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Magnetic resonance imaging (MRI) is a powerful diagnostic medical imaging 

technique that provides very high spatial resolution. By manipulating the signal evolution 

through careful imaging sequence design, MRI can generate a wide range of soft-tissue 

contrast unique to individual application. However, imaging speed remains an issue for 

many applications. In order to increase scan output without compromising the image quality, 

the data acquisition and image reconstruction methods need to be designed to fit each 

application to achieve maximum efficiency. This dissertation concerns several application-

tailored accelerated imaging methods through improved sequence design, efficient k-space 

traverse, as well as tailored image reconstruction algorithm, all together aiming to exploit 

the full potential of data acquisition and image reconstruction in each application. 

The first application is ferumoxtyol-enhanced 4D multi-phase cardiovascular MRI on 

pediatric patients with congenital heart disease. By taking advantage of the high signal-to-
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noise ratio (SNR) results from contrast enhancement, we introduced two methods to 

improve the scan efficiency with maintained clinical utility: one with reduced scan time and 

one with improved temporal resolution. The first method used prospective Poisson-disc 

under-sampling in combination with graphics processing unit accelerated parallel imaging 

and compressed sensing combined reconstruction algorithm to reduce scan time by 

approximately 50% while maintaining highly comparable image quality to un-accelerated 

acquisition in a clinically practical reconstruction time. The second method utilized a 

motion weighted reconstruction technique to increase temporal resolution of acquired data, 

and thus permits improved cardiac functional assessment. Compared with existing 

acceleration method, the proposed method has nearly three times lower computation burden 

and six times faster reconstruction speed, all with equal image quality. 

The second application is noncontrast-enhanced 4D intracranial MR angiography with 

arterial spin labeling (ASL). Considering the inherently low SNR of ASL signal, we 

proposed to sample k-space with the efficient golden-angle stack-of-stars trajectory and 

reconstruct images using compressed sensing with magnitude subtraction as regularization. 

The acquisition and reconstruction strategy in combination produces images with detailed 

vascular structures and clean background. At the same time, it allows a reduced temporal 

blurring delineation of the fine distal arteries when compared with the conventional k-space 

weighted image contrast (KWIC) reconstruction. Stands upon on this, we further developed 

an improved stack-of-stars radial sampling strategy for reducing streaking artifacts in 

general volumetric MRI. By rotating the radial spokes in a golden angle manner along the 

partition-encoding direction, the aliasing pattern due to under-sampling is modified, 
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resulting in improved image quality for gridding and more advanced reconstruction 

methods.  

The third application is low-latency real-time imaging. To achieve sufficient frame rate, 

real-time MRI typically requires significant k-space under-sampling to accelerate the data 

acquisition. At the same time, many real-time application, such as interventional MRI, 

requires user interaction or decision making based on image feedback. Therefore, low-

latency on-the-fly reconstruction is highly desirable. We proposed a parallel imaging and 

convolutional neural network combined image reconstruction framework for low-latency 

and high quality reconstruction. This is achieved by compacting gradient descent steps 

resolved from conventional parallel imaging reconstruction as network layers and 

interleaved with convolutional layers in a general convolutional neural network. Once all 

parameters of the network are determined during the off-line training process, it can be 

applied to unseen data with less than 100ms reconstruction time per frame, while more than 

1s is usually needed for conventional parallel imaging and compressed sensing combined 

reconstruction. 
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Chapter 1 Introduction 

Magnetic Resonance Imaging (MRI) is a powerful medical imaging technique that 

provides rich source of diagnostic information. It has several advantages over some of other 

existing medical imaging modalities. For example, unlike modalities such as X-ray 

computed tomography (CT) or positron emission tomography (PET), MRI does not require 

the use of ionizing radiation. In addition, the sensitivity of MR signal to a wide range of 

physical behavior and the flexibility of MRI allows the generation of images with various 

tissue contrast through careful manipulation of intrinsic and extrinsic contrast mechanism. 

As a result, MRI is a compelling choice for clinical practice that can enable early detection 

of pathology, quantitative assessment of biological parameters, and even disclosure of 

functional changes in depth.  

Despite its huge potential, imaging speed remains a major challenge of many MRI 

applications to be adapted in clinical environment. The number of measured data points in 

MRI is usually controlled by several factors, mainly the imaging duration, spatial/temporal 

resolution, image signal-to-noise ratio (SNR). In practice, there is always trade-offs 

between these factors. For example, images with higher spatial/temporal resolution would 

require extended Fourier encoding steps, which translates to a higher number of data points 

to be sampled. Similarly, images with higher SNR would require data averaging as the 

conventional strategy to reduce the effect of additive noise, which equally results in more 

data points. On the other hand, sample a small number of data points could drastically 

reduce the total acquisition time, or lead to increased temporal resolution in dynamic 

imaging application given a fixed imaging time. 
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The problem of recovering high quality images from inadequate sampled data points, 

which is usually too small to generate acceptable reconstruction using conventional inverse 

Fourier transform, has been studying for decades. Starting from late 90s, parallel imaging 

techniques (1–4), which utilized localized coil arrays with multiple receiver coils to provide 

additional encoding information in the image domain, were proposed to reconstruct under-

sampled spatial-frequency domain (k-space) data. Later on in mid 00s, by implicitly 

compresses data within the signal acquisition process through obtaining fewer so-called 

incoherent measurements and then reconstructing the underlying images with iterative 

methods, compressed sensing (5,6) was successfully applied in MRI to further reduce 

acquisition time. However, these acceleration methods are mainly designed for general MR 

imaging application, despite the benefits and achievements of them shown in research 

development. For individual application that has unique contrast feature, uncommon signal 

level, or special requirement, most of these methods may not be able to reach full potential 

that allows a higher spatial/temporal resolution, better SNR or scan efficiency to be 

achieved.  

Based upon previously described acceleration methods, this dissertation describes 

several application-tailored accelerated MRI methods that aims at exploiting the full 

potential of data acquisition and image reconstruction in each application through 

improved sequence design, efficient k-space traverse, as well as tailored image 

reconstruction algorithm. Specifically, approaches to accelerate three applications: 1). 

ferumoxtyol-enhanced 4D multi-phase cardiovascular MRI on pediatric patients with 

congenital heart disease; 2). noncontrast-enhanced 4D intracranial MR angiography with 

arterial spin labeling (ASL); and 3). low-latency real-time MR imaging were investigated. 
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These approaches are designed in such a way that signal characteristics or special 

application requirements were fully considered in the data acquisition and image 

reconstruction stages for each application. Furthermore, the feasibility of clinical usage of 

each acceleration method is well evaluated in implementation stage.   

1.1 Outline 

The structure of this dissertation is as follows: 

Chapter 2: Principles of Magnetic Resonance Imaging 

 This chapter describes the principles of nuclear magnetic resonance and the concepts 

behind MR imaging. Widely used imaging trajectory (Cartesian and non-Cartesian) and 

accelerated imaging methods (parallel imaging, compressed sensing and deep learning) are 

also introduced to pertain to the rest of this dissertation. 

Chapter 3: Accelerated 4D-MUSIC  

 Ferumoxytol-enhanced 4D multi-phase steady-state imaging with contrast enhancement 

(4D-MUSIC), using 7-10 minutes acquisition, allows superior delineation of both extra- 

and intra-cardiac structures compared with conventional first-pass contrast-enhanced MR 

angiography or 2D multi-slice cardiac cine imaging. This chapter introduces a clinical 

practical, graphics processing unit accelerated, compressed sensing and parallel imaging 

combined reconstruction method for 4D-MUSIC. Qualitative and quantitative comparison 

of the accelerated 4D-MUSIC and original 4D MUSIC were performed on 13 pediatric 

patients.  This work has been published as a journal article (7). 

Chapter 4: Motion Weighted 4D-MUSIC for Improved Functional Assessment  
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 The original 4D-MUSIC and accelerated 4D-MUSIC introduced in chapter 3 allow 

incomparable clear and detailed examination of cardiac and vascular anatomy, but they fail 

to provide sufficient temporal phases for comprehensive cardiac functional assessment 

including volume calculation and wall motion evaluation. This chapter describes a motion 

weighted reconstruction strategy to allow doubled cardiac phases reconstructed based on 

the same dataset and within the same reconstruction time of original 4D-MUSIC. The 

image sharpness and left ventricle volume measurement results from a retrospective 

clinical study on 12 pediatric patients were presented.  

Chapter 5: Accelerated Noncontrast-enhanced MR Angiography  

 Non–contrast enhanced dynamic MR angiography with arterial spin labeling (ASL) has 

become a promising approach for detailed characterization of intracranial dynamic flow 

patterns, because of its completely noninvasive nature. However, the inherently low SNR 

of ASL signal prevents high quality reconstruction from highly under-sampled data using 

conventional parallel imaging or compressed sensing reconstruction. This chapter presents 

a solution that uses golden-angle stack-of-stars acquisition in combination with magnitude 

subtraction regularized reconstruction for accelerated noncontrast-enhanced dynamic MR 

angiography. Both the spatial and temporal behavior of the proposed method were studied 

using 6 volunteer and 1 patient data. This work has been published as a journal article (8). 

Chapter 6: Golden-ratio Rotated Stack-of-Stars  

 The conventional golden-angle stack-of-stars trajectory used in chapter 5 collects the 

same radial angle for every partition (slice) encoding. In an under-sampled acquisition, 

such an aligned acquisition generates coherent aliasing patterns and introduces strong 
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streaking artifacts 3D image domain. This chapter demonstrates an improved volumetric 

imaging method using stack-of-stars trajectory by simply rotating the radial spokes in a 

golden-angle manner along the partition-encoding direction. Computer simulations were 

performed and phantom as well as in vivo images for three different exemplary applications 

were acquired to show the efficacy of the proposed method. This work has been published 

as a journal article (9). 

Chapter 7: Parallel Imaging and Convolutional Neural Network Combined Low-

Latency Reconstruction for Real-Time Imaging  

 Real-time MRI is a powerful tool to assess physiological processes noninvasively at 

high temporal resolution. To achieve sufficient frame rate, it typically requires significant 

k-space under-sampling to accelerate the data acquisition. At the same time, many real-

time application, such as interventional MRI, requires user interaction or decision making 

based on image feedback. This chapter introduces a parallel imaging and convolutional 

neural network combined image reconstruction framework for low-latency and high 

quality reconstruction. Cardiac and abdominal imaging on both high (3.0 T) and low (1.5 

T) fields were demonstrated in comparison with clinical available linear reconstruction and 

more advanced non-linear compressed sensing based reconstruction.  

Chapter 8: Summary and Future Work  

 The acceleration methods for different applications presented in this dissertation is 

summarized in this chapter. Also, potential directions for future research are briefly 

explored.  
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Chapter 2 Background 

Magnetic resonance imaging is a medical imaging application based on the quantum 

mechanical phenomenon known as nuclear magnetic resonance (NMR). The discovery of 

NMR and its development to MRI were marked by several milestone in the history of 

science, including Felix Bloch and Edward M. Purcell, who shared the 1952 Nobel Prize 

in Physics for the discovery of NMR phenomenon, Paul C. Lauterbur, who was awarded 

the 2003 Nobel Prize in Physiology and Medicine for the introduction of spatial encoding 

using gradients, and Sir Peter Mansfield, who was also awarded the 2003 Nobel Prize in 

Physiology and Medicine for the mathematical description of MR imaging physics. Given 

its complexity, a full explanation of magnetic resonance phenomenon often requires a 

quantum mechanism description. In this chapter, we adopt a semi-classical high-level 

description of the basic principles of MR physics, and then the system model with Fourier 

encoding will be described to facilitate the introduction of image generation process in 

MRI. Moreover, more sophisticated encoding methods such as non-Cartesian imaging, and 

more advanced accelerated imaging methods such as parallel imaging, compressed sensing, 

and deep learning are reviewed. For more detailed description of MRI, the reader is referred 

to (10,11).   

2.1 Nuclear Magnetic Resonance Physics 

Atoms with odd atomic weighs (i.e. protons/neutrons) process a nuclear angular 

momentum, which can be modeled as spinning magnetic dipoles with a magnetic moment. 

Therefore, they are also called the “spins”. The single-proton hydrogen atom (1H) is the 

most widely studied atom because of its sensitivity and abundance in human body as H2O. 
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The spins take random directions at thermal equilibrium, resulting in zero net 

magnetization in a macroscopic view. In the presence of a strong external magnetic 

field	𝑩𝟎 (main magnetic field), the spins are polarized and lined up in parallel and anti-

parallel directions with respect to the main magnetic field, and with a slight excess in 

parallel. This generates a net magnetic moment 𝑴𝟎 that is proportional to 𝑩𝟎. Meanwhile, 

the spins precess at a well-defined frequency proportional to the applied	𝑩𝟎:  

𝜔3 = 𝛾𝑩𝟎	             (2-1) 

, where 𝛾 is the gyromagnetic ratio that is constant for a specific atom and 𝜔3 is known as 

the Larmor frequency.  

A macroscopic bulk magnetic moment measured from a group of spins is described 

with a magnetization vector 𝑴 = (𝑴𝒙,𝑴𝒚,𝑴𝒛). Its interaction with an external magnetic 

field 𝑩 , which comprised of the longitudinal and transverse components to the static 

magnetic fields, is phenomenologically governed by the Bloch equation:  

:𝑴
:;
= 𝑴×𝛾𝑩 − 𝑴𝒛>𝑴𝟎

?@
− 𝑴𝒙𝒚

?A
         (2-2) 

, where 𝑴𝒙𝒚 = (𝑴𝒙B +𝑴𝒚D)  and 𝑴𝒛  are defined as the transverse and longitudinal 

magnetization, respectively.  

At thermal equilibrium state, the bulk magnetization 𝑴 = (𝟎, 𝟎,𝑴𝟎) aligns with 𝑩𝟎. It 

can be perturbed by a radiofrequency (RF) magnetic field 𝑩𝟏  that is tuned to 𝜔3  and 

perpendicular to the static 𝑩𝟎 field. 𝑩𝟏 will rotate 𝑴 into the transverse plane and being 

“excited”. The tipped magnetization 𝑴 will continue to precess about 𝑩𝟎 field, with its 

longitudinal magnetization component 𝑴𝒛  recovers to its equilibrium state	𝑴𝟎  with 𝑇H , 
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and transverse magnetization component	𝑴𝒙𝒚 decays with 𝑇I. The precession of 𝑴, also 

known as “free precession”, results in a changing transverse magnetic field, which by 

Farady’s Law, induces a measurable voltage in a coil element that is recorded as the MR 

signal. The recovery of longitudinal magnetization component with 𝑇H  and decay of 

transverse magnetization component with 𝑇I, together called “relaxation”, generates the 

mechanism for tissue contrast, since each individual tissue exhibits different 𝑇H  and 𝑇I 

relaxation constant. 

2.2 Imaging Basics 

As mentioned in the above section, measureable voltage in the coil element will be 

recorded as MR signal. However, the received signal is a cumulative signal from the entire 

imaging volume. In order to differentiate the magnetization from each spatial location 𝒙 =

(𝒙, 𝒚, 𝒛), an additional spatially varying magnetic field is required to spatially encode the 

MR signal, which permits an important task of modern MRI system: localization. 

Specifically, this is achieved by an additional 3D spatial variant, longitudinal linear 

magnetic field, 𝑮 = 𝑮𝒙, 𝑮𝒚, 𝑮𝒛 , which is superimposed on the static 𝑩𝟎 field. It makes 

the effective field, 𝑩 𝒙 = 𝑩𝟎 + 𝑮 ∙ 𝒙, a linear function of the spatial location. As a result, 

the precession frequency of 𝑴 also varies with 𝒙 allowing for spatial information to be 

extracted.    

Let 𝒎 𝒙  be the volume of interest. With the spatially-dependent field that alters the 

rate of precession of each magnetic dipole, received MR signal can be described as follows 

after de-modulation by 𝜔3: 
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𝑠(𝑡) = 𝒎(𝒙)𝑒𝑥𝑝	(−𝑖𝜔(𝒙, 𝑡)) 𝑑𝒙                (2-3) 

Spatially varying phase 𝜔(𝒙, 𝑡) corresponds to the net precession of each dipole, and can 

be calculated as: 

𝜔 𝑥, 𝑡 = 𝛾𝐺 𝜏 ∙;I
;H 	𝑥𝑑𝜏 = 2𝜋(𝒌𝒙 𝑡 𝑥+𝒌𝒚 𝑡 𝑦 + 𝒌𝒛 𝑡 𝑧)    (2-4) 

, where 𝒌𝒙 𝑡 , 𝒌𝒚 𝑡 , 𝒌𝒛 𝑡  are the time integrals of the gradient waveforms: 

𝒌𝒙 𝑡 = X
IY
	 𝑮Z 𝜏
;I
;H 𝑑𝜏          (2-5) 

𝒌𝒚 𝑡 = X
IY
	 𝑮[ 𝜏
;I
;H 𝑑𝜏          (2-6) 

𝒌𝒛 𝑡 = X
IY
	 𝑮\ 𝜏
;I
;H 𝑑𝜏          (2-7) 

 𝑮𝒙 𝒕 , 𝑮𝒚 𝒕 , 𝑮𝒛 𝒕  are time varying magnetic gradients, 𝑡1  is the time right after 

excitation and 𝑡2 is the time of data acquisition. Denote 𝒌 𝑡 = (𝒌𝒙 𝑡 , 𝒌𝒚 𝑡 , 𝒌𝒛 𝑡 ), 

which are spatial frequencies, Equation (2-3) can be formulated as: 

𝑠(𝑡) = 𝒎(𝒙)𝑒𝑥𝑝	(−𝑖2𝜋𝒌(𝑡) ∙ 𝒙)𝑑𝒙               (2-8) 

As Equation (2-8) shows, the acquired signal 𝑠(𝑡) is the Fourier transform of target volume 

of interest 𝒎(𝒙). Data acquisition can be interpreted as sampling in the spatial-frequency 

space with trajectory determined by 𝒌 𝑡 . In the field of MRI, this spatial-frequency 

domain is also referred as k-space domain. Using Equations (2-5), (2-6), and (2-7), the k-

space of the excited spins can be arbitrarily sampled by applying properly calculated 

gradient fields. 	
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2.3 Cartesian and Non-Cartesian Sampling 

The most common way to sample the k-space is sampling along rectilinear lines falling 

onto a Cartesian grid, as shown in Figure 2-1a. With all lines in the raster and all samples 

in each line are equally spaced, underlying image can be easily reconstructed using inverse 

Fast Fourier Transform (FFT), a very efficient implementation of the computational 

intensive Fourier Transform. In addition, Cartesian sampling is very robust to many 

sources of system imperfections such as off-resonance, eddy currents (12,13). This is 

because many of these systemic errors are simply encoded as an additional linear phase 

across k-space. 

There are many other trajectories that employs the non-equispaced sampling scheme. 

One of the popular choices is the radial trajectory, or projection acquisition, as shown in 

Figure 2-1b. Comparing with Cartesian trajectory, radial trajectory usually requires more 

samples to achieve Nyquist criteria (Y
I
∗ 𝑁_`ab  for radial trajectory, 𝑁_`ab  for Cartesian 

trajectory, 𝑁_`ab  is the base resolution). This is simply because in radial trajectory, the 

central k-space region is more frequently visited than the outer k-space region. Such non-

uniformity causes a reduced efficiency from the sampling theory point of view. However, 

the frequent visit of k-space center also serve as an averaging effect for the trajectory, 

makes it less sensitive to motion artifacts. This motion insensitivity is further reinforced by 

another fact: radial trajectory does not have phase encoding (14). In addition, artifacts from 

incomplete k-space sampling (i.e. under-sampling) in radial trajectory are mainly streaking 

in azimuthal direction instead of the replication ghosting that result from under-sampling 

Cartesian trajectory. If the streaking are not objectionable, this can result in shorter scans 

without sacrificing spatial resolution compared to Cartesian trajectory (15).  
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 Besides Cartesian and radial trajectories that acquire only one k-space line in each 

RF excitation, there are many other trajectories that cover the entire or partial k-space with 

a single or a few RF excitations. Examples are spiral sampling trajectory (Figure 2-1c) and 

PROPELLER trajectory (16, Figure 2-1d). These trajectories have a higher sampling 

efficiency due to the larger portion of repetition time being used for data acquisition (ADC 

on time). Also, they carry the same feature of radial trajectory, such as motion insensitivity 

and benign under-sampling behavior. As a result, they are widely used in rapid imaging 

applications to resolve underlying motion. However, these methods are also sensitive to 

off-resonance spins, which may result in geometric distortion or resolution loss (blurring) 

in the reconstructed images.  

Although most of the non-Cartesian trajectories mentioned above bear nice features 

for motion and under-sampling, a main drawback of non-Cartesian trajectories, besides 

their sensitivity to system errors, is the computational cost of image reconstruction when 

compared with Cartesian trajectory. Since the data are acquired on a non-uniform grid, the 

computational efficient FFT operation, which requires evenly spaced sampling, is no 

longer applicable in non-Cartesian trajectories. Although it is feasible to apply an inverse 

non-uniform discrete Fourier transform (NUDFT) to reconstruct non-Cartesian sampled k-

space data, in practice such inversion is extremely time-consuming since it requires the 

inversion of a large dense matrix. A much faster and computationally economic way is to 

resample the data onto a uniform rectilinear grid to enable FFT reconstruction. This process 

is frequently referred to as gridding algorithm or adjoint non-uniform FFT (17, NUFFT). 

Specifically, gridding algorithm involves convolving of k-space data with a pre-defined 

finite kernel, sampling onto an oversampled uniform grid, performing an inverse FFT, and 
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multiplying by a deapodization function. Typically, in order to approximate the inverse 

NUDFT, the gridding algorithm requires density compensation as an initial step to 

compensate for the non-uniform sampling density. However, in iterative reconstruction, 

which will be introduced in the next section, forward and adjoint NUFFT operations can 

be performed without any density compensation (18) to iteratively approximate the inverse 

NUDFT.  

 

Figure 2-1 Examples of Cartesian and non-Cartesian sampling trajectories. 

2.4 Extended Fourier Encoding 

For convenience of discussion, Equation (2-8) can be written as a compact linear 

system in discrete form: 
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𝒚 = 𝑫𝑭𝒎                                  (2-9) 

, where 𝑚(𝒙) is discretized as a vector 𝒎,  𝑭 is the forward DFT operation, 𝑫 is the 

operator that selects and orders acquired data, and 𝒚 contains 𝑠(𝑡) in discrete form. 

 In most cases, the Fourier analysis in Equation (2-8) or its discretized form Equation (2-

9) is sufficient. However, to further push MRI for higher imaging speed, it is necessary to 

extend this Fourier encoding with additional component. In this section, two widely used 

acquisition and encoding models and one recently proposed signal processing model are 

explained to demonstrate the potential of extended Fourier encoding for accelerated 

acquisition. 

