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Abstract
The haploid female gametophyte (embryo sac) is an essential reproductive unit
of flowering plants, usually comprising four specialized cell types, including the
female gametes (egg cell and central cell). The differentiation of these cells
relies on spatial signals which pattern the gametophyte along a proximal-distal
axis, but the molecular and genetic mechanisms by which cell identities are
determined in the embryo sac have long been a mystery. Recent identification
of key genes for cell fate specification and their relationship to hormonal
signaling pathways that act on positional cues has provided new insights into
these processes. A model for differentiation can be devised with egg cell fate
as a default state of the female gametophyte and with other cell types specified
by the action of spatially regulated factors. Cell-to-cell communication within
the gametophyte is also important for maintaining cell identity as well as
facilitating fertilization of the female gametes by the male gametes (sperm
cells).
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Background
The flowering plants that dominate our landscapes and  
agriculture alternate between a diploid sporophytic stage, which 
constitutes the main body of the plant, and a reduced, haploid 
gametophytic stage contained within the male and female  
floral organs. The pollen grain is the mature male gametophyte and 
carries two sperm cells (the male gametes). The female gameto-
phyte (FG), called the embryo sac, produces the female gametes 
and usually is obscured within the maternal, sporophytic ovule  
(Figure 1). Fusion of male and female gametes occurs during 
double fertilization, after the sperm cells are delivered to the 
embryo sac by the pollen tube. After fertilization, ovules become 
seeds and sexual reproduction is achieved. Despite its reduced 
size relative to the diploid sporophyte, the development of the 
FG is tightly regulated as it is essential for successful seed  
formation. FG development in flowering plants begins after  
meiosis, when one of four haploid daughter cells develops into 
the functional megaspore (FM). In most flowering plants (includ-
ing Arabidopsis), the FM undergoes three rounds of syncytial 
mitotic divisions, followed by cellularization to produce seven 
cells belonging to four cell types, each with a defined position,  
morphology, and specialized function (Figure 1, 1). Two 
FG cell types are gametic: the egg cell (1n) and the central 
cell (2n, homodiploid). These undergo double fertilization 
by two sperm cells of the entering pollen tube to produce the 
embryo (2n) and endosperm (3n), respectively. There are two 
accessory cell types: the two synergids, whose main function 
is pollen tube attraction and reception by the gametophyte,  
and the three antipodals, whose function in many plants is  
currently unknown. In grasses such as maize, the antipodals  
proliferate further and are proposed to have a role in direct-
ing nutrition from sporophyte to developing endosperm2,3. These 

four cell types are specified from the eight haploid nuclei that 
have descended from the FM. After the first mitotic division  
of the FM (stage FG2, 4), the two daughter nuclei are  
physically sequestered at either end of the embryo sac by the  
enlarging vacuole, creating a morphological axis (FG3). After 
two further divisions (FG5), one of the four nuclei at each end 
migrates around the central vacuole toward the center; these 
polar nuclei become closely associated and will finally fuse, 
forming the central cell nucleus (FG6). At the same time, 
the remaining nuclei begin to differentiate by cellularization 
according to their position along the distal (micropylar)-proximal  
(chalazal) axis. At maturity, the pollen tube enters the ovule 
through the micropyle, formed by the tips of enclosing maternal  
integuments.

At the micropylar end of the gametophyte, the synergid cells 
and egg cell are in close proximity but have different morpholo-
gies, including nuclear position (the smaller synergid nuclei 
are oriented closer to the micropyle and egg nucleus toward the 
central cell) and vacuole position. Their molecular differences 
have been analyzed in RNA profiling experiments and these  
differences reflect their different roles in the FG5,6. How and 
when do the nuclei and the resulting cells of the gametophyte 
acquire fate information? What external signals are required, 
and how do cells communicate with each other to define or  
confirm these fates? These questions have been tackled by assess-
ing mutants or ectopic expression lines which alter cell identi-
ties, observed by morphological changes, and monitored with 
the use of fluorescent or colorimetric reporter genes expressed in 
specific cell types (as reviewed in 7). Complete cell fate change 
is shown by change in function, such as a synergid acquir-
ing the ability to form a zygote after fertilization (synergid to  

