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Structure Modeling and Virtual Screening: Application to G 

Protein-coupled Receptors 
 
 
 
 
 
Abstract 
 
G Protein-coupled Receptors (GPCRs) make up the largest family of proteins in the 

human proteome.  These receptors are the target of an estimated 40% of drugs, and the 

potential for additional therapeutics that target GPCRs is great.  Here, we describe a 

procedure for modeling the Human Adenosine A1 Receptor, a protein for which no 

known crystal structure exists.  This protein plays a role in many cellular processes, and 

may be involved in Creutzfeldt–Jakob Disease, a human prion disease.  To this end, we 

also describe a virtual screening procedure used to find novel ligands of the Adenosine 

A1 Receptor.  Finally, the resultant iterative process of docking and modification of the 

active site of the Adenosine A1 Receptor is described. 
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Introduction 

Protein Structure Modeling 

The use of predicted protein structures is of great interest due to the comparatively small 

number of solved structures.  There are approximately 55,000 solved structures in the 

PDB, compared to over 6 million protein sequences, (Eswar, Webb et al. 2007).  Protein 

structure modeling remains an important field of research, and has far reaching 

implications for the pharmaceutical, agricultural, and other commercial industries, in 

addition to other areas of biological research, such as phylogenetic studies (Schwede, 

Sali et al. 2009).   

While several methods of computational protein structure prediction exist, homology 

modeling remains the most reliable (Irwin and Shoichet 2005).  Homology modeling is a 

process by which a protein sequence of unknown structure, called the target, is modeled 

into a three dimensional structure based on information from a sequence that has a 

known structure, called the template. Typically, a sequence identity between the target 

and template sequence of  >50% results in a homology model that is accurate enough to 

use in high-resolution computational experiments, such as virtual screening (Sanchez, 

Pieper et al. 2000). 

Homology modeling can be broken down into four main steps:.   

1) Identification of homologous templates to the target sequence 

Existing databases of known structures are searched using any number of search 

algorithms, such as BLAST or PSI-BLAST.  Typically, the sequence with the 

highest sequence identity to the target is chosen to serve as the template.   In 
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many cases, there may be more than one template, and multiple templates can be 

used.  The templates can be from different organisms other than that of the target 

(Chothia and Lesk 1986; Altschul et al 1997; Marti‐Renom et al. 2000). 

2) Generation of an alignment between the target and templates 

Alignment software is used to create a sequence alignment between the target 

sequence and the template sequence.  This alignment determines which residues 

are considered to be equivalent to guide the modeling software.  There are 

numerous alignment algorithms and programs that can perform pairwise or 

multiple sequence alignments (Tramontano et al. 2001).  In addition, due to 

ambiguities in alignments, some algorithms allow the generation of “suboptimal 

alignments”, which explore probabilistically unfavorable alignment space 

(Marko, Stafford et al. 2007).  

3) Using a homology modeling program to create the model 

Modeling software generates a three dimensional structure based on the input 

alignment (Sali and Blundell 1993).  Once the initial structure has been 

generated, additional steps can be taken to potentially refine the model by 

optimizing side-chains or performing molecular dynamics, for example. 

4) Scoring the prediction 

Though a model has been generated, it still remains a prediction.  As a result, it 

is necessary to predict its errors.  Multiple methods exist for scoring predicted 

protein structures, and they include statistics-based scoring, trained neural 
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networks, or scoring based on physical principles (Baker and Sali 2001; 

Eramian, Eswar et al. 2008). 

Membrane Protein Structure Modeling 

Membrane proteins remain a challenge to crystallize.  In fact, only 1% of all structures 

in the PDB are membrane proteins.  In light of the lack of structures, the ability to 

predict membrane protein structure will be of great importance for the foreseeable future 

(Caffrey 2003; Elofsson and von Heijne 2007).   

Three dimensional structure predictions of membrane proteins were attempted before 

any high-resolution structure was solved.  Early models of bacteriorhodopsin and G 

Protein-coupled Receptors were made using information from low-resolution 

experiments, such as electron microscopy.  Ab initio structure prediction of membrane 

proteins remains difficult for a number of reasons, such as the inherent size of 

membrane proteins and correctly modeling the membrane part of the structure (Elofsson 

and con Heijne 2007). 

Some methods for predicting membrane protein structure places primary importance on 

identifying the transmembrane helical segments.  A typical transmembrane segment 

contains a stretch of predominantly hydrophopic residues.  These residues must be long 

enough to span the lipid bilayer as an alpha helix.  There are also recurring sequence 

motifs that can increase the accuracy of an alignment, and thereby the predicted 

structure (Elofsson and von Heijne 2007).   

For a computational experiment such as virtual ligand screening, a reliable three-

dimensional protein structure is required.  At the current state of the art, comparative 
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modeling typically yields the most accurate model of a membrane protein.  However, as 

a result of the relatively few number of solved membrane proteins, the field of 

membrane structure prediction is still in its early stages.  Yet, if a template can be found 

that is greater than 30% sequence identity, the resultant models are comparable in 

accuracy to globular proteins of similar sequence identity ( Forrest, Tang et al. 2006; 

Elofsson and von Heijne 2007).  

