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ABSTRACT OF THE DISSERTATION

On the Structure and Learning of Perceptual Representations in Deep Neural Networks

by

Michael Jonathan Kleinman

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Jonathan Chau-Yan Kao, Chair

To act and survive in an environment, humans and other organisms need to form useful

representations of it. Such representations are formed through co-ordinated transformations

across areas (or layers), and often change through developmental experience. We find internal

representations in trained deep neural networks capture the key features of multi-area neural

recordings during a perceptual decision-making task, where minimal sufficient representations

of sensory information emerge along a cortical hierarchy. Using our models, we show that these

minimal sufficient representations emerge through preferential propagation of task-relevant

information between areas.

To better understand how such representations emerge through learning, we introduce a

notion of usable information, and use it to show that a noisy learning process (e.g. Stochastic

Gradient Descent) plays an important role in forming these minimal sufficient representations.

We find that the learning process is highly nonlinear: semantically meaningful information

is initially encoded in the representation, even if it is not needed for the task. Additionally,

we show that the ability of a neural network to integrate information from diverse sources

hinges critically on being exposed to properly correlated signals during the early stages of

learning. In particular we find, using analytical models and through simulations, that depth

and competition between sources has a significant effect on critical learning periods observed

in biological and artificial networks.

ii



We further study how multisensory information can be decomposed, and develop novel

approximations to compute the redundant information shared between a set of sources about

a target, and show that the common information shared between a set of sources can be used

to guide the learning of meaningful representations.
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ple neurons. (c) Representative PMd PSTHs aligned to checkerboard onset.
(d) Direction and color choice probability (CP) for all recorded PMd units.
(e) Neural trajectories in the top 2 principal components for each RNN area.
(f) Variance captured by dPCA axes for color, context, and direction. (g)
Non-linear tSNE embedding of peri-movement activity in each area. Each dot
is a trial, with red or green denoting the color decision and ’.’ or ’x’ denoting
the direction decision. Unlike Areas 1 and 2, Area 3 only had two clusters
separated based on the direction decision. (h) Decode accuracy of direction,
color, and context in all three areas. (i) Example PSTHs in each area. (j)
Choice probabilities for units in all areas (pooled over 8 RNNs). . . . . . . . 12
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2.3 PMd-resembling dynamics emerge in neuroscience constrained RNNs.
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*** is p < 0.001 (with appropriate correction for multiple comparisons). We
incorporated Dale’s law with 80% E, 20% I neurons into subsequent sweeps,
(b) We varied the percentage of feedforward E-to-I connections. Minimal rep-
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2.4 Separation of direction and color in Area 1. (a) The context, color,
and direction axis correspond to the dPCA principal axes, which are not
constrained to be orthogonal. Trajectories for different contexts and colors
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axis separated primarily on chosen direction. The RNN input representation
had strong projections on the context and color axes, but not the direction axis.
(b) Top 2 PCs of Area 1 activity, which capture 97.7% of the Area 1 variance.
In the targets on epoch, the trajectories separate to two regions corresponding
to the two potential target configurations (Target config 1 in blue, and Target
config 2 in purple). The trajectories separate upon checkerboard color input,
leading to four total trajectory motifs: right green, left red, right red, and left
green. (c) Projection of the dPCA principal axes onto the PCs. (d) Projection
of the context and color inputs onto the PCs. Context inputs are shown in
pink, a green checkerboard input in green, and a red checkerboard input in
red. Green (red) checkerboards lead to an increase (decrease) in PC2 and the
color axis, and differ in magnitude depending on the location of the trajectory
in PC space. Trajectories are reduced in opacity to better visualize inputs. . 18

2.5 (a) Projections onto the potent space between Areas 1 and 2 for the color and
direction axis, and a random vector as a function of effective rank for the input
area to the middle area. Regardless of the dimension of the potent space, the
direction axis is preferentially aligned with the potent space, indicating the
information along this axis propagates, while the color axis is approximately
randomly aligned. Shading indicates s.e.m. (b) Same as (a) but for projections
between Areas 2 and 3. (c) Illustration depicting how the orientation of the
axes affect the information that propagates. . . . . . . . . . . . . . . . . . . 20
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Fig. 2.4. (b) Readout weights in Wout are sparse, with many zero entries, and
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for the nonzero readout units (left panel), and the sorted connectivity matrix
when the matrix was reordered based on the readout weight pools (right).
(d) Average PSTHs from units for a leftward reach and (inset) rightwards
reach. When one pool increases activity, the other pool decreases activity. (e)
Averaged recurrent connectivity matrix. (f) Schematic of output area. (g)
Psychometric curve after perturbation experiment, where 10% of inhibitory
weights to the left pool (orange) and right pool (blue) were increased (doubled).
Directional evidence is computed by using the signed coherence and using
target configuration to identify the strength of evidence for a left reach and
strength of evidence for a right reach. Increasing inhibition to the left excitatory
pool leads to more right choices and vice versa. . . . . . . . . . . . . . . . . 22
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5.1 Decomposition of information between different modalities. Two
modalities can have unique information, common information (denoted by
the overlap in the venn-diagram), or synergistic information (denoted by the
additional ellipse in the right panel). Task-relevant information (shown in
red) can be distributed in a variety of ways across the different modalities.
Task-relevant information can be mostly present in Modality A (left), shared
between modalities (center-left), or could require unique (center-right) or
synergistic information from both modalities (right). . . . . . . . . . . . . . 68

5.2 (Left) Σyx, with the highlighted green column representing the sensor that was
dropped. (Right) We show total weights attributed to each feature (shown
in different colors) during training in a deep linear network. The solid lines
represent the dynamics when training with all features. The dashed lines
represent the behavior when training with the green feature disabled. Note
that disabling the green feature prevents the gray feature from being learned
during the initial transient (Center) Same experiment with a shallow linear
network. In this case the learning dynamics of the gray feature perfectly
overlap in both cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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5.3 Illustration of RSV distributions and relation to information dia-
grams. (Left) Representations that vary predominantly due to one modality.
(Center-Left, Center-right) All units in the representation vary nearly
equally with both modalities. (Right) Units in the representation that vary
uniquely with each sensor, which is reflected by a polarized RSV distribution. 74
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5.5 Decrease in downstream performance as a function of the deficit
length. (Left) Final test accuracy when applying a blurring deficit to one
pathway of Split-ResNet. Even though the network is exposed to a subsequent
number of uncorrupted paired observations, the network cannot later learn
to optimally fuse the information. (Center) The effect of a deficit is most
pronounced when increasing the depth of the network (see Appendix for
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using a dissociation deficit (feeding uncorrelated views). We note that the
effect is less marked than the blurring, due to better ability to compensate. 79
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also examined the asymptotic representations and found that, when exposed to
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could no longer learn a bimodal distribution that learned common features,
but instead resulted in a polarized representation in which units are sensitive
to either view (but none to both). . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Top. Example inputs (left column), reconstructions (middle columns), and
original targets (right columns) for the Multi-View Transformer, with random
sampling of patches from the two views. Note that the model can reconstruct
missing information from one view using the other. . . . . . . . . . . . . . . 80
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A.2 Single-area RNNs do not naturally reproduce PMd dynamics. (a-
d) Reproduced from Fig. 2.2 for comparison. (e) Single-area RNN neural
trajectories in the top 2 PCs. Single-area RNNs had four trajectory motifs for
each combination of (left vs right) and (red vs green). In the Targets epoch, the
RNN’s activity approached one of two locations in state space (light green dots),
corresponding to the two target configurations. In the checkerboard epoch,
trajectories separate based on the coherence of the checkerboard, causing
4 total distinct trajectory motifs. Although the direction decision is not
separable in the principal components, the direction decision is separable in
higher dimensions (see the direction axis found using dPCA in Fig. A.7a). (f)
dPCA variance captured for the color (28%), context (26%), and direction
(36%) axes for the RNN. The color and direction decisions, as well as the target
configuration context, could be decoded from the RNN population activity well
above chance. (g) Example RNN PSTHs, demonstrating coherence selectivity
(top) and mixed selectivity (bottom). (h) Choice probability for simulated
single-area RNN units. Many units have high color choice probabilities. . . 143

A.3 Hyperparameter sweeps for single-area RNNs. (a) dPCA color and
direction variance captured for three different regularization parameters (weight
regularization: λw, rate regularization: λr, and learning rate: ϵ). There is a
significant color representation in all optimized single-area RNNs. (b) Decode
accuracy of the color and direction decision; color accuracy is at 1 (hidden
behind direction accuracy) for the three different hyper parameters. The color
decode accuracy (maroon) is at nearly 1 across all tested hyperparameters.
These points are behind the direction decode accuracy (orange). (c) Mutual
information estimate. The color mutual information (maroon) is nearly 1
across all tested hyperparameters. . . . . . . . . . . . . . . . . . . . . . . . 144

A.4 Decode accuracy and mutual information per area in multi-area
RNNs. (a) Decode accuracy in each area for 1- to 4-area RNNs for color,
context, and direction corresponding to Fig. 2.3d. The 3- and 4-area RNNs
had minimal color representations in their last area. Note that the 4-area RNN
also has a minimal color representation in Area 3. (b) Mutual information
in each area for 1- to 4-area RNNs. Color conventions as in Fig. 3. Red is
context, dark brown is color, and orange is direction. . . . . . . . . . . . . . 145

A.5 Results of Fig. 2.3 reproduced with a linear classifier. This figure
reproduces the simulations in Fig 3, but with a linear classifier. The main
conclusions are upheld. (a) Linear decode accuracy for all hyperparameter
sweeps shown in Fig. 2.3. (a) Mutual information estimated by using the
linear network trained with cross entropy loss. . . . . . . . . . . . . . . . . 146
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A.6 Color and direction information through training in Area 3. Each
“training epoch” represents 500 iterations of gradient descent. (a) In the
PMd-like 3-area RNNs that were trained with Dale’s law, color information in
Area 3 remained near zero throughout training (two different representative
networks, light and dark shade). (b) In the unconstrained 3-area RNNs, color
information in Area 3 increased early in training and appeared to plateau (two
different networks, light and dark shade). Networks were only saved if the loss
function decreased, so certain training epochs are not present. . . . . . . . . 146

A.7 dPCA trajectories for single-area and 3-area RNNs with No Dale’s
law. (a) Projections onto the dPCA context, color, and direction axes for
a single-area RNN. dPCA was able to find axes that separate the context
input, color decision, and direction decision. Importantly, in these networks,
Inputs were non-zero on the direction axis. (b) dPCA projections for the
unconstrained 3-area RNNs with color representation in Area 3. Inputs were
similarly non-zero on the direction axis. The context inputs, color decision,
and direction decision, had similar projection motifs. . . . . . . . . . . . . . 147

A.8 TDR results closely match dPCA results, and identifies mixed color
and context axes. The direction axis separated trajectories based on the
direction choice. The color and context axes had trajectory separation depend-
ing on both color and context. We did not show the orthonormalized bases,
because we found that the QR decomposition was susceptible to the order in
which orthonormalization was performed. This is further evidence that the
color and context axes are closely aligned. . . . . . . . . . . . . . . . . . . . 147

A.9 dPCA projections when only considering excitatory units. We iden-
tified the dPCA principal axes for context, color, and direction using only
excitatory units. Results are consistent with the results of Fig. 2.4d. . . . . 148

A.10 Relationship between PCs and inter-area potent space. (a) Variance
explained of the excitatory units in Area 1 by the top principal components
and top dimensions of potent space of W21, swept across all dimensions. (b)
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Chapter 1

Introduction

To act and survive in an environment, animals need to develop useful representations of the

environment. The field of systems neuroscience is largely concerned about understanding how

neural representations – or the activity of populations of neurons – relates to behavior. In the

past decade, there has been progress towards understanding how the activity of populations

of neurons relates to behavior, which has been facilitated by the increasing ability to record

activity from populations of neurons in animal experiments. At the same time, much of

the understanding of the neural population activity relies on projections of the activity to a

low-dimensional space and post-hoc interpretation of activity in the low-dimensional space.

There are currently few guiding principles for describing the structure of the neural population

activity during a task.

In parallel, the success of deep learning relies on learning useful representations of data

for performing a task, such as classification. Such representations are not handcrafted, but

are instead learned through optimization. In a similar manner to systems neuroscience,

deep learning researchers are interested in understanding representations so that they can

ensure desirable properties, such as generalization to unseen data. Guiding principles for

the structure of optimal representations for a task are emerging, where neural networks are

believed to optimize an information bottleneck [136], where networks learn minimal sufficient
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representations of the input through implicit regularization of Stochastic Gradient Descent

(SGD) [3,123]. Moreover, the minimality of the representations is believed to relate to the

ability to generalize to unseen data.

In contrast to animal experiments, deep networks are particularly convenient model

systems for studying representations because the task is explicitly defined, the connections

(weights) are known, and it is much easier to perform perturbation experiments on the

system. It is also much easier to study the learning dynamics of these networks. An improved

understanding of deep network representations and how they are learned through training

will thus be beneficial not only for ensuring desirable properties of the representation in

deep networks (such as generalization, interpretability, fairness, compression, etc), but for

establishing a set of guiding principles for reasoning about representations in biological

systems.

This thesis consists of work towards these aims. In particular, the thesis focuses on better

understanding multi-area neural representations, and how their emerge through learning,

by studying analogous questions in artificial deep neural networks. To reason about such

high-dimensional representations, we also develop tractable approximations for information

theoretic quantities.

1.1 What is a representation?

We consider a representation r(X) to be a function of input X that is useful with respect

to a downstream task Y . This definition is general: the inputs can be multimodal and time-

varying, the function can be both deterministic or stochastic, and the task could correspond to

a set of tasks (such as survival for animals). We will primarily take an information-theoretic

view for defining a “useful” representation for a task, and we will show that this approach is

helpful for reconciling representations observed in both animals and deep neural networks.

Our definition of a representation gives rise to several natural questions that I investigate
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in this thesis, in particular:

1. What makes a useful or efficient representation of sensory stimuli (for a decision)?

2. How do such representations evolve over learning/development?

3. How can we quantify the information contained in a high dimensional representation?

These questions are important in neuroscience for understanding cortical representations

and for those interested in understanding the behaviour and learning of (artificial) deep

neural networks. We approach these questions primarily in the context of artificial networks,

since it is “fully observable” in the sense that the task is explicitly defined, all the connections

(weights) are known, and we can probe the representations in response to arbitrary inputs.

However, we primarily leverage experiments used in neuroscience – which are very carefully

designed to probe specific information processing phenomenon – to gain insight into learned

representations, and how they change during development. Additionally, using experiments

from neuroscience will allow us to make connections between representations in our artificial

models and in recorded neural data.

1.2 Representations in brains and artificial neural net-

works

The brain is remarkable in its ability to learn to leverage computations of populations of

neurons to give rise to flexible behavior. The brain is an incredibly complex network consisting

of billions of neurons and trillions of synapses. With current experimental approaches however,

neuroscientists can only record from a tiny fraction of it during simplistic behavior, making

the development of an understanding of such a complex system and its internal representations

even less tractable.

Rather than study the brain directly, I have been focusing on developing an understanding

of deep neural networks, a more tractable but also incredibly complex network of billions of
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units and learned weights that connect them that also conspire to produce emergent behaviour.

These networks are becoming increasingly relied upon for numerous critical decisions in

medical, robotics, and industrial applications, especially with the public deployment of large

(language) models at scale. And yet, we have a very limited understanding for how these

networks work: how they process inputs and make decisions, and how such processing and

decision-making depends on the implicit biases coming from how the network was trained.

1.3 Trained neural networks as cortical models

In addition to an intrinsic need for developing an understanding of artificial neural network

representations, there is an emerging field that is using optimized feedforward and recurrent

neural networks to model computations associated with visual [153, 154], cognitive [99],

timing [89,110], navigation [14], and motor tasks [58,131]. Like the brain, artificial neural

networks consist of billions of simple units and learned weights that connect them. Assuming

the weights are learned appropriately, the network can combine the simple units to produce

complex and emergent behavior, and can perform similar tasks to behaving animals. These

neural networks are typically trained using stochastic gradient descent (or a related variant),

which performs many steps of local parameter updates in order to minimize a loss function.

In contrast to animal experiments, trained deep networks can be useful model systems for

studying representations because they are fully observable: we have complete access to all the

weights and the the representations of all units in response to arbitrary inputs. Understanding

how a trained artificial neural network is implementing a task can then potentially provide

insight into how populations of cortical neurons implement such tasks. Biologically plausible

constraints on the connectivity can also be included in the models, such as Dale’s Law [127].

Typically, trained models are compared with neural data and are used to generate hypothesis

regarding underlying neural circuits, and this approach has provided insight into decision

making [99] and visual processing [153,154].
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1.4 Evolution of representations over learning and devel-

opment

The local parameter updates coming from stochastic gradient descent (or a similar variant)

lead to parameter updates that will depend directly on the knowledge previously embedded

within the weights. Since these parameter updates occur in succession, the final representation

can have a strong dependency on the trajectory the network took during learning.

In humans and other animals, developmental studies typically involve studying both

normal and experimentally altered development [67, 146]. We use a similar approach for

studying learning in deep networks. During normal development, we are interested in how

relevant and irrelevant information from the input x becomes represented in the representation

z = r(x) during training. Additionally, we study how learning dynamics are affected by the

implicit regularization coming from training with stochastic gradient descent from the use of

a small batch size and small learning rate.

Critical periods in animals and deep networks: [146] showed that humans and

animals are peculiarly sensitive to changes in the distribution of sensory information early

in training, in a phenomenon known as critical periods. Critical periods have since been

described in many different species and sensory organs. For example, barn owls originally

exposed to misaligned auditory and visual information cannot properly localize prey [84].

Somewhat surprisingly, similar critical periods for learning have also been observed in deep

networks. [2] found that early periods of training were critical for determining the asymptotic

network behavior. Additionally, it was found that the timing of regularization was important

for determining asymptotic performance [47], with regularization during the initial stages of

training having the most influential effect.
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Outline of the thesis, and summary of contributions

We find internal representations in trained deep neural networks capture the key features

of multi-area neural recordings during a perceptual decision-making task, where minimal

sufficient representations of sensory information emerge along a cortical hierarchy. Using our

models, we show that these minimal sufficient representations emerge through preferential

propagation of task-relevant information between areas (Chapter 2). Motivated by our model,

our collaborators subsequently recorded from earlier cortical areas along the sensorimotor

transformation, and the cortical data similarly displayed increased task information in earlier

brain areas. We argue that the general principle of a cortical information bottleneck during

decision-making explains both our model and multi-area cortical recordings (Chapter 3).

To better understand how such representations emerge through learning, we introduce a

notion of usable information, and use it to show that a noisy learning process (e.g. Stochastic

Gradient Descent) plays an important role in forming these minimal sufficient representations.

We find that the learning process is highly nonlinear: semantically meaningful information

is initially encoded in the representation, even if it is not needed for the task (Chapter 4).

Additionally, we show that the ability of a neural network to integrate information from diverse

sources hinges critically on being exposed to properly correlated signals during the early

stages of learning. In particular we find, using analytical models and through simulations,

that depth and competition between sources has a significant effect on critical learning periods

observed in biological and artificial networks (Chapter 5).

We further study how multisensory information can be decomposed, and develop novel

approximations to compute the redundant information shared between a set of sources about

a target (Chapter 6), and show that the common information shared between a set of sources

can be used to guide the learning of meaningful representations (Chapter 7).

Chapter. 2

These results have been published as [82]:
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Kleinman, M., Chandrasekaran, C., Kao, J. A mechanistic multi-area recurrent network

model of decision-making. Advances in Neural Information Processing Systems 34 (2021).

Chapter. 3

These results are in submission as:

Kleinman, M., Wang, T., Xiao, D., Feghhi, E., Lee, K., Carr, N., Li, Y., Hadidi, N.,

Chandrasekaran, C., Kao, J. A Cortical Information Bottleneck During Decision-Making. In

Submission.

Chapter. 4

These results are published as [78]:

Kleinman, M., Achille, A., Idnani, D., Kao, J. Usable information and evolution of opti-

mal representations during training. International Conference on Learning Representations.

2021

Chapter. 5

These results have been published as [79]:

Kleinman, M., Achille, A., Soatto, S. Critical Learning Periods for Multisensory Inte-

gration in Deep Networks. To Appear at CVPR 2023.

Chapter. 6

These results have been published as [81]:

Kleinman, M., Achille, A., Soatto, S., Kao, J. Redundant Information Neural Estimation.

Entropy 2021, 23, 922

Chapter. 7

These results have been published as [80]:
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Chapter 2

A mechanistic multi-area recurrent

network model of decision-making

Recurrent neural networks (RNNs) trained on neuroscience-based tasks have been widely

used as models for cortical areas performing analogous tasks. However, very few tasks involve

a single cortical area, and instead require the coordination of multiple brain areas. Despite

the importance of multi-area computation, there is a limited understanding of the principles

underlying such computation. We propose to use multi-area RNNs with neuroscience-inspired

architecture constraints to derive key features of multi-area computation. In particular, we

show that incorporating multiple areas and Dale’s Law is critical for biasing the networks to

learn biologically plausible solutions. Additionally, we leverage the full observability of the

RNNs to show that output-relevant information is preferentially propagated between areas.

These results suggest that cortex uses modular computation to generate minimal sufficient

representations of task information. More broadly, our results suggest that constrained

multi-area RNNs can produce experimentally testable hypotheses for computations that occur

within and across multiple brain areas, enabling new insights into distributed computation in

neural systems.
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2.1 Introduction

Traditionally, RNNs have provided insight into local computations, and there has been

limited insight into multi-area computation [107, 127]. To study multi-area computation,

we explicitly constrained RNNs to have multiple recurrent areas, which we refer to as

multi-area RNNs. We used these multi-area RNNs to study decision-making, a cognitive

process known to involve multiple areas including the prefrontal, parietal, and premotor

cortex [24,30,43,48,70,99,107,112]. Multi-area RNNs enable us to investigate several questions.

Most broadly, what are the roles of within-area dynamics and inter-area connections in

mediating distributed computations? How does the dimensionality and dynamics of neural

computation differ across areas? What role do inter-area feedforward and feedback connections

play in propagating information and rejecting noise? How do intra-area dynamics and inter-

area connections coordinate to solve a task?

We use multi-area RNNs to study these questions in a decision-making task where

premotor cortex and upstream areas are known to perform distinct computations. We trained

multi-area RNNs to perform a perceptual decision-making task (Checkerboard Task) and

Targ
on

Check 
on

Stim
off

Right targ

Left targ
+1

-1

Inputs

Targ
on

Check 
on

Stim
off

D
ec

is
io

n 
va

ria
bl

e

1

0

Outputs

C
oh

Multi-area RNN

...

Figure 2.1: Task. RNN configuration. The RNN receives 4 inputs. Two inputs indicate the
identity of the left and right targets, which can be red or green. These inputs are noiseless.
The other two inputs indicate the value of the signed color coherence (proportional to amount
of red in checkerboard) and negative signed color coherence (proportional to amount of green
in checkerboard). We added independent Gaussian noise to these signals (see Appendix A.1.2).
The network outputs two analog decision variables, each of which indicates evidence towards
the right target (solid line) or left target (dashed line). A decision is made in the direction of
whichever decision variable passes a preset threshold (0.6) first. The time at which the input
passes the threshold is defined to be the reaction time.
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compared their activity to monkey neuron recordings from the dorsal premotor cortex (PMd).

We found that, when incorporating Dale’s law and anatomically-informed levels of feedforward

inhibition into training, PMd-resembling dynamics emerged in multi-area RNNs. Specifically,

the multi-area RNN’s output area (1) resembled PMd in single unit statistics and neural

population activity, and (2) only retained the “output relevant” signals. Inter-area connections

preferentially propagated these output relevant signals while attenuating output irrelevant

signals. Our models and analyses provide a framework for studying distributed computations

involving multiple areas in neural systems.

2.2 Motivation: Decision-making involves multiple brain

areas

2.2.1 Checkerboard Task

In the “Checkerboard Task” [24,30], shown in Fig. 2.1, a monkey was first shown left and right

targets whose color (red and green) was random on each trial. The monkey was subsequently

shown a central static checkerboard composed of red and green squares. The monkey was

trained to discriminate the dominant color of the static checkerboard and reach to the target

matching the dominant color. Since the target colors were random on each trial, this task

separates the reach direction decision from the color decision [42]. This task enables studying

how information related to the selection of the color of the target and information related to

the direction of the reach is represented.

2.2.2 PMd Data during Checkerboard Task

We analyzed the activity of neurons from the dorsal premotor cortex (PMd), an area

associated with somatomotor decisions, in monkeys performing the Checkerboard Task [24].

Neural activity in PMd principally reflects the direction decision (left or right) and has
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Figure 2.2: PMd-resembling dynamics emerge in neuroscience constrained RNNs.
(a) PMd neural trajectories in the top 3 PCs. Color reflects signed color coherence, with
darker shades of red (green) indicating more red (green) checkerboards. Right (left) reaches
are denoted by solid (dotted) lines. (b) (Top) Variance captured by dPCA axes for the color
decision, target configuration (context), and direction decision. (Bottom) Decode accuracy of
the direction decision, color decision, and context in PMd sessions with U-probes and multiple
neurons. (c) Representative PMd PSTHs aligned to checkerboard onset. (d) Direction and
color choice probability (CP) for all recorded PMd units. (e) Neural trajectories in the top 2
principal components for each RNN area. (f) Variance captured by dPCA axes for color,
context, and direction. (g) Non-linear tSNE embedding of peri-movement activity in each
area. Each dot is a trial, with red or green denoting the color decision and ’.’ or ’x’ denoting
the direction decision. Unlike Areas 1 and 2, Area 3 only had two clusters separated based
on the direction decision. (h) Decode accuracy of direction, color, and context in all three
areas. (i) Example PSTHs in each area. (j) Choice probabilities for units in all areas (pooled
over 8 RNNs).
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minimal representations associated with the dominant color of the checkerboard (red or

green) [24,30,141]. To summarize this phenomenon, we show the principal components (PCs)

of the PMd neural population activity in Fig. 2.2a. These PC trajectories separate based on

the eventual reach direction (right reaches in solid, left in dotted), but not the color (red and

green largely overlapping). We identified principal axes via demixed PCA (dPCA [85]) that

maximized variance related to the target configuration (context), color decision, and direction

decision (see Appendix A.2.4). The direction axes captured significant variance (26.7%)

while the color and context axes captured minimal variance (0.7%, 0.5%, respectively), as

shown in Fig. 2.2e. It is possible, however, that there is direction-dependent color variance

that is averaged away during marginalization when computing the dPCA variance [85].

Given simultaneously recorded data, a more appropriate measure of representation is the

decode accuracy of direction, color and context. Across sessions where we analyzed multiple

simultaneously recorded units from U-probes, the direction decision could be decoded from

PMd activity significantly above chance (accuracy: 0.89, p < 0.01, bootstrap), but the color

decision and context decode accuracy were not significantly above chance in any session

(overall accuracies: 0.52 and 0.52, respectively, Fig. 2.2b, bottom).

Single neurons also had minimal color separation in individual PSTHs (e.g., Fig. 2.2c). To

summarize this effect in single neurons, we computed the choice probabilities (CPs) reflecting

how well the direction decision (direction CP) and color decision (color CP) could be decoded.

PMd units generally had near chance color CP (0.5), but moderate to high direction CP,

as shown in Fig. 2.2d. Together, these results demonstrate that PMd largely represents

direction-related signals, but not the color decision or target configuration context. Since

PMd activity minimally represents the color of the checkerboard or the target configuration,

we reasoned that checkerboard and target inputs are transformed into a direction signal

upstream of PMd and that multiple brain areas are necessary for solving this task. Brain areas,

including the dorsolateral prefrontal cortex (DLPFC), and the ventrolateral prefrontal cortex

(VLPFC), have been implicated in related sensorimotor transformations [10,43,61,148,152].
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2.3 Multi-Area RNN Training Details

We trained RNNs of the form

τ ẋ(t) = −x(t) +Wrecr(t) +Winu(t) + brec + ϵt, (2.1)

where r(t) = relu(x(t)), τ is a time-constant of the network, Wrec ∈ RN×N defines how the

artificial neurons are recurrently connected, brec ∈ RN defines a constant bias, Win ∈ RN×Nin

maps the RNN’s inputs onto each artificial neuron, and ϵt is the recurrent noise. The output

of the network is given by a linear readout of the network rates, i.e.,

z(t) = Woutr(t), (2.2)

where Wout ∈ RNout×N maps the network rates onto the network outputs. For a 3-area RNN,

Wrec is defined through the following block matrix

Wrec =


W11 W12 0

W21 W22 W23

0 W32 W33

 ,

where Wii refer to the recurrent connections of area i, and we use the convention that Wi+1,i

refer to feedforward connections, and W1,i+1 refer to the feedback connections. Feedforward

and feedback connections were only allowed between adjacent areas. Task inputs were defined

to project onto the first area, and outputs were read out from the final area. In the rest of the

text, we primarily focus on a 3-area RNN that had approximately 10% feedforward and 5%

feedback connections between areas, based on projections between prefrontal and premotor

cortex in a macaque atlas [100]. The network was also constrained to follow Dale’s law, as

in [127]. The RNN processed the target context and checkerboard inputs to output decision

variables reflecting accumulated evidence for a left and right decision (Fig. 2.1). Further
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details are discussed in Appendix A.1.2.

2.4 Results

Because the Checkerboard Task involves multiple brain areas, we reasoned that a single-area

RNN would not resemble PMd recordings. We first trained traditional single-area RNNs to

perform the Checkerboard Task. We found that these RNN representations mixed color and

direction information, as summarized in Appendix Fig. A.2, and therefore did not resemble

PMd activity. This led us to study multi-area RNN models performing the Checkerboard

Task, which turn out to accurately model PMd activity.

2.4.1 PMd-like representations emerge in optimized multi-area RNNs

with neuroscience constraints

Given the anatomical and physiological evidence suggesting that multiple brain areas are

implicated in the CB task, we hypothesized that the last area of an optimized multi-area

RNN would more closely resemble PMd, receiving transformed direction signals computed

using the checkerboard coherence and target configuration from upstream areas. We trained

multi-area RNNs to perform the Checkerboard Task as described in Section 2.3.

The 3-area RNN had qualitatively different population trajectories across areas, shown in

Fig. 2.2e. Area 1 had four distinct trajectory motifs corresponding to the four possible task

outcomes (combinations of left vs right and red vs green decisions). PC1 primarily varied with

direction, while PC2 varied with both the target context and red versus green checkerboards.

In contrast, Area 2 and Area 3 population trajectories primarily separated on direction, not

color, like in PMd. Area 3 trajectories most strongly resembled PMd trajectories (canonical

correlations, r = 0.38, 0.55, 0.73 for Areas 1, 2, and 3; see Appendix A.2.7).

We quantified the variance captured by dPCA principal axes for the context, color, and

direction axis. We found that color axis variance decreased in later areas (Area 1: 5.6%,
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Figure 2.3: PMd-resembling dynamics emerge in neuroscience constrained RNNs.
(a) We trained 3-area RNNs without explicit excitatory (E) or inhibitory (I) neurons. Inputs
projected onto Area 1, and outputs were read out from Area 3. We varied the percentage of
feedforward connections and computed the color and direction accuracy in Area 3. At 1%
feedforward connections, color could still be significantly decoded above chance. Dots are the
mean across networks and error bars are s.e.m. For significance, * is p < 0.05, ** is p < 0.01,
and *** is p < 0.001 (with appropriate correction for multiple comparisons). We incorporated
Dale’s law with 80% E, 20% I neurons into subsequent sweeps, (b) We varied the percentage
of feedforward E-to-I connections. Minimal representations with chance color decode accuracy
emerged when the percentage of feedforward E to I connections was 2% or less (feedforward
E to E was fixed at 10%). (c-d) Color information was relatively robust to feedforward E-E
connections and feedback connections. (e) At least 3 areas were required for the RNN’s last
area to resemble PMd dynamics. (f) 3-area RNNs with neurophysiological constraints had
minimal representations that were generally robust to machine learning hyperparameters.
The only exceptions were when the number of units was relatively small, or the learning rate
was relatively large.

Area 2: 0.13%, Area 3: 0.07%, Fig. 2.2f). In contrast, Area 3 had the largest direction axis

variance (Area 1: 30.9%, Area 2: 18.2%, Area 3: 48.5%, Fig. 2.2f). An important assumption

of dPCA is that the neural activity can be decomposed as a sum of terms that depend solely

on particular task variables [90]. The color variance found by dPCA indicate that color,

on its own, did not account for a large fraction of the overall neural variance. However, it

is possible there is significant color variance within a reach direction that dPCA, a linear

dimensionality reduction technique, does not capture.

As we are interested in whether the color information is contained in the representation, a

more appealing measure is decode accuracy. If the color of the target can be decoded from the

representation of neural activity, then color information is present in the representation. We

performed nonlinear dimensionality reduction via t-distributed stochastic neighbor embedding
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(tSNE) [98], shown in Fig. 2.2g. These results suggest that Areas 1 and 2 contain color

information, but Area 3 does not (color decisions overlap). We decoded the color decision and

context (target configuration) from RNN units in each area (Fig. 2.2h, Area 1, 2, and 3 color

accuracy: 0.93, 0.76, 0.51, and Area 1, 2, and 3 context accuracy: 0.99, 0.87, 0.54). Area 1

and 2 had above chance context and color decode accuracies (p < 0.01/9, 1-tailed t-test with

Bonferroni correction), while Area 3 color and context decode accuracies were near chance,

and most similar to PMd (Fig. 2.2h, color: p = 0.05, context: p = 0.024). The direction

decision could be decoded significantly above chance in all areas (Fig. 2.2h, p < 0.01/9). We

also observed that Area 3 unit PSTHs more closely resembled PMd neuron PSTHs (e.g.,

Fig. 2.2i), and color CP progressively decreased in later areas (Fig. 2.2j). Area 3, like PMd,

had many neurons with moderate to high direction CP, but low color CP.

We tested how robust these results were to architecture and hyperparameter selection1.

In particular, we quantified how well color could be decoded in the multi-area RNN’s

last area across several hyperparameter settings. We found that architecture impacted

whether optimized multi-area RNNs had PMd-like minimal representations. In particular,

we found that PMd-like representations emerged when we incorporated anatomical and

neurophysiological constraints: Dale’s law, empirical levels of feedforward inhibition, and at

least 3 areas (Fig. 2.3a-e). When we varied machine learning hyperparameters, we found that

our results were generally robust: multi-area RNNs had PMd-like representations in their last

area over a wide range of hyperparameter settings (Fig. 2.3f). Together, this constellation of

results shows that Area 3 of the multi-area RNN recapitulates key features of PMd activity,

making this RNN a candidate model of multi-area decision-making in the Checkerboard Task.

In the next sections, we leverage the full observability of this biologically-plausible multi-

area RNN to understand the mechanisms in different areas of the network and also how the

network filters color information while propagating direction information.