Figure 1. Arabidopsis female gametophyte development. The progression of female gametophyte development is shown from left to right. 
After meiosis, a single haploid cell, usually the basal (chalazal) cell, will enlarge and form the functional megaspore while the remaining 
products of meiosis degenerate. This haploid megaspore will have three mitotic divisions accompanied by nuclear movement to create a 
defined pattern at each division. From stage FG4, the large vacuole (blue) separates the nuclei along the chalazal-micropylar axis. At FG5, 
the polar nuclei (red) migrate to meet each other and eventually fuse. At FG6/FG7, the mature female gametophyte has seven cells: two 
synergids, egg cell, central cell with large diploid nucleus (central cell nucleus, or CCN), and three antipodal cells (which are present through 
FG7 though much diminished8). Stages are numbered in accordance with Christensen et al.4.
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egg cell) or an egg cell to form an endosperm (egg cell to  
central cell). An overarching theme is that positional infor-
mation is important for cell identity, as first described using 
the maize indeterminate gametophyte 1 mutant9,10, and these 
positional cues interact with external and internal signals to  
specify the different cell fates.

Specification of micropylar (distal) cell fates
Live imaging of developing Torenia fournieri gametophytes 
shows that at late FG4 (four-nucleate stage), when there are 
two nuclei at the micropylar end, these nuclei have a polar 
arrangement along the micropylar-chalazal axis11. The nucleus 
closest to the micropyle was observed to give rise to the  
synergids, while the nucleus closest to the central vacuole gave 
rise to egg and polar nucleus. This arrangement of FG4 nuclei 
has also been observed in fixed Arabidopsis ovules12. Differing 
cell fates of sister nuclei may result from asymmetric  
distribution of a molecular signal within the embryo sac or from 
an asymmetric external sporophytic signal. There are multiple 
lines of evidence for the importance of mobile signals in FG  

patterning at the micropylar pole where the egg cells and  
synergid cells are located (Figure 2). The plant hormone 
auxin is a small mobile molecule whose synthesis and polar  
movement through plants direct growth and patterning decisions. 
Loss of synergid identity and occasional acquisition of egg  
identity were observed when auxin signaling genes—TRANSPORT 
INHIBITOR RESPONSE (TIR) family and AUXIN RESPONSE 
FACTOR (ARF) family—were downregulated or inactivated 
in the early developing embryo sac13–15. Conversely, ectopic 
expression of the auxin biosynthesis YUCCA genes appears to  
shift micropylar cell fates toward the chalazal end of the  
gametophyte, conferring synergid and egg cell marker expres-
sion onto the central cell and antipodal cells14. Despite  
differing conclusions about the presence of auxin inside the 
embryo sac, studies are in agreement that auxin accumulation 
occurs in the adjacent sporophytic cells of the nucellus at the 
micropylar end during gametogenesis, consistent with localiza-
tion of PIN and AUX1 auxin transporters in the sporophyte and 
gametophyte, respectively13–17. That auxin either directly or  
indirectly acts as a signaling molecule for micropylar specifica-