2.4.1 Parallel Imaging 

Parallel imaging is the technique that utilizes additional spatial encodings provided by 

multichannel coil arrays to reduce the number of sampling that goes below the Nyquist rate. 

In essence, the spatially localized coil arrays, which usually have reduced recorded noise 

and increased SNR when compared with single surface coil, are individually sensitive to a 

particular region of the imaging object. As a result, the 𝑝;f coil element “sees” 𝑆h(𝒙)𝒎(𝒙) 

instead of original 𝒎(𝒙) as the object, where 𝑆h(𝒙) is the sensitivity map that describes 

the spatial sensitivity of the 𝑝;f coil element. Consequently, the signal received on the 𝑝;f 

coil element, according to Equation (2-8), becomes: 

𝑠h(𝑡) = 𝑆h(𝒙)𝒎(𝒙)𝑒𝑥𝑝	(−𝑖2𝜋𝒌(𝑡) ∙ 𝒙)𝑑𝒙              (2-10) 

An example of received signal (image) on each coil element 𝑆h(𝒙)𝒎(𝒙), coil sensitivity 

maps 𝑆h(𝒙), as well as the original imaging object 𝒎(𝒙) is shown in Figure 2-2. 
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Figure 2-2 a). Multi-channel images from an eight-channel head coil; b). Coil sensitivity maps; c). 
Original image of interest. 

In accelerated acquisition, the goal is to reconstruct an image with 𝑀  pixels using 𝑁 

samples, where 𝑁 is always smaller than 𝑀, and such problem is usually ill-posed. Parallel 

imaging exploits the redundant information of localized multiple phased array coils as 

additional encoding in the image domain to solve the ill-posed reconstruction problem. 

Under-sampling k-space will lead to image aliasing/ghosting artifact normally. However, 

in a multi-coil MRI experiment setup, each coil element measures the same imaging object 

𝒎(𝒙)  with a different coil sensitivity maps 𝑆h(𝒙) . These “repeated measurements” 

provides means to recover the aliased image. Mathematically, Equation (2-9) can be 

extended to incorporate the multi-coil measurements as follows: 

𝒚𝟏
…
𝒚𝑪

=
𝑫𝑭𝑺𝟏
…

𝑫𝑭𝑺𝑪
𝒎                                (2-11) 
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 , where 𝒚𝟏, …𝒚𝑪 are measured k-space data from each of the total 𝐶 coil arrays. Because 

of the data redundancy, Equation (2-11) is over-determined, allowing the recovery of 𝒎  

when k-space is under-sampled. It can be compacted as follows: 

𝒀 = 𝑨𝒎                                         (2-12) 

, where 𝒀 contains all the measured data, and 𝑨 includes the whole multi-coil encoding 

process. Image 𝒎 can be determined by solving the following optimization problem: 

𝑎𝑟𝑔𝑚𝑖𝑛	||𝒀 − 𝑨𝒎||II                                          (2-12) 

Many algorithms have be proposed, and can generally be categorized as either k-space 

methods such as SMASH (1) and GRAPPA (4), in which missing k-space samples are 

restored through the estimation of sensitivity maps implicitly, or image space methods such 

as SENSE (3), in which under-sampling artifacts is removed in image space using known 

sensitivity maps explicitly. Both methods are compatible with Cartesian or non-Cartesian 

trajectory, although image-based methods are easier to implement and more general.  

In parallel imaging methods, the degree of acceptable acceleration factor depends on 

multiple factors. The most obvious factor, from mathematics point of view, is the number 

of independent (orthogonal) components in matrix 𝑨 (i.e. how different the sensitivity map 

of each coil element compared to other coil elements). Besides this, SNR is always a factor 

worth considering. Parallel imaging always sacrifice SNR for the trade of acceleration. The 

SNR of reconstructed image using parallel imaging is linked to the SNR of fully sampled 

image as follows: 
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, where 𝑅 is the acceleration factor and 𝑔 is a spatially dependent term called geometry 

factor (g-factor). G-factor is related to the coil geometry, under-sampling pattern, as well 

as the k-space trajectory design. A higher g-factor results in a higher condition number of 

Equation (2-12), and will make it more “difficult” to solve the system of equations. This 

equivalents to noise amplification in reconstructed image. Therefore, the performance of 

parallel imaging will reach its maximum when the underlying imaging application has 

relative high SNR. An example of g-factor effect on reconstructed image is shown in Figure 

2-3.  

 

Figure 2-3 Example cardiac image reconstructed with GRAPPA when R=4. Note non-uniform 
distribution of noise across the image related to a spatially varying g-factor. 

2.4.2 Compressed Sensing 

Another approach to accelerate data acquisition and recover decent image is by 

obtaining fewer so-called incoherent k-space samples and reconstruct it through a 

regularized optimization with iterative methods. Specially, additional image priori-
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knowledge (i.e. spatial smoothness, piece-wise linear, sparsity, etc.) can be imposed 

through regularization terms, together with the so-called data consistency term in Equation 

(2-12), to balance between the likelihood of existing samples and the accordance with 

priori-knowledge. This approach is often described using the following equation: 

	 	 	 𝑎𝑟𝑔𝑚𝑖𝑛	| 𝒀 − 𝑨𝒎 |II + 𝛼𝑅(𝒎)                                        (2-14)	

, where 𝑅(𝒎) is the regularization term that incorporates priori-knowledges on the image, 

and 𝛼 is its associated regularization parameter. Common choices of 𝑅(𝒎) include L1 

norm of wavelets transform or total variation. The use of L1 norm to exploit data sparsity 

in conjunction with random k-space sampling are commonly referred as compressed 

sensing (5). There are three key components for a successful application of compressed 

sensing: 1). Compressible sparse coding in transform domain of underlying MR images; 

2). Incoherent random k-space sampling; 3). Sparsity enforced reconstruction algorithm. 

The two main focus for most of research using compressed sensing are the first two 

components, with the goal of developing better sparsifying transform for more efficient 

data representation and better sampling pattern for more incoherent measurements. 

Specifically, researchers have developed and validated different forms of priori-knowledge 

as regularization terms in Equation (2-14). They started with spatial domain (5,6), and then 

extended to temporal domain (19–21), and more recently, in motion domain (22,23). In 

terms of sampling trajectory, early efforts started from pure random sampling, to variable 

density sampling. An example of different sampling patterns and their under-sampling 

effect on image is shown in Figure 2-4. 
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Figure 2-4 Different under-sampling schemes and the resulting image reconstructions. 

In compressed sensing type reconstruction, the choice of regularization term is a major 

concern. The selected regularization represents a particular prior model for the underlying 

image to be recovered. This also implies that as the optimization converges to the optimal 

solution (either local or global optimal), the specific feature of the chosen model embodied 

by the regularization term will be enforced and therefore reflected in the reconstructed 

image. For example, total variation regularization assumes the underlying image to be 

piece-wise smooth (24). As a result, if the regularization parameter is not carefully chosen, 

or the underlying image has convoluted structures, staircase-like over-smoothing artifacts 

may appear on the final reconstructed image. 

Another concern for compressed sensing reconstruction is SNR. During the iterative 

solution process, one major step is called soft-thresholding, which performs a simple 

operation of setting the pixels with values smaller than a certain threshold to be zeros, and 
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the resting pixel to be their values offset by a constant deviation. In essence, this soft-

thresholding process will eliminate signal below the threshold, which has the similar effect 

of denoising. In this case, SNR plays an important role in the performance of such operation. 

For example, if the signal of target imaging object or underlying physiological 

phenomenon has level comparable to that of noise, which indicates low SNR, then the soft-

thresholding operation will eliminate both true signal of interest and noise at the same time. 

This renders the poor performance of compressed sensing in low SNR scenario. Therefore, 

compressed sensing is most useful for applications that have abundant SNR.  

It is also noteworthy to point out that, since the reconstruction process in compressed 

sensing is always non-linear, the description of SNR characteristics of compressed sensing 

reconstruction is not as straightforward as linear-based reconstruction methods, such as 

direct inverse Fourier transform or parallel imaging. By adjusting the regularization 

parameter, which directly links to the threshold value in soft-thresholding operation, the 

SNR values of compressed sensing reconstructed images can be manipulated to arbitrary 

number. As a result, care should be taken for the interpretation and evaluation of the SNR 

measurements from the compressed sensing approach. 

2.4.3 Deep Learning 

Imitating human learning with deep learning (25,26) has become an enormously 

important area of research and development, starting from computer vision domain, and 

gradually being picked up by medical imaging society recently. For most of applications 

in both fields, such as image classification (27), image restoration (28), q-space image 

processing (29) and skull striping (30), deep learning was mainly used as a tool for image 

post-processing and interpretation tool. In the past few years, deep learning, however, is 
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started to be incorporated in the early image formation stage and serves as an image 

reconstruction tool for accelerated acquisition. 

As discussed in the previous two sections, parallel imaging and compressed sensing 

are the main techniques to accomplish image reconstruction for accelerated acquisition. 

However, the acceleration factor achievable with parallel imaging is often limited by g-

factor as well as underlying SNR. While compressed sensing outperforms parallel imaging 

at high acceleration factor, its performance is greatly affected by the choice of 

regularization term, regularization parameter. An improper choice of either of these will 

create reconstruction artifacts on the reconstructed image. Specially, pre-defined 

regularization term may be too simple to capture the complex image content associated 

with biological tissues, which results in unnatural looking of reconstructed images. At the 

same time, a poor choice of regularization parameter can either cause over-regularization, 

which leads to over-smoothing images, or under-regularization, which leads to residual 

under-sampling artifacts contaminated images. A final challenge for advanced 

reconstruction methods, no limited to compressed sensing, is their long reconstruction time 

due to the nonlinear iterative reconstruction process. This greatly impact their clinical 

adoption even if most of them have superior performance in terms of reconstruction quality. 

Deep learning based reconstruction mimics human learning that shifts the online 

optimization procedure of each individual problem for every new data to an up-front offline 

training/learning process on a large amount of datasets. Early attempts started with 

dictionary learning approach (31,32), which learns an online reconstruction as a 

combination of dictionary elements from the individual under-sampled data itself. The 

learned dictionary can be treated as a data-driven regularization term, which avoids the use 
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of pre-defined regularization. However, the dictionary has been learned for every under-

sampled data, which still requires online optimization for new problem and results in 

similar high computational burden and time for conventional compressed sensing 

algorithm. Later on, several works have been proposed (33–37), based on various network 

structures, to learn the relationship between zero-filled solution and high-quality images 

that can be either incorporated as the regularization term in a non-linear reconstruction or 

used directly for the reconstruction of un-seen under-sampled data. Specifically, a 

technique called “supervised learning” is employed in these work, where a paired zero-

filled solution and corresponding high-quality image is provided to the network. The 

training process is essence the procedure of finding the optimal parameter sets (i.e. the 

mathematical description of network) that can minimize the difference between the output 

of the network, given the zero-filled solution as input, and the high quality image, using a 

provided error measurement metric. A schematic plot of such procedure is shown in Figure 

2-5.  

 

Figure 2-5 Schematic plot of network based reconstruction via deep learning approach. 
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2.4.4 Conclusion 

Limited by the device design and fundamental physics behind MRI, imaging speed 

still remains an issue for many applications. The reconstruction methods introduced in the 

previous section were originally designed for general accelerated MR acquisitions. 

Throughout the development and investigation of each method, they have been shown to 

be effective for various applications.  

However, it should be noted that besides the pros and cons mentioned above for each 

method alone, they are several common concerns and general challenges, regardless of 

method chosen, that should be taken into consideration when accelerated acquisition is 

desirable. These concerns and challenges are more related to the MR application itself 

instead of the reconstruction method.  

One of the major concern is SNR. Like all systems, the measurements made by MRI 

contain both the NMR signal and the noise originated from the imaging object as well as 

the electrical components. SNR of acquired image depends on multiple factors, namely 

physical and instrumental parameters as well as imaging sequence parameters. With a 

given SNR level for a given MR application, the suitable acceleration techniques should 

be the ones that can fully exploit the given SNR level to allow effective artifacts removal 

and noise suppression. In addition, associated imaging trajectory should be designed so 

that maximal amount of signal can be extracted during ADC turn-on time.  

The other often ignored concern is the practical clinical requirement, in terms of 

reconstruction speed and computation burden, of individual MR application. There are 

certain MR applications that not only require high quality images, but also benefits from 

the low latency feedback of image as information for downstream processing or decision 
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making. It is expected that with careful design of acquisition sequence, trajectory, as well 

as reconstruction algorithm, desirable spatial and temporal resolution can be achieved. 

However, at the same time, it is also highly possible that such high quality images requires 

huge computation resources and long reconstruction time that would not fit into the 

standard clinical flow. Consequently, developed method loses the practical clinical utility 

and stays at research stage.  

In the following sections, we will examine several well-accepted clinical MR 

applications that can benefit from accelerated acquisition. Our focus will be application-

tailored sequence design with effect k-space traverse, as well as carefully crafted image 

reconstruction algorithm with high performance in terms of both reconstruction quality and 

clinical utility.  
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Chapter 3 Accelerated CS-MUSIC 

In this chapter, we look at the first application: ferumoxytol-enhanced 3D multi-phase 

cardiovascular MRI on pediatric patients with congenital heart disease, and introduce one 

method to reduce the scan time by approximately 50% while maintaining the image quality 

and its clinical utility. 

3.1  Introduction 

Contrast-enhanced magnetic resonance angiography (CE-MRA) is increasingly being 

used to complement echocardiography or replace digital subtraction angiography for 

anatomic assessment of cardiac and vascular structures in both adults and children (38,39). 

CE-MRA is typically performed in a breath-hold during the first-pass of a gadolinium-

based contrast agent (GBCA) and provides excellent definition of extra-cardiac vascular 

anatomy (40). Cardiac gating is typically not performed and requires a substantial 

compromise in resolution due to the time constraints imposed by breath-holding and the 

need to capture the first-pass of the GBCA. As a result, conventional first-pass CE-MRA 

provides insufficient definition of pulsatile structures, such as the ventricular outflow tracts, 

cardiac chambers and coronary arteries. Therefore, supplemental multi-slice 2D cine 

imaging is required for assessment of cardiac anatomy and volumes. However, 2D cine 

employs relatively thick slices (3-4 mm), limiting resolution in potentially tiny hearts and 

precluding useful multi-planar reformatting. 

To address these issues, a recent study proposed a 4D multiphase, steady-state imaging 

(MUSIC) (41) technique in pediatric patients undergoing cardiovascular MRI under 

general anesthesia and mechanical ventilation. The 4D MUSIC technique acquires multiple 
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cardiac-phase-resolved volumetric images without breath-holding during the steady-state 

intravascular distribution of ferumoxytol, using the ventilator pressure waveform for 

respiratory gating. Ferumoxytol, an ultrasmall superparamagnetic iron-oxide (USPIO) 

particle that is approved by the U.S. FDA for parenteral treatment of iron deficiency anemia 

in adults with chronic kidney disease, was used off-label to enhance the MUSIC acquisition 

due to its high R1 relaxivity (r1 = 9.0 mM-1s-1 at 3.0T) and long intra-vascular half-life of 

10-14 hours (42). Using 4D MUSIC, a 7-10 minute cardiac- and respiratory-gated scan 

provides images with improved resolution parameters for both intra- and extra-cardiac 

anatomy than conventional cardiac magnetic resonance (CMR) techniques such as first-

pass CE-MRA or 2D multi-slice cardiac cine imaging (41). In this work, we sought to 

further accelerate the 4D MUSIC acquisition without compromising image quality.  

A variety of fast imaging techniques have been developed for accelerating MR data 

acquisition. Traditional parallel imaging (PI) methods such as sensitivity encoding 

(SENSE) (3) and generalized auto-calibrating partially parallel acquisitions (GRAPPA) (4) 

acquire under-sampled k-space by regularly skipping phase encoding lines. These 

techniques are widely used clinically due to the reasonable image reconstruction time and 

their robustness at moderate acceleration factors (3-4X). However, as the acceleration 

factor increases, poor conditioning of the encoding matrix results in progressively more 

severe artifacts and noise amplification in the reconstructed image. Recent developments 

in compressed sensing (CS) (43) provide another strategy to accelerate data acquisition 

(6,44). CS theory states that the image can be recovered from randomly under-sampled k-

space data points by using an optimization-based nonlinear reconstruction algorithm with 

regularization terms incorporated (24,45). With proper choice of regularization terms, the 
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image may be recovered from a higher acceleration factor than using conventional parallel 

imaging alone. Although long reconstruction times currently limit the widespread clinical 

use of CS, progress has recently been reported (46,47) in speeding up certain types of CS 

image reconstruction algorithms. 

In this study, we aimed to take advantage of the high signal-to-noise ratio (SNR) of 

the ferumoxytol-enhanced 4D MUSIC data by accelerating the MUSIC acquisition with 

prospective random k-space under-sampling and a joint CS-PI reconstruction technique. 

The image reconstruction algorithm was implemented in a custom-built parallelized MR 

image reconstruction system that allowed for clinically acceptable reconstruction time. 

3.2 Methods 

3.2.1 Data Acquisition 

The original spoiled gradient recalled echo (GRE)-based 4D MUSIC sequence (41) was 

modified in such a way that the center 23×17 k-space region of the 𝑘𝑦 -	𝑘𝑧 encoding plane 

was fully sampled while the outer region was under-sampled using a variable-density 

Poisson-Disk distribution (48), as shown in Figure 3-1. Each sampled point generated a 

disk around itself where the probability of a new sample was decreased to ensure maximum 

spread of the sampling over the 𝑘𝑦 -	𝑘𝑧 plane. To simulate the variable density sampling, 

the disk radius was defined as a function of the distance to the center of k-space (𝑘𝑦𝑐, 𝑘𝑧𝑐): 

 𝑅𝑎𝑑𝑖𝑢𝑠v�|a�(𝑘𝑦, 𝑘𝑧) = 0.3 ∗ 𝑘𝑦 − 𝑘𝑦𝑐 I + 𝑘𝑧 − 𝑘𝑧𝑐 I	 (3-1) 

To mitigate imaging artifacts and signal interference caused by sudden changes in the 

sampled k-space location, the 𝑘𝑦 -	𝑘𝑧 plane sampling trajectory started from the most 

central portion of k-space and extended outwards. Samples were sorted and ordered 
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according to their radii and angles to generate a smooth spiral-like, elliptical centric pattern 

in the 𝑘𝑦 -	𝑘𝑧 plane. This design allowed for sampling of the low frequency data at the 

beginning of the acquisition, reducing motion sensitivity (49) and eddy-currents effects 

from high amplitude phase-encoding gradients. 

 

Figure 3-1 Acquisition trajectory in k-space. A variable density Poisson-Disk k-space under-
sampling pattern is used to accelerate MUSIC. The fully-sampled center and under-sampled outer 
k-space result in net acceleration factor of 7X. The trajectory for a single cardiac phase is depicted 
with samples colored according to their time of sampling from the start time of the acquisition. A 
center-out spiral arrow is added to reflect sampling order. 

3.2.2 Imaging Reconstruction 

Prospectively under-sampled data were reconstructed separately for each cardiac phase 

by ℓH-ESPIRiT (50): 

𝑑 = arg	min | 𝐷ℱ𝑆|𝑑 − 𝑚| |II + 𝜆||𝑊𝑑||H�
|�H        (3-2) 

where ℱ is the Fourier transform; 𝑆|  are the sensitivity maps estimated from the center 

region using ESPIRiT (50);	𝐷 is the operator that selects the locations where data have 

been acquired; 𝑑 is the image to be reconstructed; 𝑚|  is the acquired under-sampled k-

space data from each of the 𝑁  receiver coil elements; 𝑊  is the randomized shifting 

Daubechies wavelets used to approximate translation invariant wavelets that avoids blocky 
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structural artifacts; and 𝜆  is the regularization weight that trades-off between PI data 

fidelity and the sparsity constraint. In our study, 𝜆  was optimized in a pilot study of 

prospectively under-sampled in vivo data sets acquired on four pediatric congenital heart 

disease (CHD) patients. We normalized the data sets prior to reconstruction and varied	𝜆 

from 0.1 to 0.001 in step size of 0.002 to identify the optimal 𝜆 value that would provide 

the best image quality by visual assessment among the reconstructed images. Based on our 

pilot study, 𝜆 was set to 0.004 in our study. 

To achieve clinically acceptable reconstruction time, the algorithm was implemented 

in the C/C++ language based on the Berkeley Advanced Reconstruction Toolbox (51) and 

integrated within a custom-built MR image reconstruction framework in which external 

computer nodes are connected to the MR scanner directly. K-space data are sent to the 

nodes for image calculation and reconstructed images are sent back to the scanner system. 

Figure 3-2a shows the schematic outline of the framework. Several algorithmic 

optimizations were incorporated into the reconstruction process to minimize reconstruction 

time (Figure 3-2b). First, the coil compression coefficient matrix calculation and 3D coil 

sensitivity map estimation were performed immediately after the fully-sampled k-space 

center was acquired, while the sequence continued to acquire the peripheral k-space data. 

Second, to achieve a nearly linear reduction of reconstruction time with the number of 

threads, the non-linear image reconstruction was parallelized across all of the 𝑘𝑦 -	𝑘𝑧 slices 

using the OpenMP framework (52) with eight threads after an initial fast Fourier transform 

(FFT) was performed in the readout direction.  
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Figure 3-2 a) Custom-built image reconstruction framework where one or more external computer 
nodes can be connected to the default vendor-provided reconstruction pipeline via TCP/IP. In 
current implementation, only one external Linux-based computer is connected to pipeline. b) 
Timeline of the CS-PI 4D MUSIC reconstruction process. K-space data are sent out to the external 
computer nodes once it is acquired during the scan. Immediately after center k-space region is 
acquired, pre-processing including coil compression coefficient matrix calculation and coil 
sensitivity maps estimation starts. Both are calculated in parallel with data receiving on external 
computer, and are usually done before the finish of data acquisition. It takes 3-5 minutes to 
reconstruct one 4D dataset (matrix size: 500*300*120*8) and additional 1 minute to send back the 
images. During the 3-5 minutes when the external computer processes the data, additional scans 
such as 2D CINE, 2D phase-contrast flow imaging may be acquired in parallel because the ℓH-
EPSIRiT reconstruction does not use any resources of the vendor provided reconstruction system. 

