UCSF UC San Francisco Previously Published Works

Title

Identification and evaluation of animal-vehicle collisions hotspots on highway M-18 in Ukraine by using graphical representation

Permalink

https://escholarship.org/uc/item/1cx2h83b

Authors

Kokhan, Oleh Movchan, Yaroslav Gavrylenko, Victor <u>et al.</u>

Publication Date 2015

Peer reviewed

Identification and evaluation of animal-vehicle collisions hotspots on highway M-18 in Ukraine by using graphical representation

O.V.Kokhan, Ya.I.Movchan, V.M.Gavrylenko, D.V.Gulevets, National Aviation University, Kosmonavt Komarov Avenue, 1, Kiev, 03058, Ukraine.E-mail:interecocentre@gmail.com

Introduction

ABSTRACT:	We evaluate the deviation between the AVCs actual location in the road and model location that rounded up to a certain to character units as model location of AVC. The estimation of the deviation between actual location and model location is carried out for each of the models using three methods: a.) graphical analysis comparing the values models location on the single coordinate plane; b.) the comparison of their absolute and relative error; c.) the comparison of the class frequency for the values of the models locations.
Keywords:	Model location, animal-vehicle collisions, monitoring system, identification of hotspots, evaluation deviation

Animal-vehicle collisions (AVCs) are a serious problem that can result in property damage and human and animal injury and death that increased the importance of studies of AVC locations (Jensen et. al., 2014; Huijser et.al., M. P., 2007). Such consequences are requires for building of predictive model for AVCs that has temporal and spatial components (Rodríguez-Morales et.al., 2013) as part of the monitoring system that has been used for identification of spatial clustering of AVC a long period of time (Diaz-Varela et.al., 2011). The predictive models with reliable statistical evaluation and accuracy can be generated from government databases. (Snow et.al., 2015). If the database has AVCs location with errors in records are realistic problems that often compromise accuracy of safety model outcomes. (Tegge and Ouyang ., 2008). The identification of crash hotspots is the first step of the highway safety management process. Errors in hotspot identification may result in the inefficient use of resources for safety improvements and may reduce the global effectiveness of the safety management process (Montella, 2010). The high-risk locations or hotspots for detailed engineering study and countermeasure evaluation is the first step in a transport safety improvement program (Miranda-Moreno, 2007). Systematically collected animal-vehicle collision data help estimate the magnitude of the problem and help record potential changes in animal-vehicle collisions over time. Such data also allow for the identification and prioritization of locations that has to require mitigation. Furthermore, systematically collected animal-vehicle collision data allow for the evaluation of the effectiveness of mitigation measures in reducing the number of animal-vehicle collisions (Huijser, 2007). To implement the previous provisions regarding the management and reduction of AVC is needed to developed a system of monitoring AVC, which includes the following principles (Erickson, 2007; Pettler, Amy et al.,2007) The article proposes to add to statistic methods for evaluate of identification of AVC (Lord and Mannering, 2010; Mannering and Chandra, 2014), the another method that are not popular in AVC's researches. It is graphical method of identifying of

hotspots of AVC by using the graphical representation of which is investigated in our article and can be a tool for monitoring system for AVCs. After the AVC, there are some deviation determining of its location (Gunson, 2004). The study has another important issue to

l

leviation of AVC's location. The graphical includes can use in the monitoring systems for AVC. The monitoring system with only database is limited in using its full function for monitoring. The authors have proposed to improve of the functionality of the monitoring system by using a graphical representation of AVC data. There are some problems with choice of the graphical representation of AVC data that has been solved by using of evaluation method of the deviation graphical representation of the model location AVC as additional tool for monitoring. The present study is developing a graphical representation of AVCs model location by using evaluation of the deviation between

the actual location I_{0_i} AVC on the road and its

model location I_{n_i} . Each of AVC in the road has its own individual number N_{0} that is corresponding to the own value of the location on the road. Figure 1 shows the graph of *L*₀. distribution 79 points of AVC that they have actual values of the locations I_{0_i} and individual number N_{0_i} , where *i* - count of AVC if *i*=79 the

graph cannot be fully reflected all points of the values actual locations I_{0_i} for each AVC. After

rounding of the values actual location $I_{0,i}$, that

were obtained in the model location I_{n} . where

n=1;2;3;4 number of models for rounding: a.) numbers to the nearest 100 in the model n=1; (b.) numbers to the nearest 1000 in the model n=2; (c.) numbers to the nearest 10000 in the model n=3; d.) numbers to the nearest 100000 in the model n=4. For each *n*-models is proposed to evaluate the value of deviations $ill_{0_i} - l_{n_i} \lor$, using the following three methods: 1.) graphical analysis comparing the values models location l_{1_i} , l_{2_i} , l_{3_i} , l_{4_i} on the one coordinate plane; 2.) evaluation of their absolute $\Delta[l_n]$ and relative error $\delta[l_n]$ 3.)

evaluate of the class frequency f_n and of the

width of the class frequency h_n from f_n

after grouping numeric data by intervals 100,1000,10000, 100000 for each of the *n*-models locations.