1These sweeps over different random initializations and different parameter settings consisted of the most
significant computational cost, roughly requiring 500 CPU hours on AWS, with each model training in
approximately 1-2 hours.
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Figure 2.4: Separation of direction and color in Area 1. (a) The context, color,
and direction axis correspond to the dPCA principal axes, which are not constrained to be
orthogonal. Trajectories for different contexts and colors were separable on both the context
and color axis. In contrast, the direction axis separated primarily on chosen direction. The
RNN input representation had strong projections on the context and color axes, but not the
direction axis. (b) Top 2 PCs of Area 1 activity, which capture 97.7% of the Area 1 variance.
In the targets on epoch, the trajectories separate to two regions corresponding to the two
potential target configurations (Target config 1 in blue, and Target config 2 in purple). The
trajectories separate upon checkerboard color input, leading to four total trajectory motifs:
right green, left red, right red, and left green. (c) Projection of the dPCA principal axes
onto the PCs. (d) Projection of the context and color inputs onto the PCs. Context inputs
are shown in pink, a green checkerboard input in green, and a red checkerboard input in
red. Green (red) checkerboards lead to an increase (decrease) in PC2 and the color axis, and
differ in magnitude depending on the location of the trajectory in PC space. Trajectories are
reduced in opacity to better visualize inputs.

2.4.2 Separation of the color and direction decision in Area 1

What are the key computational features of how the multi-area RNN represents color and

direction information in the Checkerboard task? We first focused our analysis on Area 1, which

uniquely has substantial variance for both color and direction decisions (Fig. 2.2h), implying
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a central role in computing the direction choice. We performed dPCA to identify demixed

principal components related to the RNN inputs (coherence and context) and decisions (color

and direction) [85]. We found demixed components that separated information related to

coherence, context, the color choice, and the direction choice (Fig. 2.4b), consistent with

these quantities being decodable from activity (Fig. 2.2h). We subsequently identified the

context, color, and direction axes as the dPCA principal axes (unit norm, analogous to

PCA eigenvectors), which combine the demixed components (analogous to PCA scores) to

reconstruct neural activity [85].

We projected RNN activity and input representations onto the principal axes for context,

color, and direction (Fig. 2.4a). We found that the context and color axis both responded

to context and color inputs, and overall trajectories represented both context and color

information. This suggests that color and context information are mixed in Area 1. In

contrast, the direction axis strongly represented the direction choice, but did not strongly

represent context or color (Fig. 2.4a, right). Strikingly, context and color inputs had nearly

zero projection on the direction axis (Fig. 2.4a, right, opaque traces at 0). Consistent with

these observations, we found the color and context axes were highly overlapping (dot product:

0.93), indicating that context and checkerboard variance are mixed in Area 1 activity. In

contrast, the direction axes was closer to orthogonal to the context and color axes (overlap

with color and context: 0.14 and 0.09, respectively).

These conclusions were upheld when we performed targeted dimensionality reduction

(TDR), where we found (1) a direction axis separating left and right choices, with negligible in-

put projections, and (2) that color and context representations were mixed (Appendix Fig. A.8).

Further, this structure was unique for PMd-like 3-area RNNs. In single-area RNNs, dPCA

identified nearly orthogonal context, color, and direction axes, with trajectories that separated

almost exclusively based on context, color, and direction, respectively (Appendix Fig. A.7a).

This Area 1 representation has an important property: the direction choice is represented

robustly on a nearly orthogonal axis that has close to zero context and color input projections,
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Figure 2.5: (a) Projections onto the potent space between Areas 1 and 2 for the color
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propagates, while the color axis is approximately randomly aligned. Shading indicates s.e.m.
(b) Same as (a) but for projections between Areas 2 and 3. (c) Illustration depicting how
the orientation of the axes affect the information that propagates.

(Fig. 2.4a). This is not trivial: as counter-examples, single-area RNNs use direction axes

that have context and color input projections (Fig. A.7a), while the direction axis of an

unconstrained 3-area RNN (without anatomical connectivity constraints that did not resemble

PMd) has context and color information, and also receives context and color inputs (Fig. A.7b).

We show the axes overlapped with the PCs in Fig.2.4, as well as the effect of the checkerboard

and target inputs, which qualitatively shows that the inputs do not project onto the direction

axis.

2.4.3 Inter-area connections preferentially propagate output-relevant

direction information

The differentiating aspect of multi-area computation is that the different areas are separated.

A natural question to ask is how then does information propagate between areas? As defined

in Section 2.3, we denote the feedforward connections from Area 1 to 2 as W21, and from Area

2 to 3 as W32. We present results for feedforward connections from excitatory connections

to excitatory units. Based on the hypothesis that the brain uses null and potent spaces to

20



selectively filter information [69], we evaluated the effective potent and null spaces of W21

and W32. We defined the effective potent space to be the right singular vectors corresponding

to the largest singular values (see Appendix A.2.9). The effective null space corresponded to

the singular vectors with the smallest singular values.

We quantified how the color and direction axis were aligned with these potent and null

spaces (see Appendix A.2.9). The projections onto the potent space are shown in Fig. 2.5a,b

for W21 and W32, respectively. The null projection magnitudes are equal to one minus the

potent projection. We found the direction axis was more aligned with the potent space and

the color axis was more aligned with the null space. In fact, the direction axis (computed

using the activity in Area 1) was consistently most aligned with the top singular vector

(governed by the parameters of the feedforward matrix; which do not affect the activity

in Area 1). In contrast, the color axis was similarly aligned to a random vector. This

alignment was robust to the dimension of the effective potent space, and was consistent

across networks with varying feedforward connectivity percentages (10%, 20%, 30%, 50%,

100%). This suggests that learning in the multi-area recurrent network involved aligning the

relevant information (in the activations) with the top singular vector (governed by the learned

parameters of the feedforward matrix). These results indicate that direction information is

preferentially propagated to subsequent areas, while color information is not. This phenomena

is schematized in Fig. 2.5c. To better understand the propagation and filtering of information

in networks that had color information in the output area, we performed the same analyses on

networks trained without Dale’s law and 2 area networks, and found that these networks had

significantly reduced alignment of the direction axis with the top singular vectors (Appendix

Fig. A.11).

These results also have implications on how inter-area connections relay information

between areas. Color activity has significant representation in Area 1 (see Fig. 2.2). Therefore,

the inter-area connections must not merely propagate the highest variance dimensions of

a preceding area [120]. Consistent with this reasoning, we found that while the top 2 PCs
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reach and strength of evidence for a right reach. Increasing inhibition to the left excitatory
pool leads to more right choices and vice versa.

capture 97.7% excitatory unit variance, the top 2 readout dimensions of W21 only captured

40.0% of Area 1’s excitatory unit neural variance (Appendix Fig. A.10). Hence, inter-area

connections are not aligned with the most variable dimensions, but are rather aligned to

preferentially propagate certain types of information — a result consistent with a recent

study analyzing links between activity in V1 and V2 [120].
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2.4.4 Area 3, modeling PMd dynamics, is primarily input driven

and implements bistable dynamics

We showed previously that Area 3 most closely resembled PMd’s dynamics (Fig. 2.2). Our

results suggest that a direction signal has been computed before Area 3 and is selectively

propagated through the RNN’s inter-area connections. We found that the input to Area 3

(through W32) is a graded direction signal that provides a directional evidence signal for left

or right reaches (Fig. 2.6a). This activity must be transformed into eventual DV outputs,

which are the accumulated evidence for a left or right reach. This is illustrated in Fig. 2.6a,

where we plot W32r
2
t (r2t are the unit activations of Area 2), and r3t .

To analyze Area 3’s dynamics, we first observed that Wout’s coefficients were sparse, with

44 out of 80 output weights being identically zero. We found that the readout led to two

separate clusters of artificial units: units with non-zero coefficients for the left DV (orange)

and those with non-zero coefficients for the right DV (blue). Artificial units projected either

to the left or right DV outputs, but not both, suggesting that there are two clusters mediating

left and right choices.

Based on this clustering, we sorted and visualized the connections of excitatory units of

Area 3, which upon first glance generally has no discernible structure (Fig. 2.6c, left panel).

After sorting, we found that two self-excitatory pools of units emerged in Wrec, the first

pool in Fig. 2.6c (right) corresponding to the left DV and the second pool corresponding to

the right DV. In addition to these two pools, we identified a pool of randomly connected

excitatory units and a pool of inhibitory units with strong projections from and to the two

pools. The full Area 3 connectivity matrix is shown in Appendix Fig. A.12. This structure

is consistent with a winner-take-all network, where increasing activity in one pool inhibits

activity in the other pool through a separate inhibition pool (Fig. 2.6d). By taking the

averaged connectivity matrix, similar to [155], we confirmed that there were two excitatory

pools that received similar projections from the random excitatory pool and inhibitory pool

(Fig. 2.6e). We summarize the behavior with a schematic of the area in Fig. 2.6f.
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We subsequently applied selective perturbations to Wrec to determine how behavioral

performance was biased. We increased inhibition to either the right or the left pool by

doubling the weights of 10% of the inhibitory neurons associated with each pool. We found

that this biased the network towards more left or right reaches, respectively, shown in Fig. 2.6g.

When inhibition was increased to the right excitatory pool, the network was more likely

to respond left. Conversely, when inhibition was increased to the left excitatory pool, the

network was more likely to respond right.

Together, these results show that the output area, modeling PMd, robustly transforms

separable direction inputs to a decision variable through a winner-take-all mechanism.

2.5 Discussion

Even though behavior and cognition arise from the coordinated computations of multiple brain

areas, there is limited understanding of how interacting brain areas coordinate to produce

cognitive behavior [86,120]. In this study, we used multi-area RNNs to gain mechanistic insight

into how the brain computes a perceptual decision in the Checkerboard Task and transmits

only the direction decision to PMd. These results propose hypotheses for computations that

occur upstream of PMd, particularly how neural population activity representing context,

color, and direction are structured, and what information is propagated between areas. We

found that inter-area connections were preferentially aligned to the direction axis, not axes of

maximal variance, leading to selective propagation of direction activity and attenuation of

color activity. This role for inter-area connections is consistent with null and potent spaces for

filtering and propagating information between areas [69,130] and communication subspaces,

which are aligned with lower variance dimensions [120].

Our results suggest that cortex and multi-area RNNs may share a more general principle of

multi-area information processing: if information becomes irrelevant for later computations, it

is reduced or discarded. In the Checkerboard Task, color information is necessary to compute
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the direction decision, but does not need to be represented after the direction decision is

computed, as in PMd [24,29,30,141,152]. In deep neural networks, it is believed that minimal

representations simplify the role of the output classifier [3, 126]. This idea is consistent with

(1) the multi-area RNN developing a minimal (little color information) but sufficient (robust

direction information) representation of task inputs, and (2) Area 3, the output area, using

a simple winner-take-all readout, forming two pools of neurons representing right and left

decisions (Fig. 2.6).

Our analysis of the multi-area RNN leads to testable hypotheses for future experiments.

First, we expect that neurons in cortical areas upstream of PMd should exhibit mixed

selectivity for color and direction information, consistent with studies of dorsolateral prefrontal

cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC) in cognitive tasks [44, 99, 111].

More specifically, our model predicts the following organization of population dynamics in

these areas: neural population dynamics should diverge to two regions with slow dynamics

based on target configuration, with largely overlapping context and color axes, but an

orthogonal direction axis. Second, due to alignment of inter-area connections, direction axis

activity in DLPFC/VLPFC should be more predictive of activity in downstream regions such

as PMdr and PMd than activity in the top PCs.
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Chapter 3

A Cortical Information Bottleneck

During Decision-making

The brain uses multiple areas for cognition, decision-making, and action, but it is unclear why

the brain distributes the computation and why cortical activity differs by brain area. Machine

learning and information theory suggests that one benefit of multiple areas is that it provides

an “information bottleneck” that compresses inputs into an optimal representation that is

minimal and sufficient to solve the task. Combining experimental recordings from behaving

animals and computational simulations, we show that later brain areas have a tendency to

form such minimal sufficient representations of task inputs through preferential propagation

of task-relevant information present in earlier areas. Our results thus provide insight into

why the brain uses multiple brain areas for supporting decision-making and action.

3.1 Introduction

The brain uses multiple areas to perform cognitive functions and tasks, including decision-

making, multisensory integration, attention, motor control, and timing [28,43,66,107,110,

120,124, 133,152, 156]. But why distribute computation across multiple areas? One reason is

that distributed computation supports important fault tolerance in the brain which allows it
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to compensate when dynamics in relevant areas are altered [40, 64, 92, 102]. But is there also

a computational benefit for distributing computations across multiple areas? In deep learning

for computer vision, deeper artificial neural networks (ANNs) generally perform better and

exhibit hierarchical computation, a phenomenon also observed in the visual cortex, where

early layers of the neural network form representations that contain low-level details (e.g.,

edges) and deeper layers represent higher-level concepts (e.g., object identity) [153,154]. This

hierarchical computation is related to the idea of an information bottleneck: downstream

areas should form representations that remove irrelevant information not necessary to do the

task. For example, to know an image of a dog is a dog, we do not need to store every pixel of

the image.

We unpack this more formally by first asking: what makes a representation optimal?

Consider the binary classification task in Fig. 3.1a, where the task Y is to answer if an image,

x, is a dog. The data processing inequality (DPI) states that any representation of the original

image, z = f(x), where f is a function or transformation, cannot contain more information

than the image itself [31]. Rather, a representation z will often contain less information, so

that the information between random variables Z and X, denoted I(Z;X), decreases through

successive transformations. This is illustrated in Fig. 3.1a, where different transformations of

the original image decrease the mutual information I(Z;X) in the representation. But the

task information contained in the representation, I(Z;Y ), is similar, since all images can be

used to correctly answer “is this a dog?” (Fig. 3.1b).

The information bottleneck principle defines an optimal representation to be one that

retains only the relevant or useful information for solving a task [136]. When a represen-

tation that is sufficient for solving the task (mathematically, I(Z;Y ) ≈ I(X;Y )) is also

minimal (mathematically, I(Z;X) as small as possible), machine learning theory proves

these representations are the most robust to nuisances (such as the color of the dog or the

background) [3]. In general, multi-area computation increases the minimality of a represen-

tation due to the data processing inequality: so long as these representations maintain the
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information to solve the task and are trainable, the deep multi-area computation produces

more optimal representations for solving tasks. Although these representations contain

less information than the input, they are often more useful and robust representations for

solving the task [3, 78, 151]. Typically, these neural networks are not explicitly trained to

optimize an information bottleneck objective [136]. However, recent studies [3,78] showed

that training ANNs with stochastic gradient descent implicitly minimizes an information

bottleneck objective that results in minimal sufficient representations.

We unpack this more formally by first asking: what makes a representation optimal?

Consider the binary classification task in Fig. 3.1a, where the task Y is to answer if an image,

x, is a dog. The data processing inequality (DPI) states that any representation of the original

image, z = f(x), where f is a function or transformation, cannot contain more information

than the image itself [31]. Rather, a representation z will often contain less information, so

that the information between random variables Z and X, denoted I(Z;X), decreases through

successive transformations. This is illustrated in Fig. 3.1a, where different transformations of

the original image decrease the mutual information I(Z;X) in the representation. But the

task information contained in the representation, I(Z;Y ), is similar, since all images can be

used to correctly answer “is this a dog?” (Fig. 3.1b).

The information bottleneck principle defines an optimal representation to be one that

retains only the relevant or useful information for solving a task [136]. When a represen-

tation that is sufficient for solving the task (mathematically, I(Z;Y ) ≈ I(X;Y )) is also

minimal (mathematically, I(Z;X) as small as possible), machine learning theory proves

these representations are the most robust to nuisances (such as the color of the dog or the

background) [3]. In general, multi-area computation increases the minimality of a represen-

tation due to the data processing inequality: so long as these representations maintain the

information to solve the task and are trainable, the deep multi-area computation produces

more optimal representations for solving tasks. Although these representations contain

less information than the input, they are often more useful and robust representations for
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Figure 3.1: Optimal representations are formed through an information bottleneck. (a) Consider
the task Y of discerning whether the image is of a dog. Images to the right have less information than the
original image (I(Z;X) is smaller) but still contain approximately the same amount of information, I(Z;Y )
to perform the task: “is this a dog?” (b) The information bottleneck trades off minimality, I(Z;X) as small
as possible, with sufficiency, I(Z;Y ) ≈ I(X;Y ). (c) Checkerboard task. The monkey reaches to the target
whose color matches the checkerboard dominant color. Because there are two equally likely contexts where
the color of the left and right targets are swapped, this task dissociates the color and direction choice. (d) A
minimal sufficient representation of this task is to only retain the direction decision, in this case, reach left. A
cortical information bottleneck should therefore only find direction information in motor output areas.

solving the task [3, 78, 151]. Typically, these neural networks are not explicitly trained to

optimize an information bottleneck objective [136]. However, recent studies [3,78] showed

that training ANNs with stochastic gradient descent implicitly minimizes an information

bottleneck objective that results in minimal sufficient representations.
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We hypothesized multiple areas in the brain provides a similar computational benefit by

forming minimal sufficient representations of the task inputs, thus implementing a cortical

information bottleneck. We tested this hypothesis by combining electrophysiological recordings

in behaving monkeys, and modeling using recurrent neural networks. We recorded from the

DLPFC and PMd as monkeys performed a decision-making task called the Checkerboard

Task (Fig. 3.1c). In this task, the monkey discriminated the dominant color of a checkerboard

composed of red and green squares and reached to a target matching the dominant color.

Because the red and green target locations were randomly assigned to be left or right on

each trial (“target configuration”, which we also term “context”), the direction decision is

independent of the color decision. That is, a green color decision is equally likely to correspond

to a left or right decision.

The animal’s behavioral report was either a right or left reach, determined after combining

the sensory evidence with the target configuration (Fig. 3.1d). While color is initially needed

to solve the task, the minimal sufficient representation of the task to generate the correct

output is a representation of only the direction decision without the color decision or the

target configuration (aka “context”). A cortical information bottleneck would therefore predict

that upstream areas should contain information about the task inputs and decision-making

process, including the target configuration, perceived dominant color of the checkerboard,

and direction choice, while downstream areas should only contain the direction choice (in

Fig. 3.1d, “reach left”).

Consistent with the predictions of the information bottleneck principle, we found that

DLPFC has information about the color, target configuration, and direction. In contrast, PMd

had little to no information about target configuration and color, but strongly represented

the direction choice. PMd therefore had a minimal and sufficient representation of direction.

We then trained a multi-area RNN to perform this task. We found that the RNN faithfully

reproduced DLPFC and PMd activity, enabling us to propose a mechanism for how cortex

uses multiple areas to compute a minimal sufficient representation.
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3.2 Results

The checkerboard task involves multiple brain areas

We used linear multi-contact electrodes (U and V-probes) to record from the DLPFC (2819

single neurons and multiunits) and PMd (996 single neurons and multi units) as the monkeys

performed the Checkerboard Task ((Fig. 3.1c, and also described in Sect. 2.2.1). Sample peri-

stimulus time histograms (PSTHs) for neurons in DLPFC and PMd are shown in Fig. 3.2c,

d, respectively, where solid (dotted) lines correspond to left (right) reaches and color (red or

green) denotes the color decision. DLPFC PSTHs in Fig. 3.2c separate based on direction

choice, target configuration (context), and color choice, whereas PMd PSTHs primarily

separate based on the direction choice, and only very modestly with target configuration or

color.

Together, these examples demonstrate that DLPFC and PMd single units exhibit activity

reflecting the decision-making process, implicating multiple brain areas in decision-making.

Further, DLPFC likely contains multiple task-relevant signals signals, whereas PMd contains

only direction choice related signals necessary for the behavioral report in the task. In the

next sections, we use dimensionality reduction, decoding, and information theory to quantify

the extent of color, target configuration, and direction representations in DLPFC and PMd

at the population level and show that these physiological observations are consistent with

the information bottleneck principle. We then use recurrent neural network models to build

a mechanistic hypothesis for how an information bottleneck could be implemented.

Evidence for a cortical information bottleneck between DLPFC and

PMd

Our single neuron examples suggest that neuronal responses in DLPFC are modulated by

color choice and target context, but PMd neurons generally are not. Our hypothesis is

that these cortical representations in DLPFC and PMd are consistent with the information
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Figure 3.2: DLPFC and PMd recordings during the checkerboard task. (a) Psychometric and (b)
reaction time curves. (c) Example DLPFC and (d) PMd PSTHs. Red and green traces correspond to red
and green color choices, respectively. Dotted and solid traces correspond to right and left direction choices,
respectively. (e) DLPFC and (f) PMd PCs. (g) DLPFC and (h) PMd dPCA for direction, context, and
color. (i) Histogram (across sessions) of direction, color, and target configuration (“context”) decode accuracy
and (j) usable information for DLPFC and PMd.

bottleneck principle. The direct prediction of this hypothesis is that the PMd population

activity should contain a minimal and sufficient representation of the behaviorally relevant
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output – the direction choice – while upstream DLPFC population activity should represent

multiple task-relevant variables.

To study this at the population level, we performed principal components analysis (PCA)

on DLPFC and PMd neural population activity. In these PCA trajectories, we subtracted

the condition-independent component of the signal to better highlight representations of

direction, target configuration, and color. DLPFC and PMd exhibited qualitatively different

neural population trajectories (Fig. 3.2e,f). DLPFC population activity converged to two

distinct locations in state space based on the two target configurations (green left and red

right, or red left and green right). At the time of checkerboard onset (purple dots), DLPFC

activity then separated into four distinct trajectories based on the four possible color ×

direction outcomes (green left, green right, red left, red right). In contrast, PMd trajectories

in Fig. 3.2f did not exhibit target-configuration-specific steady state responses. Thus, at

the point of checkerboard onset (purple dots), trajectories overlapped in the top 3 principal

components, and only separated based on the direction, but not color, choice.

To quantify these these differences, we performed demixed principal component analysis

(dPCA) on the DLPFC and PMd population activity (Fig. 3.2g,h). DLPFC and PMd activity

both exhibited strong condition independent activity (82% and 86% variance, respectively).

DLPFC activity represented the target configuration, but PMd did not (Fig. 3.2g,h, context

dPC). dPCA also identified principal axes that maximized variance related to the direction

choice, color choice, and target configuration. In DLPFC, the top direction choice, color

choice, and target configuration axes captured 7.1%, 1.5%, and 0.9% of the population activity.

In PMd, these values were 10.6%, 0.2%, and 0.2%. Across all direction, color, and target

configuration axes, the dPCA variance captured for DLPFC was 11%, 3%, 5%, while for PMd

it was 12%, 1%, 1%. This dPCA analysis provides further evidence that DLPFC represents

direction, target configuration, and color while PMd has nearly minimal representations of

color and target configuration, consistent with the infromation bottleneck principle.

Our dPCA results with trial-averaged firing rates suggest that axes associated with color
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and target configuration in PMd have very little variance associated with them. However,

these results do not rule out the possibility that there is decodable information about these

task-related variables on single trials. We performed two other analyses to assess if there is

an information bottleneck and that PMd contains a minimal sufficient representation. We

calculated the decode accuracy and an estimate of mutual information for direction, color,

and target configuration in DLPFC and PMd population activity. We decoded direction,

color, and target configuration from DLPFC and PMd sessions where we recorded a small

population of neurons using a support vector machine (see Methods). To estimate mutual

information, we quantified the Usable Information, a variational lower bound to mutual

information that can be computed on high-dimensional data through estimating cross-entropy

loss [78, 151] (see Methods).

Across 102 sessions in DLPFC, we found that direction, color, and target configuration

could all be reliably decoded above chance (mean across sessions with above chance accuracy:

direction 86%, target configuration 60%, color 59%, p < 0.01, bootstrap, for details on

decoding see Methods). Histograms of decode accuracy are shown in Fig. 3.2i. These

histograms reveal that most recording sessions could reliably decode direction, while target

configuration(“context”), and to a lesser degree, color, could be reliably decoded in a subset

of sessions. In contrast, PMd rarely exhibited sessions where target configuration and color

could be reliably decoded above chance (mean accuracy across sessions: direction 88%, target

configuration 53%, color 54%, only direction above shuffled decoding accuracy, p < 0.01), as

shown in Fig. 3.2i. The differences in mean decoding accuracy in DLPFC and PMd were

significant for only color and target configuration (p < 0.001, ranksum test), but not direction

(p = 0.208, ranksum test).

We also quantified usable information for all DLPFC and PMd sessions, shown in Fig. 3.2j.

DLPFC had sessions with non-zero usable information for direction, color, and target

configuration (average direction information: 0.56 bits, context: 0.05 bits, color: 0.05 bits)

while PMd only had non-zero usable information for direction (average direction information:
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0.63 bits, context: 0.003 bits, color: 0.008-bits). The differences in usable information in

DLPFC and PMd were also significant for only color and target configuration (p < 0.001,

ranksum test), but not direction (p = 0.158, ranksum test). Together, these results indicate

that PMd had a more minimal representation of task inputs, particularly color and target

configuration, than DLPFC.

Our dPCA and decoding results are strongly consistent with the existence of a cortical

information bottleneck between DLPFC and PMd that reduces the amount of target con-

figuration and color information in PMd while preserving the direction choice information

necessary to solve the task. We next sought to model this multi-area information bottleneck

and develop a mechanistic hypothesis for how this cortical information bottleneck could be

computationally implemented.

A multi-area recurrent neural network model of DLPFC and PMd

To develop a mechanistic hypothesis for this cortical information bottleneck, we studied our

previously reported multi-area RNN to perform the Checkerboard task ( [82], described in

Chapter 2). We chose to use this multi-area RNN because prior work demonstrated this

RNN, like our PMd data, has a minimal color representation in Area 3. The RNN had 3

areas, obeyed Dale’s law [127], and had approximately 10% feedforward and 5% feedback

connections between areas based on projections between prefrontal and premotor cortex in a

macaque atlas [100]. RNN psychometric and RT curves for the multi-area RNN exhibited

similar behavior to monkeys performing this task (Fig. 3.3b,c; across several RNNs, see

Fig. B.1).

Although the multi-area RNN was not regularized to reproduce DLPFC and PMd

activity, activity in Area 1 resembled neural responses in DLPFC and Area 3 resembled PMd

(Fig. 3.3d,e). Like DLPFC, Area 1 had four distinct trajectories corresponding to the four

possible task outcomes and represented context, direction choice, and color choice (Fig. 3.3d

and see Fig. B.2). In contrast, Area 3 population trajectories primarily separated based on
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Figure 3.3: RNN modeling of the CB task. (a) Multi-area RNN configuration. The RNN received 4
inputs. The first two inputs indicated the identity of the left and right targets, which was red or green. These
inputs were noiseless. The last two inputs indicated the value of the signed color coherence (proportional
to amount of red in checkerboard) and negative signed color coherence (proportional to amount of green in
checkerboard). We added independent Gaussian noise to these signals (see Methods). The network outputted
two analog decision variables indicating evidence towards the right target (solid line) or left target (dashed
line). A decision was made in the direction of whichever decision variable passed a preset threshold (0.6)
first. The time at which the decision variable passed the threshold was defined to be the reaction time.
(b,c) Psychometric and reaction time curves for exemplar multi-area RNN. (d) Area 1 and Area 3 principal
components for exemplar RNN. (e) CCA correlation between each area and DLPFC principal components
(left) and PMd principal components (right). DLPFC activity most strongly resembles Area 1, while PMd
activity most strongly resembles Area 3. See also Fig. B.3where we computed CCA as a function of the
number of dimensions. (f) Relative dPCA variance captured by the direction, color, and context axes.
Normalization makes direction variance equal to 1. Area 1 (3) variances more closely resemble DLPFC
(PMd). (g) Area 1 has significantly higher decoding accuracies and (h) usable information compared to Area
3, consistent with DLPFC and PMd. Large variance in recordings due to across-session variance.

direction and not by target configuration or color — remarkably similar to the trajectories

observed in PMd.

We performed CCA to assess the similarity between the empirical neural trajectories to

each RNN area’s neural trajectories (see Methods). The CCA analysis suggested that Area 1
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exhibited the strongest resemblance to DLPFC, while Area 3 most strongly resembled PMd

activity (Fig. 3.3e). These results show that a multi-area RNN reproduced similar behavior

to the monkey, and further that it did so with architecturally and qualitatively distinct areas

that strongly resembled the physically distinct DLPFC and PMd cortical areas.

The RNN activity differs from cortical activity in two important ways. First, RNNs

generally had a significantly smaller variance condition-independent signal (46.7% and 49.4%

average variance in Area 1, and 3, respectively) than in DLPFC and PMd (82% and 86%

variance, respectively). One possible explanation is that condition-independent variance in

PMd is associated with a trigger signal, likely from the thalamus [71], and these RNNs do not

output arm kinematics, forces, or electromyography (EMG). Similarly, in DLPFC, we did not

explicitly model the target and checkerboard inputs to have large onset signals that are often

associated with visual stimulation. This significant condition independent variance in the

neurophysiological data may therefore make decoding more difficult since there is relatively

lower variance representing direction, color, or target configuration. While our CCA analysis

was performed with the condition-independent signal removed, this difference impacts both

dPCA and decoding results. In general, we found that RNN exhibited trends observed in the

neurophysiological data more strongly, including more variance captured for direction, color,

and target configuration, as well as higher decoding accuracies. We therefore compared the

relative, rather than absolute, trends in RNN activity and DLPFC for dPCA and decoding

analyses for the purposes of identifying a RNN information bottleneck similar to the cortical

information bottleneck.

We found that the 3-area RNN exhibited similar trends to DLPFC and PMd activity in

dPCA variance and decoding accuracy. When comparing only the top axis for direction, color,

and context, DLPFC activity had relatively large variance captured along the direction axis

(7.1% variance captured), followed by relatively weaker representations for target configuration

(1.5%) and color (0.9%). Area 1 activity had similar relative trends, with the direction axis

explaining 30.9% variance, followed by target configuration (13.3%) and color (5.6%). In
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Fig. 3.3f, we show the similarity in relative trends in DLPFC and Area 1 by normalizing

these quantities by the variance captured by the direction axis. Meanwhile, PMd activity

exhibited more direction-related variance than DLPFC (10.6% variance captured) and did

not exhibit a significant target configuration and color axis representation (0.2% for both

axes). Likewise, Area 3 had a stronger representation of direction (48.5% variance captured)

than in Area 1, but negligible target configuration and color axes variance (0.1% for both

axes), demonstrating the same relative trend (Fig. 3.3f). These results show that Area 1

more strongly resembles DLPFC and Area 3 more strongly resembles PMd in relative dPCA

variance.

We next evaluated the decode accuracy and usable information in the multi-area RNN.

We found Area 1, like DLPFC, had significant information for direction, target configuration,

and color. Direction, color, and target configuration could be decoded from Area 1 population

activity at accuracies of 94.4%, 93.4%, and 99.0%, respectively, corresponding to 0.81, 0.79,

and 0.92 bits of usable information (Fig. 3.3g,h). In contrast, Area 3 direction decode accuracy

was 99.4%, while color and target configuration accuracy were significantly lower (51.1% and

54.3%, respectively). This corresponded to 0.97, 0.0023, and 0.0078 bits of usable information

for direction, target configuration, and color, respectively.

Together, these results show that our multi-area RNN exhibited distinct areas that

resembled DLPFC and PMd activity, and also implemented an information bottleneck so that

its output area only had primarily direction information and less color and target configuration

information. This multi-area RNN therefore implements a candidate mechanism for how a

cortical information bottleneck could be implemented between DLPFC and PMd.

3.2.1 Mechanistic features of the DLPFC and PMd bottleneck:

partial orthogonalization and selective propagation

The multi-area RNN contains representations consistent with the information bottleneck

principle — its input and output areas resemble DLPFC and PMd. The RNN therefore models
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many aspects of our physiological data and is therefore a candidate system to understand

how multiple areas could lead to the empirically observed minimal sufficient representations.

The unique advantage of the RNN is that we know the firing rates in each area as well as

the within and inter-areal connections, which allows us to investigate how the multi-area

RNN deemphasizes color information through an IB. We reasoned that such an information

bottleneck could be implemented in three ways: Color information may be (1) primarily

attenuated through recurrent neural dynamics, (2) primarily attenuated through inter-areal

connections, or (3) attenuated through a combination of recurrent dynamics and inter-areal

connections. This is illustrated in Fig. 3.4a.

To test these hypotheses, we first quantified how color, context, and direction information

was represented in the animals and our network. We performed dPCA in the different areas

to identify demixed principal components that represented the corresponding information.

In DLPFC, we quantified the overlap of the dPCA principal axes for context, color, and

direction. While the context and color axes were relatively aligned (dot product, DP: 0.52),

the direction axis was closer to orthogonal to the color axis (DP: 0.18) and the context axis

(DP: 0.35), as shown in Fig. 3.4b. These results suggest that DLPFC partially orthogonalizes

information about the direction choice from the color choice and context. We also observed

these trends in the RNN, albeit more strongly. In DLPFC-resembling Area 1, we observed

the context and color were also highly aligned (DP: 0.95) but that the direction axis was more

orthogonal to the color axis (DP: 0.13) and the context axis (DP: 0.12). In our simulations,

the reported values reflect the mean across 8 networks trained with the same hyperparameters.

A candidate mechanism for this orthogonalization, found by performing dynamical analyses

on the RNN, is shown in Fig. B.5.

The advantage of our model is that both the intra-areal dynamics and inter-areal connec-

tivity matrices are known. We analyzed how these axes were aligned with the intra-areal

recurrent dynamics and inter-areal connectivity matrices to identify which hypothesis ex-

plained how the RNN implemented the information bottleneck. To do so, we performed
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singular value decomposition (SVD) on these matrices. We defined a k-dimensional “potent

space” to be the right singular vectors corresponding to the k largest singular values of the

matrix. The “null space” is the orthogonal complement of the potent space, which comprises

the remaining d− k smallest singular vectors, where d refers to number of columns of the

matrix. The null projection magnitudes are equal to one minus the potent projection. We

quantified how the color and direction axis were aligned with these potent and null spaces (see

Methods). This enabled us to study if the emergence of minimal sufficient representations was

due to: (1) relative amplification of the direction information with respect to a random vector,

(2) relative suppression of the color/context information with respect to a random vector, or

(3) a combination of both. Finally, we focused our analyses on Area 1 recurrent dynamics

and the inter-areal connections between Areas 1 and 2 (W21) because color information

is significantly attenuated by Area 2 (dPCA color variance in Area 2: 0.14%). The same

analyses applied to downstream areas are shown in Fig. B.8.

We first tested the hypothesis that the RNN IB is implemented primarily by recurrent

dynamics (left side of Fig. 3.4a). We quantified how the color and direction axis were aligned

with these potent and null spaces of the intra-areal recurrent dynamics matrix of Area 1

(W1
rec). In Area 1, we found significant alignment of the color axis with the top singular

vectors (potent space) of the recurrent dynamics matrix (Fig. 3.4c). This finding argues

against the hypothesis that recurrent dynamics preferentially attenuate color information by

projecting it into a nullspace of the recurrent dynamics. Rather, these data suggest that Area 1

has significant color information in its potent space, indicating that the recurrent computation

amplifies color information. We also performed an alternative analysis where we compared

input and activity representations of color discriminability and direction discriminability for

our exemplar network. We observe an amplification, not a reduction, in color discriminability

with respect to the inputs in Area 1 (Fig. B.6) consistent with the amplification observed in

Fig. 3.4c. In Areas 2 and 3, the color axis (which had small variance of 0.14% and 0.07%

in Areas 2 and 3, respectively) was again typically more strongly aligned with Wi
rec than a
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random vector, (Fig. B.8). In summary, the dPCA and discriminability analyses suggest that

the network did not use recurrent dynamics to attenuate color information. We therefore

reject the hypothesis that the IB is primarily implemented through intra-areal recurrent

dynamics.