G Protein-Coupled Receptors 

G Protein-Coupled Receptors, or GPCRs, are membrane-bound receptors found only in 

eukaryotes. GPCRs play essential roles in the recognition and transmission of cellular 

signals.  These receptors make up the largest family of proteins in humans, at 

approximately 800 sequences. There are five human GPCR families, including 

rhodopsin, secretin, adhesion, glutamate, and Frizzled/Taste2 (Fredriksson, Lagerstrom 

et al. 2003).   

GPCRs remain an important focus area in structural biology because of their clinical 

relevance.  They account for nearly 40% of the prescription pharmaceuticals on the 

market. Some notable examples of drugs that target GPCRs are Zyprexa, Clarinex, 

Zantac, and Zelnorm (Fillmore, 2004). 

Challenges involved with modeling GPCRs 

Given the importance of GPCRs in the human proteome alone, it is of great interest to 

the scientific community to be able to structurally characterize these proteins.  

Unfortunately, obtaining crystal structures of GPCRs is difficult, thus few GPCRs have 
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available structures (Table I).  In light of the complications involving crystallization of 

these proteins, other structure-determination methods are desirable. 

Table I.  X-ray structures of GPCRs. 

Protein PDB Code Resolution Species 
Rhodopsin 1GZM, 1HZX, 1JGJ, 1L9H, 

1U19, 2I35, 2I37, 2J4Y, 2ZIY, 
3C9L, 3DQB 

2.2 - 4.2 Å  Bovine, squid 

β2-Adrenergic 
Receptor 

2R4R, 2R4S, 2RH1, 3D4S 2.4 - 3.4 Å Human 

β1-Adrenergic 
Receptor 

2VT4 2.7 Å Turkey 

Adenosine A2A 
Receptor 

3EML 2.6 Å Human 

 

Template-based protein structure prediction, also called homology modeling, is the most 

appropriate way to predict the structures of membrane proteins.  Though recently 

membrane structures have been predicted by use of sparse restraint sets, these methods 

are new and have not been tested in a blind prediction sense. Furthermore, these 

methods are limited to membrane proteins of about 250 amino acid residues in length 

and are somewhat coarse-grained (Barth, Wallner et al. 2009).     

To build a GPCR model of high accuracy, a homology model must be constructed.  

Comparative modeling is currently the only method that will allow a computational 

experiment such as virtual screening to be performed. 

Virtual Screening 

Homology models are useful in structure-based drug discovery, facilitating the 

investigation of ligand-protein interactions in an effort to find novel ligands and improve 

their potency.  One technique, “virtual screening”, computationally tests large libraries 

of organic molecules for those that complement the structure of a protein binding site. 
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While this is useful when there are known crystal structures, homology models can 

accelerate the virtual screening process and can support decision making in the event 

that crystal structures do not exist.  In addition, homology models can also provide 

valuable insight before experimental high-throughput screening begins.  (Schwede, Sali 

et al. 2009; Michino, Abola et al. 2009; Fan et al. 2009).     

A Viable Model for a Clinically Relevant GPCR 

To generate a model that is suitable for virtual screening, the target protein must have at 

least one template that is of reasonable (>30%) sequence identity.  

Before the first experimental structures of GPCRs were determined, models aided in the 

selection and infroduction of GPCR ligands to the clinic.  Thus, it is of interest to be 

able to select a GPCR target for modeling that has no known crystal structure and plays 

a role in some human disease(Engel, Skoumbourdis et al. 2008).  A case could be made 

for many GPCRs as targets for therapeutic development; such examples include the 

Histamine Receptor (inflammation), the Orexin Receptor (sleep regulation), and the 

Calcitonin Receptor (blood calcium level). 

Studies have shown that the Adenosine A1 receptor (A1R) is implicated in the etiology 

of several diseases, including Creutzfeldt–Jakob disease (CJD) and Alzheimers disease 

(AD).  As a result of this, the Adenosine A1 Receptor was chosen as a candidate for 

structure modeling and computational docking of ligands with the intent of discovering 

novel small molecules. 
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The Adenosine A1 Receptor 

The Adenosine A1 receptor is a Rhodopsin-like GPCR that is important in a number of 

human cellular processes (Townsend-Nicholson, Baker et al. 1995).  Adenosine, the 

endogenous ligand of the A1 receptor, is involved in regulating multiple metabolic 

processes.  The Adenosine receptors mediate adenosine function, and induce the 

inhibition of adenylyl cyclase activity, which is the enzyme that synthesizes cAMP from 

ATP.   

Stimulation of the A1 receptor activates phospholipase C and D, and several potassium 

and calcium channels.  The A1 receptors are found in several tissues and are found in 

highest density in the central nervous system.  The proteins are expressed in cerebral 

cortex, hippocampus, cerebellum, thalamus, and brainstem.  In the brain, adenosine 

modulates neuronal activity by decreasing presynaptic release of various 

neurotransmitters.   

The adenosine A1 receptor plays an inhibitory role in the glutamenergic system, and 

glutamate is a potential mediator of degeneration of prion diseases.  Because of the A1 

role in the glutamenergic system, it is a potential target for therapeutic development for 

prion diseases, and thereby was chosen as the GPCR to model (Rodriguez, Martin et al. 