These methods are basis of graphic to represent data and authors propose add to monitoring system which has already temporal and spatial components. The article is represented of development principal of graphical representation AVCs as a part of the monitoring system. For this will be evaluated deviation between the value

of the real location l_{0_i} AVC on the road and its

rounded value model location I_{n} .

Method

The study used AVC data i=79 which have place in period from 18.12.2007 to 23.12.2013 on the highway M-18 in Zaporozhye region of Ukraine. Every AVC has its own individual number $N_{0;}$ and appropriate of value of the real location of the accident L_{0} was expressed in kilometres and metres from AVC government database. The values of L_{0_i} has

transformed into values I_{0_i} that expressed only

meters. In the Microsoft Excel values $l_{0, ext{was}}$

rounded to values - l_{n} , where *n* - is the number

 I_{1} of model location: for n = 1 model location is

; for n = 2 model location is l_{2_i} ; for n = 3 model the model location l_{1_i} , l_{2_i} , location is I_{3_i} ; n = 4 model location is I_{4_i} . The value of L_{0_i} , l_{0_i} and l_{n_i} were included in a calculation table where each records L_{0_i} has an individual number to identification AVC N_{0_i} . The calculation table has the following columns: N_{0_i} - individual number of AVC; $L_{0,}$, - reallocation of AVC from the database of AVC of the State traffic police Zaporozhye and which expressed in kilometers and meters, $l_{0,0}$ - copy column " L_{0_i} " which is transformed into only meters; $l_{1_i} - \dot{l}$ the value of the location after rounding I_{0_i} for n=1; I_{2_i} - the value of the location after rounding l_{0_i} for n=2; l_{3_i} the value of the location after rounding I_{0_i} for n=3; I_{4_i} - the value of the location after rounding I_{0_i} for *n*=4. The data for all model location *n*=1,2,3,4 are summarized in Table 1. Table1.Calculation table for the values of the location

