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Abstract 
 Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 

and POT1), and several associated factors. One factor, TIN2, binds TRF1 and 

TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and 

hRap1, these form a soluble complex that may be the core telomere 

maintenance complex. It is not clear whether sub-complexes also exist in vivo. 

We provide evidence for two TIN2 sub-complexes with distinct functions in 

human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of 

unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which 

cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, 

TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and 

eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent 

than TIN2-13 in causing telomere dysfunction and cell death. Our findings 

suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive 

subcomplexes are particularly important for cell survival in the absence of 

functional p53. 
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Introduction 
Telomeres are the repetitive DNA sequence and specialized proteins that cap the 

ends of linear eukaryotic chromosomes and protect them from degradation or 

fusion by DNA repair processes.  Telomere integrity and length maintenance are 

essential for prolonged cell proliferation and are thought to play important roles in 

suppressing aging and cancer (Blackburn, 2000; Rodier et al., 2005). 

 

 Telomere length is generally maintained by telomerase, a reverse 

transcriptase that adds telomeric DNA repeats to chromosome ends.  Telomere 

length homeostasis also depends on proteins that act at telomeres in cis to 

control the recruitment or access of telomerase (Smogorzewska and de Lange, 

2004).  Most human cells do not express telomerase.  Because DNA replication 

machineries cannot fully copy DNA 3’ ends, such cells lose telomeric DNA with 

each S phase.  When telomeres become critically short, the cells enter a 

permanent growth arrested state termed senescence (Rodier et al., 2005).  Both 

telomerase-expressing and telomerase-negative cells utilize a host of proteins to 

ensure a proper protective telomeric structure. 

 

 The precise structure of mammalian telomeres is not known.  However, a 

‘t-loop’ structure, in which the 3’ overhang loops back and invades the telomeric 

DNA duplex, has been inferred by electron microscopy and biochemical 

experiments (Griffith et al., 1999).  The t-loop model explains how telomeric ends 

are protected from recognition by DNA repair machineries.  This protection is 

sometimes termed capping.   Telomeres can become uncapped when critically 

short, presumably too short to form a t-loop, or when certain telomeric proteins 

are defective. 

 

Several telomere-associated proteins are known to be important for 

telomere length regulation and capping (Rodier et al., 2005; Smogorzewska and 

de Lange, 2004).  These include the direct telomeric DNA binding proteins TRF1, 

TRF2, and POT1, proteins that associate with these telomeric DNA binding 
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actors (e.g., TIN2, hRap1, tankyrases), and a variety of proteins involved in other 

processes, such as DNA repair and recombination.  Of the direct DNA binding 

proteins, TRF1 binds double-stranded telomeric DNA and is an important 

regulator of telomere length (van Steensel and de Lange, 1997).  In contrast, 

TRF2, which also binds double-stranded telomeric DNA, is more important for 

telomere capping (Karlseder et al., 1999; Smogorzewska and De Lange, 2002; 

van Steensel et al., 1998).  POT1 binds the single-stranded 3’ overhang and is 

likely a terminal regulator of telomere length and end protection (Baumann and 

Cech, 2001). 

 

TIN2 is an important telomere-associated protein because it binds both 

TRF1 (Kim et al., 1999) and TRF2 (Kim et al., 2004; Liu et al., 2004a; Ye et al., 

2004a) and indirectly interacts with POT1 via the intermediary protein TPP1 (also 

termed pTOP (Liu et al., 2004b), PIP1 (Ye et al., 2004b), and TINT1 (Houghtaling 

et al., 2004)).  TIN2 participates in the regulation of telomere length through its 

interactions with TRF1 (Kim et al., 1999) and TPP1 (Houghtaling et al., 2004; Liu 

et al., 2004b; Ye et al., 2004b).  In addition, TIN2 appears to be a critical 

component in forming telomere complexes that function in end-protection (Kim et 

al., 2004). 

 

The functions of the three telomeric DNA binding proteins (TRF1, TRF2 

and POT1) are very likely coordinated.  Perturbations to either TRF1 or TRF2, or 

their associated proteins POT1, hRap1 or TIN2, influence both telomere length 

and capping (Iwano et al., 2004; Kim et al., 2004; Kim et al., 1999; Loayza and 

De Lange, 2003; van Steensel and de Lange, 1997; Yang et al., 2005).  These 

observations suggest that TRF1, TRF2, POT1, and TIN2 may function in the 

same pathway.  Consistent with this idea, six proteins co-purified in a large 

molecular weight complex (Liu et al., 2004a; O'Connor M et al., 2006; Ye et al., 

2004a).  This complex may be the core molecular machinery that regulates 

mammalian telomeres.  On the other hand, gel filtration identified a TRF2-hRap1 

complex that also contains TIN2 and POT1 but not TRF1 (Ye et al., 2004a).  
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Further, when TRF1 is removed from telomeres, TIN2 and TPP1 remain at 

telomeres via increased association with TRF2 (Houghtaling et al., 2004).  And, 

although POT1 was shown to be associated with TRF1 (Loayza and De Lange, 

2003), POT1 and TRF2 also form a complex with telomeric DNA, and POT1 

overexpression protects against loss of telomeric single-stranded DNA caused by 

expression of a dominant negative TRF2 (DN-TRF2) (Yang et al., 2005).  Thus, 

there may be distinct telomeric complexes that participate in maintaining 

telomere length and capping. 

 

It is not yet clear whether there is a single TIN2 complex, which always 

contains TRF1, TRF2 and TPP1/POT1 and their interacting proteins, or whether 

TIN2 forms multiple complexes, some of which contain TRF1, while others 

contain TRF2 (Houghtaling et al., 2004; Kim et al., 2004; Ye et al., 2004a).  

Further, although it is hypothesized that telomeric complexes respond to 

telomere shortening, it is not known which telomere complexes are important for 

telomere capping, cellular senescence and cell death.   Here, we report that at 

least two major TIN2-complexes can be identified by immunoprecipitation and 

gel-filtration of cell lysates, and that one of these is crucial for cellular 

senescence and cell survival in the absence of p53. 

 

Results 
 
TIN2 depletion disrupts TRF1 and TRF2 and causes cell death in the 
absence of p53 function 

 To understand the effects of TIN2 on cell fate and telomeric 

complex integrity, we used RNA interference (RNAi) to ablate TIN2 expression.  

We expressed short hairpin (sh) RNAs (Brummelkamp et al., 2002) 

complementary to three regions of the TIN2 mRNA (T2i-1, T2i-2, and T2i-3) in 

HT1080 human fibrosarcoma cells.  Two of the shRNAs, T2i-2 and T2i-3, 

reduced TIN2 protein levels by 70-80% (Fig. 1a).  T2i-2 and T2i-3 (not shown) 

also reduced TRF1 and TRF2 protein levels (Fig. 1b), consistent with the 

reported degradation of TRF1 upon removal from telomeres (Chang et al., 2003). 
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T2i-2 also reduced focal immunostaining, indicative of telomeric localization, of 

TIN2, TRF1, and TRF2 (Supplementary Fig. 1).  Thus, loss of TIN2 completely 

disrupted telomeres, as determined by loss of TRF1 and TRF2 protein levels and 

telomeric occupancy. 

 

Following the loss of telomeric TIN2, TRF1 and TRF2, T2i-2 and T2i-3 

induced caspase-dependent cell death, indicative of apoptosis (Fig. 1c).  Cell 

death was not observed when cells expressed an insertless vector, a non-

specific (N/S) shRNA or T2i-1, which did not reduce TIN2 expression (Figs. 1a, c).  