Our alternative hypothesis is that color information is primarily attenuated through inter-

areal connections. This is schematized in Fig. 3.4d, where inter-areal connections propagate

activity along the Area 1 direction axis (orange) to Area 2, but attenuate Area 1 color axis

activity (maroon). To test this hypothesis, we quantified how the color and direction axis

were aligned with these potent and null spaces of the inter-areal matrices. This enabled us

to quantify the alignment of the direction and color axes with the inter-areal potent and

null spaces and specifically determine how direction and color information were differentially

propagated (Fig. 3.4e). Inter areal connections could attenuate color information by aligning
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the color axis with the null space of W21 (Hypothesis 1 in Fig. 3.4e), propagate information

preferentially (Hypothesis 2 in Fig. 3.4e), or both attenuate and propagate information

(Hypothesis 3 in Fig. 3.4e).

We calculated the projections for both the color and choice axes on to the potent space

for the the connection matrix from area 1 to area 2 (W21) The projections onto the potent

space are shown in Fig. 3.4f for the color and direction axis. We found the direction axis

was more aligned with the potent space and the color axis was more aligned with the null

space. In fact, the direction axis was consistently most aligned with the top singular vector

of the W21 matrix, on average more than the remaining d− 1 singular vectors. In contrast,

the color axis was aligned to a random vector. This suggests that learning in the multi-area

recurrent network involved aligning the relevant information (in the activations) with the

top singular vector (governed by the learned parameters of the feedforward matrix). These

results indicate that direction information is preferentially propagated to subsequent areas,

while color information is aligned with a random vector thus maximally consistent with the

“propagate” hypothesis shown in Fig. 3.4e.

Such alignment of the direction axis with the top singular vector of the connection matrix

isn’t trivial: the potent space depends on the parameter W21 learned during training, while

the direction axis is not a parameter but a dPCA axis computed from Area 1 activity. This

alignment was robust to the dimension of the effective potent space, and was consistent across

networks with varying feedforward connectivity percentages (10%, 20%, 30%, 50%, 100%).

Further, we found that W21 in unconstrained 3 area networks had significantly reduced

alignment of the direction axis with the top singular vectors (Fig. B.8d).

In summary, the multi-area RNN information bottleneck is primarily implemented through

preferential propagation of direction information through inter-areal connections. Recurrent

dynamics play a role in processing color information and context to arrive at direction choice

information. In Area 1, RNN dynamics actually amplify color information. Our results are

therefore most consistent with the hypothesis that the IB is implemented primarily through
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Figure 3.5: Robustness of the information bottleneck across hyperparameters. Varying (a)
proportion of feedforward connections in an unconstrained network, (b) E-I connections in a Dale’s law
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number of areas, and (e) the machine learning hyperparameters revealed that Area 3 color variance and
color accuracy decrease as long as there is a connectivity bottleneck between areas. (f) Summary of these
results quantifying usable information.

inter-areal connections, not recurrent dynamics, in Fig. 3.4a.

3.2.2 Effect of network architecture and training hyperparameters

on the information bottleneck

We next assessed the network architectures and hyperparameters that influenced the forma-

tion of minimal sufficient representations during the Checkerboard task. We swept RNN
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architectural parameters and machine learning hyperparameters to assess what variables

were important for learning minimal sufficient representations without color information.

Specifically, we varied the connectivity type (unconstrained connectivity vs Dale’s law and

varying proportion of connections), the percentage of unconstrained feedforward connections,

the percentage of feedforward E to I connections, the percentage of E to E connections, the

number of areas (from 1 to 4), the number of artificial networks, L2 weight regularization,

L2 rate regularization, and the learning rate. In our sweeps we quantified the color (and

direction) variance and accuracy in the last area.

We generally observed minimal sufficient representations in the last area so long as there

was a sufficient connection bottleneck between RNN areas. In unconstrained networks, shown

in Fig. 3.5a, color variance and decode accuracy decreased as the percentage of feedforward

connections between areas decreased, though the representations were not minimal. We

incorporated Dale’s law with 80% E and 20% I neurons following Song et al. [127] into

subsequent sweeps (Fig. 3.5b-e). Minimal representations with chance color decode accuracy

emerged when the percentage of feedforward E to I connections was 2 − 5% or less (the

overall percentage of feedforward E to E was fixed at 10% following a macaque atlas).

We also found that when there was no feedforward inhibition, but when we varied the

percentage of feedforward or feedback E-to-E connections RNNs generally had nearly minimal

representations (Fig. 3.5c, and Supp. Fig. B.9). We observed that as long as there were 3 or

4 areas, there was a large decrease in color information in the last area (Fig. 3.5d) quantified

by decoding, though note that there was a large drop in color variance for 2 area networks.

These results suggest that multi-area networks, with a feedforward connection bottleneck

tend to produce more minimal representations for the Checkerboard task.

We also varied machine learning hyperparameters (Fig. 3.5e) to assess the extent to which

the information bottleneck was present. To prevent an exponential search space, we fixed the

architecture to the exemplar network used in this study and tested one hyperparameter at a

time. We varied the number of artificial units in the network, the L2 weight regularization,
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the L2 rate regularization, and the learning rate. At each hyperparameter setting, we trained

a total of 8 multi-area RNNs. Our exemplar network consistently exhibited little to no

Area 3 color information across every hyperparameter setting we chose, suggesting that the

presence of the information bottleneck is not a result of a particular choice of machine learning

hyperparameters.

We summarized all sweeps by calculating the “Usable Information” [78]) to quantify the

direction and color information in RNNs, as shown in Fig. 3.5f and the results reaffirmed

conclusions from the variance and decoding analyses. Together, these results suggest that a

connection bottleneck in the form of neurophysiological architecture constraints was the key

design choice leading to RNNs with minimal color representations and consistent with the

information bottleneck principle.

3.3 Discussion

The goal of this study was to investigate if predictions from the information bottleneck

principle in machine learning and information theory are also observed in cortical circuits.

The information bottleneck principle defines an optimal representation to be one that retains

only the relevant or useful information for solving a task [136]. This principle has been applied

to explain the success of deep networks [3,123], by forming minimal sufficient representations

of task inputs, leading to better generalization bounds and invariance to noise [3]. We

explored whether such a principle could explain cortical representations across different areas

during a visual perceptual decision making task. We found that later areas of cortex along a

sensorimotor transformation (in PMd) only represented the behavioral report, that is the

action choice, while earlier areas had stronger input representations and performed relevant

computations to define the behavioral report (in DLPFC). To better understand how such a

phenomenon could be implemented in cortex, we trained many artificial multi-area RNNs

to perform this task. Surprisingly, we also observed that RNNs formed minimal sufficient
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representations across a range of hyperparameter settings, suggesting the formation of minimal

sufficient representations may be a more general feature of multi-area computation.

Given the “full-observability” of our multi-area models, we were able to analyze the learned

weight matrices and understand how the network converged to transform task inputs and

form minimal sufficient representations by the output area. In particular, we found that

the output-relevant direction information was preferentially propagated between areas by

having the largest overlap with the top singular vector of the learned feedforward matrices. In

contrast, color information was almost randomly propagated through feedforward connections.

This mechanism is related to prior work on output potent and output null subspaces [69]

and communication subspaces [120], with the important difference that color information

isn’t preferentially projected to a nullspace, but is aligned similarly to any random vector.

Preferential alignment with a cortical nullspace is therefore not necessary to achieve an IB

— color information may be attenuated through random alignment to the communication

subspace. This solution (random alignment) poses less constraints on inter-areal connectivity

than a solution that preferentially propagates direction information while also preferentially

projecting color information to a nullspace.

Our results are also consistent with recent work proposing that cortical areas convey

information through communication subspaces. One observation in communication subspaces

is that they do not merely propagate the directions of highest variance [120]. We also observed

this for the W21 connectivity matrix, which communicates information from Area 1 to Area

2. Color activity had significant variance in Area 1 (see Fig. B.5). Inter-areal connections

must therefore not merely propagate the highest variance dimensions of a preceding area,

otherwise color information would be conveyed to Area 2. Consistent with this, we found that

while the top 2 PCs capture 97.7% excitatory unit variance, the top 2 readout dimensions

of W21 only captured 40.0% of Area 1’s excitatory unit neural variance (Fig. B.7). Hence,

inter-area connections are not aligned with the most variable dimensions, but are rather

aligned to preferentially propagate certain types of information — a result consistent with a
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recent study analyzing links between activity in V1 and V2 [120].

We find minimal sufficient representations in PMd and in the later areas of our recurrent

network models. Do such representations have any advantages? One possibility is that

in cortex a minimal sufficient representation provides energetic benefits [8, 121]. Another

possibility is that such a representation provides a computational advantage. This is an

open question that is still somewhat unresolved in the machine learning community, with

representation learning approaches that maximize mutual information between representa-

tions and inputs also leading to useful task representations [60], in addition to compressed

representations [3,78]. The information contained in the representation of a neural network is

related to the “Information in the Weights” [1], which can be quantified using the Fisher Infor-

mation [2,41,77], a measure of sensitivity to perturbations. This “Information in the Weights”

view would predict that minimal sufficient representations have smaller Fisher information

and are therefore less sensitive to (local) perturbations in the readout weights. In the context

of deep networks, it has been proposed that minimal sufficient representations simplify the

role of the output readout or classifier [3]. Further, a minimal sufficient representation with

respect to a family of probabilistic decoders/classifiers will provably generalize better [36].

Although finding a resolution to this debate in machine learning is beyond the scope of

this paper, we assessed if minimal RNNs exhibited any qualities consistent with machine

learning predictions. We explored whether minimal sufficient representations would simplify

the readout, which we quantified by measuring the model’s performance in response to

perturbations to the readout weights. We found that 3-area networks with minimal color

information (particularly networks in Fig. 3.5b with no feedforward E-to-I connectivity) were

less sensitive to perturbations than corresponding networks with significant color information

(networks in Fig. 3.5a with 10% unconstrained feedforward connectivity, see Fig. B.10).

We also found that these networks differed significantly in readout complexity, with 3-area

networks with minimal color information exhibiting simpler and sparser readouts (Fig. B.10).

However, we did not observe a clear trend between perturbation sensitivity and usable color

47



information across random initializations (Fig. B.10) for a fixed parameter setting (networks

with 10% feedforward inhibition in Fig. 3.5b). An interesting venue for future work is to

further examine the potential advantages of a minimal sufficient representation. Such findings

would be valuable to the machine learning and neuroscience community. In our study, several

factors including recurrent connectivity, multiple areas, and E/I populations make theoretical

study of this question difficult. It is likely that studying this question requires simplifying

the setting. For example, it likely makes sense to first focus on feedforward networks with a

variable amount of task input information, similar to the generalized checkerboard-task used

in [78].

Our task could be solved with or without feedback connections with equivalent performance,

indicating that feedback was not necessary to solve the task (Fig. B.9). Minimal sufficient

representations were found in both purely feedforward RNNs or RNNs with feedback (Fig. B.9).

When the model had feedback connections, we observed that feedback connections between

Areas 2 and 1 preferentially conveyed direction information. Due to the presence of choice

related signals in several cortical areas, these feedback connections may also play a role

in computation of the direction choice. Another perspective on feedback signals is that

they may related to error signals used for learning [94]. Multi-area networks may help

understand and develop new hypotheses for physiological studies of feedforward and feedback

computation [32, 103], and more generally distributed processing for decision-making and

cognition [72, 107].Future research may use carefully designed tasks in conjunction with

multi-area RNNs to better understand the role of feedback in computation.
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Chapter 4

Usable Information and Evolution of

Optimal Representations During Training

We introduce a notion of usable information contained in the representation learned by a

deep network, and use it to study how optimal representations for the task emerge during

training. We show that the implicit regularization coming from training with Stochastic

Gradient Descent with a high learning-rate and small batch size plays an important role in

learning minimal sufficient representations for the task. In the process of arriving at a minimal

sufficient representation, we find that the content of the representation changes dynamically

during training. In particular, we find that semantically meaningful but ultimately irrelevant

information is encoded in the early transient dynamics of training, before being later discarded.

In addition, we evaluate how perturbing the initial part of training impacts the learning

dynamics and the resulting representations. We show these effects on both perceptual decision-

making tasks inspired by neuroscience literature, as well as on standard image classification

tasks.
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4.1 Introduction

An important open question for the theory of deep learning is why highly over-parametrized

neural networks learn solutions that generalize well even though the model can in principle

memorize the entire training set. Some have speculated that neural networks learn minimal

but sufficient representations of the input through implicit regularization of Stochastic

Gradient Descent (SGD) [3,123], and that the minimality of the representations relates to

generalizability. Follow-up work has disputed the validity of some of these claims when using

deterministic deep networks [119], leading to an ongoing debate on the notion of optimality

of representations and how they are learned during training.

Part of the disagreement stems from the use of information-theoretic quantities: most

previous studies in deep learning have analyzed the amount of information that the learned

representation contains about the inputs using Shannon’s mutual information. However,

when the mapping from input to representation is deterministic, the mutual information

between the representation and input is degenerate [49, 119]. Rather than study the mutual

information in a neural network, here we instead define and study the “usable information”

in the network, which measures the amount of information that can be extracted from the

representation by a learned decoder, and is scalable to high dimensional realistic tasks. We

use this notion to quantify how relevant and irrelevant information is represented across layers

of the network throughout the training process, and how this is affected by the optimization

algorithms and the network pretraining.

In particular, we propose to study a simple task inspired by decision-making tasks in

neuroscience, where inputs and outputs are carefully designed to probe specific information

processing phenomena. We then extend our findings to standard image classification tasks

trained with state-of-the-art models. Our neuroscience-inspired task is the checkerboard

(CB) task [24,83]. In the CB task, one discerns the dominant color of a checkerboard filled

with red and green squares. The subject then makes a reach to a left or right target whose

color matches the dominant color in the checkerboard (Fig 4.1a). This task therefore involves
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making two binary choices: a color decision (i.e., reach to the red or green target) and a

direction decision (i.e., reach to left or right). Critically, the color of the targets (red left,

green right; or green left, red right) is random on every trial. The direction decision output

is conditionally independent of the color decision, as detailed further in Fig 4.1b and Section

C.2.6, even though the color information needs to be used to solve the task. This task allows

us to evaluate how both of these components of information are represented through training

and across layers.

We used this task and extensions to study the evolution of minimal representations

during training. If a representation is sufficient and minimal, we refer to this representation

as optimal [3]. Our contributions are the following. (1) We introduce a notion of usable

information for studying representations and training dynamics in deep networks (Section 4.3).

(2) We used this notion to characterize the transient training dynamics in deep networks by

studying the amount of usable relevant and irrelevant information in deep network layers and

across training epochs. We first use the CB task to gain intuition of the training dynamics in

a simplified setting. We find that training with SGD is critical to bias the network toward

learning minimal representations in intermediate layers (Section 4.4.1). This adds to the

literature suggesting that SGD results in minimal representations of input information [3,123]

while avoiding some of the pitfalls. (3) We used the intuition gained from the simple

task, evaluating our findings on CIFAR-10 and CIFAR-100 task using modern architectures.

Remarkably, we find that the networks increased usable information about an irrelevant

component of information early in training and discarded it later on in training to arrive at a

minimal sufficient solution, consistent with a proposed [123] though controversial theory [119].

4.2 Related Work

Some efforts to understand why neural networks generalize focus on representation learning,

that is, how deep networks learn optimal (i.e., minimal and sufficient) representations of
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inputs in order to solve a task. Typically, representation learning is focused on studying

the properties of the asymptotic representations after training [3]. Recent work suggests

that these asymptotic representations contain minimal but sufficient input information for

performing a task [3, 123]. Implicit regularization coming from SGD, and in particular from

the use of large learning rates and small batch sizes, is believed to play an important role in

forming these minimal sufficient representations.

How does the training process lead to these minimal but sufficient asymptotic repre-

sentations? [123] propose that there are two distinct phases of training: an empirical risk

minimization phase where the network minimizes the loss on the training set, and a “compres-

sion” phase where the network discards information about the inputs that do not need to be

represented to solve the task. Recently, [119] challenged this view, arguing that the observed

compression was dependent on the activation function and the mutual information estimator

used in [123]. These works highlight the challenges of estimating mutual information to study

how representations emerge through training.

In general, estimating mutual information from samples is challenging for high-dimensional

random variables [105]. The primary difficulty in estimating mutual information is estimating

a high-dimensional probability distribution from the samples, since generally the number of

samples required scales exponentially with the dimension. This is impractical for realistic

deep learning tasks where the representations are high dimensional. To estimate the mutual

information, [123] used a binning approach, discretizing the activations into a finite number of

bins. While this approximation is exact in the limit of infinitesimally small bins, in practice,

the size of the bin affects the estimator [49,119]. In contrast to binning, other approaches

to estimate mutual information include entropic-based estimators (e.g., [49]) and a nearest

neighbours approach [88]. Although mutual information is difficult to estimate, it is an

appealing quantity to summarily characterize key aspects of the transient neural network

training behavior because of its invariance to smooth and invertible transformations. In this

work, rather than estimate the mutual information directly, we instead define and study
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the “usable information” in the network, which corresponds to a variational approximation

of the mutual information [15,108] (see Sections 4.3 and C.1.1). Recently, such variational

approximations to mutual information have been viewed as a meaningful characterization

of representations in deep networks, and the theoretical underpinnings of this approach are

beginning to be investigated [36,151].

Research into the training dynamics of deep networks, and how they represent relevant

and irrelevant task information, is nascent. A related study by [2] found that early periods

of training were critical for determining the asymptotic network behavior. Additionally,

it was found that the timing of regularization was important for determining asymptotic

performance [47], with regularization during this “critical period" having the most influential

effect. Notably, both of these studies found an initial increase in the amount of information

that weights encode about the dataset (as measured by the Fisher information), that coincides

with the critical period of learning. This phase is followed later in training by a “forgetting”

phase where the network discards unnecessary information. This suggests that a similar

dynamic to the one we study can be observed in weight space instead of representation space.

4.3 Usable information in a representation

A deep neural network consists of a set of ℓ layers, with each layer forming a successive

representation of the input. A representation Zℓ may store information in a variety of ways. It

may be that a complex transformation is required to read out the information, or it may be that

a simple linear decoder could read out the information. In both cases, from an information-

theoretic perspective, the same information is contained in the representation, however, there

is an important distinction regarding how “usable” this information is. Information is usable

if later layers, which comprise affine transformations and element-wise nonlinearities, can

easily extract it to solve the task. Equivalently, usable information should be decodable by a

separate neural network also employing affine transformations and element-wise nonlinearities.
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Trial 1:

Color choice: green
Direction choice: right

Left target Right target

Trial 2:

Color choice: red
Direction choice: right

x

Zc

Zt

Zd y
checkerboard color
target orientation

direction choice

input output

DNN(a)(a) (b)

Figure 4.1: (a) Checkerboard task. Given two binary target locations (left or right) with
randomly selected binary colors (red or green), one has to discern the dominant color in
the checkerboard and reach to the target of the dominant color. On every trial, there is
a correct color and direction choice. However, the identities of the left and right targets
are random every trial, decoupling the direction and color decision. (b) We trained a deep
neural network to perform the task by specifying the proportion of green and red squares
on the checkerboard, as well as two scalars denoting the colors of the left and right target.
The network was trained to output the correct direction choice. As only the direction, but
not the color choice, was reported, given a representation of the correct direction choice
Zd, the network does not need to represent the color choice Zc in deeper layers. Zt is the
representation of the target orientation.

Formally, we define the usable information that a representation Z contains about a

quantity Y , which may refer to the output or a component of the input, as:

Iu(Z;Y ) = H(Y )− LCE(p(y|z), q(y|z)). (4.1)

Here, H(Y ) is the entropy, or uncertainty, of Y , and LCE is the cross-entropy loss on the test

set of a discriminator network q(y|z) trained to approximate the true distribution p(y|z). Our

definition is motivated in the following manner. The test set cross-entropy loss approximates

how much uncertainty there is in the output Y given Z and the discriminator. A low loss

implies that there is low uncertainty in Y given Z, or that the discriminator can extract a lot

of “information” about Y from Z. If the logarithm in the cross-entropy loss is in base 2, it is

measured in bits. If the value of Y were approximately the same for any Z, there would be

little uncertainty in Y to begin with, so it is important to know the amount of uncertainty

in Y given Z with respect to the initial uncertainty in Y . What is most relevant is the
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amount of remaining uncertainty in Y given Z. Thus we use the difference in uncertainty

H(Y )− LCE as the amount of “usable information” that Z contains about Y , as shown in

our definition in Equation 4.1.

This definition is appealing to study representations, in part, because it can be computed

from samples of Z and Y , and is a quantity that is comparable across network training. We

estimate LCE using a small neural network that learns a distribution q(y|z). To train the

network, we sample activations Z and the quantity Y and learn q(y|z) by minimizing the

cross-entropy loss on a training set. We then evaluate the LCE on the test set (Equation

4.1). We provide details about the neural network and the training we used for decoding in

Appendix C.2.3 and C.3.2. We also show in the Appendix that the usable information is a

lower bound on the mutual information (Appendix C.1.1). Importantly, usable information

also is not constrained by the data processing inequality; that is, the information can be

made more “usable” by transformation to later layers, consistent with the representation

learning view that later layers are forming improved representations of the inputs [151].

4.4 Experiments

Our goal was to characterize how optimal representations are formed through SGD training.

We trained multiple network architectures on tasks and assessed the usable information in

representations across layers and training epochs. For a given architecture and task, all

hyper-parameters were kept constant throughout experiments, unless explicitly stated.

To develop intuition, we initially investigate how small fully connected networks represent

the relevant and irrelevant information in the CB Task. We trained two different network

architectures, ‘Small FC’: 5 layers, with 10 − 7 − 5 − 4 − 3 units in each layer, ‘Medium

FC’: 100 − 20 − 20 − 20. Small FC was a network used in prior literature [119, 123]. Our

networks were fully-connected and used ReLU activation. We trained the networks using

SGD with a constant learning rate to perform the CB task, described in detail in Appendix
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C.2.4. The hyper-parameters used for the CB experiments are listed in Appendix C.2.5.

In our CB task experiments, we quantified the usable color and direction information in

the hidden representation, Zℓ. In the n = 2 CB task, the color information represents half

of the input information. We emphasize that, unless otherwise specified, the network was

only trained to output the correct direction choice, so given a representation of the direction,

representing the color choice is irrelevant. Therefore, a minimal representation should not

include information about the color choice, since it is not necessary to represent given a

representation of the direction decision. To make the task more complex, we also generalized

the CB task to have n = 10 and n = 20 targets.

We then use this framework to examine how relevant and irrelevant information are

represented in more realistic tasks and architectures, and how hyper-parameters affect the

learning dynamics. We define a coarse labelling of task labels and study how the network

represents the fine and coarse labelling through training, using a ResNet-18 [55] and All-

CNN [129] on CIFAR-10 and CIFAR-100.

4.4.1 SGD with random initialization results in minimal sufficient

representations in the CB Task

We first assessed the optimality of the network representations by training Small FC networks

on the CB task using n = 2 colors (Fig 4.2a) using a random initialization for the weights.

In particular, the initial weights do not contain information about the dataset. We computed

the usable color and direction information across layers of the neural network and epochs

of training. In our plots, later layers are denoted by darker shades. In deeper layers, there

was a decrease in usable color information, corresponding to more minimal representations.

After training, the asymptotic representation in the last layer contained zero usable color

information and 1 bit of usable direction information. To visualize this minimal sufficient

representation, we plotted the activations of the 3 units in the last layer of the Small FC

network for different inputs. These visualizations are labeled by the correct color (red and
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Figure 4.2: SGD with random initialization leads to minimal representations. (a)
Small FC network trained on the n = 2 checkerboard task. Max usable direction and color
information: 1 bit. This network was trained without regularization for 100 epochs using
SGD with a learning rate of 0.05 and batch size of 32. Blue (orange) lines correspond to
usable information about the direction (color) decision in the representation. Darker shades
of color correspond to deeper layers in the network. In the asymptotic representations, we
observed that direction information was high across layers, while color information decreased
in the later layers.The usable color information was approximately zero in the last layer of
the Small FC network. (b) Medium FC network trained with n = 10 checkerboard colors.
Max usable direction and color information: 3.32 bits. In the last layer, there is nearly
zero usable color information. Across layers, there is a decrease in usable color information,
and an increase in usable direction information. (c) Medium FC network trained with
n = 20 checkerboard colors, a batch size of 128 and a learning rate of 0.5. Max usable
direction and color information: 4.32 bits. In the later layers (darker shades) there is small
usable color information, but large usable direction information. (d) Visualization of the
activations of the last layer of Small FC from (a) at epochs [0, 10, 20, 100], where the
correct color choice is denoted by the marker color (red or green) and the correct direction
choice is denoted by marker shape (crosses or dots). After training the crosses and dots
are overlapping, corresponding to nearly zero usable color information and nearly 1 bit of
direction information. This is a minimal and sufficient representation to solve the task.

green) and direction (cross or circle). In the asymptotic representation, representation of the

input color is overlapping (red and green), while the representation of the direction output is

separable (crosses and circles), forming a minimal sufficient representation.

To test if this observed minimality was a result of our simple task, we extended the CB task
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to a variant with n input checkerboard colors, with n corresponding output direction classes.

We trained networks using a larger architecture (Medium FC). We show results for n = 10

and n = 20 classes in Fig 4.2b,c. We observed similar phenomena to the n = 2 case: there

was decreasing usable color information in deeper layers, and nearly zero color information in

the last layer’s representation. In contrast, there was significant usable direction information

across all layers in the asymptotic representation, with usable information about the direction

increasing for deeper layers. We validated our results using different random initializations

(Figures C.4, C.5, C.6).

These results show that, for a simple task with SGD and random initialization, minimal

sufficient representations emerge through training. Asymptotic representations were sufficient

to perform the task, but contained less usable color information in deeper layers, approaching

zero color information in the last layer. In this simple task, we observed that it was possible

for the network to solve the task with nearly zero usable color information in its last layer

across training (Fig 4.2b,c).

We also examined how changing the initialization by pretraining the network to output the

color choice affected the resulting representations. We found that the resulting representations

were not minimal for the n = 2 checkerboard case (Fig C.1a), retaining some structure from

the initialization (Fig C.1d). This result also held for the CB task with n = 10 and n = 20

(Fig C.1b,c). Furthermore, we found that pretraining on the color choice led to worse

generalization performance (Fig C.2).

4.4.2 Acquisition and forgetting of usable information in modern

deep networks

Using a similar approach as we did for the CB task to characterize relevant and irrelevant

information, we next investigated how modern deep neural networks trained with SGD learned

task representations. To study learning dynamics, we investigated (1) how networks learned

and represented task information as well as information about a representative semantically
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Figure 4.3: Usable fine and coarse class information in a ResNet-18 on CIFAR-10.
The fine classes (show in blue) correspond to the 10 CIFAR-10 classes. The coarse classes
correspond a superclass consisting of all the even and odd classes. We trained the network to
output the correct coarse class, which corresponds to 1 bit of information. Through training
epochs, while the validation accuracy (green dashed line) is increasing, the information
about the coarse class also increases towards 1 bit. Early in training, the usable information
about the fine label also increased, even though the network was not explicitly provided any
information about the fine class. Around epoch 100, the network “forgets” this fine label
information. The scale of the validation accuracy is shown on the right hand side of the plot.

meaningful variable, and (2) how this information was represented across training epochs. To

this end, we defined coarse labels corresponding to groups of classes in the CIFAR-10 and

CIFAR-100 datasets. The CIFAR-100 dataset defines fine labels corresponding to each of the

100 classes, as well as 20 coarse labels corresponding to meaningful groupings of 5 from the

100 classes. In the CIFAR-10 case, we defined two coarse labels arbitrarily, corresponding

to even and odd class labels. Thus, when training the network to output the coarse label,

we can investigate the network’s representation of the semantically meaningful fine label

description, which serves as a proxy for the computation and representations that the network

is learning. We note that, when trained to output the coarse label, a minimal representation

should contain no additional information about the fine label.
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Figure 4.4: Sensitivity to hyper-parameters. (a-c) The usable coarse and fine label
information through training with a batch size of 64, 256, and 512 (a batch size of 128 was
used in Fig 4.3. The learning dynamics only undergo a compression at small batch sizes of 128
or less. The validation accuracy is higher for smaller batch sizes as well. The plot of a batch
size of 1024 is in Fig C.3. (d-f) Usable coarse and fine label information using initial learning
rates of 0.075, 0.05 and 0.01 (a learning rate of 0.1 was used in Fig 4.3. With larger learning
rates, the network observed an increase and decrease in fine label information. With a smaller
learning rate 0.01, the network exhibited an increase in fine label information, without a
subsequent decrease. The final validation accuracies (green dashed lines) are approximately
comparable (96.5%, 96.8% and 95.8% respectively) though lowest with initial learning rate of
0.01 when the network did not form a minimal representation.
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We trained a ResNet-18 [55] to output the coarse label of CIFAR-10, using an initial

learning rate of 0.1 with exponential annealing (0.97), momentum (0.9), and a batch size

of 128. We investigated the usable information in the last layer of the ResNet-18, which

has a dimension of 512. We found that while training the network to predict the coarse-

grained class, the network acquired information about the coarse-grained class, evidenced by

an increase in usable information during training (orange curve) while validation accuracy

(green dashed line; scale on the right hand side of plot) was increasing (Fig 4.3). Strikingly,

while the validation accuracy and usable coarse-grained class information increased, the

information about the fine labels first increased and then decreased (around epoch 100).

It then decreased to minimality, storing no additional usable information about the fine

labels than was contained in the coarse labels. These learning dynamics were proposed [123],

but due to controversies of their information estimation and experimental setup, have been

widely debated [119]. We emphasize that even though we did not ask the network to acquire

information about the fine labels, SGD naturally led the network to learn information about

the fine label, and then decreased this information later in training.

Together, these results show that SGD tends to result in minimal representations, which

may be guided by interesting learning dynamics. To achieve this minimality, the network

displays a learning motif where it learns additional information early in training, then

discards it later on. We next investigate how these findings depend on hyper-parameter

choices, architecture, and task.

4.4.3 Sensitivity of usable information training dynamics to hyper-

parameters, architecture, and task

Using this framework, we evaluated how hyper-parameter choices affected the learning

dynamics in deep networks. We focus on the ResNet-18 trained on CIFAR-10 in Figure 4.3.

We varied the batch sizes from 64 to 1024 and found that a small batch size led to dynamics

similar to that of Fig 4.3, while a larger batch size did not lead to minimal representations
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Figure 4.5: Different Architecture, Task, and learning schedule (a) Using an All-CNN
architecture [129], we observe a similar trend in the learning dynamics of usable information,
with a increase and decrease in the fine label information during the CIFAR-10 task. This
decrease does not lead to a completely minimal representation, though it does become close
to minimal. (b) We trained a ResNet-18 on the coarse labels in the CIFAR-100 task, and
tracked the information the network had about the fine and coarse label through training.
We find that the network converges to an approximately minimal representation, though it
did not undergo a noticeable increase and decrease in the fine label information, suggesting
that this learning motif depends on the structure of the task. (c) Pretraining the network to
output the fine labels before epoch 20 led to improved final performance (85.6% vs 83.5%) in
(b). Note that the validation accuracy for the first 20 epochs was the validation accuracy on
the ‘fine’ labels task, and was the validation accuracy on the ‘coarse’ task after epoch 20.

(Fig 4.4a-c). Results for a batch size of 1024 are shown in Fig C.3. The learning rate also

affected the learning dynamics. We found that all networks increased the information about

the fine labels during training. However, we found that only for large initial learning rates

did the network “forget” the superfluous information. Results for a learning rate of 0.001 are

also shown in the appendix in Fig C.3. We found that small learning rates (0.001) or large

batch sizes (512 or larger) led to lower validation accuracy. Thus, the implicit regularization

coming from the use of SGD with a small batch size and large learning rate, which is common

in practical settings, is crucial for learning minimal sufficient representations. Here we have

provided an underpinning for these choices by exposing their associated learning dynamics.

Additionally, we investigated whether the phenomenon of acquiring “superfluous” task

information was common across different architectures and tasks. We used an All-CNN [129]

trained on CIFAR-10 to output the binary coarse label, observing a similar trend with an

increase and decrease in the usable information about the fine label (Fig 4.5a). In this case,

the information about the fine label did not decrease to minimality, but nonetheless, there
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was a significant reduction in the fine label information, suggesting that SGD naturally

compresses additional input information. Finally, we evaluated how a ResNet-18 represented

task information using the CIFAR-100 dataset. This dataset is accompanied with 100 fine

labels and 20 coarse labels, corresponding to groupings of the 100 classes. We used the same

hyper-parameters as in Fig 4.3. We trained the network to output the coarse labels, observing

an increase to approximately 3.5 bits of usable information. The network achieved a nearly

minimal representation (Fig 4.5b).

It is important to note that for this setting of hyper-parameters in the CIFAR-100 task

(the same as in the CIFAR-10 case), SGD did not show a visible increase followed by a

decrease in usable information in the fine labels, a result different than what we observed

in CIFAR-10. We conjectured this could be due to at least three potential reasons: (1)

the hyper-parameter settings may be suboptimal, which we observed may result in learning

dynamics that do not increase then decrease fine information (Fig 4.4c, f). (2) In CIFAR-100,

coarse and fine labels are semantically similar, so there may not be not much more information

to be naturally learned in the fine than the coarse labels, and further that it is possible

that while the information about the fine labels remains approximately flat, the network

is forgetting information about aspects of the fine labels while learning other parts of fine

label information in the process of increasing coarse label information and arriving at a

nearly minimal representation. (3) CIFAR-100 has relatively few examples, 500 per fine label,

impacting the learning of fine label information. Despite these limitations, our results from

CIFAR-10 suggest that SGD learning dynamics that increase then decrease information about

the fine label should result in more optimal representations and higher validation accuracy.

To test this, we performed an experiment where we pretrained the network to output fine

label information until epoch 20, after which the network then was trained to output coarse

information. This training process resulted in learning dynamics that resembled SGD learning

in Fig 4.3. We observed that these learning dynamics resulted in networks with a 2.1%

increase in validation accuracy (compare Fig 4.5b and c). These results support that learning
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dynamics that increase, and then decrease, information about inputs, may result in more

optimal representations that achieve higher validation accuracy.

4.5 Discussion

We introduced a notion of the usable information in the representation, which reflects the

amount of information that can be extracted by a learned decoder, for understanding the

training dynamics in deep networks. This definition is appealing, in part, due to its flexibility.

For instance, if it is important to understand how accessible the information is to a linear

decoder, it suffices to apply our formulation of usable information using a linear decoder

trained with cross-entropy loss. In contrast, if the goal is to extract all information present

in a representation, regardless of how accessible this information is, one can train a high

capacity nonlinear decoder. Since neural networks are powerful function approximators, as

the function approximation improves, the decoder will approach the optimal decoder. In this

case, the usable information approaches Shannon mutual information, as the lower bound

becomes tight (Section C.1.1). Future theoretical and empirical work should investigate the

tightness of this bound and its dependence on training parameters.