 l_{0_i} accident and after rounding to the values of

$$l_{3_i}$$
 ,

 I_{4_i}

	т	7	7	7	7	7
	L_{0_i}	I_{0_i}	I_{1_i}	I_{2_i}	I_{3_i}	I_{4_i}
1	260 km 250 m	260250	260300	260000	260000	300000
2	262 km 800 m	262800	262800	263000	260000	300000
3	268 km 100 m	268100	268100	268000	270000	300000
4	270 km 970 m	270970	272000	272000	270000	300000
6	274 km 600 m	274600	274600	275000	270000	300000
7	277 km 900 m	277900	277900	278000	280000	300000
8	278 km 070 m	278070	278100	278000	280000	300000
10	280 km 300 m	280300	280300	280000	280000	300000
11	280 km 790 m	280790	280800	281000	280000	300000
12	282 km 700 m	282700	282700	283000	280000	300000
13	283 km 150 m	283150	283200	283000	280000	300000
15	286 km 800 m	286800	286800	287000	290000	300000
16	290 km 150 m	290150	290200	290000	290000	300000
17	290 km 700 m	290700	290700	291000	290000	300000
10	291 km 400 m	291040	291000	291000	290000	300000
20	292 km 150 m	292150	292200	292000	290000	300000
21	292 km 850 m	292850	292900	293000	290000	300000
22	292 km 500 m	292500	292500	293000	290000	300000
23	293 km 800 m	292930	293800	293000	290000	300000
25	294 km 050 m	294050	294100	294000	290000	300000
26	294 km 070 m	294070	294100	294000	290000	300000
27	295 km 900 m	295900	295900	296000	300000	300000
20	296 km 200 m	295050	296200	296000	300000	300000
30	296 km 250 m	296250	296300	296000	300000	300000
31	296 km 450 m	296450	296500	296000	300000	300000
32	297 km 290 m	297 290	297300	297000	300000	300000
34	297 km 700 m	297 087	297100	297000	300000	300000
35	299 km 150 m	299150	299200	299000	300000	300000
36	300 km 150 m	300150	300200	300000	300000	300000
38	303 km 015 m	302900	302900	303000	300000	300000
39	303 km 500 m	303500	303500	304000	300000	300000
40	303 km 800 m	303800	303800	304000	300000	300000
41	303 km 400 m 304 km 650 m	303400	303400	303000	300000	300000
43	313 km 570 m	313570	313600	314000	310000	300000
44	318 km 770 m	318770	318800	319000	320000	300000
45	321 km 300 m	321300	321300	321000	320000	300000
40	323 km 860 m	323860	323900	323000	320000	300000
48	325 km 470 m	325470	325500	325000	330000	300000
49	325 km 600 m	325600	325600	326000	330000	300000
50	325 km 720 m 330 km 321 m	325720	325700	326000	330000	300000
52	333 km 410 m	333410	333400	333000	330000	300000
53	337 km 120 m	337120	337100	337000	340000	300000
54	337 km 080 m	337080	337100	337000	340000	300000
55 56	338 km 830 m	338830	338800	339000	340000	300000
57	339 km 495 m	339495	339500	339000	340000	300000
58	340 km 650 m	340650	340700	341000	340000	300000
59	344 km 100 m	344100	344100	344000	340000	300000
61	353 km 500 m	353500	353500	354000	350000	400000
62	353 km 946 m	353946	353900	354000	350000	400000
63	367 km 920 m	367920	367900	368000	370000	400000
64	377 km 710 m 386 km 900 m	377710	377700	378000	380000	400000
66	396 km 600 m	396600	396600	397000	400000	400000
67	398 km 700 m	398700	398700	399000	400000	400000
68	400 km 300 m	400300	400300	400000	400000	400000
69 70	402 km 800 m	402800	402800	403000	400000	400000
71	404 km 600 m	404600	404600	405000	400000	400000
72	417 km 850 m	417850	417900	418000	420000	400000
73	419 km 850 m	419850	419900	420000	420000	400000
/4 75	431 km 130 m 433 km 450 m	431130 433450	431100	431000	430000	400000
76	443 km 080 m	443080	443100	443000	440000	400000
77	449 km 850 m	449850	449900	450000	450000	400000
78	453 km 022 m	453022	453000	453000	450000	500000
79	454 KIII 000 M	454000	454000	454000	450000	500000

To evaluation the deviation between the value actual $I_{0,}$ and value model location I_{n} location were used the following methods: 1.) the grap analysis comparing the values of the point of moueus l_{1_i} , l_{2_i} , l_{3_i} , l_{4_i} on the one location coordinate plane; 2.) the comparison of their absolute $\Delta[l_{n_i}]$ and relative error $\delta[l_{n_i}]$; c.) the comparison of the class frequency f_n for the values of the models locations and the width of the class frequency h_n after grouping numeric data by intervals 100,1000,10000, 100000 for each of the n-models locations. For the first evaluation method: graphical 1.) analysis comparing the values l_{n_i} , for columns l_{1_i} , l_{2_i} , l_{3_i} , l_{4_i} from Table 1 were

constructed graphs of distribution of point of models location of AVC on each coordinate plane for n=1,2,3,4(Fig. 2,3,4,5).

2.) The second method of evaluation of the deviation $I_{0_i \text{ and }} I_{n_i \text{ using the calculations}}$ between of the absolute error $\Delta[l_{n_i}]$ and relative error $\delta |l_{n_{\!\!\!\!\!\!\!}}|$ was prepared in the Table 2.The calculation of the absolute error $\Delta[l_{n_i}]$ and relative error $\delta[l_{n_i}]$ for is held by the formulas (2) and (3):

$$I_{n} - I_{0} \vee \frac{i}{I_{n}}$$
$$\delta[I_{n}] = i$$
(3)

 $\Delta(l_n)$ Table 2. Calculation of the absolute error

and relative error $\delta(\dot{l}_{n_i})$ for *n*-models.