3.2.3 Phantom Study 

In order to evaluate the performance of ℓH -ESPIRiT (50) within our custom-built 

reconstruction framework, fully-sampled and regularly under-sampled data were acquired 

using the original 4D MUSIC sequence (41). Prospective randomly under-sampled data 

were also acquired using the CS-PI 4D MUSIC sequences on a 1.5 Tesla (T) MRI scanner 
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(Magnetom TIM Avanto, Siemens Medical Solutions) with a 12-channel body array coil 

on a standard American College of Radiology (ACR) MRI phantom. Sequence parameters 

were: repetition time/echo time (TR/TE) = 2.9/0.9 ms; flip angle, 25°; bandwidth = 814 

Hz/pixel; matrix size, 256*256*96; resolution, 1mm isotropic. The fully-sampled data was 

used as a reference. Three regularly under-sampled data were acquired using three different 

acceleration schemes: one dimensional acceleration 3X for the in-plane phase-encoding 

direction and two dimensional accelerations of 2×2 and 3×2 in both in-plane and through-

plane phase-encoding directions. Actual acceleration factors for these three strategies were 

2.6X, 3.7X and 5.4X, respectively, due to the fully-sampled center auto-calibration signal. 

All three regularly under-sampled data were reconstructed with GRAPPA in the vendor-

provided reconstruction pipeline. The prospective randomly under-sampled data were 

acquired in such a way that the acceleration factor was chosen to match the net acceleration 

factors of the regularly under-sampled acquisitions with consideration of fully sampled 

center reference lines. 

3.2.4 In-vivo Study 

Thirteen pediatric CHD patients (aged 4 days to 13 years, six male, heart rate: 95-140 

bpm, 118.2±19.5 bpm) who were referred for clinically indicated cardiovascular MRI 

independent of our research study were included in our study. Clinical indications included 

preoperative surgical planning or postoperative evaluation. This HIPAA-compliant study 

was approved by our institutional review board and written informed consent was obtained 

from each patient’s legal guardian(s). As our study requires off-label use of ferumoxytol 

as an MRI contrast agent, we submitted an Investigation New Drug (IND) application (IND 

# 129441) to the U.S. Food and Drug Administration (FDA) after the FDA boxed regarding 
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ferumoxytol administration in March 2015 and subsequently obtained clearance from the 

FDA to proceed with our study (NCT02752191). Out of the 13 patients, 1 patient, who was 

more recently enrolled in our study, underwent imaging under our FDA IND. Each patient 

either underwent general anesthesia in the MRI suite or was transported directly from the 

neonatal intensive care unit (NICU) already intubated and sedated. Anesthesia was 

maintained using a mixture of oxygen and sevoflurane while patients from the NICU were 

sedated with fentanyl. In all cases, patients were injected with rocuronium bromide as a 

muscle relaxant. An MR compatible ventilator (Fabius MRI, Drager Medical, Telford, PA) 

was used with positive end expiratory pressure as clinically appropriate. 

  All 13 patients were scanned on a 3.0 T MRI scanner (Magnetom TIM Trio, Siemens 

Medical Solution). Depending on the size of patient, a combination of head coil, flexible 

coil, body array coil or knee coil was used to provide optimal anatomical coverage. Based 

on previous studies (41,53–55), ferumoxytol (Feraheme, AMAG Pharmaceuticals, 

Lexington, MA) at a dose of 4 mg elemental iron/kg body weight was used in this study. 

The agent was diluted by 4X-8X and injected at a rate of 0.1-1.0 mL/s. The rate was 

adjusted so that the bolus duration was approximately 15s, except for one patient who 

underwent slow infusion of ferumoxytol over 10 min following the recent FDA 

recommendations in March 2015. To determine the delay time between initiation of the 

contrast injection and the arrival of the contrast agent in the region of interest, a small bolus 

of ferumoxytol (0.5 mg/kg) was injected first and the remaining bolus was injected over 

15s followed by a chasing saline bolus injected at the same rate. For the patients who 

underwent bolus injection of ferumoxytol, breath-held CE-MRA was performed under 

ventilator-controlled breath-holding (VCBH) during the first-pass of ferumoxytol. The 
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same VCBH CE-MRA acquisition was repeated during the steady state distribution phase 

of ferumoxytol, typically 2-3 min after ferumoxytol injection. Parameters for the first-pass 

and delayed phase CE-MRA included: TR/TE=2.9/0.9ms; flip angle, 15°; in-plane 

resolution, 0.9-1.2mm; FOV, 500*300*150 mm; slice thickness, 1.1-1.5mm; GRAPPA 

acceleration 3X-4X; partial Fourier acquisition (75%) for in-plane and through-plane phase 

encoding directions; total acquisition time: 18-22s. Subsequently, for all 13 patients, the 

original 4D MUSIC (41) and the proposed CS-PI 4D MUSIC sequences were performed 

during the steady state distribution of ferumoxytol without VCBH using the air pressure 

signal from the ventilator circuit for respiratory gating. The data acceptance window was 

set to the end-expiration phase and the gating threshold was set to 40% of the respiratory 

signal’s dynamic range.  

To facilitate qualitative and quantitative comparison with the original 4D MUSIC in 

this validation study, the CS-PI 4D MUSIC had the same number of cardiac phases as the 

original 4D MUSIC, but approximately half of the total acquisition time. Scanning 

parameters were: TR/TE= 2.9/0.9ms; flip angle, 25°; 0.6-0.9 mm true isotropic resolution 

without interpolation; FOV, 500*300*150 mm; 6-9 cardiac phases depending on heart rate; 

GRAPPA 2X-3X and 75% partial Fourier in both the phase encoding and partition 

encoding directions for the original 4D MUSIC, and 7X prospective variable density 

Poisson-Disk under-sampling for the CS-PI 4D MUSIC. Images from the original 4D 

MUSIC acquisition were reconstructed immediately with the vendor-provided image 

reconstruction pipeline, while data from the CS-PI 4D MUSIC acquisition were 

reconstructed on an external computer in less than 5 minutes using our custom image 

reconstruction framework shown in Fig 3-2. During the 5 minutes where CS-PI 4D MUSIC 
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images were being reconstructed offline, conventional multi-slice, multi-planar 2D cardiac 

cine images (20-25 cardiac phases, temporal resolution: 20-40ms) were acquired per our 

clinical protocol with VCBH using a spoiled gradient echo sequence. 

3.2.5 Quantitative Measurements and Subjective Score 

For our phantom study, both normalized root mean square errors (nRMSE) and 

structural similarity index (SSIM) (56) were calculated between each slice of the reference 

images and images reconstructed from the under-sampled data. The calculated nRMSE and 

SSIM were averaged across all slices. Whereas reduction in nRMSE indicates greater 

fidelity to the original image, perfect identicality is represented by a SSIM value of 1 and 

the SSIM value decreases as the images differ. 

For our in-vivo study, subjective image quality scores of 13 different anatomical region 

of interests (ROIs) were assessed: left/right atria, left/right ventricles, interatrial septum, 

interventricular septum, tricuspid valve, mitral valve, left/right ventricular outflow tracts, 

pulmonary arteries, ascending aorta and coronary arteries. Anonymized and randomized 

first-pass VCBH CE-MRA images, original 4D MUSIC images, and the CS-PI 4D MUSIC 

images were graded by two experienced cardiovascular MRI readers with greater than 2 

years of experience in clinical cardiovascular MRI interpretation using a 4-point scale as 

outlined in Table 3-1. Evaluators were blinded to patient information and imaging 

techniques. Scores were independently provided by the two readers. 

  Vessel sharpness was quantitatively measured in the left ventricle and ascending 

aorta of the conventional first-pass CE-MRA, the original 4D MUSIC, and the CS-PI 4D 

MUSIC images by drawing a linear signal profile, as previously described (41). 

Specifically, sharpness is defined as the inverse of the distance (in mm) between the two 
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points at 20% and 80% of the dynamic range. The end-systolic (ESV), end-diastolic (EDV) 

left ventricular volumes and ejection fractions (EF) based on the contrast-enhanced 2D cine 

short-axis images, the original 4D MUSIC and the CS-PI 4D MUSIC images were 

measured using a commercially available software (QMass, Medis, Netherlands). Note that 

these three sets of images were all acquired at end-expiration. 

Table 3-1 Image quality scoring criteria. 

Atria and Ventricle 1: Not evaluable due to gross motion artifact and borders not defined 
2: Non-uniform blood pool signal and wall motion artifact precludes confident evaluation 
of luminal contents 
3: Uniform blood pool signal with mild wall motion artifact adequate for confident 
visualization of luminal contents 
4: Uniform blood pool signal with no motion artifact such that the ventricular walls, 
septum, papillary muscles and trabeculae are sharply defined 

Interatrial and 
Interventricular 
septum 

1: Not visualized 
2: Presence of septal tissue is seen 
3: Probable septal continuity but small defects cannot be confidently excluded 
4: Definite septal continuity and small defects can be confidently excluded 

Tricuspid valve and 
Mitral valve 

1: Not visualized due to gross motion artifact 
2: Annulus visualized but borders poorly defined and cannot be confidently measured 
3: Annulus clearly visualized and can be confidently measured but leaflets blurred 
4: Annulus sharply defined and can be confidently measured and leaflets clearly visualized 

LVOT, AV, and 
proximal aortic root 
RVOT, PV, and 
proximal MPA 

1: Not evaluable due to gross motion artifact and borders not defined. 
2: Outflow tract and annulus visualized but borders poorly defined and cannot be 
confidently measured 
3: Outflow tract and annulus sharply defined and can be confidently measured but leaflets 
blurred 
4: Outflow tract and annulus sharply defined and can be confidently measured and leaflets 
clearly visualized 

Ascending aorta 
and Pulmonary 
artery  

1: Not evaluable due to gross motion artifact with non-uniform luminal signal 
2: Uniform luminal signal with poor definition of the wall due to motion 
3: Uniform luminal signal with mild blurring of the wall due to motion 
4: Uniform luminal signal with no motion blurring and sharply defined wall 

Coronaries 1: Not evaluable due to gross motion artifact with visualization 
2: Only origin of RCA and left main coronary can be identified 
3: Origin and proximal course of RCA and LAD can be confidently visualized 
4: Origin, proximal, and mid course of the RCA and LAD and proximal takeoff of LCx can 
be confidently visualized 

AV aortic valve; LAD left anterior descending artery; LCx left circumflex artery; LVOT left ventricular 
outflow tract; MPA main pulmonary artery; PV pulmonic valve; RCA right coronary artery; RVOT 
right ventricular outflow tract 
*Scores of 1 or 2 are considered non-diagnostic whereas scores of 3 or 4 are considered diagnostic 

 

3.2.6 Statistical Analysis 

All statistical analyses were conducted using the R software and Excel (Microsoft, 

Redmond, WA). The three techniques (CE-MRA, MUSIC and CS-PI MUSIC) were 
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compared using visual subjective image quality scores (ranging 1-4) in 13 ROIs and 

quantitative image sharpness in 2 ROIs. The weighted kappa coefficient was used to 

evaluate the inter-observer agreement for the subjective image quality score. The EDV, 

ESV and EF measurements were compared using Lin’s concordance correlation coefficient 

and Bland-Altman analysis (57). Subjective quality scores from the average of two readers 

were compared in two steps per ROI: First, a Kruskal-Wallis test was used to compare 

among all three techniques; Second, if there was significant difference among the three 

techniques, post-hoc Dunn’s tests would be performed to compare each of the three pairs 

of techniques (MUSIC vs. CS-PI MUSIC, CE-MRA vs. MUSIC, CE-MRA vs. CS-PI 

MUSIC). Both tests were performed for each of the 13 ROIs using a Bonferroni correction 

(P<0.05/13=0.0038). Similarly, quantitative image sharpness were compared in two steps 

after satisfying normality assumption: First, a one-way ANOVA test was used to test the 

differences among all three techniques; Second, if significant difference was found among 

the techniques, a post-hoc Tukey’s honest significant difference (HSD) test would be 

performed for each of the three pairs of techniques. Both one-way ANOVA test and 

Tukey’s HSD test were performed separately for the two ROIs (left ventricle and the 

ascending aorta) using a Bonferroni correction (P<0.05/2=0.025). 
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3.3 Results 

3.3.1 Phantom Study 

 

Figure 3-3 Selected slice of reconstructed images from fully-sampled (a), regular under-sampled 
(b-d) and prospective randomly under-sampled data (e-g) with different acceleration factors. 𝑘𝑦 -
	𝑘𝑧 under-sampling patterns are shown at the bottom of each selected slice. It can be seen that 
coherent aliasing artifacts and noise amplification increase as acceleration factor increases with 
traditional GRAPPA reconstruction, while image quality maintains with the use of ℓH-ESPIRiT 
reconstruction on prospective randomly under-sampled data. 

Table 2 shows comparative results of the SSIM and nRMSE between the regularly 

under-sampled data reconstructed using GRAPPA and the prospective randomly under-

sampled data of similar acceleration factors reconstructed using ℓH-ESPIRiT (50). The use 

of PI and CS together reduced the error between the fully-sampled reference and the under-

sampled data. Figure 3-3 shows a slice of the reconstructed images using GRAPPA and 
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ℓH-ESPIRiT (50) at different acceleration factors. Substantial aliasing artifact is shown in 

the GRAPPA reconstructed images; ℓH-ESPIRiT (50) offered reduced reconstruction error, 

even at higher acceleration factors.   

Table 3-2 Normalized root-mean square errors (nRMSE) and structural similarity index (SSIM) 
average values between fully-sampled reference image and images reconstructed from GRAPPA-
accelerated/prospectively random under-sampled data. The background noise was excluded from 
measurement by using only pixels within the upper 90% intensity scale for both calculations. 

 nRMSE SSIM 

GRAPPA 3x 0.045 0.877 

GRAPPA 2x2 0.069 0.802 

GRAPPA 3x2 0.098 0.737 

L1-EPSIRiT 2.6x 0.029 0.982 

L1-EPSIRiT 3.7x 0.035 0.945 

L1-EPSIRiT 5.4x 0.048 0.902 

 

3.3.2 In-vivo Study 

All image acquisitions were successfully performed, with the scan time ranging from 

7 to 10 minutes (8.9±1.2 min) for the original 4D MUSIC, and 4 to 6 minutes (4.6±0.4 min) 

for the CS-PI 4D MUSIC. Contrast-enhanced 2D multi-slice cardiac cine images were not 

acquired in 5 patients due to cardiopulmonary instability and concerns about possible blood 

oxygen desaturation during repeated VCBH. 

Figure 3-4 shows a comparison of four images (first-pass, delayed-phase VCBH CE-

MRA, the original 4D MUSIC and CS-PI 4D MUSIC) from a 12-month-old male patient. 

Intra-cardiac structures such as the cardiac chambers, trabeculae, and the aortic root were 

blurred by cardiac motion due to the lack of cardiac gating in first-pass and delayed-phase 
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CE-MRA. These structures and other fine structures such as the aortic valve leaflets 

(dashed black arrow) were well delineated by both the original 4D MUSIC and the CS-PI 

4D MUSIC. Note that the acquisition time for CS-PI 4D MUSIC was half of the original 

4D MUSIC acquisition. The original 4D MUSIC and the CS-PI 4D MUSIC acquisitions 

enabled clear delineation of the left anterior descending coronary artery (Figure 3-4, bottom 

row), which was not possible with conventional first-pass CE-MRA. 

 

Figure 3-4 First-pass, delayed-phase CE-MRA under VCBH (first and second column) versus 
original 4D MUSIC (third column) and the proposed CS-PI 4D MUSIC (fourth column) (phase #4 
is chosen out of 7 cardiac phases for display) of a 12-month-old, 5.7kg boy. Acquisition times for 
the original 4D MUSIC and the CS-PI 4D MUSIC were 7 minutes and 3.75 minutes, respectively. 
CS-PI 4D MUSIC has less structural artifact compared to the original 4D MUSIC, despite its 50% 
reduced acquisition time. The artifact observed on original 4D MUSIC images is caused by high 
parallel imaging acceleration (GRAPPA 3X with 75% partial Fourier in ky,kz directions). The 
cardiac chambers, great vessels, as well as the aortic valve and the coronary arteries (white arrows) 
can be visualized in the original and CS-PI MUSIC acquisitions, but was poorly defined in the 
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conventional first-pass and delayed-phase CE-MRA. The delayed-phase image was similar to the 
first-pass acquisition. The lack of structural artifacts in the CS-MUSIC image enable improved 
delineation of the aortic valve leaflets (black dashed arrows) compared to the original MUSIC. 

  The isotropic spatial resolution of both original 4D MUSIC and CS-PI 4D MUSIC 

allowed reformatting of acquired images into arbitrary 2D cine plane orientations, such as 

the four-chamber views and short-axis views (Figure 3-5). Comparing with conventional 

2D cine images, both original 4D MUSIC and CS-PI 4D MUSIC images provided uniform 

blood-myocardium contrast, which is important for accurate and robust cardiac chamber 

segmentation and ventricular volume quantification.   

 

Figure 3-5 Diastolic and systolic phase of reformatted cardiac four-chamber (left two columns) and 
short-axis (right two columns) views based on original 4D MUSIC (first row) and CS-PI 4D 
MUSIC (second row) in a 6-month-old, 3kg boy. The cardiac chambers were well delineated for 
both systole and diastole phases of the cardiac cycle using both the original 4D MUSIC and the 
CS-PI 4D MUSIC images, despite the shorter acquisition time of CS-MUSIC (4.8 min vs. 9 min). 
The 0.9 mm isotropic resolution in this patient enabled selection of arbitrary visualization plane 
without the loss of detailed structure. 
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3.3.3 Statistical Comparisons of Three Techniques 

Two evaluators had moderate to excellent agreement for subjective image quality 

score, depending on the anatomical site (κ, range 0.46-0.96, Table 3-3). The average image 

quality scores were used in testing. In right atrium, for example, means (±SE) of the 

averaged quality image score were 1.8 (±0.2) for the first-pass CE-MRA, 3.9 (±0.2) for 4D 

MUSIC, and 3.9 (±0.2) for CS-PI MUSIC. The average image quality score provided by 

the two readers was significantly different among three techniques in all 13 regions of 

interest (all P≤0.000042). The subjective image quality scores of both the original 4D 

MUSIC and the CS-PI 4D MUSIC were significantly higher than first-pass CE-MRA in 

all 13 regions of interest (P≤0.0014 for all comparisons). No significant difference was 

detected between the CS-PI 4D MUSIC and the original 4D MUSIC (P≥0.42 for all 

comparisons) despite the much shorter image acquisition time of the CS-PI 4D MUSIC 

sequence.  

Table 3-3 Subjective image quality scores provided by two readers and weighted kappa 
coefficients κ for different anatomic sites and imaging techniques. (*) denotes statistical 
significance (P<0.05/13=0.0038) when compared with ferumoxytol-based first-pass CE-MRA. 
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In the quantitative image sharpness, means (±SE) of first-pass CE-MRA, original 4D 

MUSIC and CS-PI 4D MUSIC were 0.36 (±0.08), 0.56 (±0.17), and 0.54 (±0.17) in 

ascending aorta and 0.22 (±0.07), 0.38 (±0.11), and 0.35 (±0.11) in the left ventricle, 

respectively. Image sharpness was significantly different among three techniques in both 

ascending aorta and left ventricle (P=	0.021 and P=0.003, respectively). Furthermore, both 
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original 4D MUSIC and CS-PI 4D MUSIC showed significantly improved image 

sharpness than conventional first-pass CE-MRA at the ascending aorta and the LV chamber 

(P≤0.023 for all comparisons, Table 3-4). No significant difference was found between the 

original 4D MUSIC and the CS-PI 4D MUSIC at both the ascending aorta as well as the 

LV chamber (P≥0.68 for all comparisons).  

Table 3-4 Vessel sharpness (mm-1) measured in the ascending aorta and left ventricle of the 
conventional first-pass CE-MRA, the original 4D MUSIC, and the CS-PI 4D MUSIC. (*) denotes 
statistical significance when compared with ferumoxytol-based first-pass CE-MRA. 

 Ascending Aortic 

(Mean ± SE) 

Left Ventricle Chamber 

(Mean ± SE) 

First-pass CE-MRA 0.36±0.08 0.22±0.07 

Original 4D MUSIC 0.56±0.17(*) 0.38±0.11(*) 

CS-PI 4D MUSIC 0.54±0.17(*) 0.35±0.11(*) 

 

Figure 3-6 shows the LV volume measurements and ejection fractions calculated based 

on conventional contrast-enhanced 2D cardiac cine, the original 4D MUSIC and CS-PI 4D 

MUSIC on 8 patients in whom short-axis 2D cine images were acquired. 4D MUSIC and 

CS-PI 4D MUSIC-derived volume measurements and ejection fractions correlated well 

with 2D cine MRI-derived measurements (all r>0.90 ad r>0.85, respectively). 
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Figure 3-6 Comparison of the left ventricle (LV) a): end-systolic volume (ESV), b): end-diastolic 
volume (EDV) and c): ejection fraction (EF) derived from conventional 2D cardiac cine, original 
4D MUSIC and CS-PI 4D MUSIC on eight patients. Good correlation and agreement were found, 
as shown in the regression plot (top) and Bland-Altman analysis (middle and bottom). 

3.4 Discussion 

In this study, we demonstrated the feasibility of halving the acquisition time for high 

spatial resolution 4D (3D cine) ferumoxytol-enhanced MRI, without compromising image 

quality. Using a prospective random k-space under-sampling scheme, our CS-PI combined 

reconstruction method allowed for the acquisition of complete 4D datasets in less than 5 

minutes, with a similar image reconstruction time. This technique offers the potential to 

replace the original 4D MUSIC and may be used to provide temporal resolution that is 

closer to standard 2D cine MRI.  

With CS-PI 4D MUSIC, we were able to achieve similar, or sometimes better, image 

quality compared with the original 4D MUSIC due to several reasons. First, image artifacts 
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caused by random under-sampling were incoherent rather than structured. This enabled 

higher acceleration factors without the structural artifacts that were sometimes observed in 

the original 4D MUSIC at higher acceleration factors. With a properly chosen 

regularization parameter 𝜆 that reflects the type of data acquired (MRA in our case) and 

number of iterations, the incoherent artifact induced by random under-sampling is 

gradually reduced as the iterative reconstruction proceeds. Second, due to the 50% 

reduction of acquisition time, drifts in the respiratory waveform as the effects of muscle 

relaxant wear off are less likely to occur. Third, the higher SNR provided by ferumoxytol 

allowed for more accurate coil sensitivity estimation (50) and effective noise removal with 

soft-thresholding (5), both of which support high acceleration factors while maintaining 

image quality. 