T2i-2 also induced apoptosis in primary human fibroblasts (strains HCA2 and WI-

38) (Fig. 1d).  Strikingly, inactivation of p53 by GSE-22, a short peptide that 

disrupts p53 tetramerization and causes accumulation of monomeric p53 in these 

cells (Gudkov et al., 1993), failed to rescue WI-38 cells from T2i-2-induced 

apoptosis (Fig. 1d).  Loss of p53 activity was confirmed by the absence of 

detectable p21 immunostaining and enhanced p53 immunostaining in X-

irradiated GSE-22-expressing, but not control, cells (Fig. 1e).  Thus, TIN2 was 

essential for TRF1 and TRF2 stability and occupancy at telomeres, as well as the 

viability of normal and tumor-derived human cells, regardless of p53 status.  This 

result suggests that loss of TIN2 promotes a seriously aberrant telomeric 

structure that induces cell death, even in the absence of p53, similar to the 

effects of telomere disruption caused by expression of a mutant telomerase 

template RNA (Li et al., 2004). 

 
TIN2-subcomplexes are formed in cells 

To gain insight into physiologically relevant TIN2 complexes, we prepared 

nuclear extracts from HeLa cells using a modified Dignam protocol (Dignam et al., 

1983).  The majority of endogenous TRF1 is extracted by this high salt (>0.3 M 

KCl) method (Okabe et al., 2004).  To detect TIN2 complexes, the extracts were 

dialyzed into buffer approximating physiological ionic strength and then 

fractionated by size-exclusion chromatography.  The resulting fractions were 
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analyzed by western blotting (Figs. 2a, 2b). 

 

We detected TIN2 across a broad range of molecular mass, from ≤1.5 

MDa to ~100 kDa in fractions 13-33 (Fig. 2a).  TRF1 eluted in two distinct peaks, 

co-eluting with TIN2 in fractions 15-17 and fractions 27-33.  All six telomere-

associated proteins (TRF1, TIN2, TRF2, hRap1, POT1, and TPP1) co-

fractionated in fractions 15-17, consistent with the large complex termed shelterin 

(de Lange, 2005) and referred to here as complex C.  We also observed a 

protein complex containing TIN2, TRF2, hRap1, POT1 and TPP1, but lacking 

TRF1 (Fig. 2a, fractions 19-23), consistent with previous reports (O'Connor et al., 

2006; Ye et al., 2004a).  We term this complex, complex B.  The complex B we 

detected here differs somewhat from that previously reported (termed fraction 1, 

isolated by a two-step chromatographic protocol) (O'Connor et al., 2006), in 

which  TPP1 was only marginally detectable.  Our one step protocol, by contrast, 

showed that TPP1 was a prominent component of complex B.  We quantified the 

signals from the western blots to illustrate the elution profiles of the six telomeric 

proteins (Fig. 2b). 

 

Under our experimental conditions we observed an additional telomere 

protein complex (complex A) containing significant amounts of TIN2 and TRF1 in 

the lower molecular mass range (Fig. 2a, fractions 27-33).  Fractions 27-31 also 

contained low levels of a TPP1/POT1 complex, as previously reported (Xin et al., 

2007).  However, in contrast to our findings (Fig. 2a), these studies (Liu et al., 

2004a; O'Connor et al., 2006; Ye et al., 2004a) did not detect complex A in the 

same molecular mass range, possibly due to the lower salt used for extraction or 

different gel-filtration conditions.  Complex A does not appear to arise from larger 

complexes (e.g., complex C) as a consequence of high salt extraction because 

there is no evidence of dissociated or degraded monomeric proteins (TRF2, 

POT1, TPP1, hRap1) in the low molecular weight fractions (Fig. 2a, fractions 35-

49).  This result is most consistent with a bona fide TRF1-TIN2 complex 

(complex A) existing in vivo.  As expected, we detected degraded TIN2 in 
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fractions 57-65.  We confirmed the absence of monomeric (and presence of 

degraded) proteins using twice the amount of sample and a different gel filtration 

column (Superdex S-200; 600-10 kDa that is better at fractionating low molecular 

weight proteins (Supplementary Fig. 2a).  This fractionation showed that low 

molecular ranges (Supplementary Fig. 2a, fractions 29-55) contained only 

degradation products of TIN2 and TRF1.  TRF1 is degraded when dissociated 

from telomeres (Chang et al., 2003).  Moreover, the high salt nuclear extracts 

contained >90% of the TRF1, TRF2 and TIN2, suggesting that most of these 

proteins were released from telomeres (Supplementary Fig. 2b). These results 

suggest that complex A (TIN2-TRF1) might be degraded upon dissociation from 

telomeres by high salt (0.5 M); in lower salt (0.3 -0.4 M), this complex is not 

released from telomeres and therefore not detected. 

 

Our chromatographic results are consistent with the existence of three 

heteromeric complexes (complexes A, B, and C), although, taken alone, the 

results are also consistent with each of the proteins being assembled into 

homomeric complexes of approximately equal size. 

 

To discriminate between these possibilities and more directly probe 

telomeric protein assemblies without high salt extraction, we overexpressed 

epitope-tagged POT1, TIN2 or TRF1 (V5-tagged POT1, Flag-tagged TIN2, HA-

tagged TRF1) in HT1080 cells.  We prepared cell lysates using physiological 

ionic strength (0.15 M NaCl), which does not liberate endogenous TRF1 and 

TIN2 as determined by western blotting (not shown).  We expected anti-V5 to 

immunoprecipitate complexes B and C, anti-HA to precipitate complexes A and C, 

and anti-Flag to precipitate all three complexes. 

 

The major complex precipitated by HA antibodies (Fig. 2c lanes 10, 11) 

was complex A (TRF1-TIN2).  A minor complex containing TRF1, TIN2 and 

TPP1 was also detectable.  These findings suggest that most TRF1 proteins 

formed a complex with TIN2 under the immunoprecipitation conditions of RIPA 
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buffer and physiological salt. 

 

V5-antibodies precipitated a major complex of POT1, TPP1,TIN2, TRF2 

and hRap1 (complex B), regardless of whether TRF1 was overexpressed, and a 

minor complex containing TRF1,TIN2, TPP1, POT1,TRF2 and hRap1 (complex 

C).  Because POT1 does not interact directly with TRF2 (Loayza and De Lange, 

2003), this result suggests that POT1/TPP1 (Xin et al., 2007) forms a more 

stable complex with TIN2-TRF2/hRap1 than with TIN2-TRF1. 

 

When Flag-TIN2 was the precipitating protein, Flag antibodies (Fig. 2c, 

lanes 6, 7) precipitated more complex B in the absence of overexpressed TRF1 

than in its presence.  This result suggests that TRF1 and TRF2 compete with 

TIN2 to form two separable complexes, A and B.  In addition, we detected a 

small amount of complex C in lysates from cells that overexpressed TRF1 and 

TIN2.  In the Discussion, we propose possible explanations for the relatively 

minor abundance of complex C after immunoprecipitation compared to nuclear 

extraction. 
 
Together, the fractionation and immunoprecipitation data indicate the existence 

of distinct TIN2 complexes in cells.  For simplicity, we term these complexes as 

follows: TRF1-TIN2, complex A; TIN2-TRF2/hRap1-TPP1/POT1, complex B; 

TRF1-TIN2-TRF2/hRap1-TPP1/POT1, complex C (Fig. 2d). 