2006).  
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Creutzfeldt–Jakob Disease 

Creutzfeldt-Jakob Disease (CJD) is a prion disease, which, like all prion diseases, is 

characterized by neuronal loss, spongiform change, and accumulation of prion protein 

(Prusiner 1994) .  

CJD is a form of neurodegenerative encephalopathy.  It is a transmissible human prion 

disease, affecting approximately 1 in 1,000,000 individuals.  CJD is believed to occur by 

the conformational change of normal human prions (prion protein, or PRP).  The normal 

prions are produced in the rough endoplasmic reticulum, where they then travel to the 

cellular membrane.  There, they encounter rogue prions, which have already changed 

conformation, from a mostly helical structure to nearly 50% beta sheet.  The rogue 

prions then form fibrils, and these fibrils accumulate in the nervous system 

(ninds.nih.gov/disorders/cjd/).. 

CJD is always fatal, and its symptoms include dementia, memory loss, and myoclonus.  

The death of brain cells is caused by the buildup of protein aggregates.   The aggregates 

are made up of PrP, and they cause round or oval vacuoles between 1 and 50 microns in 

diameter in brain tissue.  CJD is transmissible, and the incubation time is unknown.  It 

should be noted that some human prion diseases, such as Kuru, have a mean incubation 

time of 14 years but in some cases can take up to 40 years.  In the late 1990’s, several 

unrelated residents of the United States state of Kentucky were diagnosed with CJD, and 

it was later revealed that these individuals had all regularly consumed squirrel brains.  

Thus, PrP in the squirrel brains may have been transmitted to humans through 

consumption (Will, Ironside et al. 1996).   
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Due to the association between Adenosine A1 receptor, the glutamenergic system and 

prion diseases(Rodriguez, Martin et al. 2006), research was conducted into the levels of 

A1 receptor in PrP related diseases.  These studies looked at CJD and AD in humans, 

and Bovine Spongiform Encephalopathy (Mad Cow Disease, or BSE) in mice . 

The levels of the Adenosine A1 receptor in the frontal cortex of 12 patients with CJD 

and 6 age-matched controls were measured.  In addition, levels of A1 in BSE-infected 

mice were studied at different post incubation times to monitor changes in A1R levels 

with disease progression.  An increase of A1 levels of 190% was found in cerebral 

cortex in CJD and in the mouse BSE model at advanced stages of the disease [Fig.1].  

Increased activity of the receptor was also observed when compared to the controls.  

There was no change in Adenosine A2 Receptor levels in CJD patients [Fig. 2].  

Therefore, the A1R, as opposed to the closely related A2, may play a role in CJD 

progression.  Furthermore, increased A1 levels were observed in patients with 

Alzheimer’s disease.  Given this information, the A1 receptor presents itself as a 

therapeutic target for prion diseases.   
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Figure 1.  Adenosine A1 levels in human frontal cortex.  Error bars are +/ 
standard deviation.  Student ttest p < 0.05. (Rodriguez, Martin et al. 2006) 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Figure 2.  Adenosine A2 levels in human frontal cortex.  No change is observed. 
(Rodriguez, Martin et al. 2006) 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A radioligand binding experimental assay is available for the Adenosine A1 Receptor, 

and it is also accessible for real time imaging through the use of a Positron Emission 

Tomography (PET) scan using selective radioactive A1R ligands (Rodriguez, Martin et 

al. 2006).  The PET scan is a technique that produces a three-dimensional image of 

processes in the body. The system detects pairs of gamma rays emitted indirectly by a 

positron-emitting tracer, in this case an A1R ligand. 

PET scanning could allow superior diagnoses of prion diseases in human patients, since 

routine laboratory findings are often not helpful in diagnosing CJD. There is no 

dysfunction of major organ systems besides the central nervous system, and 

cerebrospinal fluid (CSF) will not show an increase in immunoglobulins. 

 

 

Figure 3.  Adenosine A1 levels in human frontal cortex in Alzheimer’s Disease patients.    
Error bars are +/ standard deviation,  
Student ttest p<0.05 (*) p<0.01 (**)(Rodriguez, Martin et al. 2006) 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The Adenosine A1 Receptor as a case study 

Modeling Criteria 

The Adenosine A1 Receptor is an ideal target for comparative modeling and virtual 

screening.  It meets the following criteria: 

(1) Appropriate templates exist:  Solved X-ray structures of two human and one non-

human are available, including the human adenosine A2 receptor (3EML), the 

human B2 Adrenergic Receptor (2R4R), and the turkey B1 Adrenergic Receptor 

(2VT4).  The sequence identity between the Human A1 and A2 is the highest of 

the solved GPCR structures, at approximately 50%.  This is high enough 

sequence identity to achieve an accurate model suitable for virtual screening. 

 

(2) Clinical Relevance: The A1 receptor is associated with the human diseases of 

Crutzfeldt Jakob Disease as well as Alzheimers disease.  In addition, it is 

involved in a number of important physiological processes, such as sleep 

regulation, therefore it may be the target of additional drugs. 

 

(3) Experimental assays: Radioligand binding can be used as an assay to test novel 

molecules.  In addition, the A1 Receptor is accessible for real time studies 

through PET imaging.    