I	Δ($\delta(l$	Δ(δ	Δ(δl	Δ(δ
1	50	0,000 2	250	0,0010	250	0,0010	39750	0,1527
2	0	0,000 0	200	0,0008	2800	0,0107	37200	0,1416
3	0	0,000 0	100	0,0004	1900	0,0071	31900	0,1190
4	30	0,000 1	30	0,0001	970	0,0036	29030	0,1071
5	30	0,000 1	30	0,0001	1970	0,0072	28030	0,1031
6	0	0,000 0	400	0,0015	4600	0,0168	25400	0,0925
7	0	0,000 0	100	0,0004	2100	0,0076	22100	0,0795

8	30	0,000 1	70	0,0003	1930	0,0069	21930	0,0789
9	0	0,000 0	200	0,0007	200	0,0007	20200	0,0722
10	0	0,000 0	300	0,0011	300	0,0011	19700	0,0703
11	10	0,000 0	210	0,0007	790	0,0028	19210	0,0684
12	0	0,000 0	300	0,0011	2700	0,0096	17300	0,0612
13	50	0,000 2	150	0.0005	3150	0.0111	16850	0.0595
14	0	0,000 0	200	0.0007	4200	0.0148	15800	0.0556
15	0	0,000	200	0.0007	3200	0.0112	13200	0.0460
16	50	0,000 2	150	0.0005	150	0.0005	9850	0.0339
17	0	0,000	300	0.0010	700	0.0024	9300	0.0320
18	40	0,000	40	0.0001	1040	0.0036	8960	0.0308
19	0	0,000	400	0.0014	1400	0.0048	8600	0.0295
20	50	0,000	150	0.0005	2150	0.0074	7850	0.0269
20	50	0,000	150	0.0005	2850	0.0097	7150	0.0244
21	0	0,000	500	0.0017	2500	0.0085	7500	0.0244
22	50	0,000	500	0,0017	2300	0.0101	7050	0,0230
23		0,000	200	0,0002	2930	0,0100	6200	0,0241
24	50	0,000	200	0,0007	4050	0,0129	6200	0,0211
25	30	0,000	50	0,0002	4050	0,0130	5950	0,0202
20		0,000	100	0,0002	4070	0,0130	4100	0,0202
27	50	0,000	50	0,0003	4100	0,0159	4100	0,0159
20	50	0,000	200	0,0002	2900	0,0100	2950	0,0100
29	50	0,000	200	0,0007	2750	0.0127	2750	0.0120
30	50	0,000	450	0,0005	3750	0,0127	3750	0,0127
31	10	0,000	450	0,0015	3550	0,0120	3550	0,0120
32	10	0,000	290	0,0010	2710	0,0091	2710	0,0091
33	12	0,000	07	0,0010	2300	0,0077	2300	0,0077
34	50	0,000	150	0,0005	2913	0,0038	2515	0,0030
26	50	0,000	150	0,0005	150	0,0028	150	0,0025
27	0	0,000	100	0,0003	2000	0,0005	2000	0,0005
20	15	0,000	100	0,0003	2900	0,0090	2015	0,0050
30	15	0,000	500	0,0000	3015	0,0100	3015	0,0100
39	0	0,000	500	0,0016	3500	0,0115	3500	0,0115
40	0	0,000	200	0,0007	3800	0,0125	3800	0,0125
41	0	0,000	400	0,0013	3400	0,0112	3400	0,0112
42	50	0,000	350	0,0011	4650	0,0153	4650	0,0153
43	30	0,000	430	0.0007	35/0	0,0114	10770	0,0433
44	30	0,000	230	0,000/	1230	0,0039	10//0	0.0662
45	0	0,000	300	0,0009	1300	0,0040	21300	0,0663
46	30	0,000	1/0	0,0005	2830	0.0112	22830	0,0707
4/	40	0,000	140	0.0011	3860	0.0120	23860	0,0702
48	30	0,000	4/0	0.0012	4530	0.0125	254/0	0.0700
49	0	0,000	400	0,0012	4400	0.0135	25600	0,0700
50	20	0,000	280	0,0009	4280	0,0131	25/20	0,0010
51	21	0,000	321	0,0010	321	0,0010	30321	0,0918
52	10	0,000	410	0,0012	3410	0,0102	33410	0,1002
53	20	0,000	120	0,0004	2880	0,0085	3/120	0,1101
54	20	0,000	80	0,0002	2920	0,0087	3/080	0,1100
	0	0,000	200	0,0006	1200	0,0035	38800	0,1145
56	30	0,000	170	0,0005	1170	0,0035	38830	0,1146
57 58	5 50	0,000	495 350	0,0015 0,0010	505 650	0,0015 0,0019	39495 40650	0,1163 0,1193