Our custom-built, on-line image reconstruction system also improves the practicality 

of the proposed CS-PI 4D MUSIC technique in a clinical environment. The in-house 

system provided a platform for performing computationally intensive PI and CS combined 

image reconstruction algorithms outside vendor provided pipelines. At the same time, the 

default pipeline that includes vendor provided filters enabled reconstructed images to be 

sent back to the console with DICOM header information intact. Vendor provided k-space 

filters and image space correction ensured an accurate and unbiased comparison between 

original and CS-PI 4D MUSIC images, since some of the image correction algorithms, if 

not performed properly, may result in noticeable distortion of anatomy. Compared with 

(58), our iterative reconstruction was performed on an external computer instead of on the 

scanner. With our setup, reconstructions of subsequent clinical acquisitions are not delayed, 
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and images reconstructed from iterative methods are provided inline and in a clinically 

acceptable timeframe (<5 minutes).  

Balanced steady-state free precession (bSSFP) is the standard technique for 2D cardiac 

imaging at 1.5T due to excellent blood-myocardium contrast (59). Several attempts have 

been made to extend its utilization for 3D (60) or 4D (33) cardiac imaging. However, 

relative low SNR due to diminished in-flow enhancement in non-contrast bSSFP 3D/4D 

acquisitions limits achievable spatial resolution (e.g nominal resolution: 1.5x1.5x3.5 mm3 

in (32)) or prolongs acquisition time (e.g nominal acquisition time: 14 minutes in (33)). In 

contrast, the proposed CS-PI 4D MUSIC technique can generate 0.6-0.9mm isotropic, non-

interpolated resolution in a 4-5 minute acquisition by taking advantage of the higher 

available signal at 3.0T and strong R1 relaxivity of ferumoxytol. 

In our CS-PI MUSIC data set, only 6-9 cardiac phases are reconstructed. For a typical 

heart rate of 120 bpm in our patient cohort, this corresponds to a temporal resolution of 50-

80ms. Although such a temporal resolution might not be sufficient for accurate assessment 

for myocardial wall motion abnormalities, it appears to be sufficient for cardiac chamber 

volume measurements. As chamber volume quantification typically has higher priority 

than assessment of wall motion abnormality for our pediatric CHD patient population, we 

did not prolong our scan time in this study to achieve more cardiac phases. In this regard, 

incorporating k-t constraints in our image reconstruction could further accelerate our 

scanning and enable more cardiac phases without prolonging the scan time.  

The high R1 relaxivity and long intra-vascular half-life of ferumoxytol provide strong 

and stable enhancement of blood pool signal. However, ferumoxytol also has a stronger 

R2 relaxivity than conventional GBCA. To minimize the potential signal loss due to T2 
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relaxation, we used strong partial-echo readout (56%) to minimize TE (0.9ms in our 

protocol). In addition, to maximize the image contrast, which is determined by both T1 and 

T2 shortening effect, we carefully chose the contrast dose of 4mg/kg and flip angle of 25°, 

which provided satisfactory images for both CE-MRA and 4D MUSIC in our study. 

Further contrast dose and flip angle optimization may further improve the SNR of our 

acquisitions. 

Although patients in our study were under anesthesia or sedation at time of imaging 

due to clinical need, the CS-PI 4D MUSIC can potentially be applied to patients during 

free-breathing using other forms of respiratory motion compensation strategies other than 

ventilator gating, such as diaphragmatic navigators or MR self-gating (61,62) techniques. 

Although the prospective under-sampling technique was evaluated in the context of 

evaluating cardiovascular anatomy, this technique may also be applicable to additional 

spatial/temporal resolution limited applications which may benefit from acquisition of 

multiple complete 3D volumes within an acceptable acquisition time. 
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Chapter 4 Motion Weighted Reconstruction 

The parallel imaging and compressed sensing combined reconstruction introduced in 

Chapter 3 for 4D-MUSIC can improve the scan efficiency by a 50% reduction in 

acquisition time. In this chapter, we take another perspective to improve the scan efficiency 

by increase the temporal resolution of 4D-MUSIC within same acquisition time. This can 

potentially improve capacity of using 4D-MUSIC for better cardiac functional assessment.  

4.1 Introduction 

Cardiac MRI (CMR) is widely used for assessing cardiac structure and function over 

a spectrum of disorders, including pediatric congenital heart disease (CHD) (63–65).  

Conventionally, a stack of 2D CINE images is acquired in sequential breath-holds to 

generate parameters related to cardiac function, including left and right ventricular volumes, 

myocardial mass and ejection fraction. Although considered the clinical standard in adults, 

breath-held 2D CINE has limitations for pediatric CHD patients. First, slices are relatively 

thick (3-5 mm), while the requirement for high spatial resolution is demanding in small 

children due to the diminutive size of the heart. Additionally, repeated breath-holding and 

prolonged anesthesia are undesirable in many small children with CHD due to the risk of 

arterial desaturation.  

The recently proposed 4D multi-phase steady-state imaging with contrast enhancement 

(MUSIC) technique (41) and its self-gated extension using rotating Cartesian k-space 

(ROCK-MUSIC) (66), have addressed several of the limitations that previously challenged 

cardiac imaging in pediatric CHD. By generating 4D images with isotropic high spatial 

resolution, without the requirement for breath-holding or slice positioning, MUSIC and 
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ROCK-MUSIC have opened up new vistas for speedy and definitive diagnosis, even in 

tiny patients with the most complex CHD anatomy (67).   

When performed in combination with ferumoxytol, the signal from the blood pool on 

4D MUSIC is bright and uniform, facilitating segmentation of dynamic ventricular 

volumes for functional analysis.  However, current implementations of 4D MUSIC and 

ROCK-MUSIC generate about 9 cardiac phases, in 8 minutes and 5 minutes, respectively.  

Whereas this is sufficient for detailed cardiac and vascular anatomy, the temporal 

resolution for functional analysis is poor compared to 2D CINE, where 20-30 cardiac 

phases are routine.  Therefore, improved temporal resolution is desirable for more detailed 

cardiac functional evaluation based on 4D MUSIC or ROCK-MUSIC. 

The k-space sampling pattern in the ROCK-MUSIC technique allows for retrospective 

data binning into an arbitrary number of cardiac phases. Given the same amount of data, 

increasing the number of cardiac phases means fewer k-space samples for each cardiac 

phase. To address this issue, algorithms that exploit the temporal correlation of the dataset 

are usually used to reconstruct the highly under-sampled k-space (68–72). Motion 

regularized methods reconstruct images of all the motion states (i.e. cardiac phases) in a 

single optimization process and impose a regularization term on the sparsifying 

transformation along the motion direction (20,73–75). Although motion regularized 

methods could reconstruct highly under-sampled dynamic k-space data, the fact that all the 

images of different motion states are reconstructed in a joint optimization process 

significantly increases the computational burden and computer memory requirement 

(22,76). 
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Motion weighted image reconstruction is a recently proposed alternative approach to 

reconstructing highly-under sampled, motion corrupted k-space data. Instead of 

introducing additional regularization terms, the motion weighted methods add a weighting 

𝑤 ∈ [0,1] to the data consistency term of the compressed sensing type reconstruction based 

on the degree of motion that occurred. Since the degree of motion corruption is described 

using the full range of [0,1], this scheme is also called motion soft-gating. The concept was 

first introduced by Johnson et al. (77) where the weightings were based on the degree of 

off-resonance, and later applied in free-breathing coronary MR angiography (78), 

abdominal imaging (79), dynamic contrast enhanced MRI (80), and pulmonary MRI (76) 

to suppress respiratory motion. One advantage of motion weighted method is that the image 

reconstruction is independent for each motion state, which not only significantly reduces 

the computation scale of the problem, but also allows for parallelized implementation. 

In this study, we use both a motion regularized method and a motion weighted method 

to improve the temporal resolution of previously acquired ROCK-MUSIC datasets. The 

high temporal resolution 4D images (18 cardiac phases) reconstructed by the 

aforementioned two methods were compared with low temporal resolution (9 cardiac 

phases) images reconstructed without these methods in terms of image quality and 

sharpness. Left ventricular (LV) function measurements based on the two sets of high 

temporal resolution 4D images were validated against the measurements based on 2D 

CINE. 
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4.2 Theory 

4.2.1 Motion regularized reconstruction 

Generally, the optimization problem to be solved in motion regularized reconstruction 

can be described as follows: 

	 𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛: | 𝐷ℱ𝑆|𝑑 − 𝑚| |II + 𝜆H||𝑅H𝑑||H + 𝜆I||𝑅I𝑑||H�
|�H      (4-1)	

where ℱ is the Fourier transform; 𝑆| are the sensitivity maps;	𝐷 is the operator that selects 

the locations where data have been acquired; 𝑑  is the multi-phase images to be 

reconstructed; 𝑚| is the acquired under-sampled k-space data from each of the 𝑁 receiver 

coil elements; 𝑅H and 𝑅I are spatial and temporal sparsifying transforms, respectively; and 

𝜆H  and 𝜆I  are corresponding regularization parameters. One of the popular choices for 

temporal regularization 𝑅I in cardiac imaging is total variation (22,81), which assumes that 

cardiac motion (i.e. contraction and relaxation) is smooth and continuous across the cardiac 

cycle.  

4.2.2 Motion Weighted Reconstruction 

In motion weighted reconstruction, data in two temporally adjacent phases (𝑝 − 1 and 

𝑝 + 1) were included into the reconstruction of the target phase 𝑝. Data acquired in the 

target phase were assigned a weight of 1, and data acquired in adjacent phases were 

assigned a weight between 0 and 1, according to its temporal separation from the target 

phase within the cardiac cycle. For data acquired closer (in terms of temporal location) to 

the target phase, a larger weight is assigned (i.e. 0.9), while for data acquired further away, 

a smaller weight is assigned (i.e. 0.1). The optimization problem is thus modified as follows: 

𝑑h = 𝑎𝑟𝑔𝑚𝑖𝑛:� | 𝑊(𝐷ℱ𝑆|𝑑h − 𝑀|) |II + 𝜆H||𝑅H𝑑h||H�
|�H        (4-2) 
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where 𝑑h is the image of target phase; 𝑀| is the multi-coil k-space data of the target phase 

and two adjacent phases; and 𝑊 is the diagonal matrix containing the weight for each data 

point. The solution of this motion weighted reconstruction converges toward the target 

phase 𝑝 and the temporal blurring caused by incorporating data from the adjacent cardiac 

phases are inherently suppressed in the reconstruction process. This is in contrast to the 

conventional view-sharing reconstruction, where all incorporated data are treated equally 

and 𝑊 in Equation 4-2 becomes an identity matrix.  

4.3 Methods 

4.3.1 Data Preparation 

This study included 12 pediatric CHD patients who underwent Ferumoxytol-enhanced 

CMR exams on a 3.0T whole-body scanner (Magnetom TIM Trio, Siemens Healthcare 

solutions) during uninterrupted positive pressure ventilation. The study was approved by 

our institutional review board and written informed consent was obtained before each MRI 

scan. The CMR protocol included both ROCK-MUSIC (TE/TR = 1.2ms/2.9ms, matrix size: 

480x280x140, 0.8-1mm3 isotropic resolution, total acquisition time = 6min, FA=20o) and 

multiple 2D CINE covering the left ventricle in cardiac short axis (TE/TR = 1.8/3.6ms, 12 

second ventilator controlled breath-held, 1mm in-plane resolution, 5mm slice thickness, 25 

cardiac phases, ECG gated). 

4.3.2 Image Reconstruction 

The ROCK-MUSIC data first underwent respiratory gating by discarding the data that 

were acquired outside the gating acceptance window, which was set to 40% of the 
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respiratory signal’s dynamic range (41). Each dataset was then reconstructed using four 

different strategies.  

Strategy 1: Data were binned into 9 cardiac phases and reconstructed phase-by-phase using 

standard parallel imaging and compressed sensing combined algorithm with spatial 

wavelets regularization only (8):   

𝑑 = arg	min | 𝐷ℱ𝑆|𝑑 − 𝑚| |II + 𝜆H||𝑅H𝑑||H�
|�H                     (4-3)	

Strategy 2: Data were binned into 18 cardiac phases and reconstructed using cardiac motion 

regularized reconstruction (Equation 4-1), with spatial wavelets regularization and 

temporal total variation regularization.   

Strategy 3: Data were first separated into 18 bins as shown in Figure 4-1a. A flat-topped 

two-sided Gaussian kernel that slides through each bin was then generated and used to 

weigh each data point that resides under the kernel. Specifically, the flat-topped Gaussian 

kernel was scaled with the maximum set to 1 and centered at each bin, with the duration of 

the flat top equal to the duration of the target bin, and the duration of the ramps on each 

side equal to half of the duration of the adjacent bins. The parameters (mean and standard 

deviation) of the Gaussian ramps were designed such that it decays to half strength at 50% 

of its duration. A schematic plot of this Gaussian kernel is shown in Figure 4-1b. Finally, 

the acquired data and corresponding weights were grouped into individual cardiac phases 

(18 in total), as shown in Figure 4-1c, and reconstructed phase-by-phase using the motion 

weighted reconstruction (Equation 4-2), with spatial wavelets regularization.  

Strategy 4: All non-zero values of the weighting matrix 𝑊 used in Strategy 3 were replaced 

with 1, making Strategy 4 identical to a conventional sliding window reconstruction that 
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reconstructs 18 temporal frames based on the 4D datasets, where the temporal footprint of 

each temporal frame is twice as long as the temporal sampling period of the dynamic image.  

All reconstructions were performed on a custom-build Linux PC (4 Core/4GHz, 64 

GB Memory, Nvidia GTX 760) with parallelized CPU and GPU acceleration using C++ 

and the BART toolbox (51). Image reconstruction time for each strategy was recorded. 

 

Figure 4-1 Illustration of motion weighted image reconstruction (Strategy 3). (a). Acquired 
data were first evenly separated into 18 bins. A Gaussian weighting kernel that slides 
through each bin was then used to weigh readouts that reside under the kernel. (b). 
Specifically, the weighting kernel has a flat top over the duration of the target bin, and the 
duration of the ramps on either side equals half of the duration for the adjacent bins. Weight 
equals to 1 was assigned to readouts under the flat top, while progressively decaying 
weights were assigned to readouts under the side ramps. (c). Finally, the acquired data and 
corresponding weights were grouped into 18 cardiac phases and input to a phase-by-phase 
parallel imaging and compressed sensing combined reconstruction algorithm 

4.3.3 Image Analysis 

Regional image sharpness measurements were calculated using inverse gradient 

entropy, a metric highly correlated with observed image sharpness (82). To evaluate the 
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effect of motion on image sharpness, inverse gradient entropy was computed for two 

regions of interest (ROIs): the common carotid artery (CCA, static tissue) and the entire 

heart (non-static tissue). For each region, inverse gradient entropy was computed separately 

for each cardiac phase, and averaged across all phases. The 3D rectangular ROIs were 

defined manually and the selected pixel data were processed using an in-house MATLAB 

program. Higher inverse gradient entropy indicates sharper image. 

4.3.4 Statistical Analysis 

Quantitative gradient entropy-based image sharpness was compared in two steps after 

satisfying normality assumption: First, a one-way ANOVA test was used to test the 

differences among all four reconstructions; Second, if significant difference was found 

among the techniques, a post-hoc Tukey’s honest significant difference (HSD) test was 

performed for each of the four pairs of strategies. Both one-way ANOVA test and Tukey’s 

HSD test were performed separately for the two ROIs (CCA and the heart) using a 

Bonferroni correction (P<0.05/2=0.025). The EDV, ESV and EF measurements from the 

four reconstruction strategies were compared with the measurements from CINE images 

using Lin's concordance correlation coefficient (57). 

4.4 Results 

All retrospective reconstructions were completed successfully. Reconstruction time 

was 0.73±0.15 min per phase for Strategy 1, 4.1±0.36 min on average per phase for 

Strategy 2, 0.72±0.18 min per phase for Strategy 3, and 0.72±0.09 min per phase for 

Strategy 4.  
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Figure 4-2 shows representative images of the four reconstruction strategies from a 6-

year-old 6.2kg female patient. Fine intra-cardiac structures such as the papillary muscles 

and their connections (black and red arrow heads) were more clearly defined in Strategies 

2 and 3 than with Strategies 1 and 4 due to the lower temporal resolution for 9 phase 

reconstruction and longer temporal footprint for view-sharing reconstruction, respectively. 

With lower effective under-sampling (more data are used for each phase) in Strategy 3, the 

reconstructed images had slightly lower background noise and sharper delineation of fine 

structures compared with Strategy 2. 

 

Figure 4-2 Reconstructed 4D images (selected slice and phase) using the four different 
strategies on the same dataset acquired on a 6-years-old female patient. Low temporal 
resolution reconstruction in Strategy 1 results in motion blurred intra-cardiac structures 
such as the papillary muscles and their connections (black and red arrow heads). Using 
view-sharing in Strategy 4 can improve the temporal resolution, which leads to slightly 
sharper delineation of these fine structures. However, the temporal footprint in Strategy 4 
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remained the same as Strategy 1. With a true higher temporal resolution and temporal 
footprint reconstruction in Strategy 2 and 3, cardiac motion is nicely resolved with well-
defined intra-cardiac structures. 

The high temporal resolution from reconstructions with Strategies 2 and 3 may be 

helpful for clearer visualization of major coronary arteries. Figure 4-3 shows the right 

coronary artery (RCA) and left anterior descending artery (LAD) in a 4-year-old 4.8kg 

male patient. Due to the long temporal footprint of view-sharing reconstruction in Strategy 

4, both the RCA and LAD are blurred by the cardiac motion (red arrows). Conversely, the 

true short temporal footprint reconstructions from Strategies 2 and 3 enabled clear 

visualization of these coronary arteries.  

 

Figure 4-3 Multiplanar reformat images of the coronary arteries from a 4-year-old male 
patient using three reconstruction techniques with high temporal resolution. The long 
temporal footprint using view-sharing reconstruction (Strategy 4) precludes visualization 
of the full length and course of the RCA and LAD (red arrows). On the other hand, 
strategies with shorter temporal footprints (Strategies 2 and 3) allow sharper visualization 
and clearer course of these structures. 
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Figure 4-4a demonstrates the two ROIs that are used to determine image sharpness in 

an exemplary image. As shown in Figure 4-4b, mean sharpness scores (±standard 

deviations) of the four reconstruction strategies were 0.693±0.027, 0.538±0.013, 

0.543±0.011, and 0.705±0.022 in the CCA, respectively. Image sharpness was significantly 

different among the four techniques (P= 0.008). Furthermore, Strategy 1 and 4 showed 

significantly improved image sharpness than the other two strategies for the CCA (P≤

0.018 for all comparisons), but not a significant difference among themselves. This is 

because more data are included in the image reconstruction in Strategies 1 and 4, which 

translate to higher spatial resolution. However, in the heart region, Strategies 2 and 3 

reconstruct significantly sharper images than Strategy 1 and 4 (0.309±0.011, 0.389±0.008, 

0.392±0.006 and 0.323±0.012, respectively, P = 0.016 for global comparison, P≤0.021 

for all paired comparisons between Strategies 2,3 and Strategies 1,4). This is because the 

spatial resolution advantage of Strategies 1 and 4 was compromised by the cardiac motion 

blurring resulting from their lower temporal resolution. Such compromise is more severe 

in the pediatric application where patients usually have high heart rate (>100bpm).  
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Figure 4-4 (a) Reconstructed images for Strategies 3 and 4 demonstrate the two regions-of-
interest (ROIs) where image sharpness was measured using inverse gradient entropy. (b) 
Regional image sharpness of two ROIs (common carotid artery [CCA] and heart) using 
images reconstructed from four different strategies. Higher inverse gradient entropy 
indicates sharper image. In the static CCA, both Strategies 1 and 4 have significantly higher 
sharpness than Strategies 2 and 3, due to the lower under-sampling factor. However, in the 
heart, where intra-cardiac structures are dynamic, Strategies 2 and 3 have significantly 
higher sharpness than Strategies 1 and 4 because of the higher effective temporal resolution 
and temporal footprint in the setting of complex cardiac motion. 

Because the reconstructed 4D images from MUSIC and ROCK-MUSIC can be 

reformatted into any user-specified slice orientation, the images were reformatted into 

ventricular short-axis views similar to those prescribed for 2D CINE. Figure 4-5 shows 

images in multiple selected cardiac phases. The M-Mode plot at the level of the blue dotted 
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line is shown at the right to enable visual comparison of the temporal resolution of the 

reconstruction strategies. The limited temporal resolution of Strategy 1 resulted in a coarse 

temporal profile, while the remaining three strategies provided smoother profiles over time, 

similar to 2D CINE. The blood-pool signal is much more uniform in all 4D MUSIC images 

than those of 2D CINE, which is a desirable feature for ventricular segmentation.  

 

Figure 4-5 Reformatted ventricular short-axis views of the heart from four reconstruction 
strategies and 2D CINE. The M-mode plot to the right of the figure reflects the temporal 
resolution at the location of dashed blue line for each of the different strategies. The 
temporal profile of Strategy 1 is coarse because of limited temporal resolution whereas the 
temporal profiles of the other three strategies are smoother and similar to 2D CINE. The 
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selected end-diastole and end-systole phases for volumetric measurements are highlighted 
with red and yellow dashed boxes, respectively. 

Table 4-1 summarizes the quantitative left ventricular functional measurements, 

including ESV, EDV and EF based on the four different reconstruction strategies with 

values from 2D CINE as the reference standard. The measurements based on images with 

low temporal resolution (9 phases, Strategy 1) have a systemic 8% overestimation of ESV 

and about 2% underestimation of EDV compared with measurements based on 2D CINE. 

These errors resulted in 7% underestimation of EF. Measurements based on images with 

high temporal resolution (18 phases, Strategies 2,3 and 4) had much smaller errors (<3.5%) 

based on 2D CINE values. There were minimal differences between Strategies 2,3 and 4 

in terms of quantitative LV functional measurement. All these observations are also 

reflected in Lin’s correlation coefficient shown in Table 4-1. 

Table 4-1 Quantitative left ventricular functional measurements. Lin’s correlation coefficients for 
measured volumes/ejection fraction between each strategy and the reference standard 2D CINE 
images are in parentheses. 