The Adenosine A1 Receptor meets three important criteria for a meaningful comparative 

modeling and virtual screening study. 
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Structure Prediction of the Adenosine A1 Receptor 

There are several different, though closely related, initial approaches to generating a 

comparative model of the A1R to be used for docking. All steps, however, require that at 

least one suitable template be found.  Several potential templates exist [Table 2]. The 3 

initial approaches are as follows: 

(1) ModPipe, an automated protein structure prediction protocol 

 

(2) Structure prediction using a multiple sequence alignment (multiple sequence 

alignment) of multiple templates as input to the program Modeller(Sali and 

Blundell 1993) 

 

(3) Structure prediction using a pairwise sequence alignment as input to the program 

Modeller 

Table II.  Sequence Identities of available templates of Adenosine A1 Receptor 
target.  Sequence identities recovered from NCBI BLAST. 

GPCR/PDB 
code 

Adenosine A2 
Receptor / 
3EML 

β1-
Adrenergic 
Receptor / 
2VT4 

β2-
Adrenergic 
Receptor / 
2RH1 

Squid 
Rhodopsin / 
2ZIY 

Bovine 
Rhodopsin / 
1GZM 

A1R 
Sequence 
Identity 

52% 34% 33% 22% 18% 

 

The first method of modeling, ModPipe, uses an automated protocol to search a database 

of PDB sequences for any number of closely related templates.  These templates are 

then aligned to the target sequence using the Salign module (Madhusudhan, Marti-

Renom et al. 2006; Madhusudhan, Webb et al. 2009) of MODELLER.  While ModPipe 
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can find multiple templates for the target sequence, it does not create multiple sequence 

alignments.  That is to say, a different model is created for each target-template 

alignment.  Therefore, the potential benefits of multiple templates are not realized 

(Rychlewski and Fischer 2005).   

 

 

 

From the ModPipe results, the best scoring model, and also the model with the most 

alignment coverage, was the alignment between Adenosine A1 and the Human B2aR 

Figure 4.  Adenosine A1 Receptor model resulting from ModPipe run.  
Note the misaligned helices.  This model would not be suitable for 
docking.  See ModPipe jobfile in Appendix 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structure (2RH1).  The next most favorable model was constructed with bovine 

rhodopsin (1GZM) as the template.  This is unsurprising, considering the small number 

of GPCR structures available in the PDB.   

The resultant model clearly had at least one misaligned helix (Fig 4, See Appendix for 

alignment).  This could be due to the fact that the template (2RH1) is too divergent from 

Adenosine A1.  As a result of these misaligned helices, which affected the active site, 

this model was not considered to be appropriate for docking calculations.   

Shortly after applying ModPipe, the Human Adenosine A2 (3EML) structure was 

released.  Since this structure was of higher sequence identity than the B2aR template 

(52% vs 33%), it was reasonable to create a new alignment including the solved 

Adenosine A2 structure.  A multiple sequence alignment (MULTIPLE SEQUENCE 

ALIGNMENT), containing the Adenosine A1 target sequence, the Adenosine A2 

sequence (template), and the B2aR sequence (template), was created using MUSCLE 

(Edgar 2004).  This alignment was then used as input into the program Modeller. 

The resultant structure demonstrated improved helix packing and therefore the 

alignment was superior to the original, single template ModPipe Salign alignment [Fig. 

5].  This alignment was selected to build the first model for the computational docking 

run.  However, the initial model was not constructed with any of the ligands that were in 

the crystal structure of A2.  Since the Adenosine A2 structure was solved with the 

antagonist: 4-{2-[(7-amino-2-furan-2-yl[1,2,4]triazo lo[1,5- a][1,3,5]triazin-5-

yl)amino]ethyl}phenol or ZMA, water molecules, and steric acid, these heteroatoms 
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were included in the updated model.  This ideally would create a more accurate model, 

since these atoms will be taken into account when the prediction is generated. 

 

 

 

Due to inherent variability in the modeling routine, and ensemble of 100 models was 

constructed using the same alignment.  Since more than one structure was generated, a 

method must be used to select the most native structure from the ensemble of models.  

While multiple methods for assessing protein structure exist, very few are effective at 

assessing membrane proteins.   

Figure 5.  Adenosine A1 Receptor model resulting from multiple sequence 
alignment.  Note the marked improvement in helix alignment and packing.  
This model was used for the 1st set of docking calculations.  See appendix 
for alignment 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One of the fastest and most accurate potentials for assessing protein structure is DOPE 

(Discrete Optimized Protein Energy), which is included as an assessment method as part 

of Modeller (Shen and Sali 2006).  However, DOPE is trained to work on globular 

proteins, therefore its usefulness for assessing GPCRs, which are membrane proteins, is 

suspect.  In light of this fact, an attempt was made to extract globular regions from the 

modeled GPCR structures that could then be scored with DOPE.   

To obtain these globular regions, a 6 Å sphere of residues was selected around the C7, 

C11, and C12 atoms of the ZMA ligand.  This selection was then written out into a PDB 

file.  This resulted in 100 small PDB formatted files that approximated globular proteins.  

These approximations were scored with DOPE and DOPE_HR (DOPE high resolution) 

and the top 5 scoring models were visually inspected.  The model that was chosen as the 

best among the top 5 also had the extracellular disulfides in a favorable conformation 

(Hanson and Stevens – complete the ref).   