Figure 2. Model for acquisition of cell identity in the female gametophyte. RKD genes (expression pattern shown in blue) may act early 
to set up a default egg cell state in the gametophyte and continue to promote egg cell identity later. At the micropylar pole, auxin signaling, 
together with sporophytically active AMP1 (green) which could potentially affect the auxin:cytokinin balance, acts to specify synergid cell 
identity. The egg cell (with blue nucleus) maintains synergid identity by suppressing egg cell fate in the adjacent synergid cells (black 
nuclei). CKI1 (orange) represses micropylar fates in the chalazal domain and is needed to specify central cell identity (polar nuclei in red) 
in a pathway involving AHP proteins. CKI1, together with additional factors that may be provided from the chalaza, specifies antipodal cell 
fates (yellow nuclei). Note: The nuclei in this sketch are not drawn to scale. AC, antipodal cell; AHP, Arabidopsis phosphotransfer protein; 
AMP1, altered meristem program 1; CC, central cell; CK, cytokinin; CKI1, CYTOKININ INSENSITIVE 1; EC, egg cell; RKD, RWP-RK DOMAIN 
CONTAINING; SC, synergid cell.
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tion, in particular for synergid cell fate, is also supported by the  
phenotypes of yucca mutants, in which synergids exhibit egg  
cell attributes14.

In the altered meristem program 1 (amp1) mutant, synergid cells 
are converted to functional egg cells at high frequency18, among 
other pleiotropic effects. Interestingly, sporophytic expression 
of AMP1 is sufficient to rescue this phenotype. AMP1 is 
detected only in the integuments early in gametophyte develop-
ment and in synergids after cellularization. Therefore, AMP1 
appears to mediate a mobile signal that promotes synergid  
identity, and in the absence of that early signal, egg cell fate is 
adopted. AMP1 protein is a membrane-anchored carboxypepti-
dase protein localized to the rough endoplasmic reticulum 
(ER)19. The protein has been associated with translation repres-
sion by microRNAs (miRNAs)20,21 and is also important to 
repress biosynthesis of cytokinins22. Crosstalk between cytoki-
nin and auxin affects developmental modules in many parts of 
the plant; in many cases, the balance between these hormones is  
essential for correct patterning of cell types (reviewed in 23). 
It is possible that a specific ratio of auxin and cytokinin 
activity is needed for correct micropylar patterning and that 
AMP1 is necessary to maintain this balance (Figure 2). 
Detailed molecular characterization of AMP1 function in the 
ovule may shed light on the mechanism controlling synergid  
specification in gametophyte development.

After cellularization, the synergid and egg cells presum-
ably have acquired cell identity information. Despite this, cell  
ablation experiments in Arabidopsis and Torenia consistently 
show that loss of the egg cell causes morphological and marker 
line changes in at least one synergid, which takes on features of 
an egg cell and may even be fertilized11,24. Similarly, mutants in 
which important cellular functions of the egg cell are disrupted 
also cause at least partial alteration of synergid identity25,26.  
This suggests that the egg cell prevents its synergid neigh-
bors from acquiring egg cell fate later in development through 
cell-to-cell communication (Figure 2). In contrast, in the  
ablation experiments, the central cell is not disrupted, can be  
fertilized, and does not take on aspects of egg cell morphology24,  
indicating that polar nuclei and the central cell are not subject  
to the same interaction.

Specification of chalazal (proximal) cell fates
A key differentiation factor for the nuclei at the chalazal end of 
the FG is CYTOKININ INSENSITIVE 1 (CKI1), an ER-localized 
histidine kinase that can activate cytokinin responses  
constitutively27–29. cki1 mutants show loss of central cell and 
antipodal identities and expansion of egg cell and, in some cases, 
synergid attributes, suggesting that CKI1 suppresses micro-
pylar cell fates29–31. CKI1 expression, initially present at both 
poles through FG3, is quickly restricted to the two nuclei of the  
chalazal end at FG4. This polarity of expression is maintained 
through the next nuclear division (FG5 stage). After the  
chalazal polar nucleus and its associated ER migrate toward 
the micropylar polar nucleus at stage FG5, CKI1 expression  
continues in the resulting diploid cell as well as in the antipodal 