		1						
		0,000						
59	0	0	100	0,0003	4100	0,0119	44100	0,1282
		0,000						
60	10	0	290	0,0008	2710	0,0078	47290	0,1362
		0,000						
61	0	0	500	0,0014	3500	0,0099	46500	0,1315
		0,000						
62	46	1	54	0,0002	3946	0,0111	46054	0,1301
62	20	0,000	00	0.0000	2000	0.0055	22000	0.0070
63	20	1	80	0,0002	2080	0,0057	32080	0,08/2
	10	0,000	200	0.0000	2200	0.0001	22200	0.0500
- 64	10	0 000	290	0,0006	2290	0,0001	22290	0,0590
C.F.	0	0,000	100	0.0002	2100	0.0000	12100	0.0220
65	0	0.000	100	0,0003	5100	0,0060	13100	0,0559
66	0	0,000	400	0.0010	3400	0.0086	3400	0.0086
00	0	0.000	400	0,0010	3400	0,0000	3400	0,0000
67	0	0,000	300	0.0008	1300	0.0033	1300	0.0033
	Ű	0.000	500	0,0000	1000	0,0000	1000	0,0000
68	0	0	300	0.0007	300	0.0007	300	0.0007
		0.000						
69	0	0	200	0,0005	2800	0,0070	2800	0,0070
		0,000						
70	0	0	400	0,0010	4600	0,0114	4600	0,0114
		0,000						
71	0	0	400	0,0010	4600	0,0114	4600	0,0114
		0,000						
72	50	1	150	0,0004	2150	0,0051	17850	0,0427
		0,000						
73	50	1	150	0,0004	150	0,0004	19850	0,0473
-	20	0,000	100	0.0000	1120	0.0000	21120	0.0700
/4	30	1	130	0,0003	1130	0,0026	31130	0,0/22
75	EO	0,000	450	0.0010	2450	0.0000	22450	0.0772
/5	50	0.000	450	0,0010	3450	0,0060	33450	0,0772
76	20	0,000	80	0.0002	3080	0.0070	43080	0.0972
- /0	20	0.000	00	0,0002	3000	0,0070	-+3000	0,0372
77	50	0,000	150	0.0003	150	0.0003	49850	0.1108
		0.000	100	5,0005	100	5,0005		0,1100
78	22	0	22	0,0000	3022	0,0067	46978	0,1037
-		0,000						
79	0	0	0	0,0000	4000	0,0088	46000	0,1013
		0,000						
MIN	0	0	0	0,0000	150	0,0333	150	0,0500
		0,019						15,273
MAX	50	2	500	0,1709	4950	1,6777	49850	8

Note: MIN and MAX - minimum and maximum values that selected from

3.) The third method evaluation of the deviation between l_{0_i} and l_{n_i} by calculating the class frequency f_n for the values of the model locations l_{1_i} , l_{2_i} , l_{3_i} , l_{4_i} and of the width of the interval grouped h_n for n=1,2,3,4that are presented in Table 3.

Table 3. Class frequency f_n , for models *n*.

Number of models, <i>n</i>	1	2	3	4
Class frequency,				
f_n				
	75	60	19	3
Amount of AVC, i	79	79	79	79

For each group l_{n_i} for *n*-models create the frequency f_4 for the model locations l_{4_i} distribution graph of the class frequency f_n for n=4. model location l_{n_i} (Fig.6,7,8,9). Graph of the a.) Graphical analysis on the coordinate plane graphs of the distributions of the values of the models location l_{1_i} shown in Fig. 6. Graphical analysis on the coordinate plane graphs of the distributions of the values of the models locations l_{1_i} , l_{2_i} , l_{3_i} , l_4 from individual accidents N_{0_i} in Figure 10.

Figure 6. The graph of the distribution of the class frequency f_1 for model locations l_{1_i} for n=1.

The graph of the distribution of the class frequency f_2 for locations l_{2_i} for n=2 shown in Figure 7.

Figure 7. The graph of the distribution of the class frequency f_2 for model location l_{2_i} for n=2.

The graph of the distribution of the class frequency f_3 for locations l_{3_i} for n=3 shown in Figure 8.

Figure 8. The graph of the distribution of the class frequency f_3 for model location l_{3_i} for *n*=3.

The graph of the distribution of the class frequency

 f_4 for locations l_{4_i} for n=4 shown in Figure 9.