 

TIN2 mutants have distinct effects on TIN2-complexes. 
TIN2-13 and TIN2-15C are TIN2 truncation mutants with different binding 

capabilities (Fig. 3a).  TIN2-15C lacks TRF1 binding (Kim et al., 1999).  It retains 

the TRF2 binding domain, but interacts less strongly than wild-type TIN2 with 

TRF2 (Kim et al., 2004).  Immunoprecipitation of lysates from cells expressing 

epitope-tagged TIN2-15C and POT1 showed that TIN2-15C retains TPP1/POT1 

binding (Fig. 3b).  Reciprocally, TIN2-13 retains TRF1 binding (Kim et al., 1999), 

but lacks TRF2 (Kim et al., 2004) and TPP1/POT1 (Ye et al., 2004b) binding.  
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We used these mutants to identify TIN2 complexes in cells, and determine their 

role in the cell death caused by complete loss of TIN2 in p53-deficient cells. 

 

We first tested the effects of TIN2 mutants on complex A, B and C 

formation.  Based on their composition (Fig. 2), we predicted that TIN2-13, which 

lacks TPP1 and TRF2 binding (Liu et al., 2004b; Ye et al., 2004b), would perturb 

complexes A and C, whereas TIN2-15C, which lacks TRF1 binding, would 

perturb complexes B and C (Fig. 3a).  We expressed V5-POT1 plus wild-type 

TIN2, TIN2-13 or TIN2-15C in HT1080 cells, and immunoprecipitated cell lysates 

using V5 antibodies (Fig. 3c, lanes 5-8). 

 

When TIN2-13 was expressed, V5 antibodies did not precipitate TIN2-13, 

and the level of endogenous TIN2 was not altered in the precipitate (note anti-V5 

precipitated less POT1 in Fig. 3c, lane 6, and compare lanes 6 and 7).  This 

result indicates that V5-POT1 mainly precipitated TIN2 B complexes, and that 

TIN2-13 does not disrupt complex B, as predicted.  This result also confirms the 

inability of TIN2-13 to interact with TRF2 (Kim et al., 2004) and TPP1/POT1 (Ye 

et al., 2004b). 

 

By contrast, when TIN2-15C was expressed, V5 antibodies precipitated 

TIN2-15C, and the presence of TIN2-15C reduced the level of endogenous TIN2 

in the precipitate (lane 8).  Further, TIN2-15C expression reduced the level of 

TRF2 in the precipitate (Fig. 3c, compare lanes 6 and 8), indicating that TIN2-

15C inhibits the TIN2-TRF2 interaction.  This result suggests that TIN2-15C 

disrupts complex B formation, as predicted, and is consistent with the finding that 

TIN2-15C reduces TRF2 stability in cells and dissociates TRF2 from telomeres 

(Kim et al., 2004). TIN2-15C or DN-TRF2 slightly reduced (84% and 89%, 

respectively) the length of the 3’-single-stranded telomeric overhang in normal 

HCA2 cells (Supplementary Fig.3).  Inactivation of TRF2 by DN-TRF2 or TRF2 

deletion reduced or slightly increased the 3’ overhang length in cells that were 

deficient in p53 or in both p53 and ligase IV (van Steensel et al., 1998) (Celli and 
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de Lange, 2005).  Thus, TIN2-15C and DN-TRF2 may have similar effects on 3’-

overhang length regulation in normal cells. 

 

We also expressed HA-TRF1 plus wild-type TIN2, TIN2-13 or TIN2-15C, 

and immunoprecipitated lysates using HA antibodies (Fig. 3d, lanes 13-16). 

TIN2-13 reduced the binding of endogenous TIN2 to HA-TRF1 (compare lanes 

13 and 15), but TIN2-15C did not disrupt this interaction (compare lanes 13 and 

16).  Thus, as predicted, TIN2-13 disrupted TIN2-TRF1 complexes (complex A), 

but TIN2-15C did not. 

 

We conclude that the TIN2 mutants TIN2-13 and TIN2-15C disrupt 

different TIN2 complexes, at least by immunoprecipitation analysis, and thus 

favor the formation of different telomeric complexes when expressed in cells. 

 
Effects of TIN2 mutants in cells 

To determine the biological effects of the TIN2 complexes, we expressed 

GFP (control), TIN2-13 or TIN2-15C in primary human fibroblasts (strain HCA2).  

We also analyzed these cells after p53 inactivation, achieved by expressing 

GSE-22 (Gudkov et al., 1993) or a p53 short hairpin RNA (sh-p53). 

 

We first tested presenescent (P) or replicatively senescent (S) cells, with 

or without p53 inactivation, and measured apoptotic cell death using a sensitive 

cumulative assay (Goldstein et al., 2005) (Fig. 4a).  We define presenescent 

cultures as those that retain >70% of their replicative life span, and thus contain 

cells with mostly long, functional telomeres.  In contrast to the robust cell death 

caused by complete loss of TIN2 (Fig. 1c, d), TIN2-13 or TIN2-15C caused little 

or no cell death when expressed in P or S cells with normal p53 function (Fig. 4a).  

However, when p53 was inactivated, the fraction of apoptotic cells increased in 

both cell populations (Fig. 4a).  Notably, co-expression of TIN2-13 and GSE-22 

elevated apoptosis only about 2-fold above the levels in control cells (expressing 

GFP and GSE-22), whereas co-expression of TIN2-15C and GSE-22 increased 
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cell death 8- to 10-fold above control levels (Fig. 4a).  Co-expression of TIN2 

mutants with sh-p53 gave very similar results (Fig. 4a).  These findings suggest 

that disruption of the TIN2-TRF2 or TIN2-TPP1/POT1 interaction (by TIN2-15C) 

has more severe consequences for cell survival than disruption of the TIN2-TRF1 

interaction (by TIN2-13).  They also indicate that disruption of telomeric 

complexes B and C (by TIN2-15C) is more deleterious than disruption of complex 

A and C (by TIN2-13).  Moreover, the cell death caused by disrupting these 

complexes does not require p53 function. 

 

Late generation mice lacking both telomerase and p53 progress very few 

generations relative to telomerase deficiency alone, suggesting the existence of 

a telomere-dependent cell death pathway that does not require p53 (Chin et al., 

1999).  To further test the idea that disruption of different telomeric complexes 

differentially affects the survival of cells that lack p53 function, we used lentiviral 

vectors to express TIN2 mutants and GSE-22 in replicatively senescent HCA2 

fibroblasts.  These senescent cells have several short, dysfunctional telomeres 

(Zou et al., 2004), similar to those in late generation telomerase-deficient mice.  

Moreover, because HCA2 cells express low levels of p16 (not shown), which 

inhibits the proliferation of cells that lack p53 function, p53 inactivation causes 

senescent HCA2 cells to resume proliferation, as reported for other low p16-

expressing human fibroblast strains (Beausejour et al., 2003).  We measured the 

ability of senescent HCA2 cells to form colonies following p53 inactivation and 

disruption of telomere complexes by TIN2 mutants.  We compared the effects of 

TIN2 mutants to the effect of DN-TRF2, which uncaps telomeres and induce p53-

dependent cell death (Karlseder et al., 1999) (Fig. 4b). 

 

Senescent cells readily formed colonies upon expression of GSE-22, as 

expected (Beausejour et al., 2003).  Subsequent expression of GFP (control), 

TIN2-13, or DN-TRF2 had no effect on colony formation after 12 (Fig. 4b)  or 30 

(not shown) days.  By contrast, subsequent expression of TIN2-15C initially had 

no effect on cell proliferation (for 3-10 days; not shown), but then dramatically 
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reduced colony formation.  The differences between TIN2-15C and TIN2-13 or 

DN-TRF2 in supporting colony formation could not be explained by differences in 

protein expression levels because TIN2-13 and DN-TRF2 were expressed more 

robustly than TIN2-15C (Fig. 4c). 

 

Together, these findings suggest that p53-dependent cell growth requires 

both TIN2 A and B complexes.  By contrast, the growth of cells that lack p53 

function does not require TIN2 A complexes, which are disrupted by TIN2-13 (Fig. 