In our case, we used a relatively small nonlinear neural network as the decoder, which

provided insight into the evolution of optimal representations through training on simple tasks

inspired by neuroscience literature and on image classification tasks. These tasks allowed us

to show that the implicit regularization of SGD plays an important role in learning minimal

sufficient representations. In particular, in standard hyper-parameter settings, we observed

learning dynamics where the network learns to encode semantically meaningful but ultimately

irrelevant information early in training, before later discarding this information to arrive at a

minimal sufficient representation.

Monkeys performing the checkerboard task, like our networks, also had minimal sufficient

representations in an output (motor) area [24, 83]. Despite the obvious implementation
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differences of both information processing systems, we speculate that the general effects

coming from a noisy learning process, which led to minimal sufficient representations in our

artificial networks, may be an important factor leading to minimal sufficient representations

in biological networks.

It is remarkable that in the CIFAR-10 task, SGD naturally exploited the semantically

meaningful structure of the fine labels, in order to solve the coarse labels task. In general, it

is difficult to identify the features that are being learned during training, and whether they

correspond to something semantically meaningful. However by defining a coarse label, our task

setup allowed us to study how semantically meaningful information was represented during

training. During training, the network increased the information about the semantically

important part of the input, even when only asked to output the coarse label. It then decreased

the information later in training. We did not notice such a major increase in CIFAR-100,

perhaps due to the nature of the dataset or hyper-parameter configuration. However, by

inducing the network to follow similar learning dynamics to Fig 4.3 by pretraining the network

to output the fine labels, we were able to improve the performance on the coarse labelling task.

This suggests that a detailed understanding of the training dynamics and the features learned

is important for learning optimal representations and successfully transferring representations

between tasks.

Using usable information, we observed an increase and decrease in the information about

an irrelevant variable, which has been proposed [123], but has been debated, largely due to

controversies over the estimation of Shannon’s mutual information [119]. Our observation is

in accordance with the ideas of [123], and importantly we have observed these dynamics on

modern architectures and realistic tasks. Our results are also consistent with a complementary

view of information in the weights, where it has been observed that the Fisher Information

increased and decreased during training [2], corresponding to a critical period in neural

network training.
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Chapter 5

Critical Learning Periods for

Multisensory Integration in Deep

Networks

We show that the ability of a neural network to integrate information from diverse sources

hinges critically on being exposed to properly correlated signals during the early phases of

training. Interfering with the learning process during this initial stage can permanently impair

the development of a skill, both in artificial and biological systems where the phenomenon

is known as critical learning period. We show that critical periods arise from the complex

and unstable early transient dynamics, which are decisive of final performance of the trained

system and their learned representations. This evidence challenges the view, engendered by

analysis of wide and shallow networks, that early learning dynamics of neural networks are

simple, akin to those of a linear model. Indeed, we show that even deep linear networks

exhibit critical learning periods for multi-source integration, while shallow networks do not.

To better understand how the internal representations change according to disturbances or

sensory deficits, we introduce a new measure of source sensitivity, which allows us to track

the inhibition and integration of sources during training. Our analysis of inhibition suggests
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cross-source reconstruction as a natural auxiliary training objective, and indeed we show

that architectures trained with cross-sensor reconstruction objectives are remarkably more

resilient to critical periods. Our findings suggest that the recent success in self-supervised

multi-modal training compared to previous supervised efforts may be in part due to more

robust learning dynamics and not solely due to better architectures and/or more data.

5.1 Introduction

Learning generally benefits from exposure to diverse sources of information, including different

sensory modalities, views, or features. Multiple sources can be more informative than the sum

of their parts. For instance, both views of a random-dot stereogram are needed to extract

the synergistic information, which is absent in each individual view [65]. More generally,

multiple sources can help identify latent common factors of variation relevant to the task,

and separate them from source-specific nuisance variability, as done in contrastive learning.

Much information fusion work in Deep Learning focuses on the design of the architecture,

as different sources may require different architectural biases to be efficiently encoded. We

instead focus on the learning dynamics, since effective fusion of different sources relies on

complex phenomena beginning during the early epochs of training. In fact, even slight

interference with the learning process during this critical period can permanently damage a

network’s ability to harvest synergistic information. Even in animals, which excel at multi-

sensor fusion, a temporary deficit in one source during early development can permanently

impair the learning process: congenital strabismus in humans can cause permanent loss

of stereopsis if not corrected sufficiently early; similarly, visual/auditory misalignment can

impair the ability of barn owls to localize prey [67]. In artificial networks, the challenge of

integrating different sources has been noted in visual question answering (VQA), where the

model often resorts to encoding less rich but more readily accessible textual information [5,22],

ignoring the visual modality, or in audio-visual processing, where acoustic information is
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Figure 5.1: Decomposition of information between different modalities. Two modal-
ities can have unique information, common information (denoted by the overlap in the
venn-diagram), or synergistic information (denoted by the additional ellipse in the right
panel). Task-relevant information (shown in red) can be distributed in a variety of ways
across the different modalities. Task-relevant information can be mostly present in Modality
A (left), shared between modalities (center-left), or could require unique (center-right) or
synergistic information from both modalities (right).

often washed out by visual information [144].

Such failures are commonly attributed to the mismatch in learning speed between sources,

or their “information asymmetry” for the task. It has also been suggested, based on limiting

analysis for wide networks, that the initial dynamics of DNNs are very simple [62], seemingly

in contrast with evidence from biology. In this paper, we instead argue that the early learning

dynamics of information fusion in deep networks are both highly complex and brittle, to the

point of exhibiting critical learning periods similar to biological systems.

In Sect. 5.2, we show that shallow networks do not exhibit critical periods when learning

to fuse diverse sources of information, but deep networks do. Even though, unlike animals,

artificial networks do not age, their learning success is still decided during the early phases of

training. The existence of critical learning periods for information fusion is not an artifact

of annealing the learning rate or other details of the optimizer and the architecture. In

fact, we show that critical periods for fusing information are present even in a simple deep

linear network. This refutes the idea that deep networks exhibit trivial early dynamics

[62, 91]. We provide an interpretation for critical periods in linear networks in terms of

mutual inhibition/reinforcement between sources, manifest through sharp transitions in the

learning dynamics, which in turn are related to the intrinsic structure of the underlying data

distribution.
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In Sect. 5.3, we introduce a metric called “Relative Source Variance” to quantify the

dependence of units in a representation to individual sources, allowing us to better understand

inhibition and fusion between sources. Through it, in Sect. 5.4, we show that temporarily

reducing the information in one source, or breaking the correlation between sources, can

permanently change the overall amount of information in the learned representation. Moreover,

even when downstream performance is not significantly affected, such temporarily changes

result in units that are highly polarized and process only information from one source or the

other. Surprisingly, we found that the final representations in our artificial networks that

were exposed to a temporary deficit mirrored single-unit animal representations exposed to

analogous deficits (Fig. 5.4, Fig. 5.6).

We hypothesize that features inhibit each other because they are competing to solve the

task. But if the competitive effect is reduced, such as through an auxiliary cross-source

reconstruction task, the different sources can interact synergistically. This supports cross-

modal reconstruction as a practical self-supervision criterion. In Sect. 5.4.4, we show that

indeed auxiliary cross-source reconstruction can stabilize the learning dynamics and prevent

critical periods. This lends an alternate interpretation for the recent achievements in multi-

modal learning as due to the improved stability of the early learning dynamics due to auxiliary

cross-modal reconstruction tasks, rather than to the design of the architecture.

Empirically, we show the existence of critical learning periods for multi-source integration

using state-of-the-art architectures (Sect. 5.4.3-5.4.4). To isolate different factors that may

contribute to low-performance on multi-modal tasks (mismatched training dynamics, different

informativeness), we focus on tasks where the sources of information are symmetric and

homogeneous, in particular stereo and multi-view imagery. Even in this highly controlled

setting, we observe the effect of critical periods both in downstream performance and/or

in unit polarization. Our analysis suggests that pre-training on one modality, for instance

text, and then adding additional pre-trained backbones, for instance visual and acoustic,

as advocated in recent trends with Foundation Models, yields representations that fail to
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encode synergistic information. Instead, training should be performed across modalities at

the outset. Our work also suggests that asymptotic analysis is irrelevant for deep network

fusion, as their fate is sealed during the initial transient learning. Also, conclusions drawn

from wide and shallow networks do not transfer to deep networks in use in practice.

5.1.1 Related Work

Multi-sensor learning. There is a large literature on sensor fusion in early development [125],

including homogeneous sensors that are spatially dislocated (e.g., two eyes), or time-separated

(e.g., motion), and heterogeneous sources (e.g., optical and acoustic, or visual and tactile).

Indeed, given normal learning, humans and other animals have the remarkable ability to

integrate multi-sensory data, such as incoming visual stimuli coming into two eyes, as well as

corresponding haptic and audio stimuli. Monkeys have been shown to be adept at combining

and leveraging arbitrary sensory feedback information [33].

In deep learning, multi-modal (or multi-view learning) learning typically falls into two

broad categories: learning a joint representation (fusion of information) and learning an

aligned representation (leveraging coordinated information in the multiple views) [11]. A

fusion-based approach is beneficial if there is synergistic information available in the different

views, while an alignment-based approach is helpful is there is shared information common to

the different views (Fig. 5.1). Such a division of information typically affects architectural and

model choices: synergistic information requires the information from the different modalities

to be fused or combined, whereas shared information often serves as a self-supervised signal

that can align information from the different modalities, as in contrastive learning [26,134,135]

or correlation based approaches [7].

Critical periods in animals and deep networks: Such architectural considerations

often neglect the impact coming from multisensory learning dynamics, where information

can be learned at different speeds from each sensor [150]. Indeed, [146] showed that humans

and animals are peculiarly sensitive to changes in the distribution of sensory information
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early in training, in a phenomenon known as critical periods. Critical periods have since been

described in many different species and sensory organs. For example, barn owls originally

exposed to misaligned auditory and visual information cannot properly localize prey [84].

Somewhat surprisingly, similar critical periods for learning have also been observed in deep

networks. [2] found that early periods of training were critical for determining the asymptotic

network behavior. Additionally, it was found that the timing of regularization was important

for determining asymptotic performance [47], with regularization during the initial stages of

training having the most influential effect.

Masked/de-noising Autoencoders: Reconstructing an input from a noisy or partial

observation has been long used as a form of supervision. Recently, an in part due the

successful usage of transformers in language [139] and vision tasks [35], such a pre-training

strategy has been successfully applied to text [34] and vision tasks [56]. An extension of this

has been recently applied to multi-modal data [9].

Models of learning dynamics We consider two approaches to gain analytic insight into

the learning dynamics of deep networks. [117,118] assume that the input-output mapping

is done by a deep linear network. We show that under this model critical periods may

exist. [62,91] assume instead infinitely wide networks, resulting in a model linear with respect

to the parameters. In this latter case, no critical period is predicted contradicting our

empirical observations on finite networks.

5.2 A model for critical periods in sensor-fusion

We want to establish what is the difference, in terms of learning dynamics, between learning

how to use two sources of information at the same time, or learning how to solve a task

using each modality separately and then merging the results. In particular we consider the

counterfactual question: if we disable sensor A during training, would this change how we

learn to use sensor B? To start, let’s consider the simple case of a linear regression model
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Figure 5.2: (Left) Σyx, with the highlighted green column representing the sensor that was
dropped. (Right) We show total weights attributed to each feature (shown in different
colors) during training in a deep linear network. The solid lines represent the dynamics when
training with all features. The dashed lines represent the behavior when training with the
green feature disabled. Note that disabling the green feature prevents the gray feature from
being learned during the initial transient (Center) Same experiment with a shallow linear
network. In this case the learning dynamics of the gray feature perfectly overlap in both
cases.

y = Wx trained with a mean square error loss

L =
1

N

N∑
i=1

1

2
||y(i) −Wx(i)||2

where D = {(x(i),y(i))}Ni=1 is a training set of i.i.d. samples. In this simplified setting, we

consider each component xk of x as coming from a different sensor or source. To simplify

even further, we assume that the inputs have been whitened, so that the input correlation

matrix Σx = 1
N

∑
i x

(i)x(i)T = I.

In this case, the learning dynamics of any source is independent from the others. In fact,

the gradient of the weight wjk associated to xk and yj is given by

−∇wjk
L(W) = −∇wjk

1

N

N∑
i=1

1

2
||y(i) −Wx(i)||2 = Σyx

jk − wjk

and does not depend on any whl with whl ≠ wjk. The answer to the counterfactual question

is thus negative in this setting: adding or removing one source of information (or output) will

not change how the model learns to extract information from the other sources. However, we

72



now show that the addition of depth, even without taking introducing non-linearities, makes

the situation radically different.

To this effect, consider a deep linear network with one hidden layer y = W2W1x. This

network has the same expressive power (and the same global optimum) as the previous model.

However, this introduces a mutual dependency between sensors (due to the shared layer)

that can ultimately lead to critical periods in cross-sensor learning. To see this, we use an

analytical expression of the learning dynamics for two-layer deep networks [117, 118]. Let

Σyx = 1
N

∑N
i=1 y

(i)x(i)T be the cross-correlation matrix between the inputs x and the target

vector y1 and let Σyx = USV T be its singular-value decomposition (SVD). [118] shows that

the total weight W(t) = W2(t)W1(t) assigned to each source at time t during the training

can be written as

W(t) = W2(t)W1(t) = UA(t)VT (5.1)

=
∑
α

aα(t)u
αvαT (5.2)

where

aα(t) =
sαe

2sαt/τ

e2sαt/τ − 1 + sα/a0α
. (5.3)

This leads to non-linear learning dynamics where different features are learned at sharply

distinct points in time [118]. Moreover, it leads to entanglement between the learning

dynamics of different sources due to the eigenvectors vα mixing multiple sources.

Disabling (or adding) a source of information corresponds to removing (or adding) a

column to the matrix Σyx, which in turns affects its singular-value decomposition and the

corresponding learning dynamics. To see how this change may affect the learning dynamics,

in Fig. 5.2 we compare the weights associated to each sensor during training for one particular

task. In solid we show the dynamics with all sensors active at the same time. In dashed line

we show the dynamics when one of the sensor is disabled. We see that disabling a sensor

1Note that W = Σyx is also the global minimum of the MSE loss L = 1
N

∑
i
1
2 ||y(i) −Wx(i)||2.
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Figure 5.3: Illustration of RSV distributions and relation to information diagrams.
(Left) Representations that vary predominantly due to one modality. (Center-Left, Center-
right) All units in the representation vary nearly equally with both modalities. (Right)
Units in the representation that vary uniquely with each sensor, which is reflected by a
polarized RSV distribution.

(green in the figure) can completely inhibit learning of other task-relevant features (e.g.,

the gray feature) during the initial transient. This should be compared with the learning

dynamics of a shallow one-layer network (Fig. 5.2, left) where all task-relevant features are

learned at the same time, and where removal of a source does not affect the others.

In deep linear networks, the suboptimal configuration learned during the initial transient

is eventually discarded, and the network reverts to the globally optimal solution. In the

following we show this is not the case for standard non-linear deep networks. While the

initial non-trivial interaction between sources of information remain, the non-linear networks

are unable to unlearn the suboptimal configurations learned at the beginning (owing to

the highly non-convex landscape). This can result in permanent impairments if a source

of information is removed during the initial transient of learning, which reflects the trends

observed in critical periods in animals.
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5.3 Single Neuron Sensitivity Analysis

Before studying the empirical behavior of real networks on multi-sensor tasks, we should

consider how to quantify the effect of a deficit on a down-stream task. One way is to look

at the final performance of the model on the task. For example, animals reared with a

monocular deprivation deficit have reduced accuracy on a visual acuity test and, similarly,

deep networks may show reduced classification accuracy [2]. However, in some cases deficits

may not drastically impair the accuracy but may still affect how the model is organized

internally. Individuals with strabismus or ambliopia can perform just as well on most tasks,

since the individual information coming from each sensor separately is enough to compensate.

But the connectivity scheme of the synapses may change so that neurons eventually process

only information from one sensor or the other, and not from both together, as observed in

individuals without deficits [146].

To understand whether units in a representation of multisensory inputs depend on both

sensors or only a particular sensor, we introduce a measure of Relative Source Variance.

We first define the Source Variance (SV) for unit i of a representation due to sensor A,

conditioned on an example b as

SVi(A, b) = Var(f(A,B)i|B = b), (5.4)

where f denotes the mapping from multisensory inputs to the representation and i indexes

the unit of the representation. We note that the value of SVi(A, b) depends on the example b.

We use an analogous formula for SVi(B, a).

Typically, we are interested in the distribution of the Source Variance of the units i in a

representation, as a function of many examples a and b. To capture this, we define a notion

of Relative Source Variance (RSV) for unit i as:

RSVi(a, b) =
SVi(A, b)− SVi(B, a)

SVi(A, b) + SVi(B, a)
(5.5)
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If the RSV is 1, this means that the unit is only sensitive to sensor A, and if the RSV is

−1, the unit is sensitive to sensor B. To compute SV (A, b) (and analogously for SV (B, a))

from samples, we fix a sample b, and vary the inputs a, sampling from a ∼ p(a). We run this

for multiple fixed samples from b, performing the computation over a batch. We perform

analogous computations for SV (B, a) We compute the RSVi(a, b) for all units i from a

representation, and for many examples a and b. We then plot the distribution of RSVs,

aggregating across all units (see, e.g., Fig. 5.4-5.6). In particular, we track how the distribution

changes as a result of sensory deficits and perturbations, as well as how the distribution

changes during normal training. Note that −1 ≤ RSVi(a, b) ≤ 1. If RSVi(a, b) = 1 (or -1) is

1, this means that the unit is only sensitive to sensor A (or B). If RSVi(a, b) = 0 the unit is

equally sensitive to both sensors. For controlled simulations (See Appendix D.1.1), we show

the variety of distributions of units in a representation that the RSV can measure in Fig. 5.3.

5.4 Critical learning periods in deep multi-sensor net-

works

In this section, we investigate the learning dynamics of deep networks during the initial

learning transient when multiple source of information are present. We evaluate how temporary

perturbations of the relation between the two sensors during the training can change the

final outcome. To exclude possible confounding factors, in all our experiments, the two

input sources are perfectly symmetrical (same data distribution and same informativeness

for the task) which ensures that any asymmetry observed in the final model is due to the

perturbation.

5.4.1 Inhibition of a weak source

Uncorrected vision problems in an eye during early childhood can cause permanent visual

impairment in humans, whereas even after correction the patient only sees through the
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Figure 5.4: Experimental setup and sensor selectivity as a function of a blurring
deficit length. (Top) In our experiments, we train the network with a deficit (blurred
images to one pathway shown here) for the first N epochs, and then continue training with
normal images for 180 more epochs. We feed each half of an image to the early stages of a
ResNet-18, and then additively combine the representations from both pathways (followed by
stages of common processing). We refer to this architecture as Split-ResNet. (Bottom) RSV
distribution of units in last layer representation z for increasing duration of deficit (blur to
one pathway) after resumption of normal training. With a sufficiently long deficit, the units
in the representation remain only sensitive to the initially uncorrupted pathway, and do not
vary with the initially corrupted pathway.

unaffected eye and does not recover vision in the affected eye (ambliopia, or lazy-eye).

We explore whether such inhibition of a sensor can happen in DNNs following a similar

experimental setup to [2]. To simulate binocular data from single images, we partition each

image in a left and right crop and feed each to two separate pathways of the network, which

are then fused in an additive manner at a later stage. For each initial pathway, we used the

early stages of a ResNet-18 backbone. We then simulate the blurry vision of a weak eye

by downsampling the input of the right pathway by 4×, and then resized the image to the

original size. After training for t0 initial epochs with the blur deficit, we remove it and train

for further 180 epochs to ensure convergence (see Appendix for details). Here we focus on

the simple CIFAR-10 classification dataset, and we later examine different architectures and

datasets, and learning approaches.

At the end of the training, both sensors are working well and contain partially disjoint
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information about the task variable, so the network would benefit from using both of them.

However, in Fig. 5.4 (top) we see from the RSV that weakening the right sensor by blurring

it during the initial transient will permanently inhibit its use even after removing the deficit.

More specifically, at the end of normal training units in the network attend equally to

either sensor (leftmost panel). However, in the network trained with a short deficit the

neurons only encode information about the “initially good” left sensor (the RSV of the units

concentrates around -1, rightmost panel). This mirrors the occular dominance findings present

in monkeys with a cataract [146, Fig. 7]. Similarly, the longer the deficit is present during

the initial training, the more the downstream performance on the CIFAR-10 classification

task is impaired (Fig. 5.5, left). However, the reduction of performance is not as drastic as

the RSV change, since the network can compensate and achieve a good accuracy on the task

using only the good sensor.

Dependency on depth. In Sect. 5.2 we note that depth is fundamental to make critical

periods emerge in multi-sensor networks. We further claim that increasing the depth of

the network makes critical periods more evident. Indeed, in Fig. 5.5 (right) we show that

increasingly deeper network have increasingly more marked permanent impairment as a result

of a temporary deficit.

5.4.2 Learning synergistic information

We have seen that temporary weakening of one sensor may completely inhibit its learning.

We now consider an alternative deficit where the two sensors are both working well, but

are initially trained on uncorrelated data and only later trained together. This situation is

common in every day machine learning, for example when pre-training backbones on different

modalities separately (e.g., a text and a vision backbone) and then fine-tuning them together

on a downstream task.

Dissociation deficit. To keep the two modalities symmetrical, we consider a similar set

up as before where we feed to each pathway of a network the left and a right crop of an image.
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Figure 5.5: Decrease in downstream performance as a function of the deficit
length. (Left) Final test accuracy when applying a blurring deficit to one pathway of Split-
ResNet. Even though the network is exposed to a subsequent number of uncorrupted paired
observations, the network cannot later learn to optimally fuse the information. (Center) The
effect of a deficit is most pronounced when increasing the depth of the network (see Appendix
for architecture detail). (Right) We also observe a degradation of test performance using a
dissociation deficit (feeding uncorrelated views). We note that the effect is less marked than
the blurring, due to better ability to compensate.

Both crops are now always full-resolution. However, we introduce a dissociation deficit,

during which the right crop is sampled from a different image than the left one. During the

dissociation, the task is to predict either the class of the left image or the right image with

probability 0.5. This deficit removes any synergistic information between the two pathways,

but still encourages the two pathways to extract any unique information from the inputs.

We observe that this setup too has a critical period: In Fig. 5.6, we see that, after normal

training, the units are equally sensitive to both the left and right inputs (histogram clusters

around zero). However, after training with an increasingly longer dissociation deficit, the

histogram becomes increasingly polarized around ±1, suggesting that each unit is encoding

information only about the right or the left image. This precludes the possibility that the

network is extracting synergistic information from the two views (which would entail units that

process information from both sensors). This mirrors the ocular dominance representations

observed in strabismic monkeys [146, Fig. 10-12]. Similarly to the dissociation deficit, in

strabismus, the eyes are not aligned, thus breaking the normal correlation between the

views. The dissociation deficit also produces a permanent impairment in the downstream

performance (Fig. 5.6, top) but again the effect is not as drastic as in the RSV plot since
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Figure 5.6: Sensor selectivity as a function of a dissociation deficit length. We also
examined the asymptotic representations and found that, when exposed to a sufficiently long
deficit of broken correlations between the views, the network could no longer learn a bimodal
distribution that learned common features, but instead resulted in a polarized representation
in which units are sensitive to either view (but none to both).

Figure 5.7: Top. Example inputs (left column), reconstructions (middle columns), and
original targets (right columns) for the Multi-View Transformer, with random sampling of
patches from the two views. Note that the model can reconstruct missing information from
one view using the other.

the network compensates by using each pathway separately (albeit synergistic information is

lost).

5.4.3 Synergistic information in videos

So far we have seen that supervised deep networks, similar to humans and animals, have

critical periods for learning correspondences between multi-view data. We confirmed this

both at the behavioural (measured in terms of performance and visual acuity for the deep

networks and animals respectively) and at the representation level, quantified by the neuron

sensitivity. We now investigate whether such phenomenon generalize across learning strategies,

architecture, and tasks.
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Figure 5.8: Masking objective with cross-sensor reconstruction loss does not exhibit
a critical learning period. We found that the unsupervised network was much more robust
to perturbations early in the training (red trace), whereas that supervised objective was not
(blue trace).

Multi-View Transformer. Aside from integrating information from different sensors,

animals and artificial networks need to be able to integrate information through time. We

can think of frames of a video as being different views or sources of information that are

correlated through time, and we can study how a network learns to integrate such information.

We opted to use a more flexible transformer-based visual architecture, which has recently

achieved state-of-the-art results in computer vision tasks [35,56], and language tasks [34,139].

Visual transformers are typically trained either with a supervised loss [35] or a masking-based

objective, followed by fine-tuning [56]. We focus now on the first case, and analyze the

second in the next section. In order to process multiple frames of a video, we use a modified

Multi-Modal Masked Auto-Encoder [9], which we train in a fully supervised fashion. We

refer to this as a Multi-View Transformer.

To capture multiple views of a scene, we opted to use the the Kinetics Action classification

video dataset [23], which consist in classifying one of 400 possible actions given a video clip.

To adapt the task to our setting, from each video we select two random frames that are a

multiple of 0.33 seconds apart to comprise our two views, and feed them to the Multi-View

Transformer. Due to their temporal correlation, the two frames together contain more

information (the motion) than either frame individually. We use a similar dissociation deficit

as in the previous section: During the dissociation deficit period, we sampled the two frames
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from independent videos in order to break their temporal correlation. In this case, the

classification label coming from either view with p = 0.5 (see Appendix for training details).

Even on a largely different architectures (transformer instead of ResNet) and a more

complex task (action classification on natural video instead of CIFAR-10), in Fig. 5.8 we

observe the same trends as in the previous section. Training with a temporary dissociation

deficit permanently prevents the network from extracting synergistic temporal information

from the frames. Unlike in the previous experiment, since the synergistic information is

fundamental for the action classification task, the network cannot compensate the deficit and

perturbations during the critical period also results in an harsh decrease of up to 20% in the

final test accuracy (Fig. 5.8, left).

5.4.4 Overcoming critical periods with cross-sensor reconstruction

Our previous experiments suggest that critical periods can be caused by competition between

sensors which increases the selectivity of the units. If this is the case, we may hypothesize

that training adding a cross-sensor reconstruction objective may help forcing the unit to learn

how to encode cross-sensor information. To test this hypothesis, we train the Multi-View

transformer of Sec. 5.4.3 using the cross-sensor masking-based reconstruction objective of [9]

and compare it with the supervised case. The self-supervised masked-image reconstruction

task could encourage correspondences to be learned (if un-occluded parts of one view are

helpful for reconstructing the other view), and may force learning synergistic information

irrespective of the initial transient. In Fig. 5.7, we show that indeed the masking-based

pre-training is successful in using information from one source to predict masked patches of

the other.

We train using the same protocol as Sec. 5.4.3 to pre-train the Multi-View Transformer

using the cross-reconstruction objective. We then subsequently fine-tuned for 20 epochs on

the downstream supervised classification tasks (see Appendix for details). In Fig. 5.8 we see

that the unsupervised network was much more robust to perturbations early in the training,
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whereas that supervised objective was not. To understand whether such robustness was due

to large changes to the representation when fine-tuning, we applied the RSV on the output of

the encoder’s representation and found that while the resulting distribution became slightly

more symmetrically balanced, it retained a similar bimodal distribution to the pre-trained

representation. (Fig. D.6).

5.5 Discussion

We have shown – in a variety of architectures and tasks – the existence of critical learning

periods for multi-source integration: a temporary initial perturbations of an input source

may permanently inhibit that source, or prevent the model from learning how to combine

multiple sources. These trends replicate similar phenomena in animals, and point to the

underlying complexity and brittleness of the learning dynamics that allow a network (or an

animal) to fuse information. To simplify the analysis of the learning dynamics, we focused on

tasks with homogeneous sources (stereo, video). We leave to future work to further study

the role played by the asymmetry between sources (e.g., different informativeness or ease).

Our theoretical and empirical analysis leads to several suggestions: Pre-training different

backbones separately on each modality, as advocated in some foundational model, may yield

representations that ultimately fail to encode synergistic information. Instead, training should

be performed across modalities at the outset. On the theoretical side, our work suggests that

analysis “at convergence” of the learning dynamics of a network are irrelevant for sensor fusion,

as their fate is sealed during the initial transient learning. It also suggests that conclusions

drawn from wide and shallow networks may not transfer to deep networks in current use.
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Chapter 6

Redundant Information Neural

Estimation

We introduce the Redundant Information Neural Estimator (RINE), a method that allows

efficient estimation for the component of information about a target variable that is common

to a set of sources, known as the “redundant information.” We show that existing definitions

of the redundant information can be recast in terms of an optimization over a family of

functions. In contrast to previous information decompositions, which can only be evaluated

for discrete variables over small alphabets, we show that optimizing over functions enables the

approximation of the redundant information for high-dimensional and continuous predictors.

We demonstrate this on high-dimensional image classification and motor-neuroscience tasks.

6.1 Introduction

Given a set of sources X1, . . . , Xn and a target variable Y , we study how information about the

target Y is distributed among the sources: different sources may contain information that no

other source has (“unique information”), contain information that is common to other sources

(“redundant information”), or contain complementary information that is only accessible when

considered jointly with other sources (“synergistic information”). Such a decomposition of the
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information across the sources can inform the design of multi-sensor systems (e.g., to reduce

redundancy between sensors), or support research in neuroscience, where neural activity is

recorded from two areas during a behavior. For example, a detailed understanding of the

role and relationship between brain areas during a task requires understanding how much

unique information about the behavior is provided by each area that is not available to the

other area, how much information is redundant (or common) to both areas, and how much

additional information is present when considering the brain areas jointly (i.e., information

about the behavior that is not available when considering each area independently).

Standard information–theoretic quantities conflate these notions of information.

[147] therefore proposed the Partial Information Decomposition (PID), which provides

a principled framework for decomposing how the information about a target variable is

distributed among a set of sources. For example, for two sources X1 and X2, the PID is given

by

I(X1, X2;Y ) = UI(X1;Y ) + SI + UI(X2;Y ) + I∩, (6.1)

where UI represents the “unique” information, SI the “synergistic” information, and I∩ repre-

sents the redundant information, shown in Figure E.1. We provide details in Appendix E.1.1,

describing how standard information–theoretic quantities, such as the mutual information

I(X1;Y ) and conditional mutual information I(X2;Y |X1), are decomposed in terms of the

PID constituents.

Despite efforts and proposals for defining the constituents [12, 18, 52–54, 87], existing

definitions involve difficult optimization problems and remain only feasible in low-dimensional

spaces, limiting their practical applications. One way to sidestep these difficult optimization

problems is to assume a joint Gaussian distribution over the observations [16], and this

approach has been applied to real-world problems [38]. To enable optimization for high-

dimensional problems with arbitrary distributions, we reformulate the redundant information

through a variational optimization problem over a restricted family of functions. We show

that our formulation generalizes existing notions of redundant information. Additionally, we

85



show that it correctly computes the redundant information on canonical low-dimensional

examples and demonstrate that it can be used to compute the redundant information between

different sources in a higher-dimensional image classification and motor-neuroscience task.

Importantly, RINE is computed using samples from an underlying distribution, which does

not need to be known.

Through RINE, we introduce a similarity metric between sources which is task dependent,

applicable to continuous or discrete sources, invariant to reparametrizations, and invariant to

addition of extraneous or noisy data.

6.2 Related Work

Central to the PID is the notion of redundant information I∩, and much of the work surrounding

the PID has focused on specifying the desirable properties that a notion of redundancy should

follow. Although there has been some disagreement as to which properties a notion of redundancy

should follow [54,87,147], the following properties are widely accepted:

• Symmetry: I∩(X1; . . . ;Xn→Y ) is invariant to the permutation of X1, . . . , Xn.

• Self-redundancy: I∩(X1→Y ) = I(X1;Y ).

• Monotonicity: I∩(X1; . . . ;Xn→Y ) ≤ I∩(X1; . . . ;Xn−1→Y ).

Several notions of redundancy have been proposed that satisfy these requirements, although

we emphasize that these notions were generally not defined with efficient computation in

mind.

[52] proposed a redundancy measure I∧∩ , defined through the optimization problem:

I∧∩ (X1; . . . ;Xn→Y ) := max
Q

I(Y ;Q) s.t. ∀i ∃fi Q = fi(Xi) (6.2)

where Q is a random variable and fi is a deterministic function. The redundant information is

thus defined as the maximum information that a random variable Q, which is a deterministic
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function of all Xi, has about Y . This means that Q captures a component of information

common to the sources Xi.

An alternative notion of redundant information IGH
∩ [13,53] with a less restrictive constraint

is defined in terms of the following optimization problem:

IGH
∩ (X1; . . . ;Xn→Y ) := max

Q
I(Y ;Q) s.t. ∀i I(Y ;Q|Xi) = 0. (6.3)

IGH
∩ reflects the maximum information between Y and a random variable Q such that

Y −Xi −Q forms a Markov chain for all Xi, relaxing the constraint that Q needs to be a

deterministic function of Xi.

We show in Section 6.3 that our definition of redundant information is a generalization of

I∧∩ and can be extended to compute IGH
∩ .

The main hurdle in applying these notions of information to practical problems is the

difficulty of optimizing over all possible random variables Q in a high-dimensional setting.

Moreover, even if that was possible, such unconstrained optimization could recover degenerate

forms of redundant information that may not be readily “accessible” to any realistic decoder. In

the next section we address both concerns by moving from the notion of Shannon Information

to the more general notion of Usable Information [36,78,151].

6.2.1 Usable Information in a Random Variable

An orthogonal line of recent work has looked at defining and computing the “usable” informa-

tion Iu(X;Y ) that a random variable X has about Y [36, 78, 151]. This aims to capture the

fact that not all information contained in a signal can be used for inference by a restricted

family of functions. Given a family of decoders V ⊆ U = {f : X → P(Y)}, the usable

information that X has about Y is defined as

Iu(X;Y ) = H(Y )−HV(Y |X), (6.4)
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where HV(Y |X) is defined as

HV(Y |X) = inf
f∈V

Ex,y∼X,Y [− log f(y|x)] . (6.5)

Thus, the “usable” information differs from Shannon’s mutual information in that it

involves learning a decoder function f in a model family V , which is a subset of all possible

decoders U . When the “usable” information is defined such that the model family corresponds

to the universal model family, the definition recovers Shannon’s mutual information, I(X;Y ) =

H(Y )−HU(Y |X). However, in many cases, the “usable information” is closer to our intuitive

notion of information, reflecting the amount of information that a learned decoder, as opposed

to the optimal decoder, can extract under computational constraints [151]. We extend these

ideas to compute the “usable redundant information” in the next section.

6.3 Redundant Information Neural Estimator

We introduce the Redundant Information Neural Estimator (RINE), a method that enables

the approximation of the redundant information that high-dimensional sources contain about

a target variable. In addition to being central for the PID, the redundant information also

has direct applicability in that it provides a task-dependent similarity metric that is robust

to noise and extraneous input, as we later show in Section 6.4.4.