Fig 10. Graphical analysis on the coordinate plane graphs with points of the distributions of the values of the models locations l_{1i} , l_{2i} , l_{3i} , l_{4i} Model location of AVC, l_{n_i} , N_{0i} . Note: Figure

and $l_{4_{79}}$ for N

for

111000015 10Caulons 4_i

The second evaluation method on the coordinate plane graphs of the relative error $\delta(\dot{l_1})$, $\delta(\dot{l_2})$,

 $\delta(\hat{l}_3)$, $\delta(\hat{l}_4)$ for *n*-models in shows in Figure 11. There are very significant difference data for the absolute error $\Delta(\hat{l}_n)$) for *n*=1 and *n*=4 they were not Tab: Model location \boldsymbol{l}_{2_i} ren in

Fig.

each of the individual numbers of AVCs **''**(),

s(i')

Ν.

3.) The third method evaluation of the deviation between l_{0_i} and l_{n_i} was calculated the f_n - class frequency are grouped by the value model locations l_{1_i} , l_{2_i} , l_{3_i} , l_{4_i} , from the Table 2, and the width of the class frequency h_n , grouping numeric data by intervals 100,1000,10000, 100000 for each of n=1;2;3;4 are presented in Table 4. To calculate the class frequency

 h_n , for each *n*-model using Formula 3.

$$h_n = i \qquad \frac{N_{max} - N_{min}}{N_n} \tag{3}$$

where h_n - class interval; f_n - class

frequency; N_{max} - upper class limit at the groups

AVC, from Table 4 for each
$$n$$
; N_{min} - lower class

limit value of the amount at the groups AVC, from the Table 4 for each *n*. Data for calculating the width of the interval grouping for each model are given in Table 4.

Table 4. Calculation of the class interval n_n

from class frequency f_n for *n*-models

п	1	2	3	4
Upper class limit,				
N _{max}				
	2	3	16	60
Lower class limit,				
$N_{_{min}}$				
	1	1	1	2
Range,				
N _{max} -N _{min} ,	1	2	15	58
Class frequency,				
f_n				
	75	60	19	3

Count of AVC,				
N _o				
-0_i				
	79	79	79	79
Class interval,				
h_n				
1	0,013	0,033	0,789	19,333

Graph of the dependence for the class interval h_n from class frequency f_n for *n*-

models are shown in Figure 12.

Figure 12. Graph of the of the dependence of the class interval h_n from class frequency f_n for

n-models

The evaluation results of the *n*-models ire shown in Table 5 for models n=1,2,3,4

Table 5. The evaluation results of the three methods for models n=1,2,3,4

n	1	2	3	4
Upper class limit,				
N _{max}				
	2	3	16	60
Lower class limit,				
N _{min}	1	1	1	2
	1	1	1	2
Range, $N - N_{m}$	1	2	15	F 9
Class froquency	1	2	15	58
f_n				
	75	60	19	3
Count of AVC, N_{0_i}				
	79	79	79	79
Class interval, h_n	0,01 3	0,03 3	0,789	19,333
Absolute error, Min,				
$\Delta(l_n)$				
	0	0	150	150
Absolute error, Max, $\Delta(l'_{n_i})$				
	50	500	4950	49850
Relative error, Min,	0,00	0,00	0,033	0,050
	0	0		l

$\delta(l'_{n_i})$				
Relative error, Max,				
$\delta \left[I_{n_i} \right]$	0.01	0.45		
(1)	0,01	0,17		
	92	09	1,6777	15,2738

Discussion

- **1.** The graphs of the animal–vehicle collisions (AVC) для models location має next values:
- for model location l_{1_i} in the next distance of the graphs there are:
 - in the distance 250000 $l_{1_i} \leq 300000$ the AVC
 - individual numbers are $1 \leq N_{0_i} \leq 36$ and AVC count is i=36:
 - in the distance 300000 l_{1_i} $_{\leq 350000}$ the AVC
 - individual numbers are $37 \leq N_{0_i} \leq 61$ and AVC count is i=25:
 - in the distance 350000 $l_{1_i} \leq 400000$ the AVC
 - individual numbers are 62 $\leq N_{0_i} \leq 68$ and AVC count
 - is i=7; in the distance $400000 \leq l_{1_i} \leq 450000$ the AVC
 - individual numbers are 69 $\leq N_{0_i} \leq 79$ and AVC count is *i*=9.
 - Total count AVC is *i*=79 for model location l_{1_i} .