 ESV(mL) EDV(mL) EF(%) 

Strategy 1 14.81±5.04 
(0.72) 

34.33±13.16 
(0.83) 

56.93±8.18 
(0.79) 

Strategy 2 13.71±4.19 
(0.91) 

34.46±12.79 
(0.96) 

58.79±9.35 
(0.93) 

Strategy 3 13.88±5.31 
(0.94) 

34.83±13.17 
(0.98) 

58.96±9.01 
(0.96) 

Strategy 4 14.02±5.06 
(0.86) 

34.39±12.88 
(0.92) 

57.99±8.64 
(0.9) 

2D CINE 13.34±4.77 35.07±13.22 60.43±9.03 

Error: 
Strategy 1 vs CINE 8.39±3.67% -1.95±0.62% -6.84±0.46% 
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Error: 
Strategy 2 vs CINE 3.25±2.06% -0.95±0.33% -2.56±0.64% 

Error: 
Strategy 3 vs CINE 3.46±1.13% -0.79±0.35% -2.74±0.68% 

Error: 
Strategy 4 vs CINE 4.06±1.92% -1.23±0.48% -3.51±0.52% 

 

4.5 Discussion 

In this study, we evaluated four different image reconstruction strategies, all aiming 

to improve the number of reconstructed cardiac phases of the 4D ROCK-MUSIC dataset 

for improved cardiac function assessment. In quantitative regional image sharpness, we 

found obvious improvements using the high temporal resolution reconstruction with 

Strategies 2 and 3 compared to the original reconstruction or the view-sharing 

reconstruction. However, there were no significant differences between Strategies 2 and 3 

other than the reconstruction time and memory usage. The proposed Strategy 3 requires a 

shorter reconstruction time than Strategy 2. In our implementation, the 4D images with 18 

cardiac phases can be reconstructed within 10 minutes and 23 GB memory using the 

motion weighted reconstruction method, while over 2 hours and 60 GB memory is required 

when using the motion regularized reconstruction method, with the same computer 

hardware.  Based on these findings, the motion weighted reconstruction method represents 

a time- and computational-efficient solution for improving cardiac function assessment 

based on 4D ROCK-MUSIC. Our solution for image reconstruction based on motion 

weighing is practical and can be easily implemented in clinical practice. 

The motion weighted image reconstruction is different from view-sharing. View-

sharing directly includes k-space data from other motion states or temporal frames into the 
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image reconstruction. The increased temporal footprint of view-sharing will result in 

motion blurring in the reconstructed images. On the other hand, motion-weighted 

reconstruction offers an additional "relaxed" subsampling operation where the 

reconstruction will directly use the k-space data if the weights are closer to 1. The 

reconstruction will recover data that were not originally sampled or that have weights 

closer to 0 in the iterative reconstruction.  

Since cardiac arrhythmia during image acquisition is not a common concern for 

pediatric CHD patients, the use of a symmetric flat top two-sided Gaussian kernel in the 

motion weighted reconstruction is a practical choice for providing high quality images to 

resolve cardiac motion, with much reduced computation requirements. In cases with 

irregular heartbeats, cardiac motion blurring may still occur for the motion weighted 

reconstruction when data under the symmetric Gaussian kernel has experienced a large 

motion range. This could be addressed by a carefully designed asymmetric kernel that 

minimizes the motion incorporated in each cardiac phase. 

The remaining 2-3% error in LV functional measurement between high temporal 

resolution reconstructions and the 2D CINE reference standard may be due to the different 

number of cardiac phases (18 phases for 4D ROCK-MUSIC and 25 phases for 2D CINE) 

intrinsic for each technique. However, we have to also consider the fact that the 2D CINE 

is acquired during (ventilator controlled) breath-holding and 4D ROCK-MUSIC is 

acquired without breath-holding. It is possible that the remaining 2-3% error was due to 

the physiological effects of breath holding. 
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4.6 Conclusion 

We have presented a practical approach to doubling temporal resolution in 4D cardiac 

functional assessment in children, based on a ROCK-MUSIC acquisition. Using motion 

weighted reconstruction, LV quantitative measurements are significantly improved 

compared to the original reconstruction. At the same time, reconstruction time and 

computation memory requirements are modest compared with motion regularized 

reconstructions. 
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Chapter 5 Accelerated ASL-based Intracranial MRA 

In Chapter 3 and 4, we introduced two methods to improve the scan efficiency of an 

SNR-abundant application: Ferumoxytol-enhanced MRA. The use of conventional parallel 

imaging and compressed sensing combined reconstruction can effectively reduce the 

acquisition time by half or double the temporal resolution within same acquisition time. In 

this chapter, we turned to another application: ASL-based noncontrast-enhanced 4D 

intracranial MRA, where the SNR level of acquired signal is limited. We will investigate 

acquisition and reconstruction strategies for accelerated imaging in such a SNR-limited 

scenario, and examine its feasibility in clinical environment.  

5.1 Introduction 

The detailed characterization of dynamic flow patterns is important in the diagnosis of 

cerebrovascular diseases, such as arteriovenous malformation (AVM), arteriovenous 

fistula (AVF), and intracranial aneurysm (83). Non-contrast enhanced dynamic MR 

Angiography (NCE-dMRA) (84–88) has become a promising approach due to its 

completely non-invasive nature and lack of ionizing radiation, compared to digital 

subtraction angiography (DSA) and dynamic contrast-enhanced MRA (DCE-MRA) (89). 

The conventional intracranial NCE-dMRA technique combines arterial spin labeling (ASL) 

with multi-phase k-space segmented balanced steady-state free precession (bSSFP) 

sequence, and is able to provide dynamic information with high spatial (~1mm3) and 

temporal (~100ms) resolution for the evaluation of cerebral malformations (87,90–92) and 

steno-occlusive diseases (93). However, the segmented cine acquisition usually requires a 

relatively long scan time to achieve sufficient spatiotemporal resolution and spatial 
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coverage (90,91), which potentially hampers the application of NCE-dMRA in clinical 

practice. 

   Golden angle radial acquisition (94) in conjunction with k-space weighted image 

contrast (KWIC) reconstruction (95,96) was proposed to accelerate the NCE-dMRA 

acquisition by up to threefold (97). KWIC is a projection view-sharing technique based on 

radial k-space sampling (95,96). KWIC applies a spatiotemporal filter by using 

progressively more radial projection views towards outer k-space so that the image series 

can be reconstructed at a relative high temporal resolution without introducing severe 

streaking artifacts. However, a potential drawback of view-sharing techniques such as 

KWIC is temporal smoothing of rapidly changing events in vessels and at vessel 

boundaries (98,99). 

 Recent developments in applying compressed sensing (CS) theory to MRI have 

revealed new ways of accelerating image acquisition (5). By exploiting the signal sparsity 

in a transformation domain, CS could reconstruct MRI images from randomly under-

sampled k-space by optimizing a non-linear function. It has been successfully applied in 

cardiac cine imaging (100), phase-contrast flow imaging (101), and dynamic contrast-

enhanced body imaging applications (102). However, to date, very few studies have 

attempted to apply CS in ASL based applications due to the inherently low SNR of ASL 

signal. Han et al. (103) utilized the complex image subtraction sparsity between control 

and label images to reconstruct under-sampled perfusion ASL data. Similarly, Zhao et al. 

(104) enforced sparsity of image under a perfusion model after the complex k-space 

subtraction of control and label acquisitions and applied it for cerebral ASL perfusion 

reconstruction. Although complex subtraction sparsity is theoretically sound, it is, in 
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practice, sensitive to phase errors caused by motion and other sources of off-resonance 

(105,106), especially in the case of bSSFP readout.  

A novel CS algorithm has recently been developed, which takes advantage of the 

sparsity of the magnitude subtraction (MS) between the pre- and post-contrast images in 

thoracic DCE-MRA (45). Since the same subtraction sparsity may be applied to ASL-based 

MRA between the control and label images, we hypothesized that the magnitude-

subtraction CS (MS-CS) method could be used to accelerate the acquisition of NCE-dMRA 

with high spatial and temporal resolutions. In this study, we focused on (1) investigation 

of the feasibility of using MS-CS to reconstruct highly under-sampled golden-angle stack-

of-stars (SOS) NCE-dMRA data set; (2) comparison of the MS-CS method with the 

conventional independent CS (iCS) and complex-subtraction CS (CS-CS) methods 

(105,106) for image quality; and (3) comparison of MS-CS with KWIC in terms of 

temporal fidelity for depicting dynamic blood flow.  

5.2 Methods 

Similar to a previous work (45), the acquired NCE-dMRA data were reconstructed by 

optimizing Equation 5-1 for each temporal frame.  

𝑚H,𝑚I = 𝑎𝑟𝑔𝑚𝑖𝑛 ||�§¨¨?(~©z@)>[@© )
ª
©«@ ||A¬­| ®z@ |@¬¯| z@ >|zA||@

||�§¨¨?(~©zA)>[A© )
ª
©«@ ||A¬­| ®zA |@¬¯| z@ >|zA||@

        (5-1)	

where 𝑦H|  and 𝑦I|  are single coil (𝑖;f coil) k-space data for control and label acquisitions in 

one frame; 𝑚H and 𝑚I are corresponding coil combined images to be recovered jointly, 

𝑁𝑈𝐹𝐹𝑇(∙) is the non-uniform fast Fourier transform (17) that transforms image to radial 

k-space data; 𝑆|  is the sensitivity map of the 𝑖;f  coil; 𝑊  is the randomized shifting 
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Daubechies spatial wavelets transform; | 𝑚H − |𝑚I||H is the L1 norm of the pixel-wise 

magnitude difference between the control and label images; and 𝜆 and 𝜇 are regularization 

parameters.  

To demonstrate the effectiveness of magnitude subtraction regularization, the 

conventional iCS and CS-CS reconstructions were also performed using the following 

equations: 

iCS: 
𝑚H = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑁𝑈𝐹𝐹𝑇(𝑆|𝑚H) − 𝑦H|)�

|�H ||I + 𝜆| 𝑊𝑚H |H
𝑚I = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑁𝑈𝐹𝐹𝑇(𝑆|𝑚I) − 𝑦I| )�

|�H ||I + 𝜆| 𝑊𝑚I |H
              (5-2)	

CS-CS: 𝐼 = 𝑎𝑟𝑔𝑚𝑖𝑛 ||𝑁𝑈𝐹𝐹𝑇 𝑆|𝐼 − 𝑦H| − 𝑦I| ||I�
|�H + 𝜆| 𝐼 |H                (5-3) 

where 𝐼  is the final complex subtracted image and ||𝐼||H  is the L1-norm in the image 

domain. 

5.2.1 MRI Experiments  

Six healthy volunteers (aged 28-32 years, 4 male) and one patient (23 y.o., male) with 

AVF were included in this study, after obtaining Institutional Review Board (IRB) 

approval and informed consent. All subjects were scanned on a 3T scanner (PRISMA, 

Siemens Healthcare, Erlangen, Germany) using a 20-channel head coil. NCE-dMRA data 

were collected using the previously proposed golden-angle SOS NCE-dMRA sequence (97) 

with the following parameters: spatial resolution=1x1x1.5 mm3; FOV= 256x256x48 mm3, 

TE/TR=2.43/4.86ms, FA=25°, BW=814Hz/pixel, 500 views per shot, one shot per slice, 

acquisition time: 3min. The sequence diagram for the 3D golden-angle SOS acquisition is 

illustrated in Figure 5-1. A 6-min 3D Cartesian NCE-dMRA scan without view-sharing 

(84) was performed as the gold standard for dynamic information. The spatial resolution 

and imaging coverage were identical to those of the 3D SOS scan. A total of 25 phases 
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with a temporal resolution of 100ms were collected in the Cartesian acquisition. The 

sequence diagrams for the 3D Cartesian acquisition is illustrated in Figure 5-2. In addition, 

time-of-flight (TOF) MRA images were acquired as a reference for the anatomical 

information. 

 

Figure 5-1 Sequence diagram of 3D SOS NCE-dMRA, which combines ASL with a continuous 
golden-angle bSSFP readout. An example of data binning with KWIC filtering and CS 
reconstruction is also shown in a) and b), respectively. In KWIC, K-space is divided into 3 regions, 
with 5 views (size of the target reconstruction time point) in the center region, 8 views in the middle 
region, and a total of 13 views in the outer region. For frame #1, included neighboring views (8 
views) all reside on one side. For frame #4, included neighboring views symmetrically reside on 
both sides. In CS reconstructions, neighboring views are not included. Each frame only contains 5 
views without overlapping with each other. 
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Figure 5-2 Sequence diagram of 3D Cartesian NCE-dMRA, which applies an ASL preparation 
pulse followed by a segmented multi-phase balanced steady-state free precession (bSSFP) readout. 
A pre-saturation pulse is applied before the ASL preparation pulse to saturate the background signal 
in the imaging slab. Segmented k-space is acquired in each repetition time, and the temporal 
resolution depends on the number of lines per segment. 

5.2.2 Image Reconstruction  

Each golden-angle SOS NCE-dMRA dataset was binned into 20 views per frame, i.e., 

a temporal resolution of 97ms, and reconstructed with the aforementioned three CS 

strategies respectively: MS-CS (Equation 5-1), iCS (Equation 5-2), and CS-CS (Equation 

5-3). For demonstration purpose, one dataset was binned to 10, 20, and 30 views per frame 

separately and reconstructed with the MS-CS algorithm. The radials views in this 

demonstration reconstruction were aligned in such a way that the 10 views in the 10-view 

reconstruction corresponded to the middle 10 views of the 20-view reconstruction, and the 

20 views in the 20-view reconstruction corresponded to the middle 20 views of the 30-

view reconstruction. In addition, each dataset was binned using the KWIC method and 

reconstructed with the standard gridding reconstruction (107) with a k-space temporal filter 

described in (95), to reduce possible temporal blurring effect. The specific parameters of 

KWIC reconstruction were chosen based on the previous study (97): 20 views at the k-
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space center, 40 more views were added in each outward adjacent annular ring region, with 

a total of 5 rings and 160 views per frame for the outer-most ring.  

All CS image reconstruction algorithms were implemented based on the Berkeley 

Advanced Reconstruction Toolbox (51). The regularization parameters were determined 

based on a pilot study on two volunteers for parameter optimization. Specifically, we 

normalized the data sets prior to reconstruction and varied	the regularization parameter(s) 

in each method from 0.05 to 1.0 in a step size of 0.05 to identify the optimal value(s) that 

would provide the best image quality by visual assessment among the reconstructed images 

for each method. Selected regularization parameter(s) for the three CS reconstructions were: 

𝜆 = 0.1 , 𝜇 = 0.4  for MS-CS; 𝜆 = 0.4  for iCS; and 𝜆 = 0.2  for CS-CS. After the 

reconstruction of all image slices, label and control images were subtracted (except for CS-

CS method in which the subtracted image is directly reconstructed) and maximum-

intensity-projection (MIP) images along axial, coronal, and sagittal planes were generated. 

5.2.3 Image Evaluation  

The image quality of the three CS as well as the KWIC reconstructions were 

subjectively graded independently by two reviewers (both are MRI experts with over seven 

years of experience). Images were evaluated in terms of vessel delineation and 

artifacts/noise on a 4-point scale: 1. Poor delineation of all-sized arteries, with severe 

streaking artifact and noise leading to nondiagnostic images; 2. Confident delineation of 

large arteries (M1, P1/2), but with considerable artifacts and noise that compromise the 

evaluation of intermediate and small arteries (M2,3,4 and P3,4); 3. Confident delineation 

of large and intermediate arteries (M1,2, and P1,2), with little artifacts and low noise level 

that only impairs the definition of the fine structures of small vessels (M3,4 and P3,4); 4. 
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Confident delineation of all-size arteries (M1,2,3,4 and P1,2,3,4) with minimal artifacts 

and noise. 

To evaluate the performance of the proposed MS-CS method on the temporal 

delineation of dynamic blood flow, we defined a weighted arrival time (wAT) as follows 

(108): 

𝑤𝐴𝑇 = y ; ∗;µ
y ;µ

                                                (5-4) 

where 𝐼 𝑡  is the signal intensity at time 𝑡. Quantitative wAT maps were calculated from 

MS-CS and KWIC reconstructions as well as the reference Cartesian acquisition. Five 

regions of interest (ROIs) encompassing different vascular regions (M1, M2, M3/4, P1/2, 

P3) were manually drawn on the calculated wAT maps, from which average wAT values 

were measured using the following method: An intensity threshold was set for each region 

such that the intensity of the smallest visible vessels within the region were above the 

threshold. The threshold was then used as a mask to exclude pixels with signal intensity 

below the threshold. wAT values from the remaining pixels were then averaged and 

reported as the final wAT value for the region.  

Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also calculated 

for MS-CS, KWIC and Cartesian reconstructed images, using the approach previously 

described (97). Specifically, a 16x16 square ROI was drawn on the M1 vessel and adjacent 

background from a MIP image that corresponds to the signal peak in each time series. All 

pixels were then averaged to determine the mean signal. Average noise level was calculated 

by taking the standard deviation of a background ROI placed far away from brain to avoid 

any motion or reconstruction related artifacts. SNR was then calculated as the ratio of the 
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mean signal to the standard deviation of background noise. As for CNR measurement, the 

M1 signal used in SNR measurement were subtracted by the brain tissue signal that 

measured from a ROI placed between the middle and posterior cerebral arteries where 

vessels were absent. The resulting signal difference was then divided by the standard 

deviation of background noise to calculate CNR. 

5.2.4 Statistical Analysis  

For subjective image quality scores, a Friedman test was performed among the four 

reconstructions to detect statistically significant differences. Post-hoc analyses with 

Wilcoxon signed-rank test were subsequently conducted to detect pairwise differences. For 

wAT, statistical significance for each ROI was determined between the three 

reconstructions using a repeated-measures analysis of variance (ANOVA) followed by a 

post-hoc paired t-test for the pairwise comparisons. In all the statistical pairwise 

comparisons, the null hypothesis was that there was no significant difference in image 

quality scores or wAT values between the two techniques. A two-tailed P<0.05 was 

considered statistically significant. The weighted kappa coefficient was used to evaluate 

the inter-observer agreement for the quality score. All statistical analyses were conducted 

using R software (version 3.3.1). 

5.3 Results 

All scans were successfully performed. The Cartesian dMRA images were directly 

reconstructed using the vendor-provided program. The MS-CS, iCS, CS-CS and KWIC 

reconstructions of the golden-angle SOS data took on average 4.7 minutes, 2 minutes, 1.3 

minutes and 30s for the calculation of each temporal frame, respectively.  
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Figure 5-3 demonstrates the effects of different regularization terms on the proposed 

MS-CS method. The image reconstructed without any regularization (lower right), which 

is equivalent to the SENSE reconstruction, has the lowest SNR and inferior vessel 

delineation. Adding one regularization term was able to improve the image quality; 

however, the image with magnitude subtraction alone (lower left) had fewer streaking 

artifacts and lower noise level than the one with wavelets alone (upper right). Combing 

both regularization terms (upper left) further improved vessel delineation especially of fine 

structures. 

 

Figure 5-3 Demonstration of the contributions of magnitude subtraction regularization and 
wavelets regularization in the proposed MS-CS method. Without any regularization (lower right), 
reconstructed image has high noise level and suffers the loss of fine structures. By adding a single 
regularization term, image quality is significantly improved, although using magnitude subtraction 
(lower left) shows more improvement than wavelets (upper right). Combining the two 
regularizations provides the best image quality among all combinations. All images were 
normalized by its maximum intensity and displayed at the same window level. 
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Figure 5-4 illustrates four selected temporal frames of dMRA reconstructed with three 

different number of views per frame using the proposed MS-CS reconstruction. With 10 

views per frame, the reconstructed images show residual streaking artifacts (red arrows) 

and increased background noise that precludes the visualization of small-sized vessels 

(yellow arrows). With 20 views per frame, the reconstructed images provide good image 

quality with sufficient SNR and adequate delineation of different vessels. With 30 views 

per frame, the reconstructed images demonstrate even better SNR that provides detailed 

delineation of all sizes of vessels. However, a wider reconstruction window would result 

in lower temporal resolution that may not capture sufficient temporal information. Based 

on visual inspection, the choice of 20 views per frame represents a good balance between 

image quality and temporal sampling rate. 

 

Figure 5-4 MIP images of a golden-angle SOS acquisition reconstructed with the MS-CS method 
using 10 views, 20 views and 30 views per frame. With 10 views per frame, increased noise (yellow 
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arrow) and residual streaking artifacts (red arrow) are noted in the images. With 20 views per frame, 
reconstructed images provide adequate delineation of different sizes of vessels. With 30 views per 
frame, the reconstructed images have even better SNR, but a wider reconstruction window 
potentially results in a reduced temporal resolution. The use of 20 views represents a good balance 
between image quality and temporal resolution. 

Figure 5-5 compares the three CS reconstruction strategies on one volunteer at four 

temporal frames. The conventional iCS reconstruction (middle row) shows residual 

streaking artifacts (yellow arrow) and fails to recover fine structures (red arrows), as it does 

not benefit from the subtraction sparsity. This is also reflected in the subjective quality 

scores in Table 5-1, where iCS had the lowest score (2.75±0.62) among all reconstruction 

strategies. The CS-CS reconstruction uses the additional information in complex 

subtraction regularization, and this indeed reduced the streaking artifact, with a slightly 

higher score (2.83±0.57), although no statistical significance was reached (P=0.38). 

However, due to the increased sensitivity to phase errors in complex subtraction, the CS-

CS reconstruction suffers from loss of SNR, resulting in slightly increased noise level that 

submerged fine anatomical details (green arrows). The proposed MS-CS reconstruction 

was able to reconstruct images with clean background, sharp contrast, and adequate details. 

This improvement was confirmed by a significant higher score (3.83±0.38 vs. 2.75±0.62 

vs. 2.83±0.57, P<0.05) when compared with both iCS and CS-CS. The MS-CS image 

quality scores were comparable to that of KWIC reconstruction (3.83±0.38 vs. 3.78±0.39, 

p=0.21). Scores from the two raters had moderate to excellent agreement, depending on 

the imaging and reconstruction techniques.  
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Figure 5-5 Comparison of the three CS reconstruction strategies. From top to bottom, each row 
represents axial MIP images at four time frames reconstructed with MS-CS, iCS, and CS-CS, 
respectively. Severe streaking artifacts and high noise level are clearly visible on the iCS and CS-
CS reconstructions, while the proposed MS-CS reconstruction provides cleaner and sharper images. 
All images were normalized by its maximum intensity and displayed at the same window level. 

Table 5-1 Subjective image quality scores and weighted kappa coefficients 𝜅 for different imaging 
techniques. a, p<0.05 (compared with iCS and CS-CS); b, p<0.05 (compared with iCS and CS-CS). 
No significance was detected between MS-CS and KWIC, and between iCS and CS-CS. 

