UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Developmental changes in childrens processing of nonsymbolic ratio magnitudes: A cross-sectional fMRI study

Permalink

https://escholarship.org/uc/item/1cx2614c

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors

Park, Yunji Biznak, John Toomarian, Elizabeth <u>et al.</u>

Publication Date

2018

Developmental changes in childrens processing of nonsymbolic ratio magnitudes: A cross-sectional fMRI study

Yunji Park

University of Wisconsin - Madison, Madison, Wisconsin, United States

John Binzak

University of Wisconsin - Madison, Madison, Wisconsin, United States

Elizabeth Toomarian

University of Wisconsin-Madison, Madison, Wisconsin, United States

Priva Kalra

University of Wisconsin, Madison, Wisconsin, United States

Percival Matthews

University of Wisconsin - Madison, Madison, Wisconsin, United States

Edward Hubbard

University of Wisconsin-Madison, Madison, Wisconsin, United States

Abstract

A growing number of studies has revealed that humans and nonhuman animals have the ability to process magnitudes of nonsymbolic ratios. Lewis, Mathews & Hubbard (2015) hypothesized that this ability may depend on a ratio processing system (RPS) that may help acquire symbolic fractions knowledge. The present study investigated ratio processing in 2nd and 5th graders using functional MRI. In the scanner, children decided which of two ratios was numerically larger. The stimuli were constructed as pairs of nonsymbolic line ratios, symbolic fractions, and mixed notations. Both 2nd and 5th graders showed the distance effect the behavioral performance and the neural activation were modulated by the numerical distance between two ratios. Notably, 5th graders showed greater neural distance effect and more overlaps in activation across notations when compared to 2nd graders. These results suggest that educational experience might promote recruitment of the RPS for processing symbolic fractions as well.