Our approximation leverages the insight that existing definitions of redundancy can be

recast in terms of a more general optimization over a family of functions, similar to how the

“usable information” was defined above. To this end, given two sources, we define a notion of

redundancy, RINE, through the following optimization over models f1, f2 ∈ V ⊆ U = {f :

X → P(Y)}.
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LV
∩(X1;X2→Y ) := min

f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
(6.6)

s.t. D(f1, f2) = 0 (6.7)

IV∩ (X1;X2→Y ) :=H(Y )− LV
∩, (6.8)

where Hfi(Y |Xi) denotes the cross-entropy when predicting Y using the decoder fi(y|x) and

D(f1, f2) = Ex1,x2

[
∥f1(y|x1)− f2(y|x2)}∥1

]
denotes the expected difference of the predictions

of the two decoders. Importantly, the model family V can be parametrized by neural networks,

enabling optimization over the two model families with backpropagation. In general, one can

optimize over different model families V1 and V2, but for notational simplicity we assume

we optimize over the same model family V in the paper. Note that here we constrained the

predictions directly, as opposed to using an intermediate random variable Q. In contrast,

direct optimization of Equations (6.2) and (6.3) is only feasible for discrete sources with small

alphabets [87]. Our formulation can be naturally extended to n sources (Appendix E.1.8)

and other divergence measures between decoders. Since our formulation involves learning

decoders that map the sources to target predictions, the learned decoder can safely ignore

task-irrelevant variability, such as noise, as we demonstrate in Section 6.4.4.

To solve the constrained minimization problem in Equation (6.6-6.7), we can minimize

the corresponding Lagrangian:

LV
∩(X1;X2→Y, β) := min

f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
+ βD(f1, f2). (6.9)

When β → ∞ the solution to the Lagrangian is such that D(f1, f2) → 0, thus satisfying

the constraints of the original problem. In practice, when optimizing this problem with deep

networks, we found it useful to start the optimization with a low value of β, and then increase

it slowly during training to some sufficiently high value (β = 50 in most of our experiments).
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Note that while H(Y ) does not appear in the Lagrangian, it is still used to compute IV∩ , as in

Equation (6.8). The Lagrangian is optimized, using samples from an underlying distribution

p(X1, X2, Y ); importantly, the underlying distribution can be continuous or discrete.

Our definition of V-redundant information (Equation (6.8)) is a generalization of I∧∩

(Section 6.2) as shown by the following proposition:

Proposition 1 (Appendix 6.7). Let V = {f : X → P(Y)} consist of the family of determin-

istic functions from X to distributions over Y. Then IV∩ = I∧∩ .

Our formulation involving a constrained optimization over a family of functions is general:

indeed, optimizing over stochastic functions or channels with an appropriate constraint can

recover IGH
∩ or IK∩ [87] (described in the Appendix) but the computation in practice becomes

more difficult.

Our definition of redundant information is also invariant to reparametrization of the

sources as shown by the following proposition:

Proposition 2 (Appendix 6.7). Let t : X → X be any invertible transformation in V. Then,

IV∩ (X1;X2→Y ) = IV∩ (t1(X1); t2(X2)→Y ). (6.10)

Note that when V = U , IV∩ is invariant to any invertible transformation. In practice,

when optimizing over a subset V ⊆ U , our definition is invariant to transformations that

preserve the usable information (this accounts for practical transformations, for example the

reflection or rotation of images). As an example of transformations that lie in V, consider

the case in which V is a set of linear decoders. This model family is closed under any linear

transformation t(X) applied to the source, since the composition of linear functions is still a

linear function.

As an additional example, the family of fully connected networks is closed to permutations

of the pixels of an image since there exists a corresponding network f ∈ V that would behave

the same on the transformed image. The family of convolutional networks, for a given
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architecture on the other hand, is not closed under arbitrary transformations of the pixels,

but it is closed, e.g., under rotations/flips of the image.

In contrast, complex transformations such as encryption or decryption (which preserve

Shannon’s mutual information) can decrease or increase respectively the usable information

content with respect to the model family V. Arguably, such complex transformations do

modify the “information content” or the “usable information” (in this case measured with

respect to V) even though they do not affect Shannon’s mutual information (which assumes

an optimal decoder in U that may not be in V).

6.3.1 Implementation Details

In our experiments, we optimize over a model family V of deep neural networks, using gradient

descent. In general, the model family to optimize over should be selected such that it is not

so complicated that it overfits to spurious features of the finite training set, but has high

enough capacity to learn the mapping from source to target.

We parametrize the distribution fi(y|x) in Equation (6.9), using a deep neural network.

In particular, in the case that y is discrete (which is the case in all our experiments), the

distribution fi(y|x) = softmax(hwi
(x)) is parametrized as the softmax of the output of a deep

network with weights wi. In this case, the distance D(f1, f2) can be readily computed as the

average L1 distance between the softmax outputs of the two networks hw1(x1) and hw2(x2)

for different inputs x1 and x2. If the task label y is continuous, for example in a regression

problem, one can parametrize fi(y|x) = N (hwi
(x), σ2I) using a Normal distribution whose

means is the output of a DNN. We optimize over the weights parametrizing all fi(y|x) jointly,

and we show a schematic of our architecture in Figure 6.1.
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Figure 6.1: A schematic of our architecture for two sources X1 and X2. Note that the two
networks do not share weights. The dashed lines indicate that the predictions are constrained
to be similar.

Once we parametrize f1 and f2, we need to optimize the weights in order to minimize

the Lagrangian in Equation (6.9). We do so using Adam [73] or stochastic gradient descent,

depending on the experiment. For images we optimize over ResNet-18’s [55], and for other

tasks we optimize over fully-connected networks. The hyperparameter β needs to be high

enough to ensure that the constraint is approximately satisfied. However, we found that

starting the optimization with a very high value for β can destabilize the training and make

the network converge to a trivial solution, where it outputs a constant function (which

trivially satisfies the constraint). Instead, we use a reverse-annealing scheme, where we

start with a low beta and then slowly increase it during training up to the designated value

(Appendix E.1.3). A similar strategy is also used (albeit in a different context) in optimizing

β-VAEs [21].

6.4 Results

We apply our method to estimate the redundant information on canonical examples that

were previously used to study the PID, and then demonstrate the ability to compute the

redundant information for problems where the predictors are high dimensional.
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6.4.1 Canonical examples

We first describe the results of our method on standard canonical examples that have been

previously used to study the PID. They are particularly appealing because for these examples

it is possible to ascertain ground truth values for the decomposition. Additionally, the

predictors are low dimensional and have been previously studied, allowing us to compare our

variational approximation. We describe the tasks, the values of the sources X1, X2, and the

target Y for in Section 6.6. Briefly, in the UNQ task, each input X1 and X2 contributes 1

bit of unique information about the output and there is no redundant information. In the

AND task, the redundant information should be in the interval [0, 0.311] depending on the

stringency of the notion of redundancy used [53]. When using deterministic decoders, as

we do, we expect the redundant information to be 0 bits (not 0.311 bits). The RDNXOR

task corresponds to a redundant XOR task, where there is 1 bit of redundant and 1 bit of

synergistic information. Finally the IMPERFECTRDN task corresponds to the case where

X1 fully specifies the output, with X2 having a small chance of flipping one of the bits.

Hence, there should be 0.99 bits of redundant information. As we show in Table 6.1, RINE

(optimizing with a deterministic family; Appendix E.1.4) recovers the desired values on all

these canonical examples.

True I∧∩ IGH
∩ IV∩ (β = 15)

UNQ [T6.2] 0 0 0 0.006 (0.016)
AND [T6.3] [0, 0.311] 0 0 0.007 (0.001)

RDNXOR [T6.4] 1 1 1 0.977 (9e-4)
IMPERFECTRDN [T6.5] 0.99 0 0.99 0.984 (0.002)

Table 6.1: Comparison of redundancy measures on canonical examples. Quantities are in
bits, and IV∩ denotes our variational approximation (for β = 15). The mean and standard
deviation (inside parentheses) are reported over 5 different initializations. I∧∩ denotes the
redundant information in [52] and IGH

∩ denotes the redundant information in [53]. Note
that [87] computed IGH

∩ for the AND operation and got 0.123 bits, as opposed to the 0 bits
reported in [53]. We do this computation for different values of β in Table E.1.
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A B C

Figure 6.2: (A) Examples of the different views of the image used in the experiment. (B)
Redundant information of different crops of CIFAR-10 images. Redundant information as a
function of the width of each partition, for different values of β. A width of 16 means that
both X1 and X2 is a 16 x 32 image. The images begin from opposing sides, so in the case
of the 16 x 32 image, there is no overlap between X1 and X2. As the amount of overlap
increases, the redundant information increases. The distance function used was the L1 norm
of the difference. (C) Per class redundant information for different channels, crops, and
frequency decompositions, with β = 50 used in the optimization.

6.4.2 Redundant information in different views of high-dimensional

images

To the best of our knowledge, computations of redundant information have been limited to

predictors that were one-dimensional [12,52,53,87]. We now show the ability to compute the

redundant information when the predictors are high dimensional. We focus on the ability to

predict discrete target classes, corresponding to a standard classification setting. In particular,

we analyze redundant information between left and right crops of an images (to simulate a

system with two stereo cameras), between different color channels of an images (sensors with

different frequency bands), and finally between high and low spatial frequency components of

an images.

We analyze the redundant information between different views of the same CIFAR-10

image (Figure 6.2), by optimizing over a model family of ResNet-18’s [55], described in

Appendix E.1.6. In particular, we split the image in two crops, a left crop X1 containing all

pixels in the first w columns, and a right crop X2 containing all pixels in the last w columns

(Fig E.3). Intuitively, we expect that as the width of the crop w increases, the two views will

overlap more, and the redundant information that they have about the task will increase.

94



Indeed, this is what we observe in Figure 6.2 (left).

We next study the redundant information between different sensor modalities. In par-

ticular, we decompose the images into different color channels (X1 = red channel and

X2 = blue channel), and frequencies (X1 = low-pass filter and X2 = high-pass filter). We

show example images in Fig E.3. As expected, different color channels have highly redun-

dant information about the task (Figure 6.2, right) except when discriminating classes (like

dogs and cats) where precise color information (coming from using jointly the two channels

synergistically) may prove useful. On the contrary, the high-frequency and low-frequency

spectrum of the image has a lower amount of redundant information, which is also expected,

since the high and low-frequencies carry complementary information. We also observe that

left and right crop of the image are more redundant for pictures of cars than other classes.

This is consistent with the fact that many images of cars in CIFAR-10 are symmetric frontal

pictures of cars, and can easily be classified using just half of the image. Overall, there

is more redundant information between channels, then crops, then frequencies. Together,

these results show we can compute the redundant information of high dimensional sources,

providing an empirical validation for our approximation and a scalable approach to apply in

other domains.

6.4.3 Neural Data Decoding

We next applied our framework to analyze how information is encoded in motor-related

cortical regions of monkeys during the preparatory period of a center-out reaching task [115].

Our goal was to confirm prior hypotheses known about motor cortical encoding from the

literature. In the center-out reaching task, there are 8 target locations and the monkey needs

to make a reach to one of the targets depending on a cue (Fig 6.3, left). Our dataset consists

of a population recording of spike trains from 97 neurons in the dorsal premotor cortex (PMd)

during trials that were 700ms long. Each trial comprises a 200ms baseline period (before the

reach target turned on) and a 500ms preparatory (planning) period after the reach target
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Go cuePreparatory Period Reach
(500ms)

50ms 150ms 250ms 350ms

50ms

150ms

250ms

350ms

2.58 2.30 2.10 1.89

2.29 2.63 2.24 2.05

2.16 2.26 2.55 1.97

1.83 2.07 1.99 2.20

Beta 50

Figure 6.3: (Left) Schematic of delayed-center-out reaching task. There are 8 possible target
locations (equally spaced), one of which is shown. Neural data is recorded from the premotor
cortex of a monkey using 97 electrodes. (Right) Redundant information between short disjoint
time windows during the preparatory period, before a reach can be initiated. Even before the
reach is initiated, the target location can be decoded from the premotor cortex using neural
data averaged in a short 100ms time window. In the confusion matrix, adjacent time bins
have higher redundant information about the target location during the preparatory period,
reflecting that the encoding of the target location is more similar in adjacent time windows.

turned on but before the monkey can initiate a reach. Both our training and testing dataset

consist of 91 reaches to each target. During the 500 ms preparatory period, the monkey

prepared to reach towards a target but did not initiate the reach, enabling us to study the

PMd neural representation of the planned reach to the target.

First, we used RINE to compute redundant information of PMd activity over time during

the delay period. PMd activity is known to be relatively static during the delay period,

approaching a stable attractor state [122]. We therefore expect the redundant information

between adjacent time windows to be high. To quantify this, we evaluated the redundant

information between different time segments of length 100 ms, beginning 50 ms after the

beginning of the preparatory period. For our feature vector, we counted the total number of

spikes for each neuron during the time segment. We note that even in the relatively short

window of 100 ms, there is a significant amount of usable information about the target in

the recorded population of neurons, since the diagonal elements of Fig. 6.3 are close to 3

bits. This is consistent with prior studies that show small windows of preparatory activity

can be used to decode target identity [115,116]. We also found that adjacent time windows

contain higher redundant information (closer to the 3 bits), consistent with the idea that
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the encoding of the target between adjacent time windows are more similar [46]. Together,

these results show that RINE computes redundant information values consistent with results

reported in the literature showing that PMd representations stably encode a planned target.

Second, we used RINE to study the redundant information between the neural activity

recorded on different days and between subjects. We analyzed data from another delayed-

center-out task with 8 targets and a variable 400− 800ms delay period, during which the

monkey could prepare to reach to the target, but was not allowed to initiate the reach

(Appendix E.1.7). We examined the redundant information about the target location in

the premotor cortex on different sessions and between the different monkeys, Monkey J

and Monkey R. When data came from different sessions, we generated a surrogate dataset

by conditioning on the desired target reach, ensuring that X1 and X2 corresponded to the

same target Y . At an extreme, if we could only decode 4 of the 8 targets from Monkey

J’s PMd activity and the other 4 of the 8 targets from Monkey R’s PMd activity, there

would be no redundant information in the recorded PMd activity. Our results are shown in

Fig. 6.4 (left). Since the PMd electrodes randomly sample tens of neurons out of hundreds

of millions in motor cortex, we expect the redundant information between Monkey J and

Monkey R PMd recordings to be relatively low. We also expect the redundant information

across sessions for the same monkey to be higher, since the electrodes are relatively stable

across days [104]. RINE calculations are consistent with these prior expectations. We find

the redundant information is higher between sessions recorded from the same monkey than

between sessions recorded from different monkeys.

Finally, we quantified redundant information between PMd and the primary motor cortex

(M1) during the delay period (Fig 6.4, center). We expect redundant information to be

relatively low; whereas PMd strongly represents the motor plan through an attractor state,

activity in M1 is more strongly implicated in generating movements with dynamic activity [27].

We find that the values of the redundant information between PMd and M1 are low (0.4

to 0.7 bits), indicating that there is little redundant encoding of target information during
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Figure 6.4: Neural decoding confusion matrix for different monkeys and different sessions
(left), motor and premotor cortex (middle) and between motor cortex across different monkeys
and sessions (right).

the delay period between premotor and motor cortex, even for the same monkey. This is

consistent with these two regions having distinct roles related to the initiation and execution

of movement [122]. One explanation for having low redundant information between the motor

and the premotor cortex during the preparatory period is that there is little encoding of

the target location in the motor cortex during the preparatory period, and that the motor

cortex serves a role more related to producing appropriate muscle activity. Similar to how we

analyzed the redundant information between the premotor cortex, we analyzed the redundant

information between the motor cortex across sessions (Fig 6.4, right). We find that there is

little information about the planned target in M1 activity for both monkeys (far from 3 bits).

Monkey R’s M1 information is particularly low due to M1 electrodes recording from very few

neurons. The lower values of redundant information between motor cortices compared to

premotor cortices implies there is less information in M1 than PMd about the target during

the preparatory, consistent with prior literature.

6.4.4 Advantage of redundant information as a task-related similar-

ity measure

How does the notion of redundancy compare to other similarity metrics such as I(X1;X2) or

the cosine similarity between X1 and X2? Critically, both measures are agnostic to a target
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Figure 6.5: Comparison of redundant information against cosine similarity metric. (Left)
The redundant information is invariant to the number of uncorrelated inputs, and we validate
empirically that our approximation of redundant information remains approximately constant
with increasing number of uncorrelated inputs. (Right) In contrast, alternative similarity
metrics like the cosine similarity decreases with increasing number of random noisy units
(dashed lines) or increases with correlated non-task units, (solid line).

Y , whereas the redundant information reflects the common information about the target Y .

Hence, the redundant information is unaffected by factors of variation that are either pure

noise, or caused by target-independent factors, but these factors of variation affect other

similarity metrics. This may be particularly important in neuroscience, since recordings from

different areas or neurons contain significant noise or non-task variability that can affect

similarity metrics. We design a synthetic task to showcase these effects. The task is similar

to the neural center-out reaching task, with 8 classes. The task was designed so that each

input X1 and X2 contain information about n classes, with the minimum overlap between

the classes specified: when each input specifies n = 4 classes, there are no classes that are

encoded by both X1 and X2 (hence 0 bits of redundant information), and with n = 5 classes

it means that 2 common classes are encoded by the the two inputs. Full details are provided

in Appendix E.1.5. We swept the number of classes n that each input specified from 4 to 8.

In Fig 6.5 (left), we show that the redundant information increases with increasing overlap

between the classes specified by the input, but the redundant information is unaffected by

adding units that are uncorrelated with the target, evidenced by approximately flat lines for

each value of n. In contrast, the cosine similarity is affected by the addition of such units

(Fig 6.5, right). Adding noisy inputs decreases the cosine similarity, whereas the addition of
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shared non-task-related inputs increase the cosine similarity (Appendix E.1.5). Thus, the

important distinction of the redundant information in comparison to direct similarity metrics

applied on the inputs is that the redundant captures information in sources about a target Y ,

whereas direct similarity metrics applied on the sources are agnostic to the target or task Y .

6.5 Discussion

Central to the Partial Information Decomposition, the notion of redundant information offers

promise for characterizing the component of task-related information present across a set of

sources. Despite its appeal for providing a more fine-grained depiction of the information

content of multiple sources, it has proven difficult to compute in high-dimensions, limiting

widespread adoption. Here, we show that existing definitions of redundancy can be recast in

terms of optimization over a family of deterministic or stochastic functions. By optimizing

over a subset of these functions, we show empirically that we can recover the redundant

information on simple benchmark tasks and that we can indeed approximate the redundant

information for high-dimensional predictors.

Although our approach correctly computes the redundant information on canonical

examples as well as provides intuitive values on higher-dimensional examples when ground-

truth values are unavailable, with all optimization of overparametrized networks on a finite

training set, there is the possibility of overfitting to features in the training set and having

poor generalization on a test set. This is not just a problem for our method but is a general

feature of many deep learning systems, and it is common to use regularization to help

mitigate this. PAC-style bounds on the test set risk that factor in the finite nature of the

training set exist [138] and it would be interesting to derive similar bounds that could be

applied on the distance term to bound the deviation on the test set. Additionally, future

work should investigate the properties arising from the choice of distance term, since other

distance terms could have preferable optimization properties or desirable information-theoretic
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interpretations, especially when it is non-zero. Last, the choice of beta-schedule beginning

with a small value and increasing during training was important (Fig E.2), and may need to

be tuned to a particular task.

Our approach only provides a value summarizing how much of the information in a set of

sources is redundant, and it does not detail what aspects of the sources are redundant. For

instance, when computing the redundant information in the image classification tasks, we

optimized over a high-dimensional parameter space, learning a complicated nonlinear function.

Although we know the exact function mapping the input sources to prediction, it is difficult

to identify the “features” or aspects of the input that contributed most to the prediction.

Future work could try to extend our work to not only describe how much information is

redundant but what parts of the sources are redundant.
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6.6 Canonical tasks

The probabilities on the right hand side of the table denote the probability p(x1, x2, y).

X1 X2 Y

a b ab 1/4
a B aB 1/4
A b Ab 1/4
A B AB 1/4

Table 6.2: UNQ. X1 and X2 contribute uniquely 1 bit of Y. Hence, there is no redundant
and synergistic information.

X1 X2 Y

0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

Table 6.3: AND. X1 and X2 combine nonlinearly to produce the output Y . It is generally
accepted that the redundant information is between [0,0.311] bits [53], where I(X1;Y ) =
I(X2;Y ) = 0.311 bits.

X1 X2 Y

r0 r0 r0 1/8
r0 r1 r1 1/8
r1 r0 r1 1/8
r1 r1 r0 1/8
R0 R0 R0 1/8
R0 R1 R1 1/8
R1 R0 R1 1/8
R1 R1 R0 1/8

Table 6.4: RDNXOR. A combination of redundant a synergistic information where X1 and
X2 contributes 1 bit of redundant information, and 1 bit of synergistic information.
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X1 X2 Y

0 0 0 0.499
0 1 0 0.001
1 1 1 0.500

Table 6.5: IMPERFECTRDN. X1 fully specifies the output, with X2 having a small chance
of flipping one of the bits. There should be 0.99 bits of redundant information.

6.7 Proofs

Proposition 1: Let V = {f : X → P(Y)} consist of the family of deterministic functions

from X to distributions over Y . Then IV∩ = I∧∩ .

Proof. We show that IV∩ = I∧∩ by proving both inequalities IV∩ ≥ I∧∩ and IV∩ ≤ I∧∩ .

To show that IV∩ ≥ I∧∩ . Let fi : X → Q be the functions that minimize eq. (2), and let

Q = fi(Xi). Let p(y|q) be the corresponding optimal decoder. Define f̂i : X → P(Y) as

f̂i(x) = p(y|fi(x)). Note that

Hf̂i
(Y |Xi) = −

∫
p(y, x) log p(y|fi(x))dx dy

= −
∫

p(y, x)
(∫

δq,fi(x) log p(y|q)dq
)
dx dy

= −
∫

p(y, x)
(∫

p(q|x, y) log p(y|q)dq
)
dx dy

= −
∫

p(q, x, y) log p(y|q)dq dx dy

= −
∫

p(q, y) log p(y|q)dq dy

= H(Y |Q)

where between the first and second line we used the definition of dirac delta, between the

second and third used the definition of p(q|x) = δq,fi(x), and between the fourth and fifth line
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we marginalized over x. Using this result in eq. (6) and eq. (8), we obtain:

IV∩ ≥ H(Y )−H(Y |Q) = I(Y ;Q) = I∧∩ .

The above inequality is obtained because f̂i ∈ V = U but is not necessarily the function

corresponding to the infimum.

To show that IV∩ ≤ I∧∩ , let fi : X → Q and let Q = fi(Xi). Define f̂i : X → P(Y) as

f̂i(x) = p̂(y|fi(x)) where f̂i satisfies eq. (6) and (7). Note that

IV∩ = H(Y )−Hf̂i
(Y |X)

= H(Y )−H(Y |Q)

= I(Y ;Q)

≤ I∧∩ .

The second equality comes since we showed above H(Y |Q) = Hf̂i
(Y |X). The inequality

comes since Q satisfies the constraint of Eq. 2 but does not necessarily maximize the objective.

□

Proposition 2: Let t : X → X be any invertible transformation in V . Then:

IV∩ (X1;X2→Y ) = IV∩ (t1(X1); t2(X2)→Y ) (6.11)

Proof. We define an invertible transformation in V to be one such that f ◦ t ∈ V for all f ∈ V ,

which implies that f ◦ t−1 ∈ V . Recall that IV∩ := H(Y )− LV
∩ (Eq. 6.8), and note that H(Y )

is not affected by transformations on the sources. Let L∗ correspond to the minimum of

min
f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
s.t D(f1, f2) = 0. (6.12)
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And let L∗
t correspond to the minimum of

min
f̃1,f̃2∈V

1

2

[
Hf̃1

(Y |t1(X1)) +Hf̃2
(Y |t2(X2))

]
s.t D(f̃1, f̃2) = 0. (6.13)

We will show that L∗ = L∗
t . Let

f̃1 = f1 ◦ t−1
1 ∈ V ,

f̃2 = f2 ◦ t−1
2 ∈ V ,

where f̃1, f̃2, f1, f2 ∈ V ⊆ U = {f : X → P(Y)}. We can rewrite Eq. 6.13 by canceling out

t−1 ◦ t as shown below so that:

L∗
t = min

f̃1,f̃2∈V

1

2

[
Hf̃1

(Y |t1(X1)) +Hf̃2
(Y |t2(X2))

]
s.t D(f̃1, f̃2) = 0

= min
f◦
1 t

−1
1 ,f◦

2 t
−1
2 ∈V

1

2

[
Hf1◦t−1

1
(Y |t1(X1)) +Hf2◦t−1

2
(Y |t2(X2))

]
s.t D(f1 ◦ t−1

1 , f2 ◦ t−1
2 ) = 0

= min
f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
s.t D(f1, f2) = 0

= L∗.

□
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Chapter 7

Gács-Körner Common Information

Variational Autoencoder

We propose a notion of common information that allows one to quantify and separate the

information that is shared between two random variables from the information that is unique

to each. Our notion of common information is a variational relaxation of the Gács-Körner

common information, which we recover as a special case, but is more amenable to optimization

and can be approximated empirically using samples from the underlying distribution. We

then provide a method to partition and quantify the common and unique information using

a simple modification of a traditional variational auto-encoder. Empirically, we demonstrate

that our formulation allows us to learn semantically meaningful common and unique factors

of variation even on high-dimensional data such as images and videos. Moreover, on datasets

where ground-truth latent factors are known, we show that we can accurately quantify the

common information between the random variables.

7.1 Introduction

Data coming from different sensors often capture information related to common latent

factors. For example, many animals have two eyes that capture different but highly-correlated
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f1

f2

Figure 7.1: High level schematic. Red denotes shared latent factors (size, shape, floor,
background and object color) and black denotes unique latent (viewpoint). The aim is to
extract zc, which is a random variable that is a function of both inputs xi. We also allow
for unique latent variables zu to capture information that unique to each view. The latent
representations are used to reconstruct the inputs.

views of the same objects in the scene. Similarly, sensors of different modalities, such as

eyes and ears, capture correlated information about the underlying scene, as do videos and

other time series, where the sensors are separated in time rather than in modality. Learning

how information of one sensor maps to information of another is an appealing task, since

it provides a self-supervised signal to disentangle the variability that is intrinsic in a sensor

from the latent causes (e.g., objects) that are shared between multiple sensors. Indeed, there

is evidence that infants spend a long time during development purposefully experiencing

objects through different senses at the same time [125].

Motivated by this, we propose to learn meaningful representations of multi-view data by

quantifying and exploiting such correlations in an unsupervised fashion, by using a information

theoretic notion of common information as the guiding signal to disentangle common shared

information present in high dimensional sensors (Fig. 7.1).

However, defining a notion of common information is itself not trivial. The most natural

and typical way to quantify the “common part” between random variables would be by

quantifying their mutual information. But mutual information has no clear interpretation

in terms of a decomposition of random variables in unique and common components. In

particular, [45] note that there is generally no way to write two variables X and Y using

a three part code (A,B,C) such that X = f(A,C), Y = g(B,C) and where C encodes all

107



and only the mutual information I(X;Y ). Discovering the largest common factor C, which

encodes what is known as the Gács-Körner common information, from high dimensional data

is then a distinct problem on its own [113,149].

To the best of our knowledge, there are currently no approaches to compute or approximate

the Gács-Körner common information from high-dimensional samples. In this work, we seek

to learn common representations that satisfy the constraint that they are (approximately)

a function of each input. An important contribution in this paper is that we relax the

constraint that the representation needs to be a deterministic function and allow it to be a

stochastic map. As we later show, this is helpful for quantifying and interpreting the latent

representation, and allows us to parametrize the optimization with deep networks.

We show that our objective can be optimized using a multi-view Variational Auto-Encoder

(VAE). Since in general each view can contain individual factors of variation that are not

shared between the views, we augment our model with a set of unique latent variables that

can capture unexplained latent factors of variation, and show that the common and unique

component can be efficiently inferred from data through standard training. While training

the multi-view VAE, we simultaneously develop a scalable approximation for the Gács-Körner

common information, as we describe in Sect. 7.3.

To empirically evaluate the ability to separate the common and unique latent factors we

introduce two new datasets, which extend commonly used datasets for evaluating disentangled

representations learning: dSprites [101] and 3dShapes [20]. For each dataset, we generate a

set of paired views (x1, x2) such that they share a set of common factors. We also compare

our method to multi-view contrastive learning [134] and show that thanks to our definition

we avoid learning degenerate representations when the views share little information. We

also extend the disentanglement metric proposed by [37] to quantitatively evaluate the ability

to separate the common and unique factors, as well as the ability to learn disentangled

representations.

Surprisingly, we find that the addition of separate viewpoints, without any explicit
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supervision, enables superior disentanglement. We hypothesize that a key reason precluding

the identification of latent generating factors from observed data is that receiving a single

sample of a scene is quite limiting. Indeed, classical neuroscience experiments has shown that

the ability to interact with an environment, as opposed to passively observing sensory inputs,

is critical for learning meaningful representations of the environment [57].

7.2 Preliminaries and Related Work

We use uppercase letters to denote random variables (RVs) and lower case letters to denote

their realizations. The entropy H(X) of a random variable X is Ep(x)[log
1

p(x)
]. The mutual

information I(X;Z) = H(Z)−H(Z|X). Another useful identity for mutual information that

we use is I(X;Z) = Ex[KL(p(z|x)||p(z))] where KL denotes the Kullback-Leibler divergence.

Gács-Körner Common Information. The Gács-Körner common information [45] is

defined as

CGK(X1;X2) := max
Z

H(Z) s.t Z = f(X1) = g(X2), (7.1)

where f and g are deterministic functions. The Gács-Körner common information is thus

defined through a random variable Z that is a deterministic function of both inputs X1 and

X2. Among all such random variables, Z is the random variable with maximum entropy. This

has also been referred to as the “zero error information” in applications to cryptography [149].

It is an attempt to formalize and operationalize the idea of the common part between sources,

which mutual information lacks. It is also a lower bound to the mutual information [45, 149].

To the best of our knowledge, there are no efficient techniques for computing the GK common

information for high-dimensional X1, X2.

Variational Autoencoders Variational Autoencdoers (VAEs) [75] are latent variable

generative models that are trained to maximize the likelihood of the data by maximizing the
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evidence lower bound :

LVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] +KL(qϕ(z|x) || p(z))]. (7.2)

[59] introduced the β-VAE, which modifies the traditional VAE by changing how the KL

regularization is penalized (it corresponds to the traditional VAE loss when β = 1):

Lβ−VAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + βKL(qϕ(z|x) || p(z))]. (7.3)

For larger values of β the representations become more disentangled, although reconstruc-

tions become worse [59]. The modified VAE loss can also be motivated in an information

theoretic manner as optimizing an information bottleneck [136], where the reconstruction

term encourages a sufficient representation and the regularization term encourages a minimal

representation [3, 6].

Disentangled representations A guiding assumption for representation learning is that

the observed data x (i.e an image) can be generated from a (simpler) set of latent generating

factors z. Assuming the latent factors are independent, the idea of learning disentangled

representations involves learning these latent factors of variation in an unsupervised manner

[17]. However, despite apparent empirical progress in learning disentangled representations [21,

25,59], there remains inherent issues in both learning and defining disentangled representations

[95]. In many cases, different independent latent factors may lead to equivalent observed

data, and without an inductive bias, disentanglement remains ill-defined. For example, color

can be decomposed into an RGB decomposition, or an equivalent HSV decomposition.

In [95, Theorem 1] it is shown that without any inductive bias, one cannot uniquely identify

the underlying independent latent factors in a purely unsupervised manner from observed data.

Empirically, they also found that there was no clear correlation between training statistics

and disentanglement scores without supervision. Later, and related to our work, the authors
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examined the setting where there is paired data and no explicit supervision (weak supervision),

and found that such a setup was helpful for learning disentangled representations [96]. The

authors examined the setting in which the set of shared latent factors changed for each

example, which was necessary for their identifiability proof. This also required using the

same encoder for each view, and thus is a restricted setting that does not easily scale to

multi-modal data.

Here, we study the scenario where the set of generating factors is the same across examples,

as in the case of a pair of fixed sensors receiving correlated data. Additionally, our objective

is motivated in an information theoretic way and our method generalizes to the case where we

have different sensory modalities, which is relevant to neuroscience and multi-modal learning.

Finally, our variational objective is flexible and allows estimation of the common information

in a principled way.

Approximating Mutual Information Estimating mutual information from samples is

challenging for high-dimensional random vectors [105]. The primary difficulty in estimating

mutual information is constructing high-dimensional probability distribution from samples, as

the number of samples required scales exponentially with dimensionality. This is impractical

for realistic deep learning tasks where the representations are high dimensional. To estimate

mutual information, [123] used a binning approach, discretizing the activations into a finite

number of bins. While this approximation is exact in the limit of infinitesimally small bins,

in practice, the size of the bin affects the estimator [49,119]. In contrast to binning, other

approaches to estimate mutual information include entropic-based estimators (e.g., [49]) and

a nearest neighbours approach [88]. Although mutual information is difficult to estimate,

it is an appealing quantity to summarily characterize neural network behavior because of

its invariance to smooth and invertible transformations. In this work, rather than estimate

the mutual information directly, we study the “usable information” in the network [78,151],

which corresponds to a variational approximation of the mutual information [15,108].

111



Contrastive and Multi-View Approaches While (multi-view) contrastive learning aims

to learn a representation of only the common information between views [26,134,135], we

aim to learn a decomposition of the information in the views into common and unique

components. Our work naturally extends to multi-sensor data that have different amounts

of common/unique information (e.g., touch and vision). Moreover, contrastive approaches

assume that the unique information is nuisance variability, and discard this information.

Similarly, [39] also seeks to identify common information in both views, but also does not

provide an objective to retain the unique information. While the multi-view literature is

broad, we are not aware of previous attempts to quantify the common and unique information.

Most related to our approach, [143] aim to find shared and private representations using

VAEs, but it differs in how the alignment of shared information is specified and the resulting

objective, and they do not provide a way to quantify the information content of the private

and shared components.

7.3 Method: Gács-Körner Variational Auto-Encoder

Our formulation involves generalizing the Gács-Körner common information in eq. (7.1) to

the case where f and g are stochastic functions so that the optimization problem becomes:

C̃GK(X1;X2) : = max
Z

I(Xi;Z) (7.4)

s.t. Z = fs(X1) = gs(X2), (7.5)

where fs and gs are stochastic functions. By the equality in eq. (7.5), we mean that

p(z|x1) = p(z|x2) for all (x1, x2) ∼ p(x1, x2). Note that when f and g are deterministic

functions (which is a subset of stochastic functions), then H(Z|Xi) = 0 and we recover the

original definition since

I(Xi;Z) = H(Z)−H(Z|Xi) = H(Z). (7.6)
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Our latter generalization (eq. 7.4-7.5) is more amenable to optimization and interpretable, as

we will later demonstrate. In eq. (7.4), we used Xi as a placeholder since when p(z|x1) =

p(z|x2) for all (x1, x2) ∼ p(x1, x2, z) then I(Z;X1) = I(Z;X2) since

I(Z;X1) = Ex1 [KL(p(z|x1)||p(z))]

= E(x1,x2)∼p(x1,x2)[KL(p(z|x1)||p(z))]

= E(x1,x2)∼p(x1,x2)[KL(p(z|x2)||p(z))]

= Ex2 [KL(p(z|x2)||p(z))]

= I(Z;X2).