 MS-CS iCS CS-CS KWIC 

 1 2 3 4 

Image 

Quality 
3.83±0.38a 2.75±0.62 2.83±0.57 3.78±0.39b 

𝜿  0.83 0.92 0.85 0.82 
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Figure 5-6 shows the comparison of KWIC and MS-CS reconstruction, as well as the 

reference Cartesian acquisition. Overall, good to excellent dMRA image quality was 

achieved with both KWIC and MS-CS reconstructions. However, differences were evident 

in the dynamics of blood flow in certain regions between the two reconstructions. KWIC 

reconstruction showed early filling of distal branches of middle cerebral artery (MCA) 

(M3,4) and posterior cerebral artery (PCA) (P3) (yellow arrows) at the first two frames. It 

also had a delayed drainage of middle branches of MCA (M2) and PCA (P1/2) (green 

arrows) at the last two frames. At the corresponding positions mentioned above (red and 

blue arrows), the presence of arteries in MS-CS reconstruction matched well with the 

reference Cartesian acquisition. The average SNR (±standard deviation) and CNR of the 

MS-CS reconstruction of all healthy volunteers were 61.5(± 3.3) and 53.9(± 4.5), 

respectively, 63.2(±5.2) and 56.4(±3.8) for KWIC reconstruction, and those of Cartesian 

were 89.6(±4.6) and 82.3(±5.7).  
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Figure 5-6 MIP images of KWIC reconstruction, MS-CS reconstruciton and Cartesian reference 
acquisition at six frames. Comparable image quality without visible streaking artifacts was obtained 
by KWIC and CS-CS reconstructions. However, the view-sharing in KWIC caused early filling 
(yellow arrows) and late drainge (green arrows) of small vessels at different regions, while the 
proposed method provided improved temporal delineation (red and blue arrows) comparable to 
Cartesian acquisition. 

Figure 5-7 shows comparisons of temporal MIP (tMIP) as well as the wAT maps for 

KWIC and MS-CS reconstructions and Cartesian acquisition from one representative 

volunteer. The tMIP images showed similar spatial information of vascular structures 

across the three techniques. However, the wAT maps exhibited visible differences in 

intermediate to distal MCA (blue arrow) and the entire PCA (green arrow) regions. 

ANOVA tests confirmed this observation with P<0.05 in M2, M3/4, P1/2 and P3 regions, 

but P=0.13 in M1 region. The wAT values for different ROIs and reconstructions, as well 

as the P values for pairwise comparisons are listed in Table 5-2. This result suggests that 

view-sharing in KWIC affects medium- to small-sized vessels (M2, M3/4, P1/2 and P3) 

and large-sized vessels (M1) in different ways. 
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Figure 5-7 tMIP and wAT maps of Cartesian acquisition, KWIC reconstruction and MS-CS 
reconstruction from one volunteer. tMIP confirms minimal image quality difference between the 
three techniques. However, the wAT maps show significant differences in the MCA and PCA 
regions (blue and green arrows) between KWIC and the proposed method, while the proposed 
method generated comparable results with the reference Cartesian acquisition. 

Table 5-2 wAT values for different vessel segments and imaging techniques. Unit of wAT is 
millisecond (ms). a, p<0.05 (compared with Cartesian and MS-CS). (MCA segments: M1, from the 
origin to bifurcation/trifurcation; M2, insular segment, from bi(tri)furcation to circular sulcus of 
insula; M3/4: opercular and cortical segment; M4: cortical segment. PCA segments: P1: from it 
origin at the termination of the basilar artery to posterior communicating artery (PCOM), P2: from 
the PCOM around the mid-brain; P3: quadrigeminal segment; P4: cortical segment.) 

Segments Cartesian KWIC MS-CS 

 1 2 3 

M1 1056.3 1048.2 1051.5 

M2 977.7 1039.2a 978.2 

M3/4 1095.6 1135.6a 1089.7 

P1/2 1100.1 1180.2a 1097.5 

P3 1138.3 1202.9a 1136.1 
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Figure 5-8 demonstrates NCE-dMRA acquired on an AVF patient with the proposed 

MS-CS and KWIC reconstructions, respectively. TOF and DSA images are also displayed 

as a reference. A left dural AVF was detected, where blood flows directly from the feeding 

artery (anterior branch of middle meningeal artery) into the transverse sinus bypassing the 

capillaries at a high flow velocity. MS-CS sequentially showed feeding artery (red arrow), 

fistula site (green arrow) and drainage into sinus (blue arrow), while such temporal 

information was lost in KWIC images and all the lesion components are displayed 

simultaneously. The signal intensity curves derived at three regions of interest (ROIs), 

shown in Figure 5-9 also support this observation: KWIC reconstruction generated wider 

curves at two ROIs with fast flow, while at the other ROI with relative slow flow, shape 

and peak position of the signal intensity curves from KWIC and MS-CS were similar. 

 

Figure 5-8 a). Example NCE-dMRA images of a AVF patient. From top to bottom, each row 
represents five frames of dynamic images reconstructed with KWIC and MS-CS, respectively. 
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Images from MS-CS reconstruction sequentially display feeding artery (red arrow), fistula site 
(green arrow) and drainage into sinus (blue arrow). Such dynamic information is not as obvious in 
the KWIC reconstruction. b,c). Reference TOF and DSA images. 

 

 

Figure 5-9 Intensities of signal at three ROIs, shown in the upper left sub-figure, are plotted against 
time for the KWIC and MS-CS reconstructions. For ROIs 1 and 2, which contain vessels with fast 
flow, view-sharing of KWIC reconstruction causes early filling and late drainage. For ROI 3 that 
contains the main branch with relative slow flow, both reconstructions have similar signal intensity 
curves. 

Since our radial acquisition took only half of the scan time of Cartesian acquisition, it 

allowed doubling of the spatial coverage within the same scan time. Figure 5-10 displays 

five frames of a 64-slice 3D SOS acquisition with 1x1x1mm3 isotropic resolution, which 

enabled high quality MIP images in sagittal, coronal, and axial views. The detailed vascular 

structure is also displayed as a reference by TOF. One can appreciate the cleaner dynamic 

information provided by the high-quality MS-CS reconstruction compared with KWIC 

reconstruction. 
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Figure 5-10 Example images of a 64 slices golden-angle SOS acquisition reconstructed with KWIC 
(a) and the proposed MS-CS method (b) in sagittal, coronal and axial views. Static TOF image is 
shown as an anatomical reference. The 1x1x1mm3 isotropic resolution allows high quality MIP 
images in all three views to be reconstructed with KWIC and MS-CS methods. However, temporal 
smoothing of distal arteries can also be observed in all three planes in KWIC reconstruction, while 
the proposed method showed reduced temporal blurring and improved delineation of signal 
evolution in small arteries. 

5.4 Discussion 

Our work demonstrates the feasibility of applying MS-CS to accelerate NCE-dMRA 

with golden-angle stack-of-stars trajectory. Compared with the previous Cartesian 

acquisition, SOS NCE-dMRA was already shown to achieve a shorter scan time. By taking 

advantage of the magnitude subtraction sparsity of control and label images, the MS-CS 

method allows high spatial (~1mm3) and temporal (~100ms) resolution NCE-dMRA 

within a short scan time (~3min). We further demonstrated the MS-CS reconstruction is 

superior to both iCS and CS-CS strategies in NCE-dMRA. Comparison with the previously 

proposed KWIC method was also performed. Our results suggest MS-CS is capable of 
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providing high temporal resolution images by reducing the number of radial spokes for 

each temporal frame without using view-sharing.  

Compared to the conventional iCS reconstruction, where the control and label images 

are reconstructed independently before subtraction, the proposed method reconstructs both 

images in a joint optimization. Since the final dMRA image is generated by the subtraction 

between control and label acquisitions in ASL based MRA, the incorporation of magnitude 

subtraction in image reconstruction will highlight the labeled blood signal and effectively 

suppress the background signal including artifacts. On the other hand, from an algorithm 

perspective, the use of such an additional regularizer can further reduce the solution space 

and allow a higher likelihood to converge to an optimal solution (i.e. clean and sharp 

image). As another choice, complex subtraction in k-space between control and label 

acquisitions can be used to enhance the subtraction sparsity. However, we have shown in 

our work that this CS-CS method is inferior to the proposed MS-CS method for NCE-

dMRA, due to the following two reasons: 1). Direct complex subtraction imposes signal to 

noise ratio (SNR) penalty and causes noise amplification; 2). MRA is based on the blood 

magnitude enhancement but complex subtraction partly depends on phase variation, and 

therefore, is sensitive to phase errors that come from system imperfection induced gradient 

delay, off-resonance effects raised from field inhomogeneity, as well as subtle motion 

between label and control acquisitions. Compared with the conventional Cartesian 

trajectory, the use of radial trajectory in our study also increases the sensitivity of data 

acquisition to these phase errors.  

A previous study has successfully implemented KWIC reconstruction in NCE-dMRA 

with golden angle radial acquisition (97). With k-space view-sharing of adjacent temporal 
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frames, reconstructed image series have both high spatial and apparent temporal resolution. 

As demonstrated in this work, both proposed MS-CS method and KWIC showed good 

image quality without apparent streaking artifacts. However, view-sharing in KWIC can 

potentially lead to temporal smoothing of underlying flow dynamics at certain locations, 

such as vessels with fast flow. This would be a limiting factor in certain clinical 

applications. For instance, it will be difficult to capture the flow dynamics in feeding 

arteries with fast flow or distinguish between feeding arteries and cortical venous reflux 

needed for Borden classification (109) in arteriovenous fistula (AVF). As illustrated in the 

AVF case (Figure 5-8 and 5-9), in which abnormally fast flow appears in a small-size 

fistula site, KWIC failed to capture the full passage of blood flow from the feeding artery 

into the fistula and vein. This is due to the fact that small structures are mainly represented 

by high spatial frequencies in k-space, which are heavily shared between neighboring 

frames in KWIC reconstruction. On the contrary, the proposed MS-CS requires no view-

sharing, and therefore preserves the temporal information.  

In terms of SNR and CNR measurements, the proposed MS-CS approach has a similar 

performance compared with KWIC reconstruction. However, both radial-based 

reconstructions had significantly lower SNR and CNR compared with Cartesian 

acquisition. This matches our previous result (97). Aside from the reason mentioned in (97), 

which ascribed the difference to a k-space apodizing filter along the slice encoding 

direction for Cartesian online reconstruction, it is also well-known that radial acquisition 

has intrinsically low SNR efficiency compared with Cartesian acquisition (110). 

Considering that the acquisition time for the 3D SOS radial sequence is only half of that of 

the 3D Cartesian sequence, such difference is expected. Another thing to notice is that since 



85 
 

CS reconstruction is always an iterative nonlinear process, artificially high SNR and CNR 

can be created by manipulating regularization parameters. Therefore, care should be taken 

for the interpretation and evaluation of the SNR and CNR measured from MS-CS approach. 

In the proposed reconstruction algorithm, the widely-used Wavelet regularization and 

application-tailored magnitude subtraction regularization are incorporated (45). We note 

that an inappropriate use of wavelets could lead to blurring of fine structures, due to the 

suppression of high frequency component in wavelets domain during the denoising (i.e. 

soft-thresholding) process. On the other hand, the magnitude subtraction regularization 

does not specifically penalize the high frequency component, since denoising is carried out 

in image domain and only signals with low amplitude are removed. To balance the two 

terms and prevent over-smoothing or insufficient artifact removal, we carefully tuned the 

associated regularization parameters. We found that both regularization terms contribute 

to final high quality images, although the majority of regularization comes from the 

proposed magnitude subtraction term whereas the wavelet term offered incremental 

improvement in image quality. We also note that our acquisition uses high under-sampling 

factor and has limited SNR. Under such circumstance, parallel imaging (PI) alone cannot 

guarantee to recover high quality image due to the ill-condition of the inverse problem in 

PI (3,4). Therefore, we included additional regularization terms in our optimization 

problem, although this came at a price of much longer reconstruction time and higher 

computation burden due to the iterative reconstruction. 

 Magnitude subtraction was originally introduced in the reconstruction of under-

sampled CE-dMRA data sets (45). To apply it on SNR-limited ASL based NCE-dMRA, 

several optimizations were performed to compensate for the SNR difference. First, parallel 
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imaging was incorporated in the image reconstruction to utilize the dense coil arrays, e.g. 

20 channels were used in this study. Second, a non-Cartesian radial trajectory was chosen 

to maximize the incoherence of artifacts when k-space is highly under-sampled. The 

intrinsic variable density sampling feature of radial-sampling also benefits the performance 

of CS algorithms. Third, the regularization parameters were carefully tuned using several 

NCE-dMRA data sets in a pilot optimization study. They are drastically different than the 

ones used in (45), reflecting the signal level difference between these two studies.    

 In order to further improve temporal resolution, aside from investigating various 

advanced reconstruction strategies that allows further reduction of the number of spokes 

used per phase, an alternative solution is to sample the 3D k-space more efficiently with 

the SOS acquisition. In the current implementation, the angle of radial spokes does not 

vary in the partition direction. Several previously proposed methods such as SOS-

CAIPIRINHA (111) and rotated stack-of-stacks (9) vary the angles of the radial spokes in 

the partition direction and demonstrated improved result. By varying the angle distribution 

along the partition direction and combining the proposed MS-CS reconstruction, it is 

possible to further push temporal resolution without sacrificing spatial resolution.   

 Balanced SSFP (bSSFP) has been successfully used for 4D NCE-dMRA data 

acquisition by providing high SNR and imaging efficiency. However, it is intrinsically 

prone to off-resonance artifacts especially near sinuses. To minimize the off-resonance 

artifacts, a pre-saturation pulse was applied before the image acquisition to suppress the 

background tissue signal as well as the off-resonance induced artifacts. Furthermore, the 

ASL-based dMRA technique benefits from the subtraction between control and label 

images, which can effectively remove the off-resonance artifacts in subtracted dMRA 
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images. Meanwhile, a tilted axial acquisition slab was carefully placed to avoid covering 

most of the sinuses, which further reduced the off-resonance artifacts. Therefore, the off-

resonance artifact was not an issue in the current study.  

 Our study has limitations. First, our main goal was to demonstrate the feasibility of 

applying CS on ASL and evaluate its effect on reducing view-sharing, we did not perform 

any SNR and CNR analysis and comparison. This is particularly important for calculating 

hemodynamic parameters such as cerebral blood flow (CBF), and cerebral blood volume 

(CBV). A systematic evaluation needs to be developed in the future. Second, the proposed 

method was only evaluated on limited number of patients. Future evaluation of the clinical 

utility of NCE-dMRA with MS-CS reconstruction in a large cohort of patients is warranted. 

In addition, developing an online reconstruction pipeline (8) assembled with faster imaging 

reconstruction is needed to facilitate its clinical utility. 

5.5 Conclusion 

In conclusion, by taking advantage of magnitude-subtraction sparsity of the ASL based 

MRA, a CS algorithm has been successfully implemented and evaluated in golden-angle 

stack-of-stars NCE-dMRA. Better image quality was achieved using the proposed MS-CS 

than the conventional iCS and CS-CS methods. Compared to the previous KWIC method, 

the proposed MS-CS strategy allows more accurate temporal depiction of cerebral flow 

patterns without view-sharing, which may become a useful approach in clinical 

applications. 
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Chapter 6 Improved Volumetric MRI using Radial 

Trajectory 

In Chapter 5, we utilized the 3D stack-of-stars trajectory to improve the incoherence 

of artifacts when 3D k-space is heavily under-sampled. However, the capacity of 

generating incoherent sampling with conventional 3D stack-of-star trajectory is not fully 

exploited. In this chapter, we introduce a modified stack-of-star trajectory that provides 

reduced streaking artifacts and improved image quality for general 3D volumetric imaging. 

It is analyzed from theoretical point of view and demonstrated on three different 

applications to shows the efficacy. 

6.1  Introduction 

Radial sampling is a widely used k-space sampling trajectory for fast MRI. It offers 

several advantages compared with Cartesian k-space sampling, including improved 

robustness in the presence of motion (14) due to continuous update of the k-space center, 

and its suitability for high under-sampling factors due to its relatively benign under-

sampling artifacts (112). The disadvantages of radial sampling include decreased SNR 

efficiency (110), increased sensitivity to system imperfection and trajectory errors (113–

115), and more complex image reconstruction (116). Radial sampling has been used in 

many MRI applications, such as MR angiography (112,117), cardiac imaging (118), phase-

contrast imaging (119) and abdominal imaging (120). To acquire 3D k-space data using 

radial sampling, two acquisition strategies are commonly available: 3D stack-of-stars (SOS) 

(112) and 3D radial (Koosh-Ball) (117,118). 



89 
 

In conventional 3D SOS acquisition strategies (102,112,121), the azimuthal angle of 

the radial spokes does not vary in the partition (i.e. 3D Cartesian phase encoding) direction 

such that if a radial spoke with angle 𝜃 is sampled in one partition, it is also sampled in all 

the other partitions. Recently, Chen L et al. (122) and Wech T et al. (123) proposed to 

rotate the radial spokes along the partition (slice) direction, but both did not provide 

sufficient implementation details on how the radial spokes were rotated. Other approaches 

such as SOS-CAIPIRINHA (111) and rotated stack-of-spirals (124) vary the angle of the 

radial spokes or spiral interleaves in a linear fashion in the partition direction; however, we 

show in this report that such a strategy is sub-optimal. We propose a rotated SOS (RSOS) 

sampling method in which radial spokes are rotated in a golden-ratio (94) fashion in the 

partition encoding direction, i.e. RSOS-GR. We show that our RSOS-GR strategy creates 

varying aliasing patterns along the partition direction, and such a varying aliasing pattern 

improves the condition of the inverse problem in a parallel imaging reconstruction and 

improves the incoherence of the sampling function in a compressed sensing reconstruction. 

We compare the conventional aligned SOS (ASOS), RSOS with a linear rotation in the 

partition direction (RSOS-Linear), and the proposed RSOS-GR using computer simulation, 

phantom and in vivo studies.   

6.2 Methods 

For the sake of simplicity and clarity, we only consider two common cases of in-

plane view order in radial sampling: linear and golden angle (94), as our work mainly 

pertains to the angle variations in the partition direction. It is straightforward to generalize 

the proposed RSOS approach to more sophisticated in-plane radial sampling strategies such 
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as tiny golden angle radial sampling (125) and segmented golden angle radial sampling 

(126). 

In this study, five different sampling strategies were studied: 1) conventional 

ASOS where all the partitions have the same radial spoke angles; 2) RSOS(Lin)-Linear 

where the angle arrangement is linear both in-plane and across the partitions; 3)  RSOS(Lin)-

GR, which is the proposed GR rotation in the partition direction applied to linear in-plane 

radial angles; 4) RSOS(GR)-Linear, which includes GR in-plane radial spokes and linear 

rotation in the partition direction; 5) RSOS(GR)-GR, which includes GR in-plane radial and 

the proposed GR rotation in the partition direction. An example of the radial spoke angle 

arrangement for all five strategies is shown in Figure 6-1. For in-plane linear view order, 

the angle 𝜃| of the 𝑖;f spoke out of total 𝑁w spokes is calculated as: 𝜃|¸ =
Y
�¹
∗ 𝑖 − 1 , 𝑖 =

1, 2, … , 𝑁w. For in-plane GR view order, the angle 𝜃| of the 𝑖;f spoke out of total 𝑁w spokes 

is calculated as: 𝜃|º = 𝑚𝑜𝑑 (𝑖 − 1) ∗ 𝜋 ∗ ¼>H
I
, 𝜋 , 𝑖 = 1, 2, … , 𝑁w. In the proposed GR 

rotation in the partition direction, non-zero azimuthal angle offsets that change across the 

partitions are introduced as follows: 

𝜑º 𝑗 = 𝑚𝑜𝑑 (𝑗 − 1) ∗ Y
�¹
∗ ¼>H

I
, Y
�¹

, 𝑗 = 	1,2, … , 𝑁v¿       (6-1) 

where 𝑁v¿  is the total number of partitions and 𝑗 is the partition index. For the linear 

rotation in the partition direction, which is used in RSOS(Lin)-Linear and RSOS(GR)-Linear 

strategies, the azimuthal angle offsets are: 𝜑¸ 𝑗 = À>H
�ÁÂ

∗ Y
�¹
, 𝑗 = 1,2, … , 𝑁v¿. Based on the 

above definitions, the angle for the 𝑖;f radial spoke in the 𝑗;f partition will be 𝜃|¸ for ASOS, 

𝜃|¸ + 𝜑¸ 𝑗  for RSOS(Lin)-Linear, 𝜃|¸ + 𝜑º� 𝑗  for RSOS(Lin)-GR, 𝜃|º + 𝜑¸ 𝑗  for 
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RSOS(GR)-Linear, and 𝜃|º + 𝜑º 𝑗  for RSOS(GR)-GR. To reduce eddy currents and the 

resultant phase errors, spokes with the same in-plane index 𝑖 (as defined above) in all 

partitions were acquired first before acquiring the next subset of spokes with index 𝑖 + 1. 

 

Figure 6-1 An example of the spoke angle arrangement using ASOS (a), RSOS(Lin)-Linear (b), 
RSOS(Lin)-GR (c), RSOS(GR)-Linear (d), and RSOS(GR)-GR (e). In this example, each partition has 
four spokes, and a total of four partitions. The calculated spoke angles are shown at the bottom of 
each sub-figure. 

6.2.1 Computer Simulation 

The point spread functions (PSF) of the conventional ASOS, RSOS(Lin)-Linear, 

RSOS(Lin)-GR, RSOS(GR)-Linear and RSOS(GR)-GR were first compared using simulations. 

The PSF for each of the five radial k-space trajectories was calculated following three steps: 
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1) Each sampled point was set to unit value; 2) The resultant k-space data were 

subsequently interpolated onto a Cartesian grid using a 3D Kaiser-Bessel kernel (107) in 

conjunction with appropriate density compensation derived from the Ram-Lak method; 3) 

The PSF was obtained as the Fourier transform of the gridded Cartesian k-space data. The 

k-space trajectory consisted of full spokes with base resolution of 256, partition number 

𝑁v¿ = 36 and was gridded onto a matrix size of 256x256x36. Spoke angles on each 

partition were calculated according to the aforementioned five strategies. The PSF 

calculation was performed for data sets with 20 to 100 radial spokes per partition in 

increments of 5 spokes to evaluate the effect of number of spokes on k-space sampling. 

The ratio of the main lobe magnitude of the PSF to the standard deviation of the PSF side-

lobes magnitude (5) was calculated as a measure of the incoherence of the 3D PSF, which 

has been shown to affect the image reconstruction quality using compressed sensing 

algorithms (5,102). In cases where only gridding is used in the image reconstruction, the 

ratio of the main lobe energy to the sum of energy of side-lobes was calculated as an 

alternative incoherence measure of the PSF. 

6.2.2 Phantom Experiment 

To evaluate the performance of the proposed RSOS(Lin/GR)-GR sampling strategy and 

compare it with ASOS and RSOS(Lin/GR)-Linear, a 3D spoiled gradient recalled echo (GRE) 

sequence was modified to implement the five acquisition strategies. Phantom imaging and 

all in vivo studies in this work were performed on a 3.0T MRI scanner (Prisma, Siemens 

Medical Solutions, Erlangen, Germany). Relevant imaging parameters are listed in Table 

S1 in the online supporting materials. A fully-sampled reference data (400 spokes per 

partition, ASOS) and fifteen additional prospectively under-sampled data sets (20 spokes, 
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40 spokes, and 80 spokes per partition, using the aforementioned five strategies) were 

acquired. All acquired data were reconstructed with 3D gridding reconstruction as 

mentioned in the “Computer Simulation” section.  