cells at the chalazal end. Ectopic expression of CKI1 is suffi-
cient to induce central cell fate in the egg cell and synergids and  
produce seeds with multiple ectopic endosperms but lack-
ing embryos. Therefore, CKI1 appears to specify central cell  
identity while restricting micropylar cell fates (Figure 2). Simi-
lar to the cytokinin receptors, CKI1 acts through activation of a 
two-component signaling cascade, involving phosphorylation 
of Arabidopsis phosphotransfer proteins (AHPs), which then  
activate downstream transcription factors. Specifically, in the FG, 
AHP2, 3, and 5 are required for CKI1 function32. Transcription  
factors that are potential targets of this pathway include the 
MADS box–containing genes AGL80 and DIANA/AGL61, which 
are known regulators of central cell–specific pathways33–35. 
Transcription factor MYB119 is also a likely target of CKI1  
regulation and acts redundantly with MYB64 to promote  
cellularization36. myb64 myb119 mutants fail to cellularize and 
they show continued nuclear divisions and an expansion of  
central and antipodal cell fates. It is likely that the absence of 
cell membranes allows expansion of central cell and antipodal 
cell identity factors and suggests that CKI1 not only promotes  
chalazal identity but also a mechanism to limit that identity to  
the appropriate space.

CKI1 is expressed in antipodal cells and is required for  
antipodal cell specification, as antipodal cells acquire egg cell 
attributes in cki1 mutants. At the same time, CKI1 does not alter 
antipodal cell fate when overexpressed; that is, antipodal cells 
are not re-specified as central cells29. This suggests that CKI1  
action must be redirected in these cells by an additional  
antipodal specification factor acting at the chalazal end  
(Figure 2). Such a factor could be supplied by chalazal  
sporophytic cells, as the antipodal cells are in close contact 
with this tissue. Movement of a fluorescent protein (ZsYellow) 
from antipodals to neighboring maternal cells has been  
demonstrated24, suggesting a symplastic connection between 
these cells that may allow movement of an identity signal. In  
Arabidopsis, the antipodal cells become inconspicuous and 
eventually degenerate after fertilization8, but in maize and other 
grasses, the antipodal cells proliferate instead of diminish-
ing, perhaps to facilitate nutrient transfer from the sporophyte 
to developing endosperm and embryo2,3. Proliferation of the  
antipodals in maize has been proposed to involve auxin  
signaling37. Maintenance of antipodal identity in the prolifer-
ating antipodal cells requires a secreted, grass-specific factor, 
ZmEAL1, that is synthesized in the egg cell; without this  
factor, the antipodals acquire central cell characteristics at low  
frequency38. Orthologs of ZmEAL1 can be found in other grasses 
but not in eudicots. In summary, in both Arabidopsis and maize, 
specification of antipodals requires additional factors but these  
factors are likely to be different, as suggested by the very  
different fate of the antipodal cells in grasses.