In addition to constructing models from the multiple sequence alignment, a pairwise 

alignment was created using only the target Adenosine A1 sequence with the Adenosine 

A2 structure as the template.  The same protocol was used as for the multiple sequence 

alignment, where the same atoms around the ZMA ligand were selected, written out as 

PDB files, and then scored with DOPE. 

When the DOPE and DOPE_HR scores of both the multiple sequence alignment and 

pairwise selections were compared, the scores were better in the models built with the 

multiple sequence alignment.  As a result, the model from the multiple sequence 

alignment  was chosen as the initial model for virtual screening.   
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When the models were built from the multiple sequence alignment, side chain 

conformational space was sampled through the generation of 100 models.  Upon close 

visual inspection of the active site of the multiple sequence alignment model, residue 

ASN 254 appeared in a sterically unfavorable conformation.  The amide group was bent 

back towards the main chain. This prompted additional optimization.  ASN 254 was 

selected and optimized via a selection and residue modeling and optimization procedure 

that is part of Modeller. [See Modeller optimization input file in Appendix.] 

This modified loop optimization resulted in a more favorable conformation, resulting in 

a model that was chosen for docking.  Unfortunately, this model did not result in 

favorable docking hits.  Known ligands did not bind to the model, which indicated that 

the active site was likely incorrect.  

Since the multiple sequence alignment model was not successful for docking, the 

pairwise alignment model was selected as the model to base the virtual screening upon. 

The initial pairwise model was generated including the heteroatoms of ZMA and stearic 

acid, both of which are visible in the 3EML PDB structure.  Following the same 

procedure as the multiple sequence alignment model, 100 models were generated with 

Modeller and the globular selections were scored with DOPE.  The top 5 scoring models 

were visually inspected and the one that appeared the most conformationally plausible 

was selected to perform the initial docking run.  However, this model did not result in 

known ligands binding. 

Given the poor results of docking, the model was further inspected.  It was determined 

that several side-chain conformations were unfavorable with respect to the ZMA ligand.  
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As per the protocol with the multiple sequence alignment model, side-chains in the 

active site were selected for optimization.  The side-chains were selected by taking a 6 A 

sphere around the C7, C11, and C12 of the ZMA molecule.  This subset of residues were 

then optimized  in Modeller.  [See Modeller jobfile, Appendix, for specific parameters.] 

After extensive optimization, the resultant model was visually inspected, and residues 

Leu250 and Asn254 did not appear to be in a normal conformation.  Asn254 exhibited 

bending of the amide group towards the main chain.   Leu250 also demonstrated a 

potentially unlikely conformation, though it was much less pronounced than that of 

Asn254.  To rectify this, these residues were selected while all other residues were held 

fixed, in addition to the ZMA ligand being included and fixed.  This selection was then 

further optimized.  Afterwards, this model was used for the virtual screening run.  

Unfortunately, this model did not result in the binding of known ligands. 

Virtual Screening of the Adenosine A1 Receptor 

In this study, the docking calculations for each protein model (see Structure Prediction 

below) were done with DOCK 3.5.54 (Kuntz, Blaney et al. 1982). This program uses 

spheres to guide the placement of the ligand atoms in the binding site. During a docking 

calculation, the heavy atoms of the molecule being docked are matched with the spheres 

in the binding site. The binding affinity is then estimated by summing the electrostatic 

and van der Waals interaction energies--correcting for the desolvation penalty, which 

arises from the transfer of a ligand from water into the low-dielectric environment of the 

protein. For efficiency reasons, these energy terms are precalculated and stored on grids 

(Lorber and Shoichet 2005). 
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To evaluate the setup of the docking calculation, the 534 known adenosine A1 receptor 

ligands from the WOMBAT (Olah et al. 2005) database were docked and visually 

inspected for the correctness of their binding poses. In the quest for novel ligands of the 

adenosine A1 receptor, we docked the 2.7 M compounds of the lead-like subset of the 

ZINC 8 database (Irwin and Shoichet 2005). These molecules had been chosen to fulfill 

the following criteria: xLogP < 3.5, molecular weight < 350 g/mol and number of 

rotatable bonds ≤ 7. For every ligand, up to 1000 conformations had been precalculated 

with the program OMEGA(Open Eye Scientific Software 2008) and the partial charges 

for its atoms had been assigned with the program AMSOL(Hawkins et al. 2003). 

To analyze and rationalize the binding modes of the known ligands, small fragments 

were docked with the program SEED (Majeux, Scarsi et al. 1999; Majeux, Scarsi et al. 

2001). The fragments were chosen such that they would represent the smallest entities 

that would likely bind to the receptor. In the present study, we used benzene, adenine, 

[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-amine and furane. The docking approach 

implemented in the program SEED determines optimal positions and orientations of 

small to medium-size molecular fragments in the binding site of a protein. Apolar 

fragments are docked into hydrophobic regions of the receptor, while polar fragments 

are positioned such that at least one intermolecular hydrogen bond is formed. Each 

fragment is placed at several thousand different positions with multiple orientations (for 

a total of in the order of 106 conformations), and the binding energy is estimated 

whenever severe clashes are not present (usually about 105 conformations). The binding 

energy is the sum of the van der Waals interaction and the electrostatic energy. The 
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latter consists of screened receptor-fragment interaction, as well as values of receptor 

and fragment desolvation (Scarsi,1997).  