The model location l_{1_i} is have enough of count AVC individual numbers in the monitoring systems graph. But not all the points can be seen on the AVC

• for model location l_{2_i} :

graph.

in the distance $250000 \le I_{1_i} \le 300000$ the AVC individual numbers are 1 $\leq N_{0} \leq 36$ and AVC count is *i*=36; in the distance $300000 \le l_{1_i} \le 350000$ the AVC individual numbers are 37 $\leq N_{0_i} \leq 62$ and AVC count is *i*=26; in the distance $350000 \le l_{1_i} \le 400000$ the AVC individual numbers are 63 $\leq N_{0_i} \leq 68$ and AVC count is i=6;in the distance $400000 \leq l_{1_i} \leq 450000$ the AVC individual numbers are 69 $\leq N_{0_i} \leq 79$ and AVC count is *i*=11. $I_{2_{i}}$ Total count AVC is i=79 for model location The model location I_{2_i} is have enough of count AVC individual numbers in the monitoring systems graph. But not all the points can be seen on the AVC graph. I_{3;} for model location in the distance 250000≤ l_{1_i} ≤300000 the AVC individual numbers are 1 $\leq N_{0, \leq 42}$ and AVC count is *i*=42: in the distance $300000 \le l_{1_i} \le 350000$ the AVC individual numbers are 43 $\leq N_{0_i} \leq 62$ and AVC count is i=20;

in the distance 3500000 l_{1_i} 400000 the AVC 2. The graphs of values relative error $\delta(l_n)$ individual numbers are 63 $\leq N_{0_i} \leq 71$ and AVC count is *i*=9; in the distance $400000 \leq I_{1_i}$ ≤450000the AVC individual numbers are 72 $\leq N_{0_i} \leq$ 79 and AVC count is *i*=8: Total count AVC is *i*=79 for model location I_{3_i} . The model location I_{3_i} has enough of count AVC individual numbers in the monitoring systems graph. All the points can be seen on the AVC graph. for model location I_{4_i} : in the distance 250000 $l_{1_i} \leq 300000$ the AVC individual numbers are $1 \leq N_{0_i} \leq 60$ and AVC count is i=60; in the distance $300000 \le l_{1_i} \le 350000$ the AVC individual numbers are 61 $\leq N_{0_i} \leq 77$ and AVC count is *i*=17; in the distance 350000 $l_{1_i} \leq$ 400000 the AVC individual numbers are 78 $\leq N_{0_i} \leq 79$ and AVC count is i=2;Total count AVC is *i*=79 for model location l_{4_i} . The model location I_{4_i} has very small point in the AVC monitoring systems graph. All the points can be seen on the AVC graph.

models location l_{1_i} , l_{2_i} , l_{3_i} is accurate for monitoring systems graph. The model location L_{4:} is inaccurate for monitoring systems graph. **3.** The graphs of the distribution of the class frequency t_1 for model location I_{1_i} has the following values: lower class limit $N_{min} = 1$, upper class limit N_{max} =2 in the next point of models location l_{1} : 290100, 337100, 404600 The graphs of the distribution of the class frequency t_2 model location I_{2_i} has the following values: lower class limit N_{min} = 1, upper class limit N_{max} =3 in the next point of models location *I*₂: 290100, 339000. The graphs of the distribution of the class frequency t_3 per model location I_{3_i} has the following values: lower class limit $N_{min} = 1$, upper class limit $N_{max} = 16$ and the next class frequency: f_3 =16 in the point of model location is $f_3 = 7$ in the point

 f_3 =6 in the point of model location f_3 =3 in the point of model location of model location The graphs of the distribution of the class frequency for model location l_{4_i} has the following values: lower class limit $N_{min} = 1$, upper class limit $N_{max} = 60$ and the next class frequency: $f_4 = 60$ in the point of model location is $\int_{4}^{1} f_{4} = 17$ in the point f_3 l,=400000; =2 in the point of model location of model location The class interval for 1,2.3models is $h_n \leq 1$ that is an acceptable result for

monitoring systems. The class interval for 4-models is h_n =19,3 that is an unacceptable result for

monitoring systems.

Conclusions

Four models location can be used in the monitoring system as four modes, ranging from n = 1 as "minimal deviation and minimum class frequency " and ending with n = 4 as "maximum deviation and maximum class frequency . Using the n = 1 "minimum deviation and minimum class frequency " allows to use monitoring of the animal vehicle collisions that has approach to the real location, and in case n = 4 deviation of location - has a maximum value and maximum concentration of point. In the case n = 4 mode as "maximum deviation

and maximum class frequency f_n " has count of

class frequency f_n the minimum value that

makes it impossible use the graph in the monitoring system the number of locations AVC, allowing to

identify the location on the highway, where the greatest number of hot spots of animal-vehicle collisions in the

road M-18 in Ukraine. Deviations between l_{0_i}

and l_{n_i} in models location n=2 and n=3 are the most optimal to represent the value of the location l_{n_i} as the characteristics of the AVC monitoring system.