3), but does require TIN2 B complexes, which are disrupted by TIN2-15C (Fig. 3).  
DN-TRF2, which lacks the TRF2 DNA binding domain and causes p53-

dependent cell death (Karlseder et al., 1999), is clearly not equivalent to TIN2-

15C in biological activity, possibly because it does not affect POT1 function in 

complex B (see Discussion). 

 
We confirmed the selective sensitivity of p53-deficient cells to TIN2-15C using 

several human cancer cell lines.  These included HT1080 fibrosarcoma cells 

(which were reported to undergo no cell death upon expression of DN-TRF2 

(Karlseder et al., 1999)), MDA-MB-231 and MDA-MB-157 breast cancer cells, 

and PPC-1 prostate cancer cells.  We used a transfected pIRES2-eGFP vector 

(Kim et al., 2004) and measured apoptotic cell death.  TIN2-15C expression 

induced significant cell death within 48 h in all these p53-deficient cancer cells 

(Fig. 4d), whereas TIN2-13 was 2- to 8-fold less effective, depending on the cell 

line (Fig. 4d).  Compared to normal cells in which p53 was inactivated by GSE-22, 

apoptosis was more robust in the cancer cells, being evident as early as 18 h 

after transfection, presumably because cancer cells harbor multiple mutations 

that disrupt cell growth and survival pathways.   The TIN2 mutants caused much 

less cell death in p53-positive cancer cells (MCF-7; LN-Cap) (Fig. 4d).  In all 

cases, TIN2-15C, but to a lesser extent TIN2-13, caused substantial cell death in 

p53-deficient cells (Fig. 4d), but very little cell death in cells with wild-type p53 

(Fig. 4a). 

Normal cells responded to TIN2-15C by undergoing senescence.  TIN2-15C, 
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much more than TIN2-13, retarded cell proliferation (Fig. 5a) and induced 

senescence-associated-β-galactosidase (Fig. 5b).   Both mutants also induced 

53BP1/γH2AX foci (d'Adda di Fagagna et al., 2003; Takai et al., 2003).  Most of 

these foci (60%-90%) co-localized with a telomeric DNA probe (Supplementary 

Figure 4), indicating that they marked dysfunctional telomeres.  The TIN2 

mutants induced 53BP1 foci in presenescent cells as well as replicatively 

senescent cells, which already have several telomeric 53BP1 foci.  In all cases, 

TIN2-15C induced many more 53BP1 foci than TIN2-13 (Fig. 5c), suggesting that 

TIN2-15C is more potent than TIN2-13 at uncapping telomeres.  These results 

also suggest that B complexes are more important than A complexes for 

protecting cells from cell death. 

 
Chromosomal abnormalities induced by TIN2 mutants 

Although p53-deficient cancer cells underwent rapid cell death in response 

to TIN2-15C, p53 inactivation and TIN2-15C expression did not cause rapid cell 

death in presenescent or senescent normal human fibroblasts (in contrast to the 

effect of TIN2 depletion).  Thus, additional events, such as cell cycle progression, 

chromosome fusion and anaphase bridge formation, might be necessary for the 

death of cells with lesions that inactivate p53 and complex B.  To test this idea, 

we expressed GFP (control), TIN2-13 or TIN2-15C in HCA2 cells in which p53 

was inactivated by GSE-22.  Cells expressing TIN2-15C had a significantly more 

chromosome fusions (0.85 per metaphase) and anaphase bridges or micronuclei 

(~21%), compared to cells expressing TIN2-13 (0.19 per metaphase, ~6% 

anaphase bridges/micronuclei) (Table 1; Supplementary Fig. 5).  We observed 

no chromosome fusions and ~4% anaphase-bridges/micronuclei in cells 

expressing GFP.  Fluorescence in situ hybridization with a telomeric probe 

showed that most of the fused chromosomes in TIN2-15C expressing cells 

possessed a telomeric signal (0.68 per metaphase), indicative of telomeric 

uncapping and subsequent fusion.  These fusions are similar in type and level 

those reported for cells expressing DN-TRF2 (Hockemeyer et al., 2005; van 

Steensel et al., 1998; Yang et al., 2005), consistent with findings that TIN2 and 
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TRF2 interact and TIN2-15C reduces telomeric TRF2 (Kim et al., 2004).  A small 

fraction of fusions lacked telomeric signal (0.16 per metaphase), which is more 

common upon loss of POT1 function (Wu et al., 2006).  These results suggest 

that TIN2-15C may cause the death of p53-deficient cells indirectly by driving 

chromosome fusions and mitotic catastrophe. 

 
Telomerase does not rescue TIN2-15C lethality 
Telomerase can rescue senescent cells in which p53 has been inactivated from 

crisis caused by dysfunctional telomeres.  To determine whether telomerase can 

similarly rescue p53-deficient senescent cells from the dysfunctional telomeres 

caused by TIN2-15C, we co-expressed the telomerase catalytic subunit (hTERT) 

and TIN2-15C in senescent HCA2 cells in which p53 was inactivated by GSE-22.  

Telomerase prevented the crisis that limits the proliferative capacity of these cells 

to ~20 population doublings (Beausejour et al., 2003).  However, co-expression 

of telomerase and TIN2-15C did not rescue the cells from loss of proliferative 

potential (Fig. 6a, b).  These results suggest that TIN2-15C causes cell death by 

disrupting telomeric structure and capping rather than by shortening telomere 

length. 

 

Discussion 
 
TIN2 telomeric complexes 

Six telomere-associated proteins (TRF1-TIN2-TPP1-POT1-TRF2-hRAP1) 

have been isolated as a single soluble complex (Liu et al., 2004a; Ye et al., 

2004a).  TIN2 occupies a unique position in this complex because it interacts 

directly with TRF1 and TRF2, and indirectly (through TPP1) with POT1.  In these 

studies, TRF2-complexes contained TIN2 and POT1, but not TRF1, suggesting 

that TRF1 is not required for the TRF2/hRap1-TIN2-TPP1/POT1 interaction 

(Houghtaling et al., 2004).  TRF1 and TRF2 bind non-cooperatively along 

telomeric repeats and have high off-rates in vitro (Bianchi et al., 1999).  These 

results suggest that TIN2 may form dynamic TRF1 or TRF2 complexes at 
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telomeres.  We identified three major soluble TIN2 complexes (TRF1-TIN2, 

complex A; TIN2-TRF2/hRap1-TPP1/POT1, complex B; and TRF1-TIN2-

TRF2/hRap1-TPP1/POT1, complex C) from nuclear extracts containing 

endogenously expressed proteins, supporting the idea that TRF1 and TRF2 

complexes are separable. 

 
Previously reports (Liu et al., 2004a; Ye et al., 2004a) did not  detect 

complex A, suggesting our nuclear extraction protocol, which used higher salt 

concentrations, was more effective at dissociating TIN2-TRF1 complexes from 

telomeres or the nuclear matrix.  TRF1 cross-reactivity was detected as multiple 

bands in low molecular weight fractions, which is likely due to proteolysis after 

release from telomeres (Chang et al., 2003) or the nuclear matrix (Okabe et al., 

2004).  In addition, we did not detect complex C as a major complex in cells that 

overexpressed TRF1 and TIN2 and were extracted by physiological salt.  

Complex C formation may require telomeric DNA, t-loop formation, and/or 

posttranslational modifications to TRF1 or matrix-associated TRF1. 