 

An Iterative Approach to Structure Modeling and Docking 

Since all three previous methods to construct a viable model for docking failed, a new 

procedure was warranted.  A discussion about active site modeling options yielded a  

“semi-manual” method for modeling.  Known antagonists of the Adenosine A1 receptor 

would be manually placed into the active site of the model resulting from the pairwise 

alignment.  Next, a CHARMM minimization would be performed on the ligand only, 

while the residues were held fixed.  After the minimization, the residues of the active 

site would be optimized.  This procedure would be repeated iteratively until there was 

little or no discernable change in the active site residue conformation and the position of 

the ligand.   
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Active Site Residues and Mutagenesis Study 

The residues of the active site to be modeled with the iterative procedure were selected if 

they were within 6 A of the ligand heavy atoms.  In addition, the selected residues were 

compared to a mutagenesis study of Adenosine A1 agonists and antagonists (Tables III 

and IV).  Residues that caused major changes in binding affinity (up to 100 fold 

decrease) through alanine substitution were checked against the selection of residues 

within 6 A of the ligand.  In all cases, the residues that caused the change in binding 

affinity (after alanine substitution) were included in the selection.  Through comparison 

to this study, a greater degree of confidence was obtained in choosing the active site 

residues most likely to be important in binding. 

Figure 6.  Flow chart describing iterative optimization/docking procedure. 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Table III.  A1R Agonist mutational analysis change in binding affinity.  These 
residues were included in the selection of optimized residues for the docking 
model. 

Residue/Mutation Ligand Effects 
T/A 91 NECA, CADO, (R)-

PIA,CPA 
Decrease >100 fold 

Q/A 92 NECA, CADO, (R)-
PIA,CPA 

Decrease >23 fold 

 

Table IV.  A1R Antagonist mutational analysis change in binding affinity. 

Residue/Mutation Ligand Effects 
V/A 87 N0840 Decrease 3 fold 
L/A 88 N0840 Decrease >100 fold 
T/A 91 N0840 Decrease >100 fold 
Q/A 92 N0840 Decrease >100 fold 

 

Once these residues were selected, the iterative process began.   After the first iteration, 

it was noted that some of the helices surrounding the active site were “kinked” or 

broken.  On closer inspection, it was revealed that this bending was due to the 

optimization of the prolines in the helices.  When the proline residues were excluded 

from the optimization, the helices maintained their integrity. 

After the broken helix problem was remedied, an additional problem became apparent.  

In some cases, the side-chains were causing a steric clash with the ligand.  To quantify 

this, in the first iteration, there were 17 atom-atom contacts within 3 A distance between 

the ligand atoms and the protein side-chains.  The number of clashes could potentially 

mean that the restraint term within Modeller that determines appropriate side-chain-

ligand distances was too strict for our particular docking case.  To test this, the soft 

sphere restraint within the jobfile, was changed from 1.0 (arbitrary units), to 5.0 units, in 

1.0 unit increments.  At each increment, the model was visually inspected and the 
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interface distances were calculated.  The ideal soft sphere restraint unit was found to be 

3.0.  The default value of 1.0 was not strict enough, while the value of 5.0 caused 

unnatural side-chain conformations (side-chains faced into the backbone, for example).  

The optimizations, therefore, were run using the soft sphere restraint of 3.0, and resulted 

in only 2 atom-atom contacts within 3 angstrom distance of the molecule and ligand, 

versus 17 atom-atom contacts when using the default soft sphere restraint of 1.0.   

Now that an appropriate protocol was established, the iterative procedure described 

above began on a known antagonists of the Adenosine A1 receptor: Zinc identifier: 

13589664.  This ligand is chemically dissimilar to ZMA, which is the ligand that is 

crystallized with the Adenosine A2 structure.  A ligand that was different than ZMA was 

chosen given the repeated unsuccessful docking attempts using a model that was built 

with the ZMA ligand.    

This model demonstrated continuous improvements in each step of the iteration.  That is 

to say, the ligand did not move out of the active site during minimization and no side-

chains adopted abnormal conformations.  Upon the 3rd iteration of minimization-side 

chain optimization, the side-chains failed to change conformation appreciably, as was 

the case with the pose of the ligand.  At this point, the modeling protocol was terminated 

and the model was deemed appropriate for a virtual screening run.  Early docking results 

are promising for this model, since more of  known ligands have bound favorably as 

compared to the original multiple sequence alignment and pairwise models.  The 

computational docking runs are ongoing as of September 03 2009.  
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Discussion 

Despite advances in globular protein structure prediction, the accurate prediction of 

GPCR structure and ligand interactions remains a challenge.  The iterative process 

described here holds potential as a scaffold by which to base a standardized protocol on.  

This particular study required a considerable amount of human intervention and 

subjectivity, but this is not uncommon given the current state of the art.  Ideally, the 

entire process would be automated, and not require a manual placement of known 

binding partners.  However, modeling and virtual screening of GPCRs is likely to 

improve as more structures are solved. 

