ deposition 

in vivo and reverse memory deficits in aged DS and normal mice. However, GM-CSF, as a 

therapeutic, may have side effects that should be considered for therapeutic development.119

4.2 | Practical considerations for clinical trials

The conduct of clinical trials in the DS population raises many methodological challenges. 

Given the wide variability in baseline intellectual capabilities, the demands on memory, 

attention, and language ability must be taken into account for successful and accurate 

cognitive assessment and interpretation of results. Indeed, in the clinic, there can be a 

tremendous challenge in arriving at a firm diagnosis of AD dementia. The main defining 

feature of dementia in the typical population is a decline from the baseline level of function 

and performance of daily skills. Consensus guidelines for the evaluation and management in 

DS have been proposed.71 In the absence of a personal historian who can accurately attest 

to an individual’s baseline level of functioning, the assessment of a reported change may be 
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exponentially more complicated in DS. Moreover, the earliest signs of dementia in adults 

with DS may be subtle and will often require an astute observer to identify such changes. 

The history is the cornerstone of a dementia diagnosis. Currently, a thorough history must 

be obtained to build evidence consistent with declining cognition while probing for other 

features that might suggest other contributing factors. These contributing factors include 

concomitant medications, recent medical illnesses (including laboratory testing such as TSH 

and Vitamin B12), changes in health status (vision or hearing), or recent life events that 

can impact psychosocial functioning. Although some valid measures exist,120,121 there is 

currently no standard clinical instrument for the assessment of dementia in adults with DS. 

Assessment of decline should therefore always be individualized and patient specific, with 

judgments made on the basis of deterioration from the patient’s own individual baseline 

level of functioning.

Moreover, thoughtfully designed cognitive testing sessions using validated instruments 

that reflect clinical meaningfulness will be critical. In addition, developing inclusion and 

exclusion criteria for clinical trials in DS-AD can be challenging for several reasons 

including the high rate of sensory impairments and other health concerns, which may 

limit the generalizability of the sample.122 Identifying prodromal symptoms or MCI in 

people with DS may also be difficult because of pre-existing impairments. Assessment tools 

must be able to demonstrate change in participants, which may require verbal abilities not 

present in all potential trial participants; however, it is also important to include people 

representative of the larger DS population, and not limit participation to those who are more 

cognitively advanced or motivated. In addition, trial design should take into consideration 

factors such as where the participant lives—in the home verses an assisted living facility—

and how this may contribute to overall study engagement. This coincides with the role 

the care provider may play in trial participation, such as transport and identification of 

behavioral changes.

There is currently no generally accepted validated test battery to monitor medication effects 

in DS, and the variability in cognition and behavior among people with DS makes it 

difficult to assess treatment outcomes. A working group assembled by NICHD has identified 

measures that may be modifiable for use in people with DS to assess multiple cognitive 

and behavioral domains; however, additional work is needed to evaluate and validate these 

measures.123 Recently, there has been progress in demonstrating the sequence of decline 

events and onset of symptoms during the prodromal stages of AD in DS. These studies 

are using standardized informant ratings of symptoms with tools such as the CAMDEX-DS 

questionnaire124 to explore changes in behaviors related to frontal lobe dysfunction, and 

comprehensive cognitive test batteries such as the LonDownS battery to demonstrate early 

decline in memory and attention.

While neuroimaging biomarkers have demonstrated their value in AD clinical trials, DS-AD 

participants may have increased challenges because of the difficulty they may have in 

keeping still during the scan session and/or the length of the scan; these challenges increase 

as the disease progresses. As such, use of neuroimaging biomarkers may become more 

problematic as individuals with DS progress in AD. This complication should be considered 

as these biomarkers are developed and validated for potential use in clinical trials.
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Finally, selection of appropriate interventions to evaluate in the DS-AD population should 

consider factors such as the increased CAA and inflammation in these individuals for both 

evaluation of interventions and cross-target complexities.

5 | CONCLUSIONS, GAPS, AND NEXT STEPS

Imaging studies suggest a similar pattern of pathology between DS-AD and sporadic AD 

but beginning at an earlier age in DS-AD. However, the basis of these studies is on 

current knowledge about AD. Genetics, metabolomics, lipidomics, and other -omics data 

in DS-AD may suggest other mechanistic lines of investigation resulting in the development 

of other biomarkers. DS-AD, unlike sporadic AD, is a genetically driven form of dementia. 

Moreover, the higher expression of APP and other chromosome 21 genes may interact with 

AD pathology in ways specific to DS-AD; for example, by inducing chronic oxidative stress.

Workshop participants identified a number of gaps in understanding the biological 

underpinnings and the role of risk factors, including novel vascular risk factors associated 

with DS-AD. Gaps also exist regarding what are the best biomarkers for DS-AD across the 

continuum of disease, including vascular markers, inflammatory markers, oxidative stress, 

excitation, calcification, and CVD markers.