 
We utilized two TIN2 mutants with distinct abilities to disrupt the major 

TIN2 complexes (A and B).  TIN2-13 affected the TRF1-TIN2 complex A, 

whereas TIN2-15C affected TRF2-complexes.  If the major telomeric complex 

were a single entity (complex C), TIN2-13 and TIN2-15C should disrupt this 

complex similarly.  However, our results are more consistent with the existence 

of two separable TIN2 complexes, which may have different functions in cells. 
 

TIN2 complexes may function differently. 
In normal cells, telomeres shorten with each division, eventually causing 

senescence.  TIN2-15C, which disrupts complex B, removes TRF2 from 

telomeres and induces DNA damage foci, but TRF1 remains at telomeres (Kim et 

al., 2004).  DN-TRF2 also removes TRF2 and induces DNA damage foci 

containing TRF1 (Takai et al., 2003).  Senescent cells with short telomeres and 

telomeric DNA damage foci frequently lack TRF2 but not TRF1 (Herbig et al., 
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2004).   Thus, short telomeres may preferentially attract A complexes, and 

senescent cells may be unable form enough complex B (TIN2-TRF2/hRap1-

TPP1/POT1) because TIN2 is bound primarily in A (TRF1-TIN2) complexes.  

Alternatively, complexes A and B may have different preferred locations on the 

telomere or t-loop, and cooperate in telomere capping. 

 

TRF1-TIN2 complexes stimulate interactions between telomeric DNA 

tracts in vitro, suggesting that this complex modulates a tertiary telomeric 

structure (Kim et al., 2003).  TIN2-13, which disrupts this complex (complex A), 

may decrease the complexity of the telomeric structure.  On the other hand, 

deletion of TRF2 or POT1 causes telomere uncapping and chromosome fusion, 

suggesting that complex B is essential for telomere end protection (Hockemeyer 

et al., 2006; Wu et al., 2006).  Consistent with this view, we found that TIN2-15C, 

which disrupts complex B, uncapped telomeres and caused telomeric fusions 

and anaphase bridges.  Thus, we favor the hypothesis that TRF1-TIN2 (A) 

complexes and TIN2-TRF2/hRap1-TPP1/POT1 (B) complexes have different 

locations at telomeres and cooperate to form the telomeric cap (Fig.6c).  B 

complexes are more important for ensuring a proper terminal or t-loop structure, 

whereas A complexes modulate the telomeric tertiary structure and enhance the 

stability and function of complex B.  Although TIN2-13 induces some telomere 

uncapping and telomeric fusion, the effects of TIN2-13 are less pronounced than 

those of TIN2-15C, suggesting that complex A supports the functions of complex 

B. 

 

Alternatively, complexes A and B may cooperate to form the six protein complex 

C (also termed shelterin (de Lange, 2005)), and this complex may be the 

essential entity for telomere capping and cell survival.  TIN2-13 may be less 

efficient than TIN2-15C at disrupting complex C.  TPP1 may be an important 

regulator of complex C formation because loss of TPP1 can reduce the TRF1-

TRF2-Rap1 interaction (O'Connor M et al., 2006). 

Telomere-dependent cell survival in cells with or without p53 function 
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Late generation mice lacking both telomerase and p53 have a higher 

incidence of cancer relative to animals lacking only telomerase (Chin et al., 1999), 

implicating p53 as a key regulator of the response to telomere dysfunction.  

However, mice deficient in both p53 and telomerase lose sterility after only a few 

generations, indicating a second p53-independent block to cell viability (Chin et 

al., 1999).   Expression of dominant-negative telomerase proteins (Hahn et al., 

1999) or mutant telomerase RNAs (Guiducci et al., 2001) induces death in cells 

with either wild type or mutant p53, supporting the idea that loss of viability 

caused by telomere dysfunction is not dependent on a functional p53 response.  

By contrast, cell death or growth inhibition due to expression of DN-TRF2 is p53-

dependent (Karlseder et al., 1999; Smogorzewska and De Lange, 2002). 

Our results indicate that complex B disruption by TIN2-15C induce telomere 

dysfunction and cell cycle arrest in p53-positive cells.  However, p53-deficient 

cells that express TIN2-15C continue to divide, developing chromosome-end 

fusions and anaphase bridges.  These abnormalities result in cell death, which 

does not require p53 function.  Thus, our findings support the idea that complex 

B disruption by TIN2-15C causes cell death which is independent of p53 due to 

severe genomic damage and mitotic catastrophe (Fig.6c).  Our results also 

suggest that DN-TRF2 and TIN2-15C have different effects on the integrity of 

complex B. 

In the absence of p53 activity, senescent cells that express little or no p16 can 

resume growth, although their proliferation is eventually limited by severe 

telomere shortening, crisis and cell death (Beausejour et al., 2003).  Expression 

of telomerase eliminated this growth limitation.  Expression of TIN2-13 and DN-

TRF2 only minimally affected this growth resumption, whereas TIN2-15C 

expression accelerated this growth limitation.  Recent findings (Hockemeyer et 

al., 2006; Hockemeyer et al., 2005; Wu et al., 2006) suggest an explanation for 

why the effects of TIN2-15C differ from those of DN-TRF2.  Although, POT1 

deficiency causes a telomere uncapping phenotype similar to that caused by 

TRF2 loss, POT1 and TRF2 likely have distinct functions in protecting telomeres, 

regulating nucleolytic processing, and controlling telomeric recombination.  Thus, 
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TIN2-15C and DN-TRF2 likely inactivate TRF2 and POT1 differently in complex 

B.  Since DN-TRF2 induces p53-dependent apoptosis (Karlseder et al., 1999), 

whereas TIN2-15C caused cell death in p53 deficient cells, our findings offer an 

explanation for why ablation of TIN2 in cells (Fig. 1) and in the mouse germ line 

(Chiang et al., 2004) causes cell lethality or senescence, regardless of p53 status. 

 

It remains to be understood how telomere dysfunction causes cell death in 

p53 deficient cells, how dysfunctional telomeres are sensed as DNA damage, 

and the nature of the p53-dependent and p53-independent sensing mechanisms.  

Despite these gaps in our knowledge, telomerase inactivation has been 

proposed as an anti-cancer strategy because most cancer cells maintain 

telomere length by expressing this enzyme.  Likewise, disruption of TIN2-

complexes may provide a strategy for preferential killing of cancer cells, most of 

which lack p53 function. Thus, TIN2-15C sensitive complexes may provide a 

sensitive target for selective elimination of p53-deficient cancer cells. 

 

Materials and Methods: 
 
Cell culture, senescence and apoptosis characterization: We cultured all 

cells, and measured senescence-associated β-galactosidase, as described 

(Dimri et al., 1995).  We determined cell death by collapse of the mitochondrial 

membrane potential (Davalos and Campisi, 2003) or by a cumulative assay in 

which cells are incubated with a caspase inhibitor for 3 days and scored for 

cytosolic cytochrome c (Goldstein et al., 2005). 

 

Separation of native TIN2 complexes:  Nuclei were isolated from HeLa-S3 cell 

suspension cultures (20 l; 1 X106 cells/ml) (National Cell Culture Center, 

Minneapolis), and extracted with KCl (0.5 M) by a modified nuclear extraction 

method (Dignam et al., 1983).  Extracts were dialyzed into S-300 

chromatography buffer (50 mM Tris pH 7.5, 150 mM KCl, 0.2mM EDTA, 20% 

glycerol, 0.025% NP-40, 0.5 mM dithiothreitol, 1 µg/ml aprotinin, pepstatin A and 
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leupeptin and 0.5 mM PMSF) and cleared by centrifugation at 15,000 rpm for 30 

min at 4° C.  The dialyzed sample (2. 5 ml) was loaded onto a Sephacryl S-300-

HR (Pharmacia) column (1.6/60 cm, 125 ml) equilibrated with S-300 buffer.  