The Adenosine A1 Receptor is important in a large number of human cellular processes, 

and is likely involved in Creutzfelt-Jakob Disease and Alzheimer’s Disease.  It is not 

unreasonable to suggest that the A1 Receptor could play a role in additional human 

diseases and disorders, so it is clearly an important target for therapeutic development.  

Since the computational docking part of this study is ongoing, the actual test of the 

effectiveness of this method will only come after the docking calculations are complete 

and the top scoring ligands are tested with an experimental assay.   
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Future Directions 

Membrane protein structure prediction remains challenging, even in the case of 

homology modeling, since so few templates exist as compared to that of globular 

proteins.  Minor successes have been demonstrated in the field of ab initio membrane 

protein structure prediction, but the field has not had any immediate breakthroughs.  

Modeling of membrane proteins and GPCRs will improve as structures are solved, as 

well as with incorporation of additional information, such as more detailed lipid 

modeling. 

A note on alternative software 

SCWRL is one of the most popular side-chain modeling software programs available.  

The most recent version of SCWRL (4.0) has a new rotamer library, and models side-

chains quickly (Wang, Canutescu et al. 2008).  However, during this study, several 

comparisons were performed and SCWRL appeared to model side-chains in a manner 

that resulted in similar conformations to those generated by Modeller, albeit faster.  

Modeller was chosen over SCWRL because it allowed finer control of individual 

optimization features, such as the soft sphere restraint.  In addition, all of the homology 

modeling was done using Modeller, and the software is developed in our lab. 
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Appendix 

Modeller optimization jobfile.  Note the soft sphere restraint set to 3.0, as opposed to 
default 1.0.  In addition, the residues are individually selected and added to a larger 
selection, this is necessary since they are discontinuous.   

from modeller import * 

from modeller.automodel import * 

env = environ() 

env.io.hetatm=True 

env.io.atom_files_directory = ['.','../atom_files'] 

env.libs.topology.read(file='$(LIB)/top_heav.lib') 

env.libs.parameters.read(file='$(LIB)/par.lib') 

# give more weight to soft sphere restraints 

env.schedule_scale = physical.values(default=1.0,soft_sphere=3.0) 

log.minimal() 

class MyLoop(loopmodel): 

 def select_loop_atoms(self): 

  s=selection() 

  s.add(self.residue_range('16','16')) 

  s.add(self.residue_range('58','58')) 

  s.add(self.residue_range('63','63')) 

  s.add(self.residue_range('65','66')) 

  s.add(self.residue_range('69','69')) 

  s.add(self.residue_range('70','70')) 

  s.add(self.residue_range('83','85')) 

  s.add(self.residue_range('87','88')) 

  s.add(self.residue_range('91','92')) 

  s.add(self.residue_range('170','173')) 

  s.add(self.residue_range('175','177')) 

  s.add(self.residue_range('180','181')) 

  s.add(self.residue_range('184','184')) 

  s.add(self.residue_range('247','247')) 

  s.add(self.residue_range('250','251')) 

  s.add(self.residue_range('253','254')) 

  s.add(self.residue_range('257','258')) 

  s.add(self.residue_range('264','265')) 

  s.add(self.residue_range('270','271')) 

  s.add(self.residue_range('273','274')) 

  s.add(self.residue_range('277','278')) 

  s=s.by_residue() 

  return s 

m = MyLoop(env, 

           inimodel='A1-13672416.pdb', 
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           sequence='A1-13672416-FULL-R1.pdb') 

m.loop.starting_model = m.loop.ending_model = 1 

# variable target function method with conjugate gradients 

m.library_schedule = autosched.slow 

m.max_var_iterations = 500 

m.loop.md_level = refine.very_slow  # loop refinement method 

m.repeat_optimization = 20 

m.max_molpdf = 6000 

m.make() 

Modpipe input file, used to construct the 1st model 

 

Multiple sequence alignment (pir format) used to construct 2nd docking model.  
Contains Adenosine A1 receptor sequence, and Human Adenosine A2 and B2 
Adenosine Receptor as templates. 

>P1;adenosineA1-ZMA 

sequence:adenosineA1-ZMA:1:A:350:A:::: 

--MPPSISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGALVIPLA---I 

LINIGPQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKIPLRYKMVVTPRRAAVAIAGCWILSFVVG 

LTPM-FGWNNLSAVERAWAANGSMGEPVIKCEFEKVISMEYMVYFNFFVWVLPPLLLMVLIYLEVFYLIRKQ 

LNKKVSASSGDPQKYYGKELKIAKSLALILFLFALSWLPLHILNCITLFCPSC-HKPSILTYIAIFLTHGNS 

AMNPIVYAFRIQKFRVTFLKIWNDHFRCQPAPPIDEDLPEERPDD......wwwwwwwwwwwwwwwwwwwwww 

wwwwwwwwwwww* 

>P1;3EML-ligands.pdb 

structure:3EML-ligands.pdb:3:A:576:A:::: 

-IMGSSV------YITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPFA---I 

TISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIG 

LTPM-LGWNNCGQSQ-------GCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRIFLAARRQ 