This means that another equivalent formulation to maximize is maxz
1
2

∑
i I(Xi;Z) =

maxz I(Xi;Z), for any i. To optimize the objective in eq. 7.4-7.5, we need to learn a

set of latent factors Z that maximize I(Xi;Z), while satisying the constraint in eq. 7.5.

We propose an optimization reminiscent of the VAE objective. Define x = (x1,x2) as the

concatenation of both views, and z = (zu1 , zc, zu2) as a decomposition of the representation

into common and unique components, and zi = (zui
, zc). In particular, we seek to learn latent

encodings through an encoder qϕ(z|x), which maps x to z. To optimize the objective, the

representation z should maximize I(Xi;Z), and so we should also learn a decoder pθ(x|z)

that minimizes H(Xi|Z). This corresponds to the reconstruction term in a traditional VAE,

though note here we reconstruct both views.

L1
CVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)]] (7.7)

Without any constraints, this could be achieved trivially by using an identity mapping. To

ensure that the latents encode only common information between the different views, we
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decompose the encodings to ensure the following constraint corresponding to eq. (7.5):

D(qϕc1
, qϕc2

) = KL(qϕc1
(zc|x1) || qϕc2

(zc|x2)) = 0. (7.8)

Here qϕci
(zc|xi) maps xi to zci Rather than enforcing a hard constraint, in practice it is easier

to optimize the corresponding Lagrangian relaxation:

L2
CVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1

, qϕc2
)]. (7.9)

After optimizing this objective, for a sufficiently large λ so that D(q1, q2) ≈ 0, the common

information would be:

CGK(X1;X2) = Ep(x)[ KL(qϕci
(zc|xi) || q∗(z)) ], (7.10)

where q∗(z) is the marginal distribution induced by the encoder. However, estimating the

true marginal q∗(z) is difficult for high-dimensional problems. In practice, we follow [75] and

learn an approximate prior p(z) ≈ q∗(z), where both qϕ(z|x) and p(z) are taken from a given

family of distributions (such as multivariate Gaussians with diagonal covariance matrix).

This will additionally enable us to sample from the distribution, and interpret the latent

factors. To learn p(z) we also add the following regularization to our training objective:

Ep(x)[ KL(qϕ(z|x) || p(z)) ]. (7.11)

Alternatively, we can also exploit the degree of freedom in learning qϕ(z|x) and fix p(z) to be

N (0, I). In both cases, our overall objective becomes:

LCVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1
, qϕc2

) + βKL(qϕ(z|x) || p(z))]. (7.12)

Optimizing this objective alone could lead to unexplained components of information, for
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example the unique components. Alternatively, unique information present in the individual

views may be encoded in the “common” latent variable if the reconstruction benefits outweighed

the cost of the divergence between the posteriors of the encoders (the term corresponding to

the β).

In addition to these common latent components, we can learn unique latent components by

optimizing a traditional VAE objective (i.e. with λc = 0) for a subset of the latent variables.

Importantly we also need to ensure that the KL penalty for the unique component subset is

greater than for the common subset (so that it is beneficial to encode common information

in the common latent components). Our final objective becomes

LCVAE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + λcD(qϕc1
, qϕc2

)

+ βcKL(qϕc(zc|x) || p(zc)) + βuKL(qϕu(zu|x) || p(zu))], (7.13)

where βc and βu correspond to a multiplier enforcing the cost of encoding common and

unique information respectively. Importantly βu > βc > 0, resulting in a larger penalty on

the unique latent variables (otherwise all the information would be encoded in the “unique”

components). p(zu) and p(zc) are both sampled from N (0, I) of appropriate dimensionality.

We now show that, if the network architecture used for the VAE implements a generic

enough class of encoder/decoders our method will recover the GK common information.

Theorem 1 (GK VAE recovers the common information). Suppose our observations (x1,x2)

have GK common information defined through the random variable zc satisfying eq. 7.4-7.5

and that our parametric function class q(z|x) optimized over can express any function. Then,

our optimization (with βc = 0 and βu < 1) will recover latents ẑ = (ẑ1u, ẑ
2
u, ẑc) where ẑc is

the common random variable that maximizes the “stochastic” GK common information in

eq. 7.4-7.5, while ẑiu is the unique information of the i-th view, which maximizes I(xi; z
i
u, ẑc).

We provide the proof in Appendix F.1. Note that while the previous theorem guarantees

that we will be able to separate the common and unique factors at the block level, we might
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not be able to disentangle the individual common factors.

7.3.1 Quantifying the common information

Suppose D(qϕ1 , qϕ2) = 0. The term corresponding to the rate Rc of the VAE

Rc = Iq(Zc;X) = ExKL(qϕc(zc|x) || p(z)) (7.14)

is neither an upper nor lower bound on the true common information. It represents an

upper bound to the information encoded in the representation specified by qϕc(zc|x), but

does not bound the true common information in the data, since qϕ(z|x) itself is a variational

approximation.

To find a lower bound on the common information encoded in the dataset, we can use any

mutual information estimator Î that is a lower bound (see [108] for several). The approximate

common information can then be quantified by Î(Zq, X), where Zq ∼ qϕ(z|x). We report

both the rate Rc and Î in the paper. We emphasize that Î can be any mutual information

estimator. When the data generating distribution is known, as in our synthetic examples, we

employ the “Usable Information” estimator, described in Sect. 7.4.2, which is a variational

approximation [15].

7.3.2 Identifiability of the common and unique components

We now show that our optimization will in general identify the common and unique latent

components. This is an important question for ICA [63], as well as for disentanglement [95,96].

Usually we do not directly observe the latent factors z, but rather an observation generated

from them. We may then ask whether the common latent factors can still be reconstructed

from this observation. The following proposition show that this is indeed the case, as long as

the function generating f the observation is invertible, i.e., we can recover the latent factors

from the observation itself.
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Proposition 3. ( [149], Ex. 1): Define

z1 = (zc, z
1
u), z2 = (zc, z

2
u)

where zc, z
1
u, and z2u are mutually independent. Then for any invertible transformation ti the

random variable zc encodes all the common information:

zc = argmax
ẑ

CGK(t1(z1), t2(z2))

We provide the proof in Appendix F.1. The above proposition shows that when a set

of factors is shared between views and when the unique factors are sampled independently,

then the GK common random variable corresponds to shared latent factors. In particular,

if the observations xi are generated through an invertible function xi = f(zc, z
i
u) where

zc ∼ p(zc) corresponds to the shared factors, the proposition shows that such factors can be

recovered from the observations by maximizing the GK common information. In our GK

VAE optimization, we optimize the “stochastic” GK common information and we also find in

our experiments that we can (approximately) recover the latent factors from observations xi

generated from this process.

7.4 Experiments

We train our GK-VAE models with Adam using a learning rate of 0.001, unless otherwise

stated. When the number of ground truth latent factors is known, we set the size of the latent

vector of the VAE equal to the number of ground truth factors. To improve optimization,

we use the idea of free bits [76] and we set λfree-bits = 0.1. This was easier than using β

scheduling [21], since it only involved tuning one parameter. We set βu to be 10, βc to be 0.1

and λc = 0.1. We trained networks for 70 epochs, except for the MNIST experiments, where

we trained for 50 (details in the Appendix).

To ensure that the latents are shared to both encoders, during training we randomly

117



0 1 2 3 4 5
factor

0

1

2

3

4

5

6

7

8
la

te
nt

0 1 2 3 4
factor

0

1

2

3

4

5

6

la
te

nt

Figure 7.2: Latent traversals and DCI plots show optimization results in separation
of common and unique information. (Left) 3dshapes: The top 3 rows shows the unique
factors, the middle 3 the common (and the bottom 3 are the unique factors for the second
view). Ground truth generative model: factors 0,1,2 are unique; latent unique variables are
specified a priori to be latents: 0,1,2. (Right) dsprites: Top 2 rows; Unique: Middle 3;
Common. Ground truth generative model: factors 3,4 are unique. Unique latent variables
are specified a priori to be latents: 0,1.

sample z from either encoder qϕi
(zc|xi) with p = 0.5. We opted to randomly sample the

latents from each encoder, as opposed to performing averaging, to ensure that the latent

will always be a function of an individual view xi. This is in addition to the soft constraint

governed by λc in the loss.1

7.4.1 Evaluation Datasets

We primarily focus on the setting where the ground truth latent factors and generative model

are known, in order to quantitatively benchmark our approach. To do so, we constructed

datasets with ground truth latent factors so that some of the latent factors are shared between

each views. That is, the generative model for the data (x1,x2) is

x1 = f(z1u, zc), x2 = f(z2u, zc), (7.15)

where zc is shared between the views and ziu is the unique information encoded in the ith

view and f corresponds to a rendering function.

1Our experiments can be reproduced in approximately 3 days on a single GPU (g4dn instance).
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To construct such datasets, we modified the 3dshapes [20] and the dsprites dataset [101].

We select a subset of the latent factors to be shared between the views, while the remaining

factors are sampled independently for each view. The 3dshapes dataset [20] contains six

independent generating factors: floor color, background color, shape color, size, shape, and

viewpoint. Each latent factor can only take one of a discrete number of values. The dsprites

dataset [101] contains six independent generating factors: color, shape, scale, rotation, x

and y position. Each latent factor can only take one of a discrete number of values. When

we generate multi-view data following the generative model in eq. (7.15), we refer to these

datasets as Common-3dshapes and Common-dsprites respectively.

We also examine the Rotated Mnist Dataset. where the two views are two random digits

of the same class to which a random rotation is applied. In particular, the class of the digit

is common information between the views whereas the rotation is unique. We also examine

the synthetic video dataset Sprites (not to be confused with dsprites) described in [93] and

evaluate the common information in frames separated t frames apart. When possible, we

report the average results across 3 random initializations (additional runs are included in the

Appendix).

7.4.2 Metrics

DCI Disentanglement [37]. Let d be the dimension of the latent space and let t be

the true generating factors. The idea is to train a regressor fj(z) : Rd → R to predict the

ground truth factors tj for each j. This results in a matrix of coefficients that describe

the importance of each latent for predicting each ground truth factors. This can then be

visualized as a matrix where the size of the square reflects the coefficient. We use this metric

to evaluate disentangled representations. We used the random forest regressor, similar to [95]

to predict a discrete number of latent classes.
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floor hue (10) wall hue (10) bg. hue (10) scale (8) shape (4) angle (15) KL Total

Common -0.01 -0.02 -0.03 2.73 1.98 3.83 15.0
Unique 3.31 3.31 3.31 0.19 0.37 0.19 12.7
Total 3.31 3.31 3.31 2.69 1.98 3.82 27.7

Table 7.1: Usable Information (in bits) in representation for 3dShapes. The common informa-
tion is separated from the unique information. The ground truth factors were almost perfectly
encoded in the latents. The numbers in parenthesis represents the number of discrete factors
for each latent variable.

Usable Information [36,78,151]. We use this to approximate the mutual information

when H(X) is known, as it is in the datasets previously described. It is a lower bound

to mutual information. We use this to lower bound the information contained in the

representation Z in the next section.

7.4.3 Results

Separation of Common and Unique Latent Variables: We first examine whether our

formulation can correctly separate the common and unique latent factors. After optimizing a

network on our Common-3dshapes dataset we examined how much information about the

ground-truth latent factors were encoded in the common latents zc and the unique latents zu

(Table 1).

Given the encoded representation specified by qϕ(z|x), we evaluated the usable information

for the two latent components (zc and zu), as well as by using the complete latent variable

z. As done in previous work [95], we directly use the mean of qϕ(z|x) as our representation

z rather than sampling. In Table 1, we see that the common and unique information was

perfectly separated. Note, that information values reported are a lower bound to the true

information, as our variational approximation is a lower bound to Iq(Z;X) (which is itself a

variational approximation). Our method accurately encodes all common information between

views (ground truth: 3.32 bits for floor, wall, and background hue; 3 bits for scale; 2 bits for

shape; 3.91 bits for orientation).

We also performed these analyses on the Common-dsprites dataset and found similar
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Figure 7.3: Left. Traversals for Rotated Mnist. The unique components of the latent
(rows 1,2) appear to encode the “thickness" and rotation of the digit, whereas the common
components appear to represent the overall digit (rows 3-6); and also the output of view 1
does not depend on the latents in rows 7,8 (these correspond to the unique components for
view 2.) Center. Corresponding DCI matrix, where factor 0 corresponds to the label, while
factor 1 corresponds to the rotation (discretized into 10 bins). Right. Comparison against
contrastive implementation from [134], where the contrastive approach does not encode any
usable information about the unique factor (the rotation).

results (Table 2, Appendix). In particular, the unique latent factors corresponding to position

are encoded in the unique components of the latent representation, while the other factors are

encoded in the common latent representation. We emphasize that the generative model was

not used at all during training, and was only used for quantitative evaluation after training.

Additional runs are in Appendix F.5.

Rotated Mnist and Comparison with Contrastive Learning: As described before,

we generate a dataset of paired views of digits of the same class, each rotated by an independent

random amount. In this manner, the unique information is about the rotation, whereas the

common information is about the class. In Fig. 7.3 we see that the unique components of the

latent (rows 1, 2) appear to encode the rotation and “thickness" of the digit, whereas the

common components seem to represent the class of the digit (rows 3-6). Also, as expected,

the output of view 1 does not depend on the latents in rows 7, 8 which by construction

correspond to the unique components of view 2.

This setup is reminiscent of contrastive learning, where the goal is to learn a representation
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which is invariant to a random data augmentation of the input (such as a random rotation).

By construction, contrastive learning aims to encode the common information before and after

data augmentation, but may not encode any other information. This can lead to degraded

performance on downstream tasks, as the discarded unique information may still be important

for the task [135,140]. On the other hand, our GK-VAE separates the unique and common

information without discarding information.

To highlight this difference between approaches, we trained using a contrastive objective2

[134], and found that indeed while we can decode the shared class label, we cannot decode

the unique rotation angle of view 1 (discretized into 10 bins; Fig. 7.3, right). On the other

hand, using our method we recover the common and unique information.

Video Experiment: The existence of common information though time is another

important learning signal. To study it, we perform an experiment on the Sprites dataset

described in [93]. This dataset consists of synthetic sequences all with 8 frames. We optimized

using the same architecture and hyperparameters except we set λc = 0.5. We examine the

common information between frames t frames apart, approximated using the KL divergence

term. In particular, the two views are two frames (X1,Xt), where each pair belongs to a

different video sequences. In Fig. 7.4 we see that in general, as t increases the common

information between the frames decreases evidencing the fact that, due to the random

temporal evolution of the video, common information is lost as time progresses. We also note

that the common information appears to increase in the last frame; this could be that in

many of the sequences the sprite returns close to the initial state (see Fig. 3 in [93]).

Emergence of Disentangled Representations: While not the main focus of our

work, we qualitatively observed that our optimization led not only to separation of unique

and common information, but also in the emergence of interpretable/disentangled latent

factors. We quantify disentanglement using DCI score [37], which we show in Fig. 7.2. For

the dSprites, the disentanglement score was 0.54 (std 0.015) (averaged over 3 initializations),

2We used the code from: https://github.com/HobbitLong/CMC (BSD 2-Clause License)
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Figure 7.4: Sprites [93] video experiment. Left. Example views separated 2 frames apart.
Right Common information as a function of delay between frames. In general common
information is decreasing as the delay gets longer.

and for the 3dshapes the DCI score was 0.83 (std: 0.04 (averaged over 3 initializations).

In contrast a standard β-VAE with the same hyper-parameters (β = βu = 10) and z = 8

obtained a DCI score of 0.44 and 0.76 over 3 random initializations for dsprites and 3dshapes,

respectively. Additionally, these plots visually reaffirm that the common and unique factors

are identified at the block-level. We also include traversals of the prior shown in Fig. 7.2 to

show qualitatively that the learned factors of variation are meaningful.

Our Common VAE therefore disentangled latents better than a β-VAE in these tasks. [3]

argue that deep networks have an implicit bias toward recovering disentangled factor of

variations. While this is not enough on its own to uniquely identify the ground-truth latent

variables (Sect. 7.2), our results suggest that having the additional “weak supervision” coming

from the sepatation of common and unique information was also helpful for recovering

disentangled and interpretable factors, even when not explicitly optimizing for it.

7.5 Discussion

We show formally and empirically that we can partition the latent representation of multi-view

data into a common and unique component, and also provide a tractable approximation

for the Gács-Körner common information between high dimensional random variables. In

many practical scenarios where high dimensional data comes from multiple sensors, such as

neuroscience and robotics, it is desirable to understand and quantify what is common and
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what is unique between the observations. Motivated by the definition of common information

proposed by Gács and Körner [45], we propose a variational relaxation and show that it can be

efficiently learned from data by training a slighly modified VAE. Empirically, we demonstrate

that our formulation allows us to learn semantically meaningful common and unique factors

of variation. Moreover, our formulation allows us to approximate the Gács-Körner common

information for realistic high-dimensional data, which has been a difficult problem [113]. Our

formulation is also a generative multi-view model that allows sampling and manipulation of

the common and unique factors.

As the common information was motivated by an information theoretic coding problem [45],

our work naturally relates to compression schemes. Indeed, approximate forms of the common

information, discussed further in Appendix F.3, are scenarios for distributed compression,

since the common information needs to only be transmitted once [113, 114]. It may be

interesting to combine our approach with recent advances in practical compression algorithms

that leverage VAEs [137].
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Chapter 8

Conclusion

In animals, the perceptual representations they form of the environment underlies their

remarkable and flexible behavior. The success of Deep Neural Networks has been driven by a

paradigmatic shift towards learning task specific representations through optimization, as

opposed to using hand-engineered features. This dissertation consists of “artificial neuroscience”

experiments on these artificial networks to better understand how they learn to process and

represent inputs.

We find internal representations in trained deep neural networks capture the key features

of multi-area neural recordings during a perceptual decision-making task, where minimal

sufficient representations of sensory information emerge along a cortical hierarchy (Chapter 2

and Chapter 3). We then show that these minimal sufficient representations emerge through

complex learning dynamics beginning during the early phases of training where additional

information not relevant to the task is acquired, but later discarded (Chapter 4). This

initial stage of training is critical for the network: sensory deficits during this initial period

permanently affect performance and learned representations, in a remarkably similar fashion

to critical learning periods observed in humans and other animals (Chapter 5).

We also study how multisensory information can be decomposed, and develop novel

approximations to compute the redundant information shared between a set of sources about
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a target (Chapter 6), and show that the common information shared between a set of sources

can be used to guide the learning of meaningful representations (Chapter 7).

8.1 Implications for the Brain

This dissertation began with using trained artificial networks to generate hypotheses for

cortical computation. This approach of using trained artificial networks as cortical models

needs to be done carefully to generate neuroscientific impact, as these models often lack many

biological details and constraints; for example they do not model neural spiking. Further,

these deep neural networks themselves are challenging to understand.

In the subsequent work in this dissertation, I made the conscious decision to focus on

understanding the deep networks themselves independent of their use as cortical models,

however there are intriguing connections. In particular, we found that a noisy learning process

(coming from training with SGD with a small batch size and large learning) was important for

learning optimal (minimal sufficient) representations. This suggests one potential benefit of

seemingly noisy neural data is that learning to process information with such noise can lead

to more minimal sufficient (or optimal) representations. Such representations were consistent

with neural representations of monkeys during a perceptual decision-making task (Chap. 2

and Chap. 3).

Next, we observed critical learning periods for multisensory integration in artificial deep

networks, which mirrored many of the phenomenon observed in animal experiments, including

altered behavior (quantified by altered generalization ability) and learned representations.

Critically, to replicate these observations, we only needed to consider temporary perturbations

to the data distribution early during learning, and did not need to include any plasticity or

biological factors often used for explaining critical learning periods. An interpretation of our

results is that critical learning periods may be a general consequence of a network or agent

that needs to learn from experience through many local parameter (or synaptic) updates
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with a non-convex loss landscape.

8.2 Potential Directions for Future Research

There are some natural directions for future research, that builds upon some of the results

presented in this dissertation. In particular, it may now be possible to develop a mathemat-

ical theory explaining critical learning periods in terms of temporary changes to the data

distribution. Additionally, our information theoretic approximations can be directly applied

to neural data. For example, our notion of Usable Information can be helpful for formalizing

the information that is accessible to biological decoders, and may be helpful for disentangling

information usage from the presence of information in an area. Additionally, our approxima-

tion of the Redundant Information (Chapter 6) and common information (Chapter 7) can

now be applied for real-world high dimensional inputs (such as high dimensional neural data

from multiple brain areas), and may be helpful for providing insight into multi-area neural

processing.
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Appendix A

Supplementary Material for Chapter 2

A.1 Task and training details

A.1.1 Somatomotor reaction time visual discrimination task and

recordings from PMd:

The task, training and electrophysiological methods used to collect the data used here have

been described previously [24] and are reviewed briefly below. All surgical and animal care

procedures were performed in accordance with National Institutes of Health guidelines and

were approved by the Stanford University Institutional Animal Care and Use Committee.

Two trained monkeys (Ti and Ol) performed a visual reaction time discrimination task. The

monkeys were trained to discriminate the dominant color in a central static checkerboard

composed of red and green squares and report their decision with an arm movement. If

the monkey correctly reached to and touched the target that matched the dominant color

in the checkerboard, they were rewarded with a drop of juice. This task is a reaction time

task, so that monkeys initiated their action as soon as they felt they had sufficient evidence

to make a decision. On a trial-by-trial basis, we varied the signed color coherence of the

checkerboard, defined as (R−G)/(R +G), where R is the number of red squares and G the

number of green squares. The color coherence value for each trial was chosen uniformly at
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random from 14 different values arranged symmetrically from 90% red to 90% green. Reach

targets were located to the left and right of the checkerboard. The target configuration (left

red, right green; or left green, right red) was randomly selected on each trial. Both monkeys

demonstrated qualitatively similar psychometric and reaction-time behavior. 996 units were

recorded from Ti (n=546) and Ol (n=450) while they performed the task [24]. Monkey Ol

and Ti’s PMd units both had low choice color probability. Reported analyses from PMd data

use units pooled across Monkey Ol and Ti.

A.1.2 RNN description and training

We trained a continuous-time RNN to perform the checkerboard task. The RNN is composed

of N artificial neurons (or units) that receive input from Nin time-varying inputs u(t) and

produce Nout time-varying outputs z(t). The RNN defines a network state, denoted by

x(t) ∈ RN ; the ith element of x(t) is a scalar describing the “currents” of the ith artificial

neuron. The network state is transformed into the artificial neuron firing rates (or network

rates) through the transformation:

r(t) = f(x(t)), (A.1)

where f(·) is an activation function applied elementwise to x(t). The activation function is

typically nonlinear, endowing the RNN with nonlinear dynamics and expressive modeling

capacity [50]. In this work, we use f(x) = max(x, 0), also known as the rectified linear unit,

i.e., f(x) = relu(x). In the absence of noise, the continuous time RNN is described by the

equation

τ ẋ(t) = −x(t) +Wrecr(t) +Winu(t) + brec + ϵt, (A.2)

where τ is a time-constant of the network, Wrec ∈ RN×N defines how the artificial neurons

are recurrently connected, brec ∈ RN defines a constant bias, Win ∈ RN×Nin maps the RNN’s
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inputs onto each artificial neuron, and ϵt is the recurrent noise. The output of the network is

given by a linear readout of the network rates, i.e.,

z(t) = Woutr(t), (A.3)

where Wout ∈ RNout×N maps the network rates onto the network outputs.

We trained RNNs to perform the checkerboard task as follows. For all networks, unless

we explicitly varied the amount of units, we used Nin = 4, N = 300, and Nout = 2.

The four inputs were defined as:

1. Whether the left target is red (-1) or green (+1).

2. Whether the right target is red (-1) or green (+1).

3. Signed coherence of red (ranging from -1 to 1), (R−G)/(R +G).

4. Signed coherence of green (ranging from -1 to 1), (G−R)/(R+G). Note that, prior to

the addition of noise, the sum of the signed coherence of red and green is zero.

The inputs, u(t) ∈ R4, were defined at each time step, t, in distinct epochs. In the ‘Center

Hold’ epoch, which lasted for a time drawn from distribution N (200 ms, 502 ms2), all inputs

were set to zero. Subsequently, during the ‘Targets’ epoch, which lasted for a time drawn

from distribution U [600 ms, 1000 ms], the colors of the left and right target were input to

the network. These inputs were noiseless, as illustrated in Fig. 2.1, to reflect that target

information is typically unambiguous in our experiment. Following the ‘Targets’ epoch, the

signed red and green coherences were input into the network during the ‘Decision’ epoch.

This epoch lasted for 1500 ms. We added zero mean independent Gaussian noise to these

inputs, with standard deviation equal to 5% of the range of the input, i.e., the noise was

drawn from N (0, 0.12). At every time point, we drew independent noise samples and added

the noise to the signed red and green coherence inputs. We added recurrent noise ϵt, adding
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noise to each recurrent unit at every time point, from a distribution N (0, 0.052). Following

the ‘Decision’ epoch, there was a ‘Stimulus Off’ epoch, where the inputs were all turned to 0.

The two outputs, z(t) ∈ R2 were defined as:

1. Decision variable for a left reach.

2. Decision variable for a right reach.

We defined a desired output, zdes(t), which was 0 in the ‘Center Hold’ and ‘Targets’ epochs.

During the ‘Decision’ epoch, zdes(t) = 1. In the ‘Stimulus Off’ epoch, zdes(t) = 0. In RNN

training, we penalized output reconstruction using a mean-squared error loss,

Lmse =
1

|T |
∑
t∈T

|z(t)− zdes(t)|2 . (A.4)

The set T included all times from all epochs except for the first 200 ms of the ‘Decision’ epoch

from the loss. We excluded this time to avoid penalizing the output for not immediately

changing its value (i.e., stepping from 0 to 1) in the ‘Decision’ epoch. Decision variables

are believed to reflect a gradual process consistent with non-instantaneous integration of

evidence, e.g., as in drift-diffusion style models, rather than one that steps immediately to a

given output.

To train the RNN, we minimized the loss function:

L = Lmse +
λin

NNin
∥Win∥2F +

λrec

N2
∥Wrec∥2F +

λout

NNout
∥Wout∥2F +

λr

T

∑
t

∥r(t)∥2 + λΩLΩ,(A.5)

where

• ∥A∥F denotes the Frobenius norm of matrix A

• λin = λrec = λout = 1, λr = 0 to penalize larger weights.

• λΩ = 2
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• LΩ is a regularization term that ameliorates vanishing gradients proposed and is

described in prior literature [106,127].

During the training process, we also incorporated gradient clipping to prevent exploding

gradients [106]. Training was performed using stochastic gradient descent, with gradients

calculated using backpropagation through time. For gradient descent, we used the Adam

optimizer, which is a first order optimizer incorporating adaptive gradients and momentum

[74].

Every 200 or 500 training epochs, we generated 2800 cross-validation trials, 100 for each

of the 28 possible conditions (14 coherences × 2 target configurations). For each trial, there

was a correct response (left or right) based on the target configuration and checkerboard

coherence. When training, we defined a “correct decision” to be when the RNNs DV for

the correct response was greater than the other DV and the larger DV was greater than a

pre-set threshold of 0.6. We evaluated the network 500ms before the checkerboard was turned

off (the end of the trial). We required this criteria to be satisfied for at least 65% of both

leftward and rightward trials. We note that this only affected how we terminated training. It

had no effect on the backpropagated gradients, which depended on the mean-squared-error

loss function. Note that a trial that outputted the correct target but did not reach the 0.6

threshold would not be counted towards the 65% criteria.

When testing, we defined the RNNs decision to be either: (1) whichever DV output (for

left or right) first crossed a pre-set threshold of 0.6, or (2) if no DV output crossed the pre-set

threshold of 0.6 by the end of the ‘Decision epoch,’ then the decision was for whichever DV

had a higher value at the end of this epoch — an approach that is well established in models

of decision-making [19, 109]. If the RNN’s decision on a single trial was the same as the

correct response, we labeled this trial ‘correct.’ Otherwise, it was incorrect. The proportion

of decisions determined under criterion (2) was negligible (0.5% across 100 trials for each of

28 conditions). An interpretation for criterion (2) is that if the RNN’s DV has not achieved

the threshold certainty level by the end of a trial, we assign the RNN’s decision to be the
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Hyperparameter Value

Number of units 300
Number of areas 3
Learning rate 5e-5
Time Constant 50ms
Discretization bin width 10ms
Rate regularization 0
Weight regularization 1
Activation function Relu
Feedforward connection 10%
Feedback connections 5%
Dale law Yes

Table A.1: Hyperparameters of exemplar RNN.

direction for which its DV had the largest value. Finally, in training only, we introduced

‘catch’ trials 10% of the time. On 50% of catch trials, no inputs were shown to the RNN and

zdes(t) = 0 for all t. On the remaining 50% of catch trials, the targets were shown to the

RNN, but no coherence information was shown; likewise, zdes(t) = 0 for all t on these catch

trials.

We trained the three-area RNNs by constraining the recurrent weight matrix Wrec to

have connections between the first and second areas and the second and third areas. In

a multi-area network with N neurons and m areas, each area had N/m neurons. In our

3-area networks, each area had 100 units. Of these 100 units, 80 were excitatory and 20

were inhibitory. Excitatory units were constrained to have only positive outgoing weights,

while inhibitory units were constrained to have only negative outgoing weights. We used the

pycog repository [127] to implement these architecture constraints. The parameters for the

exemplar RNN used in the paper are shown in Table A.1. In our hyperparameter sweeps,

we varied the hyperparameters of the exemplar RNN. For each parameter configuration, we

trained 8 different networks with different random number generator seeds.
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A.2 Additional description of analyses

A.2.1 Decoding analysis for PMd data

For PMd data, we calculated decoding accuracy using 400 ms bins. We report numbers in

a window [-300ms, +100 ms] aligned to movement onset. We used the MATLAB classify

command with 75% training and 25 % test sets. Decoding analyses were performed using 5-31

simultaneously recorded units from Plexon U-probes and the averages reported are across 51

sessions. To assess whether decoding accuracies were significant on a session by session basis,

we shuffled the labels 200 times and estimated the 1st and 99th percentiles for this surrogate

distribution. The decode accuracy for direction, color, and context variables for a session was

judged to be significant if it lay outside this shuffled accuracy. Every session had significant

direction decode, while no session had significant color and context decode accuracy.

A.2.2 Decoding and Mutual information for RNNs

We used a decoder and mutual information approximation to quantify the amount of infor-

mation (color, context, direction) present in the network. We trained a neural network to

predict a relevant choice (for example, color) on a test set from the activity of a population

of units. We used 700 trials for training, and 2100 independent trials for testing. To generate

the trials for training and testing, we increased the recurrent noise to be drawn from the

distribution (N (0, 0.12)) to prevent overfitting. For each trial, we averaged data in a window

[-300ms, +100ms] around reaction time.

We trained a neural network with 3 layers, 64 units per layer, leakyRelu activation

(α=0.2), and dropout (p=0.5), using SGD, to predict the choice given the activity of the

population. We removed the leakyRelu activation for the linear network, and increased

dropout (p=0.8). For both the nonlinear and linear network, we trained the neural network

to minimize the cross-entropy loss. We used the same neural network from the decode to

compute an approximation to mutual information, described in Supplementary Note 2.
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A.2.3 RNN behavior

To evaluate the RNN’s psychometric curve and reaction-time behavior, we generated 200

trials for each of the 28 conditions, producing 400 trials for each signed coherence. For these

trials, we calculated the proportion of red decisions by the RNN. This corresponds to all trials

where the DV output for the red target first crossed the preset threshold of 0.6; or, if no DV

output crossed the threshold of 0.6, if the DV corresponding to the red target exceeded that

corresponding to the green target. The reaction time was defined to be the time between

checkerboard onset to the first time a DV output exceeded the preset threshold of 0.6. If the

DV output never exceeded a threshold of 0.6, in the reported results, we did not calculate a

RT for this trial.

A.2.4 dPCA

Demixed principal components analysis (dPCA) is a dimensionality reduction technique

that provides a projection of the data onto task related dimensions while preserving overall

variance [85]. dPCA achieves these aims by minimizing a loss function:

Ldpca =
∑
c

∥Xc − PcDcX∥2. (A.6)

Here, Xc refers to data averaged over a “dPCA condition” (such as time, coherence, context,

color, or direction), having the same shape as X ∈ RN×cT , but with the entries replaced with

the condition-averaged response. The aim is to recover (per dPCA condition c) a Pc and

Dc matrix. Pc is constrained to have orthonormal columns, while Dc is unconstrained. The

number of columns of Pc and rows of Dc reflects the number of components one seeks to

find per condition. We project the data onto the principal components DcX to observe the

demixed components (Fig. 2.4b). The column of Pc reflects how much the demixed data

contributes to each neuron. We use the principal axes from Pc to compute the axis overlap, as

in Kobak et al [85]. We used axes of dimension 1 for RNNs, which were sufficient to capture
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most color, context, or direction variance. For the neural data, we used five components for

direction, color and context since the PMd data was higher dimensional than the RNNs.

Our results were consistent if we used dPCA or TDR (Fig. A.8). The top principal axis

from each Pc are analogous to the axes found from TDR. Both methods seek to reconstruct

neural activity from demixed components. To apply TDR, one explicitly parametrizes task

variables (See Targeted Dimensionality Reduction (Appendix A.2.5)), while DcX serves the

purpose of finding demixed components in dPCA. Overall, the choice of using dPCA or TDR

to find the axes did not affect our conclusions.

For multi-area analyses, we separated the units for each area and found the task-relevant

axes for this subset of units. For the inter-area analyses, we used RNNs with only excitatory

connections, and therefore found the color and direction axis using only the excitatory units

(Fig. A.9). In all other analyses, all units were used to identify the axes. For RNN activity,

we performed dPCA using activity over the entire trial. For PMd activity, we used a window

of (0ms, 800ms) relative to checkerboard onset. We restricted time windows for the PMd

activity because we wanted to minimize movement related variance.

A.2.5 Targeted Dimensionality Reduction

Targeted dimensionality reduction (TDR) is a dimensionality reduction technique that finds

low dimensional projections that have meaningful task interpretations. We applied TDR as

described by the study by [99]. We first z-scored the firing rates of each of the 300 units across

time and trials, so that the firing rates had zero mean and unit standard deviation. We then

expressed this z-scored firing rate as a function of task parameters using linear regression,

ri,t(k) = β1
i,tcolor(k) + β2

i,tdirection(k) + β3
i,tcontext(k). (A.7)

Here, ri,t(k) refers to the firing rate of unit i at time t on trial k. The total number of trials

is Ntrials. This regression identifies coefficients βm
i,t that multiply the mth task parameter to
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explain ri,t(k). We defined the task parameters as follows:

• color(k) was the signed coherence of the checkerboard on trial k, given by (R−G)/(R+

G).

• direction(k) was −1 for a left decision and +1 for a right decision.

• context(k) was the target orientation, taking on −1 if the green (red) target was on

the left (right) and +1 if the green (red) target was on the right (left).

