Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Disorder effects on Kondo behavior in CePt2+x

Permalink

https://escholarship.org/uc/item/1cx1s3fx

Authors

Chen, Y.Y. Huang, P.H. Booth, C.H. <u>et al.</u>

Publication Date 2005-09-19

Disorder effects on Kondo behavior in CePt_{2+x}

Y. Y. Chen, ^{a,*} P. H. Huang, ^a C. H. Booth, ^b J. M. Lawrence ^c

^aInstitute of Physics, Academia Sinica, Taipei, Taiwan 115 ROC

^bChemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA 94720-8175 USA

^cDepartment of Physics and Astronomy , University of California, Irvine CA 92717 USA

Elsevier use only: Received date here; revised date here; accepted date here

Abstract

CePt₂ is an antiferromagnetic (AF) Kondo-lattice compound with $T_N \sim 1.7$ K and $T_K \sim 4.6$ K. The evolution of AF and Kondo interactions in CePt_{2+x} with x= 0, 0.5 and 1 is observed by analysis of the temperature-dependent specific heat. This analysis shows that ~56% of the Ce in CePt₂ is involved in Kondo interactions, with the rest involved in magnetic correlations. While 100% of the expected entropy (Rln2) is recovered by 15 K in CePt₂, only 95% and 93% is recovered for x=0.5 and 1.0, respectively. Meanwhile a larger Kondo fraction (80-90%) and a smaller AF fraction (15-3%) is observed, while T_K decreases from 4.6 K to 2.8 K as x increases from 0 to 1. This trend in T_K is opposite that expected from the measured lattice contraction. We conjecture that lattice disorder induced by Pt alloying is responsible for these results.

© 2005 Elsevier Science. All rights reserved

Keywords: Kondo lattice, Antiferromagnetic order, Disorder

1. Introduction

It is known that nonmagnetic substitutions can suppress the magnetic ordering and enhance Kondo effects in Ce (U) based compounds. For instance Ce₃Al is an antiferromagnet with $T_N=2.5$ K, but with 50% La substitution for Ce, it becomes a heavy fermion with $\gamma=$ 1000 mJ/ mol Ce K² [1]. K. A. Gschneidner *et. al.* pointed out that large heat capacities can arise from non-magnetic atom disorder (NMAD) in compounds where Ce (U) atoms occupy a periodic lattice [2]. In order to clarify the role of disorder in determining physical properties, Pt alloying in CePt_{2+x} has been studied. CePt₂ is a cubic antiferromagnet ($T_N = 1.7$ K) that grows in the C15 (MgCu₂) Laves phase. Neutron diffraction and x-ray spectra confirm that CePt_{2.5} and CePt₃ alloys are single phase with the C15 and C15b structures respectively [3]. Alloying Ir or Rh on the Pt-sites in CePt₂ results in a decrease of T_N [4]. It is of interest to see how substitutional disorder influences a system like CePt_{2+x} in which the magnetic order and Kondo interactions evolve as x is varied from 0 to 1. The present study was therefore performed on CePt_{2+x} with x=0-1 through the measurements of specific heat at 0.4 to 30 K.

2. Experimental details

Polycrystalline samples of bulk CePt_{2+x} for x= 0, 0.5 and 1 were prepared by arc melting high-purity constituent elements in an argon atmosphere. Cu K_a X-ray diffraction measurements demonstrate that these alloys have the Laves–phase structure and no visible impurity phase (Fig. 1). The specific heat was measured in the range 0.4-30 K using a thermal-relaxation microcalorimeter in a ³He refrigerator, with the mg-pellet sample attached to a sapphire holder on which a RuO₂-Al₂O₃ film thermometer

^{*}Corresponding author. Tel.: +886-2-2789-6725; fax: +888-2-2783-4187; e-mail: <u>cheny2@phys.sinica.edu.tw</u>.

FIG. 1 X-ray 2θ (degree) diffraction patterns for CePt_{2+x} with x=0,0.5 and 1.

and a Ni-Cr heater were deposited.