Fractions (1.4 ml) were collected and stored at 4° C.  The S-300 column was 

calibrated using molecular mass standards (blue dextran, thyroglobulin, ferretin, 

aldolase, conalbumin) (GE healthcare) according to the manufacture’s 

instructions. 

We expressed FLAG-tagged TIN2 and HA-tagged TRF1 in HT1080 cells using 

the retroviral vector pLXSN, as described (Kim et al., 1999).  V5-tagged 

POT1(Baumann et al., 2002) and myc-TIN2 mutants (TIN2-13 or TIN2-15C) were 

expressed using the pIRE2-EGFP vector (Bio Science) and transient transfection 

using Fugene 6 (Roche).  Cells (6 x 106) were washed with phosphate buffered 

saline (PBS), and 1 ml RIPA buffer (50 mM Tris (pH 7.5), 150 mM NaCl, 1% NP-

40, 1 mM EDTA, 10% glycerol, protease inhibitor cocktail) (Roche) was added to 

each plate.  After incubation on ice for 30 min, cells were collected by scraping 

and centrifugation at 4° C, and the supernatant (cell lysate) was recovered. 

 

Immunoprecipitation and western analyses: We incubated cell lysates (200-

300 µg protein) with 2 µg HA antibody (Roche), 10 µg FLAG M2 antibody (Sigma) 

or 2 µg V5 antibody (Invitrogen) for 2 h at 4˚ C, and added 50 µl of a 50% protein 

G-Sepharose slurry (Invitrogen) for 2 h at 4˚ C.  We washed the immune 

complexes with RIPA buffer and analyzed proteins by western blotting as 

described (Davalos and Campisi, 2003; Kim et al., 1999).  Primary antibodies 

were monoclonal anti-TRF2 (IMG-124A, Imgenex), polyclonal anti-hRap1 (IMG-

289, Imgenex), polyclonal anti-TRF1 (H-242, Santa Cruz; ab1423, Abcam), 

polyclonal anti-POT1 (H200, Santa Cruz), polyclonal anti-HA- or -TRF2 or 

monoclonal anti-HA (Santa Cruz), monoclonal anti-V5 (Invitrogen), polyclonal 

anti-TIN2 (Kim et al., 1999) and polyclonal TPP1 (O'Connor M et al., 2006). 

 

Immunostaining:  We immunostained cells as described (Kim et al., 1999).  

Briefly, we cultured cells in chamber slides, fixed with 4% formalin, permeabilized 
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with 0.5% Triton-X100, and stained with anti-TRF2, anti-TIN2 (Kim et al., 1999), 

polyclonal anti-53BP1 (Abcam), monoclonal anti-p21 (Pharmigen), monoclonal 

anti-p53 (Oncogene) or control (10% goat) serum (Vector).  After washing, we 

stained with secondary antibodies conjugated to Texas Red or FITC (Molecular 

probes), and counterstained the nuclei with DAPI.  Images of cells were acquired 

on a microscope (BX60; Olympus) using either a 100X UPlanFL 1.3 NA 

(Olympus) lens with oil or a 40X UPlanFL 0.5 NA (Olympus) lens without oil.  

Images were acquired with a CCD camera (Diagnostic Instruments Inc) and 

captured into SPOT imaging software (Diagnostic Instruments Inc).  All the 

modifications were applied to the whole image using Canvas 8 (Deneba) or 

Photoshop CS (Adobe). 

 

Chromosome analyses:  Telomeres were visualized by in situ hybridization 

(FISH) on metaphase spreads using a telomeric protein nucleic acid (PNA) probe, 

as described (Hultdin et al., 1998).   Cells treated with colcemid (0.1 µg/ml) for 4 

h were trypsinized and collected at 1000 X g (5 min).  After hypotonic swelling in 

30 mM Na-citrate for 20 min at 37o C, the cells were fixed in methanol:acetic acid 

(3:1).  FISH, using a Cy3-labeled (CCCTAA)3 PNA probe (Applied Biosystem), 

and scoring for telomeric fusions were performed as described (Bailey et al., 

1999). 

3’-G-rich strand overhangs were measured as described (Kim et al., 1999).  4 µg 

genomic DNA were hybridized with telomeric C-stranded probes (CCCTAA)5 in 

non-denaturing buffer to detect the 3’ overhang and in denaturing buffer to detect 

total telomeric DNA. 

 

shRNA and expression vectors:  Where indicated, cells were infected with a 

retrovirus expressing GSE-22 (Gudkov et al., 1993) or a lentivirus expressing sh-

p53 (Nair et al., 2005), selected and then transfected with expression vectors or 

infected with lentiviruses, as described (Beausejour et al., 2003; Kim et al., 2004).  

To ablate TIN2 expression, we synthesized double stranded DNAs to target the 

TIN2 mRNA (T2i-1: caggtgaagcagctgtcag; T2i-2: ggtcatatctaatcctgag, T2i-3: 
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gtggtggtggagctgatc) or SATB1, a nuclear protein that is not expressed in 

fibroblasts or HT1080 cells (N/S, non-specific): aacagctactattgccact).  We cloned 

the DNA into the pSuper vector (Brummelkamp et al., 2002), and transiently 

transfected packaging cells using FuGene6 (Roche).  We cloned TIN2 mutants 

into the bicistronic pIRES2-EGFP (Clontech) or pPRL-Sin18-lenti vector(Dull et 

al., 1998).  Lentiviruses were used at equivalent titers, sufficient to infect 

approximately 80-90% of cells. 
 

Colony formation assay:  Senescent cells (<2% labeling index) were plated 

with 5 x 104 cells in 6 well plates and infected with lentiviruses expressing GFP, 

TIN2-15C, TIN2-13, hTERT or GSE-22 as described (Beausejour et al., 2003).  

The cells were washed with PBS twice, fixed and stained with 0.1 % crystal violet 

in 10% ethanol for 5 min at room temperature, washed with PBS and dried. 

 
Online supplemental material: 
Supplementary Figure 1 shows that TIN2 reduction decreases TRF1 and TRF2 

foci in immunostaining.  Supplementary Figure 2 presents additional fractionation 

of TIN2-TRF1 complexes from HeLa cell nuclear lysate on a Superdex S-200 HR 

(Pharmacia) column, and shows that nuclear extraction efficiently liberates 

telomeric proteins in our extraction protocol.  Supplementary Figure 3 presents 

telomeric G-strand overhangs and telomere length analyses in cells expressing 

TIN2-15C and DN-TRF2.  Supplementary Figure 4 shows telomeric damage 

responses that are co-stained for telomeric DNA in cells expressing TIN2-13 or 

TIN2-15C.  Supplementary Figure 5 shows telomeric fusions and anaphase-

bridges in cells expressing TIN2-15C. 
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Figure Legends 
 
FIGURE 1.  Effects of TIN2 ablation on TRF1, TRF2 and cell viability. 

 a.  RNAi reduces TIN2 expression.  HT1080 cells were transiently 

transfected with pSuper vectors expressing shRNAs corresponding to a non-

expressed (non-specific, N/S) mRNA or one of three distinct regions in the 

TIN2 mRNA (T2i-1, T2i-2, T2i-3), as described in Methods.  Transfection 

efficiency varied from 60-70%.  Cell lysates were analyzed 48 h later by 

western blotting for TIN2 expression, with α-tubulin used as a loading control.  