Many international research consortia and collaborations are underway to advance the 

understanding of DS-AD. These include the Horizon 21 Genetics Consortium (funded 

by J-L Institute), AD Biological correlates in DS (NIH, PI Granholm), Inflammation 

and NGF Dysfunction in the Evolution of AD Pathology in DS (multicenter), Improving 

AD care in adults with DS (submitted to GBHI and Alzheimer’s Association Pilot 

Award), Horizon 21 Cognitive Project, HEROES consortium funded by the JPND in 

Europe,125 the NIH Alzheimer’s Biomarker Consortium for Down syndrome (ABC-DS), 

and the Crnic Institute’s Human Trisome Project (NCT02864108). Other projects are also 

underway studying exosomes, metabolomics, TREM2, Dyrk1A, neurotransmitters, NfL, 

novel biomarkers in DS, and modifiable risk factors including sleep.

The ABC-DS, LonDownS Consortium, Down Syndrome Biomarker Initiative (DSBI), and 

DABNI have collected critical data on the natural history of AD in DS to enable clinical 

trials. They have demonstrated that biomarker-enabled studies of AD in DS are indeed 

feasible and a small number of clinical trials have demonstrated the interest and willingness 

of adults with DS to successfully participate in placebo-controlled clinical trials for AD in 

DS.117,126

There is a need for increasing the number of postmortem brain tissues from well-

characterized people with DS and AD available for study by the international research 

community. An initial network consisting of 10 participating universities in the United States 

and Europe, the Down Syndrome Biobank Consortium (DSBC), will develop standardized 

protocols for DS brain procurement, harmonized collection of brain tissues at the different 

sites, and harmonized tissue procurement and sharing within the research community.

Workshop participants suggested establishing a consensus research framework for DS-

AD, including development of a data-driven consensus core assessment battery. To 
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advance clinical research and clinical trials, identify recruitment priorities, and power 

trials appropriately, more research is needed to better understand the risk factors for 

dementia in DS. Longitudinal measures are needed to better understand progression 

and phenoconversion. There was also discussion about the importance of establishing 

coordinated research and medical care centers of excellence within the framework of 

existing DS centers and/or AD centers to accelerate understanding and effective treatments.

Developing clinical trial networks and the infrastructure for multi-center collaborations 

using harmonized protocols is another important priority with several efforts currently 

underway, including the LuMIND IDSC Foundation Down Syndrome Clinical Trials 

Network (DS-CTN) and the NIH-funded Alzheimer’s Clinical Trial Consortium-Down 

Syndrome (ACTC-DS). A multi-center observational study, the Longitudinal Investigation 

for Enhancing Down Syndrome Research (LIFE-DSR) study, is also underway. Studies 

aimed at prevention of dementia in the DS population should also be further explored, both 

pharmacological and non-pharmacological. Expanded utilization of brain banking, expanded 

data sharing and evaluation of data across studies, and expanded pharmacological and 

non-pharmacological intervention studies as well as combination therapy approaches are 

also urgently needed.
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RESEARCH IN CONTEXT

1. Systematic Review: Understanding the factors that underlie the variation in 

symptom presentation and age of clinical presentation of dementia in people 

with Down syndrome (DS) may provide insights into the pathophysiological 

mechanisms of both sporadic and DSassociated Alzheimer’s disease (DS-

AD), including the association among amyloid beta (Aβ), tau-containing 

neurofibrillary tangles, neurodegeneration, vascular changes, and dementia. 

The high incidence of AD in the DS population, combined with the ability 

to readily identify individuals with DS, also suggests synergies between 

research for DS and AD, including the potential for AD-targeted therapeutic 

clinical trials in individuals with DS, including prior to the onset of dementia. 

Building off past workshops, the Alzheimer’s Association, Global Down 

Syndrome Foundation, and the LuMind IDSC Foundation partnered in March 

2019 to convene a workshop to explore the state of the research on AD 

and DS pathophysiology, risk factors, biomarkers, and drug development; to 

identify research gaps and unmet needs; and to consider how best to advance 

the field.

2. Interpretation: This article provides a summary of the discussions at 

this workshop, including noting areas of emerging science and discovery, 

considerations for future studies, and identifying open gaps in our 

understanding for future focus.

3. Future Directions: The AD/DS Workshop participants identified a number of 

gaps in understanding the biological underpinnings, the role of risk factors, 

including novel vascular risk factors associated with DS-AD. Gaps also exist 

regarding what are the best biomarkers for DSAD across the continuum of 

disease, including vascular markers, inflammatory markers, oxidative stress, 

excitation, calcification, and cerebrovascular disease markers.
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