Acknowledgments

We thank to the Prof. Olexandr Zaporozhets (Doctor of Sci., Engineering, director of the Institute of environmental safety of National Aviation University) for comments on the article. And also the specifically thank to the State traffic police of the department of Internal Affairs of Ukraine in Zaporizhzhia region for providing data on animal –vehicle collisions.

We thank reviewers for helpful comments on this article.

References

Ryan R. Jensen, Rusty A. Gonser, Christian Joyner, 2014. Landscape factors that contribute to animal–vehicle collisions in two northern Utah canyons, Applied Geography, Volume 50, June 2014, Pages 74-79.

Huijser M. P., 2007. Wildlife-vehicle collision reduction study. Report to Congress. U.S. Department of Transportation/ M. P. Huijser, P. McGowen, J. Fuller, A. Hardy, A. Kociolek, A. P. Clevenger, D. Smith, and R. Ament. - Washington DC.: Federal Highway Administration, 2007. -254 p.

Beatriz Rodríguez-Morales, Emilio Rafael Díaz-Varela, Manuel Francisco Marey-Pérez, 2013. Spatiotemporal analysis of vehicle collisions involving wild boar and roe deer in NW Spain, Accident Analysis & Prevention, Volume 60, November 2013, Pages 121-133.

Emilio R. Diaz-Varela, Iban Vazquez-Gonzalez, Manuel F. Marey-Pérez, et al., 2011. Assessing methods of mitigating wildlife–vehicle collisions by accident characterization and spatial analysis, Transportation Research Part D: Transport and Environment, Volume 16, Issue 4, June 2011.

Nathan P. Snow, William F. Porter, David M. Williams,2015. Underreporting of wildlife-vehicle collisions does not hinder predictive models for large ungulates, Biological Conservation, Volume 181, January 2015, Pages 44-53.

Tegge, R.A. and Ouyang, Y., 2008. "<u>Correcting erroneous</u> crash locations in transportation safety analysis." Accident Analysis and Prevention, 41(1): 202-209.

Alfonso Montella, 2010. A comparative analysis of hotspot identification methods, Accident Analysis & Prevention, Volume 42, Issue 2, March 2010, Pages 571-581.

Luis F. Miranda-Moreno, Aurélie Labbe, Liping Fu, 2007. Bayesian multiple testing procedures for hotspot identification, Accident Analysis & Prevention, Volume 39, Issue 6, November 2007, Pages 1192-1201.

Huijser Marcel, et al., 2007. "Animal-Vehicle Collision Data Collection Throughout the United States and Canada". In Proceedings of the 2007 International Conference on Ecology and Transportation, edited by C. Leroy Irwin, Debra Nelson, and K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, North Carolina State University, 2007. pp. 387-391.

Erickson, Gregg, 2007. "California's Integrated Approach to Collaborative Conservation in Transportation Planning". In Proceedings of the 2007 International Conference on Ecology and Transportation, edited by C. Leroy Irwin, Debra Nelson, and K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, North Carolina State University, 2007. pp. 251-257.

Pettler, Amy et al.,2007. "An Analytical Framework for Wildlife Crossing Policy in California". In Proceedings of the

2007 International Conference on Ecology and Transportation, edited by C.Leroy Irwin, Debra Nelson, and K.P. McDermott. Raleigh, NC: Center for Transportation and the Environment, North Carolina State University, 2007. pp. 623.

Dominique Lord, Fred Mannering, 2010. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives, Transportation Research Part A: Policy and Practice, Volume 44, Issue 5, June 2010, Pages 291-305

Gunson KE, Chruszcz B and Clevenger AP. 2004. Large animal-vehicle collisions in the Central Canadian Rocky Mountains: patterns and characteristics. IN: Proceedings of the 2003 International Conference on Ecology and Transportation, Eds. Irwin CL, Garrett P, McDermott KP. Center for Transportation and the Environment, North Carolina State University, Raleigh, NC: pp. 355-366.

Fred L. Mannering, Chandra R. Bhat, 2014. Analytic methods in accident research: Methodological frontier and future directions, Analytic Methods in Accident Research, Volume 1, January 2014, Pages 1-22, ISSN 2213-6657,