LRSTLQ-----------KEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNS 

VVNPFIYAYRIREFRQTFRKIIRSHVLRQ----------------......wwwwwwwwwwwwwwwwwwwwww 

wwwwwwwwwwww* 

>P1;2rh1A 

structure:2rh1A:32:A:+288:A:::: 

WVVGMGI---------VMSLIVLAIVFGNVLVITAIAKFERLQTVTNYFITSLACADLVMGLAVVPFGAAHI 

LMKMWTFGNFWCEFWTSIDVLCVT-ASIETLCVIAVDRYFAITSPFKYQSLLTKNKARVIILMVWIVSGLTS 

FLPIQMHWYRATHQEAI-----NCYAEETCCDF---FTNQAYAIASSIVSFYVPLVIMVFVYSRVFQEAKRQ 

LKFCL------------KEHKALKTLGIIMGTFTLCWLPFFIVNIVHVIQDNLIRKEVYI--LLNWIGYVNS 
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GFNPLIYC-RSPDFRIAFQELLC----------------------* 

Pairwise sequence alignment (pir format) used to construct 3rd docking model.  
Contains Adenosine A1 receptor sequence, and Human Adenosine A2 as a template. 

>P1;adenosineA1-ZMA-pw 

sequence:adenosineA1-ZMA-pw:1:A:350:A:::: 

-MPPSISAFQAAYIGIEVLIALVSVPGNVLVIWAVKVNQALRDATFCFIVSLAVADVAVGALVIPLAILINI 

GPQTYFHTCLMVACPVLILTQSSILALLAIAVDRYLRVKIPLRYKMVVTPRRAAVAIAGCWILSFVVGLTPM 

FGWNNLSAVERAWAANGSMGEPVIKCEFEKVISMEYMVYFNFFVWVLPPLLLMVLIYLEVFYLIRKQLNKKV 

SASSGDPQKYYGKELKIAKSLALILFLFALSWLPLHILNCITLFCPSC-HKPSILTYIAIFLTHGNSAMNPI 

VYAFRIQKFRVTFLKIWNDHFRCQ......wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww* 

>P1;3EML-ligands.pdb 

structure:3EML-ligands.pdb:3:A:576:A:::: 

IMGSSV------YITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAAADIAVGVLAIPFAITIST 

GFCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIGLTPM 

LGWNNCGQSQ-------GCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRIFLAARRQLRSTL 

Q-----------KEVHAAKSLAIIVGLFALCWLPLHIINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPF 

IYAYRIREFRQTFRKIIRSHVLRQ......wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww* 
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ModPipe input script (.conf file) 
# - Base directory for creating temporary working directory 

TMPDIR                          /scratch/amarko/human/a12348 

# - ModPipe Repositories 

DATDIR                          /netapp/home/amarko/GPCR/adenosinea1/data 

# - MODELLER executable 

MODELLER   modCVS 

# - Database tag; used to set names for profiles 

NRDBTAG    uniprot90 

# - Non-redundant sequence database (should be in binary form) 

NRSEQDB    /netapp/database/uniprot/sequences/uniprot90.hdf5 

# - Template sequence database 

TEMPLATESEQDB   /netapp/home/amarko/seqDB/pdb_95.hdf5 

# - Database of structure profiles 

XPRF_LIST  
 /netapp/home/amarko/GPCR/profiles/PSSM/pdb95_gpcrv2_prf.list 

XPRF_PSSMDB  
 /netapp/home/amarko/GPCR/profiles/PSSM/pdb95_gpcrv2_prf.pssm 

# - PDB repository 

PDB_REPOSITORY                  
"/netapp/home/amarko/GPCR/nochimera/NC:/netapp/home/eashwar/work/adam/pdb:/netapp/databas
e/pdb/remediated/uncompressed_files" 

# - TAR (UNIX) executable (should be able to handle -z option) 

TAREXE    gtar 

# - Profile update flag 

PRFUPDATE   OFF 

# - Cutoff value for length of alignments 

MINALNLEN                       30 

# - Number of alignments per alignment 

NUMMODELS   1 

# - Scheme to select the best model calculated for each alignment 

SELECT_MODEL_BY                 MOLPDF 

RETURN_MODELS                   BEST 

# -- Modes for profile calculation 

PRF_BUILD_PROFILE  ON 

PRF_PSI_BLAST   ON 
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# -- NCBI Blast database (Specify only the base filename without extension) 

#    This will be used to calculate the PSI-Blast profile 

NCBISEQDB   /netapp/database/uniprot/sequences/uniprot 

# -- Whether to include ligands/waters from the template in the modeling process 

HETATOMS   ON 

WATERS                          OFF 

# -- Parameters for clustering alignments 

#    The condition is OVLP > CUT && PCOVLP > CUT && NONOVLP < CUT &&  

#    PCNONOVLP < CUT && IDCOL > CUT && PCIDCOL > CUT. 

#    -------+++++++++++++ 

#           +++++++++++++--------- 

#    The '+' indicates the overlaping region & the '-' indicates 

#    the non-overlapping region. 

CLUSTERALI                      OFF 

ALICLUST_OVLP                    0 

ALICLUST_PCOVLP                 60 

ALICLUST_NONOVLP                20 

ALICLUST_PCNONOVLP              20 

ALICLUST_IDCOL                   0 

ALICLUST_PCIDCOL                80 
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