3. Result and analysis

Diffraction measurements indicated that the lattice constant *a* decreases from 7.73 Å to 7.64 Å as x increases from 0 to 1 (Fig. 1). The decrease of lattice constant is likely due to the smaller ionic size of Pt compared to Ce. The increased line width of CePt_{2.5} and CePt₃ relative to CePt₂ reflects increased lattice disorder and the increasing number of Pt atoms on the normally Ce sites.

The temperature dependence of the specific heat for T= 0.4 -15 K is shown in Fig. 2. These results are in good agreement with an earlier report [3], although the present data extend to lower temperatures. For CePt₂ a sharp peak near 1.7 K is superimposed with a low-temperature bump, reflecting the coexistence of Kondo interactions and magnetic correlations; the profiles of alloys CePt_{2.5} and CePt₃ do not have as clear a peak as CePt₂, instead exhibiting stronger Kondo-like anomalies. We account for the specific heat of CePt₂ by the contribution of the lattice phonon C_{ph} , magnetic correlations C_m , Kondo interactions C_K and crystal field splittings C_{cry} . Since the crystal field splitting T_{CF} in the alloys is ~ 200-300 K, for T < 15 K its contribution is obviously insignificant [3]. After lattice phonon subtraction referred to separate measurements on their non-magnetic counterparts LaPt_{2+x}, the integrated entropy of magnetic contribution $S = \int (C/T) dT$ is found to be about Rln2 between 0 to 15 K, the result is consistent with a Γ_7 doublet with S=1/2 for one mole of trivalent cerium [2]. The individual contributions of the Kondo interactions and magnetic correlations were further resolved by fitting high temperature data to a Kondo model (T_K=4.6 K for 0.56% Ce) with the assumption of negligible contribution of magnetic correlations for T > 8 K.

Applying this same data analysis to $CePt_{2.5}$ and $CePt_3$ the entropy of $CePt_{2.5}$ and $CePt_3$ are estimated to be 0.95 and 0.93 Rln2 respectively, possibly indicating the appearance of some nonmagnetic Ce^{4+} or that some

FIG. 2 Specific heat for $CePt_{2+x}$ with x = 0, 0.5 and 1 (open circles), other notations are lattice phonon C_{ph} (solid lines), $C(T)-C_{ph}$ (solid circles), and Kondo model fit (dashed lines)

ceriums participate in higher-temperature interactions. The contributions of Kondo interactions CK were obtained for CePt_{2.5} with T_K=3.1 K for 80 % Ce and for CePt₃ with T_{K} =2.8 K for 90% Ce. Pt alloying in CePt_{2+x} from x= 0 to 1 not only enhances the fraction of ceriums involved in Kondo interactions from 56 % to 90%, but also suppresses the fraction involved in magnetic correlations from 44% to The enhancement of Kondo interactions with 3%. increasing x explains the more Kondo-like profile of CePt_{2.5} and CePt₃. Furthermore, Pt alloying effects on decreasing TK from 4.6 K (x=0) to 2.8 K (x=1) are also Since this latter trend is opposite to that revealed. expected from the measured lattice contraction, site exchange of Ce-Pt and structural variation from C15 -C15b created by Pt alloying are factors attributed to the consequences.

Acknowledgment

This work was supported by the National Research Council of the Republic of China under Grant_No.NSC 93-2112-M-001-022 and by the U.S. Department of Energy under Contract No. DE-AC02-05CHI231.

References

1. Y. Y. Chen, Y. D. Yao, B. C. Hu, C. H. Jang, J. M. Lawrence, H. Huang and W H. Li , Phys. Rev. B. 55. (1997) 5937.

2. K. A. Gschneidner, Jr. , J. Tang, S. K. Dhar and A. Goldman, Physica B, 163 (1990) 507.

3. J.M. Lawrence, Y. -C. Chen, G. H. Kwei, M. F. Hundley and J. D. Thompson, Phys. Rev. B 56 (1997) 5.

4. G. – F. von Blanckenhagen, M. Lenkewitz, G.R. Stewart, J.Alloys Compds, 261, (1997) 37.