6.2.3 In-vivo Experiment 

The five strategies were tested in three different applications: brain imaging, 

abdominal imaging, and dynamic MR angiography (dMRA) using arterial spin labeling 

(ASL) (97). The sequence used in brain imaging and abdominal imaging was identical to 

the one used in the phantom study, while the sequence used in dMRA-ASL imaging was 

modified based on a balanced steady-state free precession (bSSFP) sequence.  

Brain imaging was performed on one healthy volunteer in axial orientation with a 20-

channel head coil. Relevant imaging parameters are listed in Table 6-1. A fully sampled 

data and ten prospectively under-sampled data sets (40 spokes and 80 spokes per partition, 

using aforementioned the five strategies) were acquired. The five under-sampled data sets 

with higher under-sampling factor were acquired with 40 spokes instead of 20, due to the 

increased complexity of in-vivo structures compared with static phantom.  

Abdominal imaging was performed on the same volunteer with a 12-channel body 

coil. Relevant imaging parameters are listed in Table 6-1. Five data sets with 40 spokes per 

partition using the aforementioned five strategies were acquired with a total scan time of 

18s each during breath-holds. 

DMRA-ASL imaging was performed on another healthy volunteer with a 20-channel 

head coil. Relevant imaging parameters are listed in Table 6-1. Due to the improved 

performance of RSOS(Lin/GR)-GR over RSOS(Lin/GR)-Linear and comparable performance 

between RSOS(Lin)-GR and RSOS(GR)-GR on previous experiments (shown in Result 
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section), only two data sets were acquired using ASOS and RSOS(Lin)-GR with 20 spokes 

per partition per temporal phase, with a total of 10 phases.   

Table 6-1 Imaging parameters in different applications. *: In radial sampling, the fully sampled 
Nyquist rate is: base resolution*pi/2. Acceleration factor here is therefore calculated as: acquired 
spoke number/radial Nyquist rate. 

 Phantom Study Brain Imaging Abd. Imaging ASL Imaging 

Base Resolution 256 256 192 256 

Partitions 64 32 56 32 

Slice Thickness 1 1 2.5 1.5 

FOV (mm2) 250x250 250x250 300x300 256x256 

TR/TE (ms) 3.41/1.82 3.41/1.82 3.52/1.51 4.7/2.35 

FA (Degree) 12 12 12 25 

Temporal Resolution - - - 94 

 

For the brain imaging and abdominal imaging experiments, acquired data sets were 

reconstructed with 3D gridding. To demonstrate the efficacy of RSOS in advanced image 

reconstruction methods, especially its advantage in SNR-limited application, acquired data 

sets in the dMRA-ASL imaging experiment were reconstructed with 3D gridding and a 

parallel imaging-compressed sensing (PI-CS) combined reconstruction method (8): 

𝑑 = arg	min | ℱ𝑆|𝑑 − 𝑚| |II + 𝜆||𝑅𝑑||H�
|�H                (6-2) 

where ℱ is the non-uniform fast Fourier transform operator (NUFFT); 𝑆| are the sensitivity 

maps estimated from the a fully-sampled pre-scan data using ESPIRiT method (50);	𝑑 is 

the image to be reconstructed; 𝑚| is the acquired under-sampled k-space data from each of 

the 𝑁 receiver coil elements; 𝑅 is spatial wavelets transform; and 𝜆 is the corresponding 

regularization parameter.   
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All reconstructions (gridding and PI-CS) were performed offline using a previously 

described tool (Berkeley Advanced Reconstruction Toolbox, BART) (51) on a Linux PC 

(4 Core/4GHz, 32 GB Memory, Nvidia GTX 760). For all the scans (phantom and in-vivo 

experiments), 40 initial calibration spokes along the x and y directions (0o, 180o, 90o, 270o, 

10 spokes per angle) were additionally acquired and used in the image reconstruction to 

correct for system-dependent gradient-delay errors, as described in (115). 

6.2.4 Data Analysis 

For the phantom and brain imaging experiments, to compare different sampling 

strategies and different under-sampling situations quantitatively, both normalized root 

mean square errors (nRMSE) and structural similarity index (SSIM) were calculated 

between each slice of the reference images and images reconstructed from the under-

sampled data acquired with the five strategies. The calculated nRMSE and SSIM were 

averaged across all slices. Whereas reduction in nRMSE indicates greater fidelity to the 

original image, perfect identicality is represented by a SSIM value of 1 and the SSIM value 

decreases as the images differ. 

6.3 Results 

6.3.1 Computer Simulation 

Figure 6-2a shows the simulated PSFs in transversal (x-y plane) and coronal views (x-

z plane) of fully-sampled and the under-sampled ASOS, RSOS(Lin)-Linear, RSOS(Lin)-GR, 

RSOS(GR)-Linear and RSOS(GR)-GR acquisitions with 20 and 80 spokes per partition. All 

PSFs were normalized to the peak of each individual PSF with peak amplitude set to 1. In 

the transversal view, there was significant PSF sidelobe energy for ASOS, but not for the 
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rest four strategies when 20 radial spokes are sampled. In the coronal view, there was 

significant energy in the PSF sidelobe for ASOS and RSOS(Lin/GR)-Linear with 20 spokes, 

and these sidelobes were greatly reduced in the RSOS(Lin/GR)-GR. In both transversal and 

coronal views, the PSFs corresponding to 80 radial spokes were similar among the five 

sampling methods and they were all similar to the full sampled PSF. Figure 6-2b and 6-2c 

shows the quantitative comparison of the five strategies in terms of incoherence 

measurement from PSF. The incoherence values (for both gridding and for compressed 

sensing reconstructions) for the RSOS(Lin/GR)-GR strategies were superior (higher) to the 

ASOS and the RSOS(Lin/GR)-Linear strategies regardless of the number of radial spokes per 

partition. This result confirms the superiority of the proposed GR rotation in the partition 

direction when compared to conventional aligned strategy or linear rotation, regardless of 

the in-plane radial angle arrangement. 

 

Figure 6-2  (a) The PSF of fully-sampled and ASOS, RSOS(Lin)-Linear, RSOS(Lin)-GR, RSOS(GR)-
Linear and RSOS(GR)-GR k-space sampling with 20 spokes and 80 spokes per partition in 
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transversal and coronal views. All PSFs were normalized to the peak of each individual PSF such 
that all PSF peaks have unit amplitude. The individual normalization factors are noted at each peak 
in the transversal view. The PSFs are for the central slice of the volume in the respective view 
orientations. ASOS produces strong streaking artifact at when only 20 spokes are sampled per 
partition and there are essentially no significant difference between the five strategies when 80 
spokes are sampled. For the 20 spokes per partition scenario, RSOS(Lin/GR)-GR has reduce energy 
in the PSF sidelobes compared to ASOS and RSOS(Lin/GR)-Linear in the coronal view. (b,c) The 
calculated incoherence indices for gridding reconstruction (b) and for CS-based reconstructions (c). 
RSOS(Lin/GR)-GR has superior PSF incoherence compared with ASOS and RSOS(Lin/GR)-Linear. 

6.3.2 Phantom Experiment 

Figure 6-3 shows two representative partitions of phantom images based on the five 

sampling strategies, as well as the fully sampled reference. With 20 spokes per partition, 

severe streaking artifacts (white arrows) and blurring of edge structures (blue arrows) were 

evident on the images acquired with ASOS and RSOS(Lin/GR)-Linear; the image acquired 

with RSOS(Lin/GR)-GR had much reduced artifacts and improved edge delineation. For 40 

spokes per partition, streaking artifacts and blurring (yellow arrows) were reduced but were 

still significant in the ASOS and RSOS(Lin/GR)-Linear images and the RSOS(Lin/GR)-GR 

image were very similar to the fully sampled reference. With 80 views per partition, all 

five strategies provided high quality images. Table 6-2 in the online supporting materials 

shows the comparative results of the nRMSE and SSIM between the five sampling 

strategies and the three under-sampling factors. With 20 spokes per partition, the nRMSE 

and SSIM were 0.788/0.412 for ASOS, 0.702/0.501 for RSOS(Lin)-Linear, 0.538/0.633 for 

RSOS(Lin)-GR, 0.711/0.494 for RSOS(GR)-Linear and 0.541/0.628 for RSOS(GR)-GR. 

Overall, the nRMSE and SSIM for RSOS(Lin/GR)-GR were both better than RSOS(Lin/GR)-

Linear or ASOS for all the under-sampling factors compared, while RSOS(Lin)-GR and 

RSOS(GR)-GR had similar performance (also true for RSOS(Lin)-Linear and RSOS(GR)-

Linear). 
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Table 6-2 Qualitative comparisons of the five sampling strategies and the three under-
sampling factors in the phantom imaging experiment. nRMSE: normalized root mean square error; 
SSIM: structural similarity index 

 nRMSE SSIM 

ASOS: 20 spokes 0.788 0.412 

RSOS(Lin)-Linear:20 spokes 0.702 0.501 

RSOS(Lin)-GR: 20 spokes 0.538 0.633 

RSOS(GR)-Linear:20 spokes 0.711 0.494 

RSOS(GR)-GR: 20 spokes 0.541 0.628 

ASOS: 40 spokes 0.391 0.728 

RSOS(Lin)-Linear:40 spokes 0.352 0.792 

RSOS(Lin)-GR: 40 spokes 0.298 0.835 

RSOS(GR)-Linear:40 spokes 0.346 0.781 

RSOS(GR)-GR: 40 spokes 0.291 0.833 

ASOS: 80 spokes 0.181 0.938 

RSOS(Lin)-Linear:80 spokes 0.173 0.943 

RSOS(Lin)-GR: 80 spokes 0.162 0.951 

RSOS(GR)-Linear:80 spokes 0.169 0.948 

RSOS(GR)-GR: 80 spokes 0.161 0.957 

 



99 
 

 

Figure 6-3 Phantom images acquired with different sampling strategies and with 20, 40 and 80 
spokes per partition. From left to right, each column in (a), (b) and (c) shows two representative 
axial slices from the 3D images acquired with: fully-sampled, ASOS, RSOS(Lin)-Linear, RSOS(Lin)-
GR, RSOS(GR)-Linear, and RSOS(GR)-GR, respectively. Three under-sampling scenarios are shown: 
20 spokes (a), 40 spokes (b) and 80 spokes per partition (c). Streaking artifacts (white arrows) and 
blurring of edges (blue arrows) are clearly visible on ASOS and RSOS(Lin/GR)-Linear acquisitions 
when 20 spokes/partition was used. By doubling the spoke number (e.g. 40 spokes), residual 
streaking and blurring (yellow arrows) still exist. 

6.3.3 In-vivo Experiment 

Figure 6-4 shows representative brain images acquired using the five sampling 

strategies. Similar to phantom experiment, the level of streaking artifacts (white arrows) 
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and blurring of fine structures (zoom-in boxes) were greater when using ASOS or 

RSOS(Lin/GR)-Linear, especially at higher under-sampling factors (Figure 6-4a); in 

comparison, images acquired with RSOS(Lin/GR)-GR had reduced artifacts and improved 

delineation of small features. Difference between the three strategies diminished as the 

number of spokes per partition increased from 40 to 80 (Figure 6-4b). As shown in Table 

6-3 in the online support materials, the nRMSE and SSIM for RSOS(Lin/GR)-GR of in vivo 

brain imaging data were better than RSOS(Lin/GR)-Linear and ASOS, similar to our phantom 

results. With 40 spokes per partition, the nRMSE and SSIM were 0.521/0.632 for ASOS, 

0.494/0.663 for RSOS(Lin)-Linear , 0.352/0.704 for RSOS(Lin)-GR, 0.502/0.655 for 

RSOS(GR)-Linear and 0.361/0.695 for RSOS(GR)-GR. 

 

Figure 6-4 Selected brain images acquired with different sampling strategies and number of spokes 
per partition. Each column in (a) and (b) shows two representative axial slices from the 3D images 
acquired with: fully-sampled, ASOS, RSOS(Lin)-Linear, RSOS(Lin)-GR, RSOS(GR)-Linear, and 
RSOS(GR)-GR, respectively. Two under-sampling scenarios are shown: 40 spokes per partition (a) 
and 80 spokes per partition (b). Zoom-in boxes provide detailed comparisons of the five acquisition 
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strategies on fine structures. White arrows highlight the streaking artifact on ASOS and 
RSOS(Lin/GR)-Linear acquisitions. 

Table 6-3 Qualitative comparisons of the five sampling strategies and the two under-sampling 
factors in the brain imaging experiment. nRMSE: normalized root mean square error; SSIM: 
structural similarity index 

 nRMSE SSIM 

ASOS: 40 spokes 0.521 0.632 

RSOS(Lin)-Linear:40 spokes 0.494 0.663 

RSOS(Lin)-GR: 40 spokes 0.352 0.704 

RSOS(GR)-Linear:40 spokes 0.502 0.655 

RSOS(GR)-GR: 40 spokes 0.361 0.695 

ASOS: 80 spokes 0.223 0.796 

RSOS(Lin)-Linear:80 spokes 0.205 0.812 

RSOS(Lin)-GR: 80 spokes 0.191 0.837 

RSOS(GR)-Linear:80 spokes 0.197 0.821 

RSOS(GR)-GR: 80 spokes 0.188 0.842 

 

Figure 6-5a shows two partitions of reconstructed abdominal images acquired with the 

five sampling strategies. On both partitions, streaking artifact in the body organs and 

outside of the body (yellow arrows) and blurring of edges (orange arrows) can be seen on 

the image with ASOS and RSOS(Lin/GR)-Linear acquisitions. With RSOS(Lin/GR)-GR, the 

streaking artifacts were greatly reduced and the edges appeared sharper. Figure 5b shows 

the dMRA-ASL maximum-intensity projection (MIP) images reconstructed with 3D 

gridding and PI-CS methods at two phases using ASOS and RSOS(Lin)-GR. Distinct 

differences can be appreciated between the two acquisition strategies on gridding 

reconstruction, where strong streaking artifacts appear on the image with ASOS 

acquisition, but are mostly reduced in the RSOS(Lin)-GR acquisition. With a PI-CS 
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reconstruction, residual streaking artifacts (blue arrows) can still be clearly seen. On the 

contrary, RSOS(Lin)-GR with PI-CS provided much improved image quality. The example 

in Figure 6-5b shows the benefit of RSOS(Lin)-GR in SNR-limited applications such as 

ASL. 

 

Figure 6-5 (a) Two representative slices of abdominal images acquired with ASOS, RSOS(Lin)-
Linear, RSOS(Lin)-GR, RSOS(GR)-Linear, and RSOS(GR)-GR. RSOS(Lin/GR)-GR provides images with 
less streaking artifacts and sharper structures. (b) MIP images at two phases of dMRA-ASL images 
acquired with ASOS and RSOS(Lin)-GR. Even with only 20 spokes per partition per phase, 
RSOS(Lin)-GR is still able to reduce majority of streaking artifacts compared with ASOS using 3D 
gridding reconstruction. With a PI-CS reconstruction, overall image quality was improved for both 
acquisitions. However, blurring of vessels and residual streaking artifacts can still be seen on 



103 
 

images with ASOS acquisition while RSOS(Lin)-GR acquisition provides cleaner and sharper 
images. 

6.4 Discussion 

This work presented a golden ratio rotated stack-of-stars sampling strategy for 

improved 3D (or dynamic 3D) imaging. Our results show that, by rotating radial spokes 

along the through-plane direction in a golden-ratio manner, streaking artifacts arising from 

under-sampling are less structured and much reduced compared with the conventional 

aligned acquisition strategy or the rotated stack-of-stars with a linear angle rotation in the 

partition direction. Compared with the previously proposed linear rotation strategy 

(111,124), rotation in a golden-angle manner along the partition encoding direction 

provides more uniform local 3D k-space sampling. Since 3D gridding is a local operation 

that uses a support-limited kernel to interpolate the sampled data points onto a Cartesian 

grid, more locally uniform 3D k-space sampling leads to better gridding reconstruction 

results. Our results further show that our GR rotation approach provides improved image 

reconstruction regardless of the in-plane radial view order of either linear or golden angle. 

Another choice for radial sampling of the 3D k-space is 3D Koosh-Ball (117,118), which 

offers variable density sampling in 3D. However, for imaging applications that have non-

isotropic FOV, such as abdominal and thoracic imaging, 3D Koosh-Ball is less commonly 

used since it typically requires similar FOV in all three orthogonal directions.   

A drawback of the proposed method is its reconstruction speed and computation 

demand. Instead of performing highly parallelizable partition-by-partition 2D 

reconstructions after an initial Fourier transform along the partition encoding direction, a 

strategy widely used in ASOS acquisition to reduce computation demand and improve 

reconstruction speed, RSOS requires 3D volumetric reconstruction to better take advantage 
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of the incoherent 3D k-sampling provided by spoke rotation in the through-plane direction. 

Such a 3D whole-volume reconstruction is computationally more expensive since 3D 

interpolation (gridding) needs to be performed rather than 2D gridding, which reduces 

reconstruction speed. However, significant gains in reconstruction speed may be obtained 

by using dedicated reconstruction libraries (51,127,128) for CPU/GPU. For example, it 

only takes 15s to reconstruct a 256*20*64*32 (readout points*spoke number*partition 

number*coil number) RSOS dataset with 3D gridding (5s to reconstruct a same size ASOS 

dataset with partition-by-partition 2D gridding) using BART. 

In most of our imaging experiments, we only performed 3D gridding reconstruction 

on the highly under-sampled data. One will notice that even for RSOS-GR, reconstructed 

images still suffer from some residual streaking artifacts and noise amplification. With a 

PI-CS reconstruction, image quality would be greatly improved. For the parallel imaging 

part, there are several ways to acquire sensitivity maps without acquiring fully-sampled 

data if SENSE-type reconstruction is desired. One solution is using pre-scan that acquires 

a few additional calibration lines (102) that can not only be used to estimate sensitivity 

maps but also to correct system-dependent gradient-delays errors. Another solution is to 

use optimization-based strategies (129) to recover center region of k-space if k-space is 

highly under-sampled. Recovered center region can then be used to estimate maps. If 

GRAPPA-type instead of SENSE-type reconstruction is desired, self-calibration strategies 

such as GROG (130), SPIRiT (131) can be used to directly fill out the missing k-space 

points. For the compressed sensing part, different types of regularizations (72,102) can be 

applied to further remove artifacts and recover details. Since radial sampling provide 

intrinsic variable density sampling and incoherent artifacts when under-sampled, the 
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incorporation of additional regularizations/sparsifying transforms can potentially benefit 

the image reconstruction.  

6.5 Conclusion 

We have presented a golden ratio rotated stack-of-stars sampling strategy to 

efficiently sample 3D k-space. Image quality is significantly improved in phantom and in-

vivo experiments comparing with the conventional aligned sampling strategy or stack-of-

stars with linear angle rotation. This strategy is useful for 3D stack-of-stars radial imaging 

for various clinical applications. 

  



106 
 

Chapter 7 Low-Latency Fast Real-Time Imaging 

In the previous four chapters, we introduced different optimization based 

reconstruction techniques to enable accelerated acquisition for two applications. Although 

great efforts have been made to keep the reconstruction time within reasonable range that 

fits the clinical workflow for each particular application, their non-linear online-

optimization feature prevents them to reach similar reconstruction speed as linear based 

reconstruction. This is particularly problematic for applications such as real-time imaging, 

which will greatly benefits the low-latency image feedback for online decision making. In 

this chapter, we introduced a learning based reconstruction strategy and demonstrated its 

performance in accelerated real-time imaging application. 

7.1 Introduction 

With tremendous advances in MRI hardware performance and fast imaging techniques 

in the past two decades, real time MRI has shown great potentials for a number of 

challenging applications, such as speech imaging (132), cardiac imaging (133), functional 

imaging (134), and interventional MRI (135). To achieve sufficient frame rate, real time 

MRI typically requires significant k-space under-sampling to accelerate the data 

acquisition; hence advanced image reconstruction algorithms such as parallel imaging 

and/or compressed sensing (CS) are necessary to recover the image from under-sampled 

k-space. These image reconstruction methods can be categorized as either online or off-

line methods. For those real-time MRI applications that require user interaction or real time 

decision making based on image feedback, such as interventional MRI, the images need to 

be reconstructed online with minimal latency, which is the time interval between the end 
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of data acquisition and the completion of image reconstruction. For applications that 

require fast data acquisition but not online image reconstruction, slower off-line methods 

may be used. For example, Uecker et al. (136) demonstrated 1.5mm2 and 20ms 

spatial/temporal resolution real-time MRI using radial FLASH sequence and non-linear 

inversion reconstruction. However, their off-line image reconstruction algorithm requires 

2.5s to reconstruct a single image frame of size 128*128 with GPU acceleration. In another 

online real time MRI study by Lingala et al. (137), the authors used a through time spiral 

GRAPPA method (138) for real-time speech imaging with a reconstruction latency per 

frame of 114ms and a modest spatial resolution of 2.4mm2. More recently, with the help 

of increasing power of CPU/GPU, several online reconstruction approaches (139–141) 

were able to perform high spatial and temporal resolution real-time imaging, using non-

Cartesian trajectories and CS based iterative algorithms. 

Despite the promise of non-Cartesian trajectories and CS based iterative approaches 

in real-time imaging, these methods are limited in certain aspects: 1). Non-Cartesian 

trajectories are sensitive to different kinds of system imperfections and usually require 

extra pre/post-processing time for reconstruction (116); 2). Human designed fixed 

sparsifying transforms used in most CS based algorithms may be too simple to capture the 

underlying complex image features (31); 3). Solvers for iterative algorithm need to be 

specially designed or modified so that low-latency online reconstruction is feasible (141). 

Recent developments in deep learning-based MRI image reconstruction may provide 

solutions to these issues. Taking the experiences from early success in image classification 

(27) and recent improvement in image restoration (142) and super-resolution (143), several 

neural network architectures have been proposed (33,34,36,144) to learn the (non-linear) 
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mapping from artifact-contaminated images due to k-space under-sampling to the fully-

sampled reference images. This could greatly relax the need for using non-Cartesian k-

space trajectories to achieve incoherent sampling, and alleviate the need for optimizing the 

sparsifying transform. More importantly, the burden of learning such a mapping 

(characterized by network parameters) is offloaded to the off-line training process. Once 

the mapping is learned, applying the trained network to newly acquired under-sampled data 

can typically be completed with minimal latency (within tens to hundreds of milliseconds). 