The protein band intensities were analyzed by the Multi-Gauge program 

(Fujifilm).  TIN2 protein levels were reduced to 23% and 24% of control levels 

byT2i-2 and T2i-3 respectively.  Control cells expressed the non-specific (NS) 

shRNA. 
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b. TIN2 reduction decreases TRF1 and TRF2 protein expression.  Lysates 

from HT1080 cells transfected with the N/S (control) or T2i-2 pSuper vectors 

described above were analyzed for TIN2, TRF1, TRF2 and α-tubulin by 

western blotting.  The protein band intensities were analyzed as described in 

(a).  TIN2 and TRF2 protein levels were reduced to 16% and 13%, 

respectively, of control levels. 

c. TIN2 reduction induces apoptosis in human tumor cells.  HT1080 cells 

were transiently transfected with pSuper vectors containing no insert (Vector) 

or N/S (control), T2i-1, T2i-2, or T2i-3 shRNAs and analyzed 48 h later for 

apoptosis as described in Methods.  Transfection efficiency was 60-70%.  

Where indicated, the caspase inhibitor ZVAD (100 µM) was added 8 h after 

transfection.  200 cells were analyzed for apoptosis in three independent 

experiments.  Error bars represent the standard deviation. 

d. TIN2 reduction induces apoptosis in normal human cells.  Normal 

human fibroblasts (HCA2 and WI-38) were transiently co-transfected with 

pSuper vectors containing no insert (Vector) or T2i-1 or T2i-2 shRNAs, and a 

lenti-GFP vector at a ratio of 10:1.  48 h later, GFP positive cells were 

analyzed for apoptosis as described in Methods.  Where indicated, WI-38 

cells were first infected with a retrovirus expressing GSE-22, selected and 

then infected with the pSuper and GFP vectors.  200 cells were analyzed in 

three experiments.  Error bars represent the standard deviation. 

e. GSE-22 inactivates p53 activity in normal cells. 
 WI38 cells were infected with a retrovirus expressing GSE-22 or insertless 

virus, selected, plated and then irradiated with 10 Gy X-ray.  The cells were 

fixed 19 hrs later and immunostained for p21 and p53.  Bars, ~ 10 µM. 

 

FIGURE 2.  TIN2-mediated complexes. 
a.  Endogenous TIN2-complexes in HeLa nuclear lysate.  Telomeric proteins 

in HeLa nuclear extracts (2. 5 ml) were fractionated on a Sepharcryl S-300 

HR column and immunobloted for the indicated proteins.  20 µl aliquots of the 

indicated fractions were loaded.  Eluting fractions were collected from the 
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column after the void volume (No. 13).  Molecular sizes indicated were 

derived from a standard curve based on the elution standards, as described 

in Methods. 

b.  Western blotting signals in Fig. 2C were quantified with the Multi-Gauge 

program (Fuji film).  Relative band intensities for each protein were plotted. 

c. TIN2-complexes.  We prepared lysates from HT1080 cells that transiently 

expressed V5-tagged POT1 and stably expressed FLAG-TIN2 (lanes 2, 4, 6, 

8) or HA-TRF1 (1, 10) or both Flag-TIN2 and HA-TRF1 (Kim et al., 1999) 

(lanes 3, 5, 7, 9, 11).  We isolated TIN2 complexes using FLAG, V5 and HA 

antibodies and analyzed the lysates (10%, Input) and immunoprecipitates (IP) 

for the indicated proteins by western blotting (WB). 

d. Proposed TIN2 complexes.  Complex A, TIN2-TRF1; complex B, TIN2-

TRF2/hRap1-TPP1/POT1; complex C, TRF1-TIN2-TRF2/hRap1-TPP1/POT1. 

 
FIGURE 3.  TIN2 complexes disrupted by TIN2 mutants 
a. TIN2 deletion mutants.  Wild type TIN2 (aa 1-354) showing N-terminal (N-

term), TRF1-interaction (TRF1-Int) and C-terminal (C-term) domains, and 

deletion mutants TIN2-13 (aa 180-354) and TIN2-15C (aa 1-257). 

b. Interaction of TIN2-15C with POT1/TPP1.  Lysates from HT1080 cells 

that transiently expressed Myc-TIN2-15C, V5-POT1 and HA-TRF1 were 

precipitated using anti-Myc or V5 antibodies.  Unprecipitated lysates (10%) 

and the immune precipitates (IP) were analyzed for POT1-V5, TIN2-15C, 

TRF2 and HA-TRF1 by western blotting (WB). 

c. TIN2-TRF2-POT1 complexes disrupted by TIN2-15C, but not TIN2-13.  
Lysates from HT1080 cells transiently expressing wild-type (WT)-TIN2, 

control vector, TIN2-13 or TIN2-15C and V5-POT1 were immunoprecipitated 

(IP) by anti-V5.  The lysates (15%, Input) and immune precipitates were 

analyzed for TIN2, V5, TRF2 and α-tubulin by western blotting (WB) (lanes 1-

8).  The band indicated by * is a degraded WT-TIN2 product. 

d. TRF1-TIN2 complexes disrupted by TIN2-13, but not TIN2-15C.  Lysates 

from HT1080 cells transiently expressing WT-TIN2, TIN2-13 and TIN2-15C 
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and HA-TRF1 were immunoprecipitated (IP) by anti-HA.  The lysates (15%, 

Input) and precipitates were analyzed for TIN2, TRF2, HA and α-tubulin by 

western blotting (WB) (lanes 9-18).  The precipitating heavy chain is indicated 

(IgG).  The band indicated by * is a degraded WT-TIN2 product. 

 

FIGURE. 4.  Effects ofTIN2 mutants in presenescent and senescent cells. 
a. Cell death caused by TIN2-15C in presenescent cells.  Where 

indicated, presenescent (P) HCA2 cells were first infected with a retrovirus 

expressing GSE-22 and a lenti-virus expressing sh-p53 and selected for 2-3 d.  

Cells were then infected with lentiviruses expressing GFP, TIN2-13 or TIN2-

15C.  Where indicated, senescent (S) HCA2 cells were first infected with 

lentiviruses expressing GFP, TIN2-13 or TIN2-15C, and then infected with 

lentivirus expressing GSE-22.  Cells were scored for apoptotic death by 

assessing release of cytochrome c from mitochondria as described (Goldstein 

et al., 2005).  300 cells were scored in 2 or 3 independent experiments.  Error 

bars represent the standard deviation. 

d.  b.  Effects of TIN2-15C on senescent cells reactivated by GSE-22.  5 x 

104 senescent HCA2 cells were infected with lentiviruses expressing GFP 

(control), TIN2-13, TIN2-15C or DN-TRF2, and then infected with lenti-GSE-

22.  Colonies were stained at the indicated days after infection. 

c. Expression levels of TIN2 mutants and DN-TRF2.  Lysates from 

presenescent cells infected with the indicated lentiviruses were analyzed for 

TIN2 and TRF2 by western blotting (WB). 

Cell death induced by TIN2-15C in p53-positive and p53-negative cancer 
cells.  p53-positive (breast MCF-7, prostate LN-Cap ) cancer cells, and p53-

negative (breast MDA-MB-231 and MDA-MB-157, prostate PPC-1 , 

fibrosarcoma HT1080) cancer cells were transiently transfected with pIRES2-

eGFP vectors expressing no insert (vector), TIN2-13 or TIN2-15C.  48 h later, 

the cells were analyzed for GFP fluorescence.  GFP-positive cells were 

scored for cell death by collapse of the mitochondrial membrane potential as 

described (Davalos and Campisi, 2003).  200 GFP positive cells were scored 
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in 2 or 3 independent experiments for each transfection.  Error bars represent 

the standard deviation. 