We did not fit a bias term since the rates were z-scored and therefore zero mean. For each

unit, i, we formed a matrix Fi having dimensions Ntrials × 3, where each row consisted of

[color(k), direction(k), context(k)]. We define ri,t to be the rate of unit i at time t across

all trials. We then solved for the coefficients, denoted by βi,t = [β1
i,t, β

2
i,t, β

3
i,t]

T , using least

squares,

βi,t = (FT
i Fi)

−1FT
i ri,t. (A.8)

Each βi,t is therefore a 3× 1 vector, and concatenating βi,t across t results in βi, a 3× T

matrix, of which there are N . We then formed a tensor where each βi is stacked, leading to

a tensor with dimensions 3 × T × N . For each of the 3 task variables, we found the time

T where the norm of the regression coefficients, across all units, was largest. For the mth

task variable, we denote the vector βm
max ∈ RN to be a vector of coefficients that define a

1-dimensional projection of the neural population activity related to the mth task variable.

These vectors are what we refer to as the task related axes. To orthogonalize these vectors,

we performed QR decomposition on the stacked βmax matrix [β1
max,β

2
max,β

3
max], which is an

N × 3 matrix. This decomposition finds orthogonal axes so that the axes would capture

independent variance.
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A.2.6 Choice probability

To calculate the choice probability for a single unit, we first computed the average firing rate

in a window from [−300 ms, +100 ms] around the reaction time for each trial. We used the

average firing rates calculated across many trials to create a firing rate distribution based

on either the color decision (trials corresponding to a red or green choice) or the direction

decision (trials corresponding to a left or right choice).

To compute the color choice probability, we constructed the firing rate distributions

corresponding to a green choice or red choice. If these two distributions are non-overlapping,

then the neuron has a color choice probability of 1; the average firing rate will either overlap

with the red or green firing rate distributions, but not both. On the other hand, if the two

distributions are completely overlapping, then the neuron has a color choice probability of

0.5; knowing the firing rate of the neuron provides no information on whether it arose from

the red or green firing rate distribution. When there is partial overlap between these two

distributions, then firing rates where the distributions overlap are ambiguous. We computed

choice probability as the area under the probability density function at locations when the two

distributions did not overlap, divided by 2 (to normalize the probability). To calculate the

direction choice probability, we repeated the same calculation using firing rate distributions

corresponding to a left choice or right choice.

A.2.7 Canonical correlation

We applied CCA to assess the similarity between neural activity and the artificial unit

activity [132]. Before applying CCA, we performed principal component analysis to reduce

the dimensionality of the artificial and neural activity to remove noise [132]. We reduced

the dimensionality to 3 and 8 for RNNs and PMd, respectively. These dimensionalities

were chosen as they captured over 88% of the variance for each dataset when aligned to

checkerboard. We report the average CCA correlation coefficients in Fig. 2.2 using times in a

window of [0, 400ms] aligned to checkerboard onset for the PMd and RNN activity. The data
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was binned in 10ms bins.

A.2.8 Analyses of inputs and activity

In order to disentangle the effects of external inputs and recurrence, in Fig. 2.4a, we evaluated

the input contribution and overall activity. For Area 1, we defined the input contribution

as Winut, and for areas 2 and 3, we defined the input contribution as W21r
1
t , and W32r

2
t

respectively, where rmt denotes the activity of the units in area m. The activity rmt corresponds

to the firing rate that experimentalists could measure, reflecting a combination of input and

recurrent interactions. For constant inputs, a stable value of the activity implies there is

little recurrent processing.

A.2.9 Inter-Area Projection Analyses

To calculate the overlap between the color and direction axes with the potent and null spaces,

we performed singular value decomposition on the inter-area connections, W21 and W32. W21

and W32 were 80× 80 matrices, and were full rank. Nevertheless, they had near some zero

singular values, indicating that the effective rank of the matrix was less than 80. We defined

the potent dimensions to be the top m right singular vectors, while the null dimensions were

the remaining 80−m right singular vectors.

We performed the analyses of Fig. 2.5a,b by varying the potent and null dimensions,

sweeping m from 1 to 80. For each defined potent and null space, we calculated the axis

overlap between the direction (or color) axis and the potent (or null) space by computing the

L2-norm of the orthogonal projection (squared). We report the squared quantity because the

expectation of the norm of a projection of a random vector onto an m-dimensional subspace

of an n-dimensional space is m/n. We include an approximation of the expectation of the

projection of a random vector in Fig. 2.5a,b by averaging the projection of 100 random vectors.

Our results show that the direction axis was always more aligned with potent dimensions than

the color axis, irrespective of the choice of m, and that the direction axis was preferentially
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aligned with the top singular vector.

A.2.10 Visualization of neural activity in a low dimensional space

The activity of multiple units on a single trial is high dimensional, with dimension equal to

the number of units. To visualize the activity in a lower dimensional space, dimensionality

reduction techniques can be used. In addition to TDR, we also utilized Principal Components

Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (tSNE) to visualize neural

activity in low-dimensional spaces.

PCA finds a linear low-dimensional projection of the high dimensional data that maximizes

captured variance. We performed PCA on both the experimental data and RNN rates. PCA

is an eigenvalue decomposition on the data covariance matrix. To calculate the covariance

matrix of the data, we averaged responses across conditions. This reduces single trial variance

and emphasizes variance across conditions. Firing rates were conditioned on reach direction

and signed coherence. In both the experimental data and RNN rates, we had 28 conditions

(14 signed coherences each for left and right reaches).

tSNE embeds high dimensional data in a low dimensional manifold that is nonlinear,

enabling visualization of activity on a nonlinear manifold. The tSNE embedding maintains rela-

tive distances between data points when reducing dimensionality, meaning that points closer in

high dimensional space remain closer when viewed in a low dimensional manifold. We projected

our data into a two dimensional manifold. We used the default parameters from the sickit-learn

implementation (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html).

The data visualized under tSNE was averaged in a window [-300ms, +100ms] around reaction

time.
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A.3 Supplementary Figures
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Figure A.1: Psychometric and reaction time curves for single-area (a) and multi-area RNNs
(b) with Dale’s law trained for this study. The hyperparameters used for these RNNs are
described in Table A.1. Gray lines represent individual RNNs and the black solid line is the
average across all RNNs.
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Figure A.2: Single-area RNNs do not naturally reproduce PMd dynamics. (a-d)
Reproduced from Fig. 2.2 for comparison. (e) Single-area RNN neural trajectories in the
top 2 PCs. Single-area RNNs had four trajectory motifs for each combination of (left vs
right) and (red vs green). In the Targets epoch, the RNN’s activity approached one of two
locations in state space (light green dots), corresponding to the two target configurations. In
the checkerboard epoch, trajectories separate based on the coherence of the checkerboard,
causing 4 total distinct trajectory motifs. Although the direction decision is not separable in
the principal components, the direction decision is separable in higher dimensions (see the
direction axis found using dPCA in Fig. A.7a). (f) dPCA variance captured for the color
(28%), context (26%), and direction (36%) axes for the RNN. The color and direction decisions,
as well as the target configuration context, could be decoded from the RNN population
activity well above chance. (g) Example RNN PSTHs, demonstrating coherence selectivity
(top) and mixed selectivity (bottom). (h) Choice probability for simulated single-area RNN
units. Many units have high color choice probabilities.
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Figure A.3: Hyperparameter sweeps for single-area RNNs. (a) dPCA color and
direction variance captured for three different regularization parameters (weight regularization:
λw, rate regularization: λr, and learning rate: ϵ). There is a significant color representation in
all optimized single-area RNNs. (b) Decode accuracy of the color and direction decision; color
accuracy is at 1 (hidden behind direction accuracy) for the three different hyper parameters.
The color decode accuracy (maroon) is at nearly 1 across all tested hyperparameters. These
points are behind the direction decode accuracy (orange). (c) Mutual information estimate.
The color mutual information (maroon) is nearly 1 across all tested hyperparameters.
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Figure A.10: Relationship between PCs and inter-area potent space. (a) Variance
explained of the excitatory units in Area 1 by the top principal components and top dimensions
of potent space of W21, swept across all dimensions. (b) Variance explained of the excitatory
units in Area 2 by the top principal components and top dimensions of potent space of
W32, swept across all dimensions. These plots show that the connections between areas do
not necessarily propagate the most dominant axes of variability in the source area to the
downstream area. Excitatory units were used for the comparison because only excitatory
units are read out by subsequent areas. These results were upheld when comparing to the
variance explained by the top principal components obtained from all units.
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Figure A.11: Projections between Area 1 and Area 2 for a network without Dale’s law (left)
and a 2 area network (right), averaged across 8 trained networks. The conventions are the
same as in Fig. 2.5. The alignment of the direction axis with the top singular vectors is
reduced (compare to Fig. 2.5).
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Figure A.12: Structure of W33 of Wrec. Full connectivity matrix of W33, reordered so
that the structured excitatory components lie at the top left. The matrix is composed of a
structured excitatory component (orange and blue), a set of random excitatory units (black),
and a set of inhibitory units (dashed black), with non-obvious structure. The averaged
connectivity matrix is shown in Fig. 2.6e.
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A.4 Supplementary Notes

Supplementary Note 1: Viewing the CB task as an XOR task

Here we show that a nonlinearity is necessary to solve the task, proving that the task cannot

be solved by the linear layer Win. First, we note that the Checkerboard task corresponds

to an exclusive-or (XOR) problem. If we identify the two target configurations as 0 or

1 (corresponding to green on left, or green on right respectively, with the red target on

the complement side), and the dominant checkerboard color as 0 or 1 (for green or red,

respectively), then the output direction d (identified as 0: left, 1: right) can be seen be in

Table S1.

If the representation r was purely input driven, then:

r = Winu, (A.9)

Our readout was a linear readout of the rates, i.e:

d = Woutr (A.10)

The inputs u are the four dimensional input we trained with. But u is a linear transformation

of two variables: the target orientation θ, and checkerboard color c, which each can take two

values. That is, if we let q = [θ, c], then, the inputs could be written as a linear transformation

of q:

u = Wq, (A.11)

where W is a linear transformation. Since the mappings from q to d are all linear, they can
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be combined into a single linear transformation W̃, i.e.,

d = WoutWinWq = W̃q. (A.12)

It is not possible for a linear classifier to solve the XOR problem by classifying correct

outputs [50]. Hence, the trained RNNs cannot purely be input driven, and requires nonlinearity

from the recurrent interactions to solve the task. After nonlinear processing, the left or right

decision could be achieved by a linear readout of the units.

target configuration color direction

0 0 0
0 1 1
1 0 1
1 1 0

Table A.2: Checkerboard task truth table

context signed color signed motion direction

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Table A.3: [99] model truth table
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Supplementary Note 2: Mutual Information Estimation

The entropy of a distribution is defined as

H(x) = Ex∼p(x)

[
log

1

p(x)

]
. (A.13)

The mutual information, I(X;Y ), can be written in terms on an entropy term and as

conditional entropy term:

I(Z;Y ) = H(Y )−H(Y |Z). (A.14)

We want to show that the usable information lower bounds the mutual information:

I(Z;Y ) ≥ Iu(Z;Y ) := H(Y )− LCE(p(y|z), q(y|z)) (A.15)

It suffices to show that:

H(Y |Z) ≤ LCE (A.16)

where LCE is the cross-entropy loss on the test set. For our study, H(Y ) represented the

known distribution of output classes, which in our case were equiprobable.

H(Y |Z) := E(z,y)∼p(z,y)

[
log

1

p(y|z)

]
(A.17)

= E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
︸ ︷︷ ︸

cross-entropy loss

−Ez∼p(z) [KL(p(y|z)||q(y|z)]︸ ︷︷ ︸
≥0

, (A.18)

≤ E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
:= LCE (A.19)

To approximate H(Y |Z), we first trained a neural network with cross-entropy loss to predict

the output, Y , given the hidden activations, Z, learning a distribution q(y|z). The KL denotes

the Kullback-Liebler divergence. We multiplied (and divided) by an arbitrary variational

distribution, q(y|z), in the logarithm of equation A.17, leading to equation A.18. The first
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term in equation A.18 is the cross-entropy loss commonly used for training neural networks.

The second term is a KL divergence, and is therefore non-negative. In our approximator, the

distribution, q(y|x), is parametrized by a neural network. When the distribution q(y|z) =

p(y|z), our variational approximation of H(Y |Z), and hence approximation of I(Z;Y ) is

exact [15,78,108].

In the paper, we additionally report the accuracy of the neural network on the test set.

This differs from the cross-entropy in that the cross-entropy incorporates a weighted measure

of the accuracy based on how “certain” the network is, while the accuracy does not.
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Appendix B

Supplementary Material for Chapter 3

B.1 Materials and Methods

B.2 Additional description of analyses

Decoding analysis for DLPFC and PMd data

For DLPFC and PMd data, we calculated decoding accuracy using 400 ms bins. We report

numbers in a window [-300ms, +100 ms] aligned to movement onset. We used the Python

sklearn.svm.SVC command with 80% training and 20 % test sets. Decoding analyses were

performed using 2-49 simultaneously recorded units from Plexon U-probes and the averages

reported are across PMd and DLPFC sessions, respectively. To assess whether decoding

accuracies were significant, we choose confidence interval CI = 0.5 + SEM ∗ 2.58 (99

percentile). The decoding accuracy for direction, color and context variables of a session

was judged to be significant if it lies above the CI. For DLPFC, direction, color and context

decoding accuracy of 100%, 80.4%, 90.2% sessions were judged to be significantly above

chance; for PMd, 100%, 58.6%, 55.2% sessions demonstrated significant decoding accuracy to

direction, color and context.

Mutual information was calculated by computing H(Y )− LCE where H(Y ) was 1 and
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LCE denotes the cross entropy loss (in bits). We computed the decoding and information only

for sessions with decoding accuracy significantly above chance. Negative mutual information

was set to zero.

B.2.1 Decoding and Mutual information for RNNs

We used a decoder and mutual information approximation to quantify the amount of infor-

mation (color, context, direction) present in the network. We trained a neural network to

predict a relevant choice (for example, color) on a test set from the activity of a population

of units. We used 700 trials for training, and 2100 independent trials for testing. To generate

the trials for training and testing, we increased the recurrent noise to be drawn from the

distribution (N (0, 0.12)) to prevent overfitting. For each trial, we averaged data in a window

[-300ms, +100ms] around reaction time.

We trained a neural network with 3 layers, 64 units per layer, leakyRelu activation

(α=0.2), and dropout (p=0.5), using stochastic gradient descent, to predict the choice given

the activity of the population. We removed the leakyRelu activation for the linear network,

and increased dropout (p=0.8). For both the nonlinear and linear network, we trained the

neural network to minimize the cross-entropy loss. We used the same neural network from

the decode to compute an approximation to mutual information, described in Supplementary

Note 2.

B.2.2 RNN behavior

To evaluate the RNN’s psychometric curve and reaction-time behavior, we generated 200

trials for each of the 28 conditions, producing 400 trials for each signed coherence. For these

trials, we calculated the proportion of red decisions by the RNN. This corresponds to all trials

where the DV output for the red target first crossed the preset threshold of 0.6; or, if no DV

output crossed the threshold of 0.6, if the DV corresponding to the red target exceeded that

corresponding to the green target. The reaction time was defined to be the time between
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checkerboard onset to the first time a DV output exceeded the preset threshold of 0.6. If the

DV output never exceeded a threshold of 0.6, in the reported results, we did not calculate a

RT for this trial.

B.2.3 dPCA

Demixed principal components analysis (dPCA) is a dimensionality reduction technique

that provides a projection of the data onto task related dimensions while preserving overall

variance [85]. dPCA achieves these aims by minimizing a loss function:

Ldpca =
∑
c

∥Xc − PcDcX∥2. (B.1)

Here, Xc refers to data averaged over a “dPCA condition” (such as time, coherence, context,

color, or direction), having the same shape as X ∈ RN×cT , but with the entries replaced with

the condition-averaged response. The aim is to recover (per dPCA condition c) a Pc and

Dc matrix. Pc is constrained to have orthonormal columns, while Dc is unconstrained. The

number of columns of Pc and rows of Dc reflects the number of components one seeks to

find per condition. The column of Pc reflects how much the demixed data contributes to

each neuron. We use the principal axes from Pc to compute the axis overlap, as in Kobak et

al [85]. We used axes of dimension 1 for RNNs, which were sufficient to capture most color,

context, or direction variance. For the neural data, we used five components for direction,

color and context since the PMd data was higher dimensional than the RNNs.

For multi-area analyses, we separated the units for each area and found the task-relevant

axes for this subset of units. For the inter-area analyses, we used RNNs with only excitatory

connections, and therefore found the color and direction axis using only the excitatory units.

In all other analyses, all units were used to identify the axes. For RNN activity, we performed

dPCA using activity over the entire trial.

For neural data, due to the stochasticity in task design, there is a trial-by-trial difference
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in interval between target and checkerboard onset (TC interval). The reaction time (from

the checkerboard onset to monkey’s hand movement initiation) also varies for each trial. To

align time events across trials, we restretched the firing rates in each trial. For DLPFC units,

each trial was aligned to targets onset first. Median reaction time (527ms) and TC interval

(735ms) were calculated by combining every trial in the database. For each trial, TC interval

and reaction time was either compressed or stretched to the median values through linear

interpolation. After the data restretching, we choose the data window T as 1300ms, from

-100ms to 1200ms around target onset with sample size of 1ms. For every unit n in total units

number N, we averaged the single-trial firing rate by stimulus S (checkerboard dominant

color, green or red) and decision of choice D (left or right). As a result, a 4D firing-rate

matrix XN×S×D×T was created as input to demixed principal component analysis algorithm.

For PMd units, activities before checkerboard onset were minimal. As a result, each trial

was aligned to target onset and a segment with time window of [−100ms, 367ms] was chosen

first. Then the same trial was aligned to checkerboard first and a segment with a window of

[−368ms, 465ms] was chosen. The final restretched data was the concatenation of these two

data segments.

When computing the overlap in Fig. 3.4, we averaged across 8 initializations, and computed

the PSTHs over 700 trials. In our dpca variance sweeps (Fig. 3.5), we computed the PSTHs

over 280 trials.

B.2.4 PCA

Principal components analysis (PCA) is a dimensionality reduction technique that projects

high-dimension data into low-dimensional axis which maximize the variance in the data. PCA

provides low-dimensional projections by minimizing the loss function:

Lpca =
∑

∥X − DTDX∥2. (B.2)
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XN×T is high-dimension raw data and DN×N is the decoding matrix. The low-dimension

trajectories xM×T (M < N) calculated by multiplying first M rows of D by X.

Before applying PCA on the data, the raw data was preprocessed by data normalization

and average firing rate removal:

Condition independent signal removal for PCA

The condition independent signal is another source that explains substantial amount of

population variance other than task-related signal. Before conducting principal component

analysis (PCA), we calculated the average firing rate of each single unit X1×1×1×T over all

stimulus and decision conditions and subtracted this condition independent signal from the

time-restretched data X1×S×D×T .

Canonical correlation

We applied CCA to assess the similarity between neural activity and the artificial unit

activity [132]. Before applying CCA, we performed principal component analysis to reduce

the dimensionality of the artificial and neural activity to remove noise, which can be arbitrarily

reshaped to increase the canonical correlation [132]. We reduced the dimensionality of PMd

data to 2 (which captures over 80% of the PMd variance). For DLPFC, 18 dimensions were

required to capture over 80% of the variance, but at such a high dimensionality, noise can

be reshaped to significantly increase the canonical correlations. For DLPFC, we therefore

show a comparison to the top 4 PCs in Fig. 3.3e. However, the trends held irrespective of

the DLPFC dimensionality we chose, as shown in Fig. B.3. In all cases, we compared to

CCA with the number of dimensions equal to 2, looking at the We report the average CCA

correlation coefficients in Fig. 3.3e using times in a window of [-400ms, 400ms] aligned to

checkerboard onset. The data was binned in 10ms bins.
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B.2.5 Analyses of inputs and activity

In order to disentangle the effects of external inputs and recurrence, in Fig. B.6, we evaluated

the input contribution and overall activity. For Area 1, we defined the input contribution

as Winut, and for areas 2 and 3, we defined the input contribution as W21r
1
t , and W32r

2
t

respectively, where rmt denotes the activity of the units in area m. The activity rmt corresponds

to the firing rate that experimentalists could measure, reflecting a combination of input and

recurrent interactions. For constant inputs, a stable value of the activity implies there is

little recurrent processing.

B.2.6 Inter-Area Projection Analyses

To calculate the overlap between the color and direction axes with the potent and null spaces,

we performed singular value decomposition on the inter-area connections, W21 and W32. W21

and W32 were 80× 80 matrices, and were full rank. Nevertheless, they had near some zero

singular values, indicating that the effective rank of the matrix was less than 80. We defined

the potent dimensions to be the top m right singular vectors, while the null dimensions were

the remaining 80−m right singular vectors.

We performed the analyses of Fig. 3.4f by varying the potent and null dimensions, sweeping

m from 1 to 80. For each defined potent and null space, we calculated the axis overlap

between the direction (or color) axis and the potent (or null) space by computing the L2-

norm of the orthogonal projection (squared). We report the squared quantity because the

expectation of the norm of a projection of a random vector onto an m-dimensional subspace

of an n-dimensional space is m/n. We include an approximation of the expectation of the

projection of a random vector in Fig. 3.4 by averaging the projection of 100 random vectors.

Our results show that the direction axis was always more aligned with potent dimensions than

the color axis, irrespective of the choice of m, and that the direction axis was preferentially

aligned with the top singular vector.
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Supplementary Information for: “A cortical information

bottleneck during decision-making”

Multi-area RNNsa
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Figure B.1: (a) Psychometric and (b) reaction time curves for multi-area RNNs. The
hyperparameters used for these RNNs are described in Table A.1. Gray lines represent
individual RNNs and the black solid line is the average across all RNNs.
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Figure B.2: (a) Another rotation of the first three PCs for Area 1 RNN, with PC3 amplified
to show that there is a low variance color axis. (b) Area 2 PCs in the same projection as
used in Figure 3. While these PCs qualitatively appear to represent the direction decision,
they are distinct from Area 3, with Area 3 demonstrating a stronger resemblance to PMd
activity.
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Figure B.3: Because DLPFC is higher-dimensional than PMd, we performed the CCA
correlation coefficient comparison to Areas 1-3 of the RNN varying the number of dimensions
used for the DLPFC PCs. Note that as dimensionality increases, CCA correlation coefficient
increases because additional dimensions, which are low variance, can be weighted to better
reproduce the RNN PCs. We nevertheless observe that Area 1 has the highest CCA correlation
to DLPFC, while Area 3 has the least.
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RNN area as a function of increasing decoder regularization C. A lower C implies more
regularization.
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Figure B.5: Candidate mechanism for axis orthogonalization. (a) Top 2 PCs of RNN
Area 1 activity. Trajectories are now colored based on the coherence of the checkerboard, and the
condition-independent signal is not removed. We did not remove the condition-independent signal so
we could directly study the high-dimensional dynamics of the RNN and its equilibrium states. The
trajectories separate to two regions corresponding to the two potential target configurations (Target
config 1 in blue, Target config 2 in purple). The trajectories then separate upon checkerboard color
input, leading to four trajectory motifs. (b) Projection of the dPCA principal axes onto the PCs.
(c) Projection of the context and color inputs onto the PCs. Context inputs are shown in pink, a
strongly green checkerboard in green, and a strongly red checkerboard in red. Irrespective of the
target configuration, green checkerboards cause the RNN state to increase along PC2 while red
checkerboards cause the RNN state to decrease along PC2. The strength of the input representation
is state-dependent: checkerboards corresponding to left reaches, whether they are green or red, cause
smaller movements of the RNN state along the color axis. (d) Visualization of RNN dynamics and
inputs during the target presentation. In the Targets On epoch, context inputs cause movement along
the vertical context axis. The RNN dynamics implemented a leftward flow-field that pushed the
RNN state into an attractor region of slow dynamics. (e) At the Target config 1 attractor, we plot
the local dynamics using a previously described technique [68]. The RNN implements approximately
opposing flow fields above and below a line attractor. Above the attractor, a leftward flow-field
increases direction axis activity, while below the attractor, a rightward flow-field decreases direction
axis activity. A green checkerboard input therefore pushes the RNN state into the leftward flow-field
(solid green trajectories) while a red checkerboard input pushes the RNN state into a rightward
flow-field (dotted red trajectories). This computes the direction choice in a given context, while
allowing the direction axis to be orthogonal to color inputs. Arrows are not to scale; checkerboard
inputs have been amplified to be visible. (f) Visualized dynamics across multiple trajectory motifs.
These dynamics hold in both target configurations leading to separation of right and left decisions
on the direction axis. Arrows are not to scale, for visualization purposes.
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Figure B.6: The norm of the direction discriminability (left red - right red + left green -
right green)/2 and color discriminability (left green - left red + right green - right red)/2
as a function of the processing area. The inputs are shown in lighter transparency and the
overall activity is shown in solid lines. Area 1 has significant recurrence evidenced by a large
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little evidence of recurrent filtering of color information (i.e recurrent activity is never below
inputs).
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Figure B.7: Relationship between PCs and inter-area potent space. (a) Variance
explained of the excitatory units in Area 1 by the top principal components and top dimensions
of potent space of W21, swept across all dimensions. (b) Variance explained of the excitatory
units in Area 2 by the top principal components and top dimensions of potent space of
W32, swept across all dimensions. These plots show that the connections between areas do
not necessarily propagate the most dominant axes of variability in the source area to the
downstream area. Excitatory units were used for the comparison because only excitatory
units are read out by subsequent areas. These results were upheld when comparing to the
variance explained by the top principal components obtained from all units.
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Figure B.8: (a) Alignment of dpca color and context axes from area 2 with inter-areal
connections W32. ((b,c) Alignment of dpca axes with intra-areal recurrent matrices for
3 area dale networks (Area 2 and Area 3). (d). Alignment of dpca axes in area 1 with
W21 for networks without Dale’s law. In contrast to Fig. 3.4f, direction information is not
preferentially propagated. Same conventions as Fig. 3.4c,f.
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Figure B.9: Effect of feedback connections (a) dPCA variance in area 3 of RNNs where
we varied the amount of feedback connectivity. RNNs exhibited nearly zero dPCA color
variance in Area 3 across networks with 0%, 5%, and 10% feedback connections. (b, c)
RNNs also exhibited minimal color representations, achieving nearly chance levels of decode
accuracy and nearly zero mutual information. (d, e) Feedback projections of the color and
direction axis on the feedback inter-area matrix between (d) area 2 and area 1, and (e) area
3 and area 2 (for networks trained with 5% feedback connections, across variable feedforward
connectivity percentages).
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Figure B.10: Potential multi-area computational advantage. (Top Row) Sensitivity to isotropic
readout noise added to the output weights. (a) Noise added to all units in output (even the zero weights).
(b) Noise only added to nonzero units. (Middle Row) Readout weights for left (dashed orange) and right
(blue) reaches. (c) Readout weight with Dale’s Law enforced, (d) Readout weights in unconstrained networks.
(e) Readout weights in unconstrained but ensuring positive outputs. (Bottom Row) No correlation
between robustness to noise and usable color information across random initializations for networks with
10% feedforward inhibition, where after training some networks had color information (Fig. 3.5b). We used a
noise perturbation to each unit of variance (f) σ2 = 0.3 and (g) σ2 = 0.5.
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Appendix C

Supplementary Material for Chapter 4

C.1 Proofs

C.1.1 Usable information lower bounds the mutual information

The entropy of a distribution is defined as

H(x) = Ex∼p(x)

[
log

1

p(x)

]
. (C.1)

The mutual information, I(X;Y ), can be written in terms of an entropy term and a conditional

entropy term:

I(Z;Y ) = H(Y )−H(Y |Z). (C.2)

We want to show that:

I(Z;Y ) ≥ Iu(Z;Y ) := H(Y )− LCE(p(y|z), q(y|z)) (C.3)

It suffices to show that:

H(Y |Z) ≤ LCE (C.4)

where LCE is the cross-entropy loss on the test set. For our study, H(Y ) represented the
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known distribution of output classes, which in our case were equiprobable.

H(Y |Z) := E(z,y)∼p(z,y)

[
log

1

p(y|z)

]
(C.5)

= E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
︸ ︷︷ ︸

cross-entropy loss

−Ez∼p(z) [KL(p(y|z)||q(y|z)]︸ ︷︷ ︸
≥0

, (C.6)

≤ E(z,y)∼p(z,y)

[
log

1

q(y|z)

]
:= LCE (C.7)

To approximate H(Y |Z), we first trained a neural network with cross-entropy loss to predict

the output, Y , given the hidden activations, Z, learning a distribution q(y|z). The KL denotes

the Kullback-Liebler divergence. We multiplied (and divided) by an arbitrary variational

distribution q(y|z) in the logarithm of equation C.5, leading to equation C.6. The first term in

equation C.6 is the cross-entropy loss commonly used for training neural networks. The second

term is a KL divergence and is therefore non-negative. In our approximator, the distribution

q(y|x) is parametrized by a neural network. When the distribution q(y|z) = p(y|z), our

variational approximation of H(Y |Z), and hence approximation of I(Z;Y ) is exact [15,108].

C.2 Additional results and details in the Checkerboard

Task

C.2.1 SGD with non-random initialization may not form minimal

representations in the CB task

Implicit regularization in SGD is hypothesized to result in a minimal representation through

compression of irrelevant input information, also called a “forgetting” phase [2,3,123]. We

tested this hypothesis by initializing networks with significant color information, and sub-

sequently performing SGD on the CB task. We then evaluated whether SGD resulted in

networks with minimal color representations. We initialized the weights by pretraining the
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network to output the color decision for 20 epochs, which required the network to represent

color information. After 20 epochs, we reverted to training on the CB task, where only the

direction decision was reported. Since the learning rate was kept constant, the pretrained

weights can be viewed as a different initialization in parameter space for the modified task.

Strikingly, we found that the resulting representations were not minimal for the n = 2

checkerboard case (Fig C.1a). This result also held for the CB task with n = 10 and n = 20

(Fig C.2b,c). While we observed some compression of usable color information through

training, the asymptotic representations had significantly greater than zero color information.

In Fig C.2b, we observed all layers had more usable color information than the direction

information in the first layer. The network therefore solved the task using an alternative

representation that was not minimal. We visualized the activations corresponding to the

asymptotic non-minimal representations of Small FC in Fig C.1d. In the early epochs the

red and green points converge (both crosses and dots) as a result of successful pretraining.

However, when we trained the CB task starting at epoch 20, the representations changed.

While the dot clusters for red and green checkerboards are overlapping, the cross clusters are

not. This representation is not minimal as color information can be decoded above chance.

These results show that the initialization affects the asymptotic representation of neural

networks. SGD, under particular initializations, may not lead to minimal representations of

the task inputs. This suggests there is a trade-off between learning a minimal representation

and simply reusing the existing representations present in the initial weights. Initial structure

in the network representations from pretraining, such as the separation of the red and green

crosses in the last layer representation, was maintained even when performing SGD to train

a different task. Together, these results suggest that while SGD compresses representations

towards minimality, it finds a solution that is functionally related to the initial representation.

This may correspond to a optima in the neighborhood of the initialization.
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Figure C.1: Usable color and direction information in a network through training following
pretraining the network to output color, not direction. Pretraining occurred for the first 20
epochs, indicated by the dashed red line. Subsequently, the network was trained to output
direction, as in Fig 4.2. (a) Usable information for Small FC trained on the N = 2 CB task.
Usable color information increased in training, and decreased when the loss function changed.
However, the asymptotic representation is not minimal. (b) Medium FC trained on N = 10
CB task. Similarly, the network formed a representation of color during pretraining, but the
asymptotic representation is not minimal. (c) Medium FC trained on N = 20 checkerboard
task. (d) Visualization of the Small FC network in (a) showing that an optimal representation
is not formed. The asymptotic representation in the last area has separate representations
for red and green crosses. These should be overlapping in a minimal representation.
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C.2.2 Relationship between pretraining, minimality, and generaliza-

tion in the CB task
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Figure C.2: (a) Final usable information and validation accuracy (green dashed line) as a
function of pretraining epoch for the CB task (n = 2) averaged over 8 random initializations.
(b) Final usable information and accuracy as a function of pretraining epoch for the CB
task (n = 10) averaged over 8 random initializations. (c) Final usable information and
accuracy as a function of pretraining epoch for the CB task (n = 20) averaged over 8 random
initializations. (d) Final usable information and accuracy as a function of pretraining epoch
for the CB task (n = 25) averaged over 8 random initializations. Error bars show the S.E.M.

Our results show that the minimality of network representations, and therefore solutions,

depends on initialization. All trained networks (for n larger than 2), however, achieved zero

training error. A natural question to ask is how does the pretraining affect the resulting

representation and generalization performance?

To answer this, we varied the number of epochs that we pretrained the CB tasks of n = 2,

n = 10, and n = 20 classes, and quantified the usable color and direction information, as well

as the trained network’s test accuracy to understand how the network generalizes (Fig. C.2).
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We found that networks trained with longer pretraining had less minimal representations

and worse generalization performance. This was true regardless of the number of classes,

but the effect was more pronounced (in terms of absolute difference in accuracy) when the

network did not solve the task perfectly without pretraining. We note that regardless of how

long the networks were pretrained for, the networks were subsequently trained for the same

number of epochs (80), with the same learning rate throughout training. One interpretation

is that when using existing structure to solve the task, the network learned a suboptimal

solution to solving the task, increasing the chance of overfitting. Another interpretation is

that the pretraining changed the distribution of the weights, affecting the minimality and

generalization.

C.2.3 Details of neural network for usable information in the CB

Task

To estimate usable information, we computed the cross-entropy loss of a decoder q(y|z) that

predicts Y from Z. The decoder was a three-layer neural network, with 128, 64, and 32 units

per layer, with Leaky-ReLU activations (slope = 0.2), batch-norm and dropout (p = 0.7). At

each epoch, 1250 training samples were generated and supplied to the decoder, along with

either the corresponding correct direction or color choice. We evaluated the cross-entropy

loss on 3750 test samples to minimize overfitting. We trained the network for 100 epochs

using a learning rate of 0.5 for ‘Medium FC’ and 0.05 for ‘Small FC.’

C.2.4 Checkerboard Task description

Following the conventions of [83], we modeled the CB task (Fig 4.1a), inputting the checker-

board color and target configuration to a neural network that outputted the direction choice

(Fig 4.1b). We minimized the cross-entropy loss of the network output and the ground truth

output. We extended the checkerboard task to the n checkerboard task by increasing the
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number of checkerboards. Each target was 1 out of the n colors, with the targets forming an

‘n-polygon’. The correct direction corresponds to the direction of the target having the same

color of the checkerboard. We specified the color of each target using a one-hot encoding,

and the color of the checkerboard as a one-hot encoding. Noise with mean 0 and standard

deviation of 0.1 was added to the checkerboard inputs. The target and checkerboard color

inputs were concatenated to form an input vector. The correct direction of the target was

the output.

C.2.5 Details of CB experiments

The following are the hyper-parameters used in our experiments. We trained two different

network architectures, ‘Small FC’: 5 layers, with 10 − 7 − 5 − 4 − 3 units in each layer,

‘Medium FC’: 100− 20− 20− 20. We trained networks using SGD with a constant learning

rate throughout training.