Egg cell as the default state?
Egg cell fate predominates in the absence of CKI1, as cki1 
mutants fail to specify antipodals and central cells, and nuclei at 
the chalazal positions express egg cell markers instead29. Simi-
larly, at the micropylar positions, there are a number of different 
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mutants—such as amp1, eostre, lachesis, and yucca1 yucca2—in 
which synergids are not correctly specified and acquire egg 
cell fates instead14,18,25,39. These phenotypes raise the possibil-
ity that egg cell identity is a “default” state in the FG and that  
additional spatially regulated factors are required to specify the 
other cell types. Recent research has suggested candidate factors 
that may set up such a default state. Members of the plant- 
specific RWP-RK DOMAIN CONTAINING (RKD) gene family 
have been suggested as egg cell determinants because of their 
high expression in egg cells and ability to activate egg-like  
transcription profiles when ectopically expressed24,40,41. In  
addition, loss of the putatively orthologous single-copy gene in 
Marchantia polymorpha, MpRKD, leads to failure to develop  
mature egg cells42,43. Thus, RKD genes seem to have a con-
served role in egg cell differentiation. However, recent  
examination of the RKD gene family has suggested a complex role 
in Arabidopsis. Thus far, only RKD2 was shown to be specific to 
mature egg cells, but other family members are expressed in egg 
and other cells of the gametophyte5,6,40,44. RKD1 and 2 are capa-
ble of activating aspects of the egg cell transcriptome ectopically  
in protoplasts, callus, and sporophytic cells of the ovule24,40. 
These overexpression phenotypes suggested that RKD1 and 
RKD2 are activators of egg cell identity, but neither the single 
mutants nor a double mutant led to obvious changes in cell type 
in the gametophyte40,44. Investigating redundancy with other  
gene family members showed that RKD2 acts from the earli-
est stages of FG development, as double mutants with RKD4 
and RKD5 cause significant FM arrest as well as loss of egg cell 
identity markers44. Taken together, RKD genes of Arabidopsis 
seem to act redundantly at multiple stages of reproductive 
development, including proper progression from FM to FG, 
and in activation of egg cell differentiation. Considering their  
early action in the FG and ectopic expression results, we sug-
gest that RKD genes may help to create a default egg cell–like 
state in the developing FG and may continue to be important 
for egg cell differentiation later. In this scheme, differentiation 
into cell types other than the egg cell would then require  
additional cell factors (for example, CKI1 and AMP1) whose  
actions are governed by nuclear positions at cellularization.

Double fertilization requires multiple cell types to be 
specified in the female gametophyte
The correct specification of cell fates is important not only for 
formation of the female gametes but also for double fertilization, 
a process that requires the participation of three of the four cell 
types in the FG. This process has been reviewed extensively 
in recent articles45,46, so we present only a brief outline here. 
A complex set of pollen attractants, and structural changes  
to cell membranes are produced by synergid cells, regulated 
in part by specific expression of MYB98 in mature synergids47–49. 
Recently, central cell transcription factors CENTRAL CELL 
GUIDANCE (CCG) and CCG BINDING PROTEIN 1 were 
shown to interact with each other and other binding part-
ners to influence expression of MYB98 as well as expression 
of small mobile peptides that themselves may be pollen tube  
attractants50,51. After entry of the pollen tube, fusion of sperm 
with egg and central cell requires egg cell–specific secreted  

peptides of the EGG CELL 1 (EC1) family52,53. Recent evidence 
involves chromatin remodeling factors and the transcription  
factor SUPPRESSOR OF FRIGIDA 4 in regulation of EC1 
genes54. Pollen tube reception destroys one synergid, leaving the 
other intact and capable of attracting another pollen tube, but only 
if the gamete fusions from the initial pollen tube fail55–57. Sperm  
cell and egg cell fusion signals successful fertilization via  
ethylene signaling58, and the newly fertilized central cell (now 
endosperm) fuses with the remaining synergid, thereby diluting 
its ability to attract pollen tubes59. Central cell–specific  
Polycomb repressive complex genes are required for this fusion, 
indicating that proper specification of the central cell is one 
essential aspect of this process. In summary, successful double 
fertilization requires multiple processes and relies on specific  
gametophytic cell types. Pollen tube guidance is provided 
primarily by the synergids but also the central cell while  
pollen tube entry occurs through the synergid cells. Sperm cell 
fusion with the two female gametes requires factors provided 
by the egg cell; finally, suppression of the pollen tube attrac-
tion signal occurs by fusion of the central cell with the persistent  
synergid cell. Thus, successful double fertilization to produce a 
seed is an orchestrated process involving multiple interactions 
of the synergid cells, the egg cell, and the central cell. As  
discussed in this review, the overall themes of how these  
different cell types are specified are emerging gradually from the  
multiple approaches employed by several different laboratories. 
However, the molecular details are still rudimentary as compared  
with those of other developmental processes such as floral or 
meristem development, and there is a vital need for further  
elucidation of the relevant developmental pathways in the FG,  
given its critical importance to flowering plant reproduction.
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