 

FIGURE. 5.  Effects of TIN2 mutants in normal cells. 
a. TIN2-15C suppresses proliferation of normal cells.  We infected 

presenescent HCA2 cells with lentiviruses expressing GFP, wild-type (wt) 

TIN2, TIN2-13 or TIN2-15C and determined cell number the indicated number 

of days thereafter.  Plotted are cumulative cell numbers vs days in culture. 

b. TIN2-15C induces cellular senescence.  HCA2 cells were infected with lenti-

GFP or lenti-TIN2-15C and assessed 10 d later for senescence-associated β-

galactosidase, as described (Dimri et al., 1995).  Replicatively senescent 

HCA2 cells were used as positive controls. 
e.  c.  TIN2-13 and TIN2-15C induces damage foci in presenescent and 

senescent cells.  Presenescent (P) and senescent (S) HCA2 cells were 

infected with lenti-TIN2-13 or lenti-TIN2-15C and stained 48 h later for 

expression of the mutant proteins and γH2AX or 53BP1 foci.  50-80 cells were 

scored in 2 or 3 independent experiments for each transfection.  Error bars 

represent the standard deviation. 

 

 

FIGURE  6. 
a.  Telomerase does not rescue cell death by TIN2-15C.  5 X 104 

senescent cells were infected with lentiviruses expressing GFP (control), the 

telomerase catalytic subunit hTERT, TIN2-15C or both TIN2-15C and hTERT.  

The cells were then infected with lenti-GSE-22.  After 2 d, the cells were 

subcultured and plated for colony formation.  Colonies were fixed and stained 

61 days later. 

b.  Colonies were counted 5, 11 and 61 days after plating.  Colonies were 

scored in 2 or 3 independent experiments for each transfection.  Error bars 

represent the standard deviation. 

c.   Proposed model for TIN2 complexes at telomeres. 
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Complex A and B cooperate, albeit at different positions on telomeres, to form 

t-loops or other terminal structures.  Complex B may localize preferentially or 

uniquely near t-loop junctions, whereas A complexes may modulate the 

tertiary structure of telomeres and promote B complex stability.  TIN2-13 

disrupts complex A, thereby reducing the tertiary telomeric structure and 

destabilizing B complexes, resulting in partial or mild disruption of t-loops and 

telomere uncapping.  TIN2-15C directly disrupts B complexes, resulting in 

severe disruption of t-loops and telomere uncapping.  Cells expressing wild 

type p53 and TIN2-13 or TIN2-15 undergo growth arrest, whereas cells 

lacking functional p53 undergo cell death.  In both cases, the consequences 

of TIN2-15C expression are more severe than that of expressing TIN-13. 
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Table 1. 
  Presenescent HCA2 cells were infected with a retroviruses expressing GSE-

22, selected and then infected with lentiviruses expressing GFP, TIN2-13 or 

TIN2-15C.  The cells were treated with colcemid and telomeres on 

metaphase chromosomes were identified by PNA-FISH, as described in 

Experimental procedures.  Chromosome fusions were scored by fluorescence 

in situ hybridization for the presence (+Tel.) or absence (-Tel) if telomeric 

DNA at the site of fusion. 

 

 

TABLE 1. Telomeric fusions caused by expression of TIN2 mutants.  

 
Lentiviral 

vector 

No. 
Metaphases 

analyzed  

No. 
Chromosome fusions
+Tel                –Tel    

 
Fusions/ 

metaphase

 
Fusions/ 

chromosome 
GFP 53    0                      0 0 0 

TIN2-13 53    7                      3 0.18 0.0034 
TIN2-15C 61  42                    10 0.85 0.0175 
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Supplementary Figure 1. TIN2 reduction decreases TRF1 and TRF2 foci.  
HT1080 cells transfected with the N/S (control) or T2i-2 pSuper vectors were 

immunostained for TIN2 and TRF1 (left panels) or TRF2 (right panels).  

Arrowheads indicate nuclei (visible by DAPI) that lack TIN2 and TRF1 (left 

panels) or TRF2 (right panels) immunostaining.  Transfection efficiency was 

60-70%.  Bars, ~ 10 µM. 

 

a. Supplementary Figure 2.  Additional fractionation of TIN2-TRF1 
complexes from HeLa cell nuclear lysate and efficiency of our nuclear 
extraction protocol. 
HeLa cell nuclear extracts (5 ml) were fractionated on a Superdex S-200 HR 

(Pharmacia) column as described in Experimental Procedures and analyzed 

for the indicated proteins by western blotting.  20 µl aliquots of the indicated 

fractions were loaded.  Each fraction after the column void volume (fraction 

13) was collected and analyzed.  Molecular sizes were derived from a 

standard curve based on the elution of standards described in Material and 

Methods. 

Nuclear extraction efficiently liberates telomeric proteins.  To assess the 

efficiency of our extraction protocol, exponentially growing HeLa cells (1L) were 

serially extracted, maintaining equivalent buffer/cell ratios for all steps.  Nuclear 

extraction yielded a cytoplasmic fraction (lane 1), nuclear extract (lane2) and 

insoluble pellet.  The insoluble pellet was further extracted by sonication and 

DNAse I treatment (2h, 25 °C) in nuclear extraction buffer supplemented with 

5mM CaCl and MgCl (lane 3).  The remaining pellet was resuspended in SDS 

buffer, sonicated, and boiled for 10 min.  Equivalent volumes of each fraction 

were analyzed by western blotting for the indicated proteins. 

 

 

 

Supplementary Figure 3.  Telomeric G-strand overhangs and telomere 
length analyses. 
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a.   We transfected HCA2 cells with a tetracycline-inducible lentiviral vector 

containing no insert (vector) or a TIN2-15C cDNA and treated these cells or not 

with tetracycline (1 µg/ml) for 3 d.  We also infected HCA2 cells with a retroviral 

vector expressing no insert (vector) or DN-TRF2 for 3d.  We isolated and 

analyzed DNA, with or without treatment of Exonuclease I , by hybridizing with a 

C-strand telomeric probe after separation in non-denaturing gels to detect the 

telomeric 3’-overhangs (left panels) or in denaturing gels to detect total telomeric 

DNA (right panels).  DNA signals were quantified with the Multi-Gauge program 

(FLA-7000, Fuji film).  Signals from the denaturing gel were used to normalize 

the signals from the non-denaturing gel, and the results were expressed in 

arbitrary units. 

b. Induction of TIN2-15C or expression of DN-TRF2 was confirmed by western 

analysis. 

 

Supplementary Figure 4.  Telomeric damage response.  HCA2 cells infected 

with lentiviruses expressing TIN2-15C or TIN2-13 were co-stained for 

telomeric DNA, using fluorescence in situ hybridization and a protein nucleic 

acid probe, and 53BP1 foci. 

 
Supplementary Figure 5.  Telomeric fusions and anaphase-bridges in cells 
expressing TIN2-15C. 
a. Telomeres were visualized by fluorescence in situ hybridization (FISH) on 

metaphase spreads using a telomeric protein nucleic acid (PNA) probe.  
Telomere fusions as indicated by the yellow arrow were detected by 

superimposing the telomere image on the DAPI-stained chromosome image.  

Examples are shown of chromosome fusions with (1, 2 and 3) or without (4) 

telomeric DNA at the sites of fusion, and a circular fusion (3). 

As shown for the cell death analyses in Figure 4a, presenescent HCA2 cells 

were first infected with a retrovirus expressing GSE-22 or a lenti-virus 

expressing sh-p53 and then infected with lentiviruses expressing GFP, TIN2-

13 or TIN2-15C.  Cells were treated with the caspase inhibitor (QVD) as 
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described (Goldstein et al., 2005).  Anaphase bridges and micronuclei were 

quantified after DAPI staining.  ~200 cells were scored in 2 or 3 independent 

experiments for each transfection.  Error bars represent the standard 

deviation. 




