FC Small, n = 2:

• batch size: 32, learning rate: 0.05, number of data samples: 10000 (90% train, 10%

validation)

Medium FC, n = 10:

• batch size: 64, learning rate: 0.5, number of data samples: 25000 (90% train, 10%

validation)

Medium FC, n = 20:

• batch size: 128, learning rate: 0.5, number of data samples: 50000 (90% train, 10%

validation)

Medium FC, n = 25:

• batch size: 128, learning rate: 0.5, number of data samples: 75000 (90% train, 10%

validation)
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C.2.6 Definition of relevant and irrelevant information in the CB

Task

In the CB task, the color of the checkerboard and target configuration (inputs) are necessary

to determine the correct direction to reach (output). While both a color and direction decision

are made, after the direction is determined, the color decision no longer needs to be represented:

the network can generate the correct output with only the direction representation. Formally,

the output y is conditionally independent of the color representation, Zc, given the direction

representation Zd (i.e., y ⊥⊥ (Zc, Zt)|Zd, as illustrated by the graph in Fig 4.1b). Hence,

given a representation of the direction choice, the color choice (and target configuration) no

longer needs to be represented. We emphasize that, in general, the output is not independent

of the color representation and target configuration representation Zt, i.e., y ⊥̸⊥ (Zc, Zt),

hence information about the dominant color of the checkerboard is necessary to compute y.

When this conditional independence holds, we call the conditionally independent variable

“irrelevant.” We therefore refer to the color choice as “irrelevant" and the direction choice as

“relevant." We study how these components evolve together throughout training.

C.3 Additional results and details in the CIFAR-10 and

CIFAR-100 task

C.3.1 CIFAR-10 and CIFAR-100 task description

We trained a ResNet-18 and an All-CNN architecture to output a superclass corresponding to

the twenty coarse-grained classes in CIFAR-100 and, in CIFAR-10, to an arbitrary superclass

corresponding to the even and odd classes. Accordingly, a minimal representation should

only encode the superclass.
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Figure C.3: (Left) Usable information for initial learning rate of 0.001 in CIFAR-10. The
information about the fine labels does not decrease, and the validation accuracy only reaches
92%, in co ntrast to Fig 4.3 where the validation accuracy reached 96%. (Right) Usable
information for batch size of 1024 in CIFAR-10.

C.3.2 Details of neural network for usable information

To estimate usable information, we computed the cross-entropy loss of a decoder q(y|z) that

predicts Y from Z. We used a two-layer neural network, with 200 and 100 with Leaky-ReLU

activations (slope = 0.2), batch-norm and dropout (p = 0.7). At each epoch, 7500 samples

were supplied to the decoder, along with either the corresponding correct direction or color

choice. We evaluated the cross-entropy loss on 2500 test samples. We trained the network for

50 epochs using Adam with a learning rate of 0.01 and weight decay of 0.001.

C.3.3 Details of neural network training

In our experiments, unless otherwise stated, we trained a ResNet-18 [55] with an initial

learning rate of 0.1 decaying smoothly with a factor of 0.97 at each epoch, batch size of 128,

momentum of 0.9 and weight decay with coefficient 0.0005. For the All-CNN [129] we used a

batch size of 128, initial learning rate of 0.05 decaying smoothly by a factor of 0.97 at each

epoch, momentum of 0.9, and weight decay with coefficient 0.001. We used standard data

augmentation with random translations up to 4 pixels and random horizontal flipping. These

parameter configurations were taken directly from prior work [2].
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Figure C.4: Evolution of usable information for eight random initializations for the n = 2 CB
task.

C.4 Additional plots
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Figure C.5: Evolution of usable information for eight random initializations for the n = 10
CB task.
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Figure C.6: Evolution of usable information for eight random initializations for the n = 20
CB task.
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Figure C.7: Evolution of usable information for eight random initializations for the n = 2 CB
task with 20 epochs of pretraining. If the the usable information was negative, indicating
that the decoder overfit, we set the usable information to 0. Note that this occurred for a
very small number of points.
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Figure C.8: Evolution of usable information for eight random initializations for the n = 10
CB task with 20 epochs of pretraining.
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Figure C.9: Evolution of usable information for eight random initializations for the n = 20
CB task with 20 epochs of pretraining.
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Appendix D

Supplementary Material for Chapter 5

D.1 Supplementary Material

D.1.1 Description of simulated RSV distributions

When evaluating the RSV on a synthetic distribution, we considered the following generative

model that consists of a common component x0 with additive noise:

xa = x0 + na, xb = x0 + nb,

zi = wixa + (1− wi)xb,

wi ∼ Beta(α, β), x0 ∼ N (0, 1), na ∼ N (0, 1), nb ∼ N (0, 1).

(D.1)

Depending on the values of α and β, the Beta distribution that the weights wi are drawn

from will take different shapes, changing how units in the representation z vary with inputs

xa and xb. We find that the distribution of RSVs in Fig. 5.3 reflect the full spectrum of these

various distributions, where the resulting RSVs can vary from an approximately Gaussian

distribution where units vary equally with both modalities, to polarized representations where

units vary uniquely with one modality. For this synthetic simulation, we can derive a closed
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form expression for the RSV. In particular (and dropping the subscript i for clarity),

z = x0 + wna + (1− w)nb (D.2)

and note that z will be distributed as a normal distribution. Then,

SVi = V ar(Z|Xa = xa) (D.3)

= σ2
z(1− p2) (D.4)

= σ2
z(1−

Cov(z, xa)
2

σ2
zσ

2
xa

) (D.5)

We know that

σ2
z = σ2

x0
+ w2σ2

a + (1− w)2σ2
b (D.6)

since x0, na, and nb are independent. Finally,

Cov(z, xa) = E[(Z − E[Z])(Xa − E[Xa]] (D.7)

= E[ZXa] (D.8)

= E[(wXa + (1− w)Xb)Xa] (D.9)

= E[(w(X0 +Na) + (1− w)(X0 +Nb))(X0 +Na)] (D.10)

= E[(X0 + wNa + (1− w)Nb)(X0 +Na)] (D.11)

= E[X2
0 ] + wE[N2

a ] (D.12)

= σ2
x0

+ wσ2
a (D.13)

We also know that

σ2
xa

= σ2
x0

+ σ2
a. (D.14)
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We can then solve for SVi by plugging Eq 9, 16, 17 into Eq 8 and obtain:

SVi = σ2
z(1−

Cov(z, xa)
2

σ2
zσ

2
xa

) (D.15)

= (σ2
x0

+ w2σ2
a + (1− w)2σ2

b )(1−
σ2
x0

+ wσ2
a

(σ2
x0

+ σ2
a)(σ

2
x0

+ w2σ2
a + (1− w)2σ2

b )
) (D.16)

We assumed that the representation zi for half of the units were sampled from above

generative model, while the other half the representation zi were sampled from the reverse

convex combination of inputs, i.e, zi = wixb + (1− wi)xa.

For simulations 2-4, we set β = 20 and varied α in [1, 20, 30] respectively. We considered

a representation on N = 20000 units. For the first simulation we only considered the half of

units in the generative model above, with α = 1 and β = 10.

D.1.2 Generalization of RSV to arbitrary number of sensors

We can naturally generalize the RSV to an arbitrary number n of sources. To do so, define:

SVi(Xj, x1, ..., xj−1, xj+1, ..., xn) = V ar(f(X)i|X1 = x1, ..., Xj−1 = xj−1, Xj+1 = xj+1, ..., Xn = xn),

and then collect the individual source variances into a vector SVi of size n. Then

normalized sensor variance would be

RSVi = softmax(SVi),

which provides a normalized quantification (between 0 and 1) of how much an individual

unit varies with each sensor modality j.
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D.1.3 Description of deep linear network experiment

We considered the original input-output correlation (before dropping a sensor) to be

Σyx
pre =



1 0 3 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 3 0 0 0 0 1


(D.17)

Our perturbation involved dropping a sensor, in this case the third column, leading to

Σyx
post =



1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 1


(D.18)

Using the analytical equations for the learning dynamics given by [118] for the shallow

and deep network, we investigated how learning the task (row 5) was affected (Fig. 5.2),

finding that such a perturbation had a significant on the dynamics of sensor learning in the

deep, but not shallow, network.

D.1.4 Description of architectures and training

Most of our experiments are based on the ResNet-18 architecture [55]. We modified the

architecture to process multi-sensor input with what we call a SResNet-18. We separately

process two initial pathways which we combine in an additive manner. In particular, the

initial pathway followed the architecture of [55] directly up to (and including) conv3_x (See

Table 1 of [55]). After combining the pathways, the remaining layers followed the ResNet-18
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architecture directly.

To examine the effect of depth, we modified the All-CNN architecture [128], following [2].

In particular we processed each pathway with the following architecture:

conv 96 - [conv 96 · 2i−1 - conv 96 · 2i s2]ni=1 - conv 96 · 2n - conv1 96 · 2n - conv1 10

where s refers to the stride. We then merged the final representation from each pathway in

an additive manner. We examined the setting when n = 1, 2, 3. We used a fixed learning rate

of 0.001 in these experiments.

D.1.5 Description of Blurring Experiments (Fig. 5.4)

We attempted to simulate a cataract-like deficit by blurring the image to one pathway. We

reduced the resolution of the image being passed to one pathway by first resizing the Cifar

images to 8× 8, and then resizing to its original size (32× 32 pixels, decreasing the available

information.

While training, we applied standard data augmentation on the uncorrupted pathway

(random translation of up to 4 pixels, and random horizontal flipping. We then retained

a width w of the leftmost and rightmost pixels from uncorrupted and corrupted pathway

respectively, setting w = 16 unless otherwise stated. At inference time, no data augmentation

was applied and the leftmost w pixels and rightmost w pixels was supplied to each pathway

respectively. We used an initial learning rate of 0.075, decaying smoothly at each epoch with

a scale factor of 0.97.

To quantify the information contained in the representation, we randomly masked out each

pathway with p = 0.1 during training, and computed the usable information Iu contained in the

representation Z abbout the task Y following [78,151] by computing Iu(Z;Y ) = H(Y )−LCE,

with H(Y ) being known and equal to log2 10 since the distribution of targets is uniform, and

LCE being the cross-entropy loss on the test set. We reported the corresponding RSV plots,

and network performance in Appendix Fig. D.1, which reveal similar performance trends and

polarization of units, when pre-training with the random masking as in Fig. 5.4.
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D.1.6 Description of Independent Pathways Experiment (Fig. 5.6)

We followed the same setup as above, but instead randomly permuted the images fed to the

‘right’ pathway across the batch, breaking the correlation between the views. We trained

using an initial learning rate of 0.05, decaying smoothly with a scale factor of 0.97. When

training with the deficit we randomly sampled the target from the different views with p = 0.5.

We also modified the architecture to produce multiple classification outputs, corresponding

to a classification based on both views, or each pathway respectively. This modification was

helpful for interpreting the polarization plots. While training, the loss function was applied

on the head that contained the proper input-target correspondence. After the deficit, and

during inference, only the head corresponding to both views was used.

D.1.7 Description of Masking + Supervised MultiViT training

These experiments were based on the MultiMAE architechture [9], using their implementation

and closely following their default settings. We adapted their implementation to process two

separate RGB views coming from Kinetics-400 dataset [23]. We used a patch size of 16 in all

experiments, and the AdamW optimizer [97]. All inputs were first resized to 224× 224 pixels.

Our learning rate followed the linear scaling rule [51].

For the masking sensitivity experiments in Fig. 5.8, we used a fixed delay of 1.33 seconds

(4 frames) between frames, and trained with an initial base learning rate of 0.0001, with 40

epochs of warmup for the learning rate. We trained for 800 epochs, with a 200 epoch deficit of

independent frames during the pre-training starting at different epochs during training. We

used a masking ratio of 0.75. We pre-trained with a batch size of 256 per GPU on 8 GPUs.

After the pre-training, we fine-tuned for 20 epochs with all the tokens and the corresponding

action classification label. We fine-tuned on 8 GPUs with a batch size of 32. We fine-tuned

with a learning rate of 0.0005, with 5 epochs of warmup.

For the supervised experiments, we trained our networks with an initial base learning

rate of 0.01 for 120 epochs using all the tokens, with 20 epochs of warmup. We applied a
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Figure D.1: Same blurring experiment as Fig. 5.5 with corresponding Relative Source
Sensitivity, Fig. 5.4, but with the addition of random masking on each view with p = 0.1,
allowing the decoding of the usable information [78] (bottom row). Note that the polarization
(second row) is similar to Fig. 5.4, which is also reflected by the inability to decode the
inhibited pathway, after exposure to a sufficiently long deficit (orange trace in bottom row).

temporary deficit of independent frames for 20 epochs, starting at various epochs during the

training. We used in cutmix (1.0) and mixup (0.8) applied to each view) while training and

we used a random baseline between frames. For the supervised experiments, we used a batch

size of 64 per GPU.

In both the masking and supervised experiments in Fig. 5.8, we reported the difference of

networks trained with a deficit starting at different epochs of training against a corresponding

model trained without any deficit. In Fig. 5.7, we show example reconstructions from our

Multi-View transformer pre-trained without a deficit for 800 epochs with a random baseline

between frames.

D.2 Additional Plots
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Figure D.2: Same blurring experiment as Fig. 5.5 with corresponding Relative Source
Sensitivity, Fig. 5.4 for crop width of 16 (used in the main text) for easier comparison against
different crop widths in Fig. D.3 and Fig. D.4.
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Figure D.3: Same blurring experiment as Fig. 5.5 with corresponding Relative Source
Sensitivity, Fig. 5.4 for crop width of 14.
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Figure D.4: Same blurring experiment as Fig. 5.5 with corresponding Relative Source
Sensitivity, Fig. 5.4 for crop width of 18.
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Figure D.5: Strabismus-Like Deficit for ablation of no weight decay (wd = 0), no data
augmentation and initial lr = 0.05. We also observe a polarized representation. Note the
performance is reduced in comparison to Fig. 5.6, due to the lack of data augmentation and
weight decay.
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Figure D.6: Relative Source Variance for Multi-View Transformer. (Left) We show
the distribution of RSV evaluated on the units at output of the encoder before fine-tuning,
revealing a bimodal distribution. Here, training was performed without any deficits. (Right)
During fine-tuning, the representations appear to adapt to become slightly more balanced,
depending more evenly on each view, while retaining the initial bimodal structure learned
during pre-training.
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Figure D.7: Fixed learning rate of 0.0005 during training have similarly shaped critical
periods to those in paper, and similar RSV distributions as a result of the deficit.
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Figure D.8: Results of multiple runs (light blue), their average (dark blue), and std (bars) for
(Left) blurring and (Center) dissociation deficit. (Right) Different initial learning rates
(for blur deficit) have have similarly shaped critical periods to those in paper.
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Appendix E

Supplementary Material for Chapter 6

E.1 Additional details

E.1.1 Partial Information Decomposition

Information theory provides a powerful framework for understanding the dependencies of

random variables through the notion of mutual information [31]. However, information theory

does not naturally describe how the information about a target Y is distributed among a

set of sources X1, ...Xn. For example, ideally, we could decompose the mutual information

I(X1, X2;Y ) into a set of constituents describing how much information that X1 contained

about Y was also contained in X2, how much information about Y was unique to X1 (or

X2), as well as how much information about Y was only present when knowing both X1 and

X2 together. These ideas were presented in [147] in the Partial Information Decomposition

(PID).

Standard information-theoretic quantities I(X1;Y ), I(X1;Y |X2), and I(X1, X2;Y ) can
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R

Figure E.1: Decomposition of the mutual information of sources X1, X2 and target Y into
the synergistic information SI, the unique information UI of X1 with respect to Y and X2

with respect to Y , and the redundant information R. Figure adapted from [12].

be formed with components of the decomposition:

I(X1;Y ) = UI(X1;Y ) + R (E.1)

I(X2;Y |X1) = UI(X2;Y ) + SI (E.2)

I(X1, X2;Y ) = UI(X1;Y ) + SI + UI(X2;Y ) + R (E.3)

Here UI represents the “unique” information and SI represents the “synergistic” information.

Equation E.3 comes form the chain rule of mutual information, and by combining equation E.1

and equation E.2. These quantities are shown in the PID diagram shown in Figure E.1.

Computing any of these quantities allows us to compute all of them [18]. In [12], they

described an approach to compute the unique information, which was only feasible in low

dimensions. In our paper, we instead focus on computing the “redundant” information.

E.1.2 Alternative notion of redundancy

Recently [87] proposed to quantify redundancy through the following optimization problem:

RK(X1; . . . ;Xn→Y ) := max
sQ|Y

I(Q;Y ) s.t. ∀i sQ|Y ⪯ pXi|Y (E.4)
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Figure E.2: (Left) If B = 50 for all epochs of training, the networks is stuck in a trivial
solution in learning. Setting β adaptively leads to an improved solution. (Right) The final
distance terms are comparable.

The notation sQ|Y ⪯ pXi|Y indicates that there exists a channel pQ|Xi
such that Equation E.5

holds for all q and y.

s(q|y) =
∑
xi

p(q|xi)p(xi|y). (E.5)

In a sense, Equation E.5 indicates that Q is a “statistic” of Xi.

E.1.3 Setting value of β

When optimizing the equation in practice, it is more difficult to optimize initially using

very large values of β, since the network could easily learn a trivial solution. We therefore

adaptively set β depending on the epoch of training. In this manner, we find that the network

settles in a redundant solution that performs well on the task, as opposed to a solution that

is trivial. We smoothly increase βi during training following the formula, so that the value of

β at epoch i (γ = 0.97):

βi = β(1− γi). (E.6)

We also perform an ablation study where we fix βi = β, and find that the network settles at

a more trivial solution (Fig E.2).
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E.1.4 Training details for canonical examples

We trained a small fully-connected network with hidden layers of size [25− 15− 10], using

batch normalization and ReLU activations, with an initial learning rate of 0.01 decaying

smoothly by 0.97 per epoch, for 30 epochs. We generated a dataset consisting of 10, 000

samples, of which 80% corresponded to training data, and the remaining 20% corresponded

to test data. We trained with different values of β. β = 0 corresponds to the the average

usable information of Iu(X1;Y ) and Iu(X2;Y ). As β increases, the quantity RV more strongly

reflects redundant information. RINE produces values close to the ground truth for these

canonical examples. The tasks, with their corresponding inputs, outputs and associated

probabilities are shown in Appendix 6.6. Our comparison is shown in Table 6.1. Note, that

there is some randomness that occurs due to different initialization optimizing the neural

networks, hence the values may differ slightly.

E.1.5 Comparison with cosine similarity

To highlight the difference between the redundant information that two inputs X1 and X2

have about a task Y and a direct similarity that could be applied on X1 and X2, we designed

a synthetic task. In this task, there are 8 classes. We designed the inputs so that each

input X1 and X2 would contain information about n classes, with the minimal overlap. For

instance, if n = 4, each input would contain information about 4 distinct classes, so there

would be no redundant information. We swept the value of n ranging from 4 to 8 (Fig 6.5

(left), with increasing redundant information for increasing values of n). We optimized over a

two-hidden-layer deterministic neural network with hidden layer dimensions of 25 and 15,

using Adam with a learning rate of 0.01 for 50 epoch, with β = 50. We added noisy inputs

with each input coming from N (0, 22) These inputs did not affect the value of redundant

information, however adding noisy inputs decreases the cosine similarity (shown for the case

of n = 8), whereas the addition of non-task related common inputs increases the cosine

similarity (shown for the case of n = 4).
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E.1.6 Training details for CIFAR-10

To compute the redundant information for CIFAR-10, we optimized over the weights in

Equation 6.6 using ResNet-18’s [55]. We trained the network for 40 epochs, with an initial

learning rate of 0.075, decreasing smoothly by 0.97 per epoch, with weight decay of 0.005.

We show example images that represent the inputs x1 and x2 in Fig E.3. We jointly train two

networks that process inputs x1 and x2 respectively, constrained to have similar predictions

through including D(f1, f2) in the loss. To compute D(f1, f2), we quantified the L1 norm of

the distance between the softmax scores of the predictions. We evaluated the cross-entropy

loss on the test set.

E.1.7 Training details for Neural Decoding

Fixed Delay Center Out Task

In this task, there are 8 target locations. After a target is shown, the monkey makes a plan

to reach towards the target. The monkey then reaches to the target after a go cue (Fig 6.3,

left). Our dataset consisted of a population recording of spike trains from 97 neurons in the

premotor cortex during trials that were 700ms long. Each trial comprises a 200ms baseline

period (before the reach target turned on) and a 500ms preparatory (planning) period after

the reach target turned on but before the monkey can initiate a reach. Both our training and

testing dataset consisted of 91 reaches to each target.

Variable Delay Center Out Task

We analyzed data from another delayed-center-out task with 8 targets with a variable

400 − 800ms delay period, during which the monkey could prepare to reach to the target,

but was not allowed to initiate the reach until the go cue. In these datasets, there were

significantly fewer total trials per session (220 total reaches across 8 targets) in comparison

to the dataset with a fixed delay period. Data from two motor-related regions, the premotor
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and primary motor cortex, was recorded from 2 monkeys (J and R). There were 4 sessions

associated with monkey J and 3 sessions associated with monkey R. We used 90% of the

trials to train and 10% of the trials to test, and the plots reflect the redundant information

on the test set.

E.1.8 Generalization to n sources

Our formulation naturally generalizes to n sources X1, ..., Xn. In particular, Equation 6.9

can be generalized as:

LV
∩(X1; ...;XN →Y, β) := min

f1,...,fn∈V

1

n

[ n∑
i=1

Hfi(Y |Xi)
]
+ βD(f1, ..., fn). (E.7)

We note that when computing the redundant information, we compute the loss without the

distance term D(f1, ..., fn). A naive extension of the distance term to n sources is computing

the sum of all the pairwise distance terms. If the number of sources is large, however, it may

be beneficial to consider efficient approximations of this distance term.

E.1.9 Details on canonical examples

True R∧ RGH RV (β = 0) RV (β = 5) RV (β = 15)

UNQ [T6.2] 0 0 0 0.981 0.809 0.006
AND [T6.3] [0, 0.311] 0 0 0.318 0.008 0.007

RDNXOR [T6.4] 1 1 1 0.981 0.983 0.977
IMPERFECTRDN [T6.5] 0.99 0 0.99 0.983 0.978 0.984

Table E.1: Comparison of redundancy measures on canonical examples for additional values
of β than Table 6.1. Quantities are in bits. RV denotes our variational approximation, for
different values of β. R∧ denotes the redundant information in [52] and RGH corresponds to
the redundant information in [53].

E.1.10 Example decomposition of images
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Figure E.3: Example decompositions of an image (car) from CIFAR-10. This is an example
of x1 and x2 in our CIFAR experiments. (Top left): different crops, (top right) colors of
channels, and (bottom): frequencies.
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Appendix F

Supplementary Material for Chapter 7

F.1 Proofs

Theorem 2 (GK VAE recovers the common information). Suppose our observations (x1,x2)

have GK common information defined through the random variable zc satisfying eq. 7.4-7.5 and

that our parametric function class q(z|x) optimized over can express any function. Then, our

optimization (with βc = 0 and βu < 1) is minimized by recovering latents ẑ = (ẑ1u, ẑ
2
u, ẑc) where

ẑc is the common random variable that maximizes the “stochastic” GK common information in

eq. 7.4-7.5, while ẑiu is the unique information of the i-th view, which maximizes I(xi; z
i
u, ẑc).

Proof. Let’s consider the hard-constrained problem with an infinitely expressive function

class (i.e. so that the cross-entropy loss corresponds to the conditional entropy). Our VAE

objective corresponds to

min H(x|zu, zc) + βuI(zu,x) + βcI(zc,x)+

H(x′|z′u, zc) + βuI(z
′
u,x) + βcI(zc,x)

s.t. D(qϕ1 , qϕ2) = 0

We consider a sequential optimization of finding ẑc and ẑiu, and then show that this
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solution minimizes the joint objective above. We first consider the hard-constrained version

of eq. (7.12).

min H(x1|zc) + βcI(zc;x1)+

H(x2|zc) + βcI(zc;x2)

s.t. D(qϕ1 , qϕ2) = 0

Note that H(xi) = H(xi|zc) + I(zc;xi). We can rewrite the loss as:

L = H(x1|ẑc) +H(x2|ẑc) + βc(I(ẑc,x1) + I(ẑc,x2))

= H(x1) +H(x2) + (βc − 1)(I(ẑc,x1) + I(ẑc,x2))

This tells us that the optimal zc maximizes I(ẑc, x1) + I(ẑc, x2). This is exactly the definition

that we give of “stochastic” GK common information. Note we have previously shown

I(z;x1) = I(z;x2). Given ẑc found above, the remaining objective (eq. (7.13)) becomes:

min H(x1|z1u, ẑc) + βuI(z
1
u;x1)+

H(x2|z2u, ẑc) + βuI(z
2
u;x2).

For βu < 1, the objective maximizes I(x1; z
1
u, ẑc), which was the definition of the unique

information. (For βu > 1, this corresponds to a β-VAE, and will have the corresponding

trade-off between rate and reconstruction [3, 6, 59].)

Finally, suppose z̃c did not contain all the common information as ẑc; i.e. I(z̃c;xi) <

I(ẑc;xi). Write the final equation as a maximization by noting that

H(xi|ziu, ẑc) = −I(xi; z
i
u, ẑc) +H(xi)
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Then the final optimization (for any i) is equivalent to

max I(xi; z
i
u, ẑc)− βuI(z

i
u;xi)−H(xi) = max I(xi; ẑc) + I(xi; z

i
u|ẑc)− βuI(z

i
u;xi)−H(xi)

(F.1)

> max I(xi; z̃c) + I(xi; z
i
u|z̃c)− βuI(z

i
u;xi)−H(xi)

(F.2)

= max I(xi; z
i
u, z̃c)− βuI(z

i
u;xi)−H(xi) (F.3)

For any ziu, Eq. F.1 is maximized with ẑc that encodes all the common information. Thus

the GK VAE optimization is minimized with ẑ = (ẑ1u, ẑ
2
u, ẑc). □

Proposition 4. ( [149], Ex. 1): Define

z1 = (zc, z
1
u), z2 = (zc, z

2
u)

where zc, z
1
u, and z2u are mutually independent. Then for any invertible transformation ti the

random variable z∗ that satisfies

argmax
ẑ

CGK(t1(z1), t2(z2))

is zc.

Proof. Note that if t is the identity transformation t(z) = z, then

argmax
ẑ

CGK(z1, z2)

is zc. As an aside, in this case I(z1; z2) = CGK(z1, z2)

If t is an invertible transformations, suppose that f1 and f2 are the functions satisfying

Ẑ = f1(Z1) = f2(Z2) corresponding to CGK(z1, z2). Then the functions corresponding to

CGK(t1(z1), t2(z2)) will be Ẑ = f1 ◦ t−1
1 (t1(Z1)) = f2 ◦ t−1

2 (t2(Z2)) and the random variable ẑ
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is equivalent. □

F.2 Experimental Details

We trained networks with Adam with a learning rate of 0.001, unless otherwise stated. When

the number of ground truth latent factors is known, we set the number of latents equal to the

number of ground truth factors. To improve optimization, we use the idea of free bits [76] and

we set λfree−bits = 0.1. This was easier than using β scheduling, since it only involved one

parameter λfree−bits. We set βu to be 10 and βc to be 0.1. We trained networks for 70 epochs,

except for the Mnist experiments, where we trained for 50 epochs. We used a batch size of

128 and we set λc = 0.1. For all our experiments we used the same encoders and decoders

as [21], which has been also used in recent work [95]. Our architecture is schematized in

Fig. 7.1. Note that we optimized encoders and decoders separately between the views (i.e

weights were not shared).

To ensure that the latents are shared to both encoders, during training we randomly

sample z from either encoder qϕi
(zc|xi) with p = 0.5. We opted to randomly sample the

latents from each encoder, as opposed to performing averaging, to ensure that the latent

will always be a function of an individual view xi. This is in addition to the soft constraint

governed by λc in the loss.

To quantify the information contained in the representation, we calculate the usable

information (in bits), which is a lower bound to the information contained in the representation

[78, 151]. To train our decoder, we used the GradientBoostingClassifier from sklearn

with default parameters. We trained on 8000 samples and tested on 2000. We evaluated the

information on a held-out test set, and hence the negative values correspond to overfitting

on the training set. In Table 7.1, the numbers in parentheses correspond to the number of

ground truth factors. We used the same setup for the rotated Mnist experiments (Fig. 7.3).

For the rotation angle, we discretized the angle of rotation (−45◦, 45◦) into 10 bins of equal
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size, and predicted the discrete bin. We predicted the rotation angle applied to the first view.

When comparing with a constrastive learning approach (Fig. 7.3, right), we used the same

encoder backbone as our GK-VAE1. We pre-trained with a batch size of 256 for 60 epochs

with a learning rate of 0.001, and then trained the linear classifier for 10 epochs with an

initial learning rate of 0.03. We used a latent dimension of 20.

F.2.1 DCI Plots and Disentanglement Score:

Let d be the dimension of the representation z and let t be the true generating factors.

The idea is to train a regressor fj(z) : Rd → R to predict the ground truth factors tj for

each j from the representation z. This results in a matrix of coefficients that describe the

importance of each component of the representation for predicting each ground truth factors.

This matrix R is the importance matrix that we visualize in the paper, where Rij reflects the

relative importance of of zi for predicting tj. We used the GradientBoostingClassifier

from sklearn with default parameters, similar to [95] to predict the ground truth factors.

Following [37] we compute the DCI disentanglement score as
∑

i ρi(1 −H(Pi)), where

Pij = Rij/
∑

j Rij, and ρi =
∑

j Rij/
∑

ij Rij. In other words, P represents a normalized

importance matrix, and ρi scales the contribution of the ith row to the overall disentanglement

score. The DCI disentanglement score is highest when each latent variable only encodes one

ground-truth factor (and thus depends on the rows of the DCI plots).

F.3 Other Related Work

A similar formulation has been used for multi-view learning [142], with two separate autoen-

coders, with an constraint that each latent representation be similar, with the similarity

measured by the canonical correlation of the latent representations. They did not motivate

it from an information-theoretic perspective; and rather empirically found that such an

1We used the code from: https://github.com/HobbitLong/CMC
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optimization lead to good representations in the multi-view setting.

Also related to our work is [113]. [113] defined the approximate Gács-Körner information

in the following manner:

max
Z

I(X1;Z)

s.t. H(Z|X2) < δ

Z ↔ X1 ↔ X2

(F.4)

By showing that they could perform the optimization over deterministic functions f such

that Z = f(X1), they formed a Lagrangian corresponding to:

max
f

H(f(X1))− λH(f(X1)|X2) (F.5)

They noted that the above optimization is difficult to perform and that future work should

look into avenues for computing this quantity; indeed it looks difficult to learn the function f

from the above optimization problem. They also suggested that this approximate form of the

Gács-Körner common information had potential applications in terms of compression, since

the (approximate) common information only needs to be represented once.

F.3.1 Learning Disentangled Representations with VAEs

[59] To better understand why the β-VAE leads to more disentangled representations, it is

helpful to decompose the second term in the following β-VAE loss

Lβ−V AE = Ep(x)[ Eqϕ(z|x)[− log pθ(x|z)] + βKL(qϕ(z|x) || p(z))]. (F.6)

The second term can be decomposed (for example [4, 25])

KL(qϕ(z|x) || p(z)) = Iq(X;Z) +KL[q(z) || Πjq(zj)] + ΣjKL[q(zj) || p(zj)] (F.7)
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The first term is the mutual information (with respect to the encoder qϕ), i.e. KL(qϕ(z|x) || qϕ(z)),

the second term is the total correlation [145], and the third term is a dimension-wise KL

divergence. [25] found that that the important term to minimize was the total correlation

term, and that this was the key factor leading to disentanglement in the β-VAE.

F.3.2 Relationship to redundant information in the Partial Infor-

mation Decomposition

Our approach also relates to approaches that aim understand how the information that a set

of sources contain about a target variable is distributed among the sources. In particular, [147]

proposed the Partial Information Decomposition (PID), which decomposes the information

that two sources X1 and X2 contain about a target variable Y into a the components that

are unique, redundant, and complementary. A central quantity in this decomposition, the

redundant information, reflects the shared information about a target variable. The Gacs-

Korner common information is equivalent to existing definitions redundant information if the

target is reconstructing the sources (i.e, Y = (X1, X2)) [87]. We note that computing the

redundant information from high dimensional samples has been challenging. Recently [81]

proposed an approach that could be applied on high dimensional sources but where the target

was low dimensional. Here, our approximation of the common information reflects a further

step which can be applied on high dimensional samples (and targets).

F.4 Limitations of our approach

To validate our approach, we focused on the simpler setting where we have paired data,

however, we could extend our formulation to find common information between n > 2 sources,

as well as finding common information between subsets of sources. While our approach can

be naturally extended to find the common information between n sources, future work could

investigate a scalable approach to identify common and unique information between arbitrary
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subsets of the sources. Additionally, to validate our approach empirically, we focused on using

a convolutional encoder on relatively small images and video frames, but our formulation is

general and the encoder could be interchanged depending on the complexity and inductive

biases of the task and data.

F.5 Additional Experiments

In Table F.1, we compute the information encoded in the common and unique latent compo-

nents for the common-dsprites experiment described in the main text, with corresponding

DCI matrix and latent traversals in Fig. 7.2. We also report additional runs for the common-

dsprites and common-3dshapes experiments in Fig. F.1 and Fig. F.2 respectively. These

additional runs are consistent with what was reported in the text, separating the common

and unique factors.

In addition to the experiments described in the main text, we report variants of common-

dsprites and common-3dshapes. In particular, we change the set of ground-truth common

and latent factors.

For the common-3dshapes, we specified that the viewpoint was the unique latent variable

zu, whereas the other latent variables (backgroud color, floor color, object color, shape, size)

were common to both views. We show the DCI matrix and the traversals in Fig F.3. For the

common-dsprites variant, we set the unique components to be the size, scale, and orientation,

and the common latent factors to be the x and y position. We show the DCI matrix and

latent traversals in Fig. F.4. The common and unique latent variables from our optimization

separated these ground truth factors.
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Table F.1: Usable information approximation for the information contained in the common
and unique latents of a dsprite experiment. Note that the KL components are not ordered
but are close to the “common” and ‘unique’ usable information. Unique factors: position;
Common Factors: shape, scale, angle. Units in bits.

Shape (3) Scale (6) Angle (40) X-Pos (32) Y-Pos(32) KL Total

Common 1.54 2.45 2.88 -0.33 -0.29 9.57
Unique 0.08 0.03 -0.5 3.58 3.63 9
Total 1.54 2.45 2.76 3.68 3.69 18.57
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Figure F.1: Additional runs for the same experiment as Fig. 7.2 (right) for common-dsprites,
with the same conventions as Fig 7.2.
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Figure F.2: Additional runs for the same experiment as Fig. 7.2 (right) for common-3dshapes,
with the same conventions.
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Figure F.3: DCI matrix of common-3dshapes-2 (different viewpoints, latent factor 5 unique)
for different random seeds. (Works better for smaller batch size. Ground truth generative
model: factors 5 are unique. Unique latent variables are specified a priori to be latents: 0,
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Figure F.4: DCI Matrix of dsprites for different random seeds. Common: Rows 4-5: Positions.
Ground truth generative model: factors 0,1,2 are unique. Unique latent variables are specified
a priori to be latents: 0,1,2
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