In this work, we sought to develop a Parallel Imaging and Convolutional Neural 

Network (PI-CNN) combined reconstruction framework and apply it to 2D real-time 

imaging for low-latency online reconstruction. Compared with most existing neural 

network-based methods (33,35,144) that only learn the mapping from single-coil data, our 

framework integrated multi-coil k-space data and utilize them through parallel imaging. 

We demonstrate the capability of our framework on two different applications: real-time 

cardiac imaging at 1.5T and real-time abdominal imaging at 0.35T. Retrospective studies 

were performed to compare the proposed method against an existing single-coil based 

neural network reconstruction (144) and a PI-CS method (50). Prospective examples were 

also shown to demonstrate the improved temporal resolution from the accelerated 

acquisition and our image PI-CNN reconstruction algorithm.  

7.2 Methods 

7.2.1 Problem Formulation 

To reconstruct under-sampled data in an accelerated MR acquisition, an ill-posed 

linear inverse problem can be formulated as follows: 



109 
 

 𝐴Ä𝑥 = 𝑦                                            (7-1) 

where 𝑥 is the target image to be reconstructed; 𝑦 is the acquired multi-coil under-sampled 

k-space data padded with zeros at un-sampled k-space locations; and 𝐴Ä is a chain of linear 

operators including point-wise multiplication of sensitivity maps, forward Fourier 

transform, and point-wise multiplication of under-sampling mask. Since the system of 

Equation 7-1 is ill-posed, as well as the fact that measured data 𝑦 are noisy in practical 

scenarios, minimizing the least square error of Equation 7-1 with additional regularization 

term 𝑅(𝑥) is usually used to prevent over-fitting to noisy image, given by the following 

optimization problem: 

𝑚𝑖𝑛Z	| 𝐴Ä𝑥 − 𝑦 |II + 𝜆𝑅(𝑥)                                  (7-2) 

where 𝜆  is the regularization parameter that trades-off the data fidelity term and 

regularization term. 

Common choices of 𝑅(𝑥)  are 𝑙H  norm of wavelets and total variation, aiming at 

exploiting the sparsity of the underlying image in the transform domain. However, pre-

determined sparsifying transforms only preserve certain features of the image and lack the 

generality of representing complex natural features. For example, total variation reflects 

sparsity at edges of the image and therefore favors piece-wise constant structures. An 

inappropriate use of total variation can cause over-smoothing and blocky artifacts on the 

reconstructed image. Inspired by early work of using sparse dictionary learning based 

regularization (31) for MR reconstruction, and more recent work of using convolutional 

neural networks (CNN) for natural image reconstruction (145), we propose to use a general 

CNN-based regularization in this work. Specifically, assume 𝑀Æ��: 𝑥`w;|È`É; → 𝑥Éxb`} 
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maps an artifact-contaminated image to an artifact-free image. It can be represented by 

multiple layers of convolutional kernels parameterized by 𝜃 (145,146). Hence, a compact 

representation of this mapping is: 

𝑀Æ��(𝑥`w;|È`É;|𝜃) = 𝑥Éxb`}                                  (7-3) 

Incorporating Equation 7-3 as a regularization term into Equation 7-2 gives us the 

following reconstruction problem: 

𝑚𝑖𝑛Z	| 𝐴Ä𝑥 − 𝑦 |II + 𝜆||𝑥 − 𝑀Æ�� 𝑥\È 𝜃 ||II                 (7-4) 

where 𝑥\È is the image derived from under-sampled zero-filled k-space data. In case the 

mapping 𝑀Æ�� 𝑥\È 𝜃  is already learned with known parameters 𝜃∗, Equation 7-4 can be 

solved using the gradient descent algorithm with some initial image 𝑥3: 

𝑥;¬H = 𝑥; − 2𝛼;[𝜆(𝑥; − 𝑀Æ�� 𝑥\È 𝜃∗ ) + 𝐴Ä∗ (𝐴Ä𝑥; − 𝑦)]        (7-5) 

where 𝑥; is reconstructed image at iteration 𝑡, 𝛼; is the step size at iteration 𝑡, and 𝐴Ä∗  is 

the adjoint chain of linear operators. For previously mentioned natural image 

reconstruction task (145,146), learning parameters 𝜃  for 𝑀Æ��  is usually performed in 

image domain only. However, by incorporating the k-space data in training, which is a 

representation of the image in the spatial-frequency domain, we hypothesize that we will 

be able to improve image reconstructions compared to traditional image based training. In 

several previously proposed CNN-based MR reconstruction methods (144,147) that 

utilized k-space data for reconstruction, the investigators either utilized the k-space data 

after the network training is completed (147) or only considered single-coil data (144). On 

the contrary, the proposed approach alternatively learns parameters 𝜃 through CNN and 
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solves the parallel imaging problem in Equation 7-5, using a cascaded network architecture 

(144) as shown in Figure 1. Our approach not only generalizes the common regularization 

terms used in CS methods, but also allow the CNN to better use the acquired multi-coil k-

space data by incorporating parallel imaging. 

 

Figure 7-1 Structure of the proposed parallel imaging and convolutional neural network (PI-CNN) 
combined reconstruction network. The PI-CNN network consists of 𝑁 composite CNN layers and 
PI-DC layers cascaded in series. Each composite CNN layer contains 𝐾 sub-convolution layers. To 
obtain a reconstruction, we provide the sensitivity maps, under-sampled k-space data, and initial 
zero-filled image to the network, and let them pass through the network layers. During the off-line 
training process, the reconstructed image is compared with an artifact-free reference image using 
the L1 similarity measure, and resulting reconstruction error is propagated backward to derive the 
updated set of parameters for the network layers. 

7.2.2 Network Design 

As illustrated in Figure 7-1, our network consists of 𝑁 composite CNN layers and 𝑁 

Parallel Imaging data consistency (PI-DC) layers cascaded in series. Each composite CNN 

layer contains an input layer, 𝐾 sub-convolution layers associated with rectifier linear units 
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(ReLu) as activation function, a summation layer that sums the output of sub-convolution 

layers with input layer, and an output layer. Each sub-convolution layer has 𝑆 = 48 filters 

with size 3*3. Input layers of the composite CNN layers have two channels, one for the 

real part and one for the imaginary part of complex image. In the output layer, the two-

channeled image is combined together as a single-channeled complex image, which 

subsequently serves as input to the following PI-DC layer. In the PI-DC layer, the output 

of the preceding composite CNN layer is iteratively updated according to Equation 7-5. 

Due to the concern of computation time, three iterations are performed in the PI-DC layer, 

and the result is the input to the subsequent composite CNN layer. 𝜆  was set to 0.4 

empirically in Equation 7-5.    

During the offline network training process, the goal is to find an optimal parameter 

set 𝜃 for the convolution filters. Since there is no updatable parameter in the PI-DC layer, 

a total of 𝑁 ∗ 𝐾 ∗ 3 ∗ 3 ∗ 48 ∗ 2 parameters need to be trained. To set up this procedure, 

we minimize a loss function over a set of paired reconstructed image and reference image 

with respect to 𝜃 . Based on previous literature (148), we choose L1 norm instead of 

conventional L2 norm as our main loss function, which is defined as follows: 

𝐿 𝜃 = 𝑚𝑖𝑛Í ||𝑀𝑎𝑔(𝑥wbÉÎ}| (𝜃)) − 𝑀𝑎𝑔 𝑥wbÈ| ||Hv
|�H + γ| 𝜃 |I        (7-6) 

where 𝑥wbÉÎ}|  and 𝑥wbÈ|  is the 𝑖;f  pair of images in the set of size 𝑃, and 𝑀𝑎𝑔(∙) is the 

operation that takes the magnitude of the complex image. To prevent model over-fitting, 

we further added an L2 regularization on the network parameters. Due to the fact that 

𝑀𝑎𝑔 ∙ = 𝑟𝑒𝑎𝑙(∙)I + 𝑖𝑚𝑎𝑔(∙)I is not differentiable at the origin point, we relaxed it 

with 𝑀𝑎𝑔Ñ ∙ = 𝑟𝑒𝑎𝑙(∙)I + 𝑖𝑚𝑎𝑔(∙)I + 𝜖 in our practical implementation. The above 
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optimization problem is solved by the well-known back-propagation algorithm (149), i.e. 

applying the chain rule for parameters 𝜃z of the 𝑚;f layer: 

𝜕𝐿(𝜃)
𝜕𝜃z

=
𝜕𝑥wbÉÎ}

[z¬H]

𝜕𝜃z
∙
𝜕𝑥wbÉÎ}

z¬I

𝜕𝑥wbÉÎ}
z¬H …

𝜕𝑥wbÉÎ}
[�∙Ô¬�]

𝜕𝑥wbÉÎ}
�∙Ô¬�>H ∙

𝜕𝐿(𝜃)
𝜕𝑥wbÉÎ}

�∙Ô¬�  

where  𝑥wbÉÎ}
[z¬H] is the output of (𝑚 + 1);f layer from a total of 𝑁 ∙ 𝐾 + 𝑁 layers including 

the sub-convolution layers and PI-DC layers. Note that we are performing an end-to-end 

training, and therefore, the back-propagation starts from the last cascaded layer. Although 

no parameter is updated in the PI-DC layer, the derivation of its output with respect to its 

input still needs to be calculated, so that the gradient can flow backward. 

For comparison purposes, the single-coil based network described in Ref. (144) was 

also implemented in this work. In this network, the k-space data 𝑦 in Equation 7-4 is 

replaced with a synthesized single-coil k-space data, which is generated by inverse Fourier 

transform of fully-sampled multi-coil k-space data to image domain, coil-combination in 

image domain using SENSE (3), another Fourier transform, and retrospective k-space 

under-sampling. The chain operator 𝐴 only involves performing Fourier transform and 

applying the under-sampling mask. Moreover, Equation 7-5 is replaced with a single-step 

k-space data substitution operation. Equation (6) in Ref. (144) describes this operation in 

more details.    

7.2.3 Data Acquisition 

To evaluate the performance of the proposed PI-CNN method and demonstrate its 

utility, we tested our strategy for real time cardiac and abdominal imaging applications. 

The study was approved by our institutional review board, and each subject provided 

written informed consent. For cardiac imaging, 20 healthy volunteers were scanned on a 
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1.5T MRI scanner (Avanto Fit, Siemens Medical Solutions, Erlangen, Germany) using a 

standard bSSFP sequence with a 32-channel body coil array (TE/TR = 1.5/3ms, flip angle 

= 60o, bandwidth = 814Hz/pixel, field of view = 260-350*160-220mm2, matrix size = 

192*122, slice thickness = 6mm2). In each volunteer, 250 short-axis view fully sampled 

images (temporal resolution = 3 frames per second) at various slice locations across the 

heart were acquired during free-breathing without ECG gating. Prospectively 4X under-

sampled data using a one-dimensional variable density Poisson-disc pattern (5) were 

acquired in two additional volunteers in the short-axis view. As a comparison, a separate 

cardiac cine MRI using conventional 3X GRAPPA acceleration with 20 reference lines 

and partial Fourier 5/8, corresponding to a 4X net acceleration, was acquired at the same 

slice locations as our Poisson-disc under-sampled data.  

For abdominal imaging, a total of 7 healthy volunteers and 7 liver cancer patients were 

scanned on a 0.35T MRI-guided radiotherapy (MRgRT) system (MRIdian, ViewRay, 

Cleveland, OH) using a standard bSSFP sequence with a 12-channle body coil array 

(TE/TR = 1.7/3.4ms, flip angle = 110o, bandwidth = 548Hz/pixel, field of view = 300-

420*180-250mm2, matrix size = 192*114, slice thickness = 8mm2). The MRgRT system 

is capable of simultaneous MRI and radiotherapy, but was only used as an MRI scanner in 

the study. In each volunteer and patient, 250 sagittal fully sampled images (temporal 

resolution = 3 fps) at various locations of the liver region (covering the tumor for patients) 

were acquired during free-breathing. 

7.2.4 Network Training 

Both the proposed network and the single-coil based network described in Ref. (144) 

were trained using retrospectively under-sampled data paired with their corresponding 
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fully-sampled reference data. As mentioned above, SENSE reconstruction (3) was used to 

generate single-coil images from multi-coil images in the single-coil based network (144). 

In the proposed network, SENSE type reconstruction was used in the PI-DC layer to 

enforce data consistency under the parallel imaging framework. For cardiac imaging, 3000 

short-axis image pairs from the first 12 volunteers were used for training. For abdominal 

imaging, 2500 sagittal image pairs from 5 volunteers and 5 patients were used. For a given 

under-sampling factor (3X-5X), the Poisson-disc under-sampling masks were varied for 

the training data sets so that the network learns various aliasing patterns. The coil 

sensitivity maps used in the proposed method were calibrated from the 24*24 central k-

space region using ESPIRiT (50).  

Both networks were implemented in Python using Theano and Lasagne libraries. 

Parameters of the networks were initialized with He initialization (150), trained with Adam 

optimizer (151) using following parameters: α = 1𝑒>Ö, 𝛽H = 0.9, and  𝛽I = 0.999. 1000 

epochs with minibatch size of 16 was used. All training and experiments were performed 

on a Linux PC (8 Core/4GHz, 64 GB, Nvidia GTX 760). It took approximately 1 day to 

train each network. 

7.2.5 Evaluation 

The proposed PI-CNN network was tested on data from the remaining 8 volunteers in 

cardiac imaging, and the remaining 2 volunteers and 2 patients in abdominal imaging. All 

test data were not included in the training process.  

In the first step, we evaluated the effect of different 𝑁 and 𝐾 in the proposed PI-CNN 

network. Two experiments were performed: 1). We fixed 𝐾 = 4 for each composite CNN 

layer but varied 𝑁 = 1~6. This experiment would show the value of increasing cascade 
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iteration. 2). We compared two architectures, both with 25 total number of layers : 𝑁 =

5,𝐾 = 4 and 𝑁 = 1,𝐾 = 24. The first architecture benefits from the repeated enforcement 

of data consistency while the second one can extract very deep features. This experiment 

allowed us to evaluate the benefit of using k-space data within a network. For each network 

trained in the two experiments, acceleration factor was set to 4-fold.  

Next, we evaluated the performance of the proposed network against single-coil based 

network (144) and L1-ESPIRiT (50), a state-of-the-art PI-CS reconstruction method, 

through a retrospective study on the cardiac imaging. Based on experiments in the first step, 

we set 𝑁 = 5,𝐾 = 4 for both the proposed network and the single-coil based network. 

Acceleration factors from 3-fold to 5-fold were evaluated with the 1D variable density 

Poisson-disc under-sampling pattern. L1-ESPIRiT was performed using a previously 

described tool (Berkeley Advanced Reconstruction Toolbox, BART) (51), with the same 

sensitivity maps used for network reconstruction. All hyper-parameters for L1-ESPIRiT 

such as the number of iterations and regularization parameters were tuned empirically to 

provide best image quality based on visual assessment.  

Since our network learns to de-alias under-sampled artifact-contaminated images in 

general, it is possible that the network trained at one acceleration factor may be used to 

reconstruct images acquired with a different acceleration factor. To explore this, we used 

the network trained with the intermediate 4-fold acceleration factor in the previous 

experiment to reconstruct images retrospectively under-sampled with 3-fold to 5-fold. As 

a comparison, these images were also reconstructed using the networks trained with the 

corresponding acceleration factors. L1-ESPIRiT, as a representative of non-training-based 

methods, was also performed.  
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As a next step, we further evaluated the performance of the proposed PI-CNN network 

on the prospectively under-sampled data. However, it is not possible to reconstruct them 

with the single-coil based network (144). This is because it only works with the synthesized 

single-coil data (i.e., it is trained on the synthesized coil-combined image and coil-

combined retrospectively under-sampled k-space data), while the acquired prospective 

under-sampled k-space data has multiple channels and there is no easy way to derive coil-

combined under-sampled k-space data from that. Therefore, we only compare it with the 

L1-ESPIRiT reconstruction based on the same data, as well as the additionally acquired 

GRAPPA accelerated data.   

Finally, to evaluate the proposed network in a different body site, a different SNR 

scenario, and to demonstrate its potential in clinical utility in patients, we performed a study 

for abdominal imaging acquired at 0.35T. The patients in this evaluation were liver cancer 

patients who underwent MR-guided radiation therapy using our MRgRT system. The 

abdominal images were acquired immediately after the patient finished a treatment session. 

The k-space data from one volunteer and two patients were retrospectively under-sampled 

by 3-fold, and reconstructed with the proposed network and L1-ESPIRiT. Because of the 

improved performance of proposed network over single-coil based network based on 

cardiac imaging (shown in the “Results” section), here we used the clinically available 

linear PI reconstruction GRAPPA as the alternative comparison, based on the same data 

that were retrospectively under-sampled with a regular pattern and net acceleration factor 

of 3-fold.  
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7.2.6 Data Analysis 

To compare the different reconstruction strategies quantitatively in the second and last 

retrospective evaluations above, both normalized root mean square errors (nRMSE) and 

structural similarity index (SSIM) (56) were calculated between each frame of the 

reference images and images reconstructed with the different strategies (proposed network, 

single-coil based network, L1-ESPIRiT, and GRAPPA). The calculated nRMSE and SSIM 

were averaged across all frames and all volunteers/patients. Whereas reduction in nRMSE 

indicates greater fidelity to the original image, an SSIM value of 1 indicates perfectly 

identical pair and the SSIM value decreases as the images differ.  

7.3 Results 

Figure 7-2 shows example images reconstructed from the six networks that have 

different cascading depths (𝑁 = 1~6). As N increased, the reconstructed images had less 

aliasing artifacts (red arrows), sharper tissue boundary (yellow arrows) and better 

delineated myocardium (green arrows). The rate of improvement and artifact reduction 

slowed down as N increased. There was obvious difference between the (𝑁 = 1,𝐾 = 4) 

image and the (𝑁 = 2,𝐾 = 4) image. The difference between the (𝑁 = 5,𝐾 = 4) image 

and the (𝑁 = 6,𝐾 = 4) image was more subtle, although the the (𝑁 = 6,𝐾 = 4) image 

required increased reconstruction time (46ms for 𝑁 = 5 and 90ms for 𝑁 = 6 to reconstruct 

a 12-channel data) and potentially increased sensitivity to over-fitting. Therefore, we used 

the 𝑁 = 5,𝐾 = 4 network for the remaining study of this work.  
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Figure 7-2 Example images reconstructed with the proposed PI-CNN network using different 
network depths (i.e. number of composite CNN and PI-DC layers) at 4-fold acceleration factor. 
With increased depth (𝑁 from 1 to 6), the reconstructed image has less aliasing artifact (red arrows) 
and sharper edges (yellow and green arrows), although this comes with longer reconstruction time. 
The network with 𝑁 = 5, 𝐾 = 4 represents a good balance between image quality and required 
reconstruction time. 

Figure 7-3 shows the comparison of the two network architectures that have the same 

total number of 25 layers on selected reconstructed frames. As illustrated, the architecture 

that employs very deep convolution layers (𝑁 = 1,𝐾 = 24) for feature extraction was not 

able to remove residual aliasing artifacts (blue arrows) and failed to recover sharp 

myocardium boundaries (red arrows). This is probably due to the training over-fitting since 

the size of training data is relatively small compared with the number of parameters within 

the directly connected network. On the contrary, using the same size of training data, the 

interleaved architecture (𝑁 = 5,𝐾 = 4) reconstructed much cleaner and sharper images, 

benefitting from the fact that it consistently provides updated improved image from a PI 
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reconstruction for each composite CNN layer. This consequently allows the network to 

converge faster and generalize better for new unseen images. 

 

Figure 7-3 Selected reconstructed images of retrospective 4-fold acceleration at three cardiac 
phases from two networks that have the same number of total layers but different architectures. For 
the network that has very deep convolution layers (𝑁 = 1, 𝐾 = 24), it fails to remove residual 
aliasing artifacts and sharpen the edges. On the other hand, the proposed cascaded architecture 
(𝑁 = 5, 𝐾 = 4 ) allows good utilization of the feature extraction from CNN layers and data 
consistency enforcement from PI-DC layers, and produces cleaner and sharper reconstructions. 

To better understand how the proposed network utilizes the interleaving CNN and PI-

DC structure, Figure 7-4 shows the intermediate images from each of the composite CNN 

layers (top row) and PI-DC layers (bottom row) within the proposed network. In general, 

the cascaded structure gradually removes the aliasing artifacts and sharpens the images. 

Since end-to-end training was used, the intermediate layers can internally learn to correct 
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for the errors caused by the previous layers, and thus make the reconstructed image from 

the last layer optimally similar to the reference image in terms of the error metric chosen. 

At the same time, by inserting a PI-DC layer between composite CNN layers, image quality 

can be improved due to the incorporated multi-coil information. This can be clearly 

visualized at each PI-DC layer in the bottom row.   

 

Figure 7-4 Intermediate network layer outputs of the PI-CNN network for a retrospectively 4-fold 
under-sampled data. We observe overall continuously suppression of aliasing artifacts and 
sharpening of fine structures as the data pass through each cascaded layer. Due to the end-to-end 
training, our proposed PI-CNN network can internally correct for these deviations and produce an 
artifact-free image after the final layer. 

Figure 7-5 shows representative images reconstructed from zero-filling, single-coil 

based network, proposed network, L1-ESPIRiT, and fully-sampled reference data. With 3-

fold under-sampling, all three strategies (single-coil based network, the PI-CNN network, 

and L1-ESPIRiT) were able to reconstruct images with acceptable quality, although 

reconstruction from single-coil based network had mild blurring on fine structures. With 

4-fold under-sampling, single-coil based network reconstructed an image with apparent 

residual aliasing artifact (white arrow) and over-smoothed blocky artifacts (yellow arrow). 
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L1-ESPIRiT similarly had blurred myocardium (red arrow) and small blood vessel (blue 

arrow). The proposed network, however, could reconstruct similar image compared with 

the reference. At 5-fold acceleration, the proposed PI-CNN method started to show over-

smoothed images (green arrows). The other two methods had similar reconstruction errors 

with 4-fold under-sampling. These observations correlate well with the numerical analysis 

shown in Table 7-1. 

 

Figure 7-5 Comparison of different reconstruction strategies at three acceleration factors for short-
axis cardiac acquisition. From left to right, each column represents selected cardiac frame 
reconstructed with zero-filling, single-coil based network, L1-ESPIRiT, proposed PI-CNN network 
and reference, respectively. At 3-fold acceleration, the three reconstructions can all recover decent 
quality images. At 4-fold acceleration, residual aliasing artifact (white arrow) and over-smoothed 
blocky artifacts (yellow arrow) appear on single-coil based network reconstruction, while L1-
ESPIRiT reconstruction has blurred myocardium (red arrow) and small blood vessel (blue arrow). 
The proposed PI-CNN method performs well at 4 fold acceleration. At 5-fold acceleration, the 
proposed PI-CNN network starts to show blurriness at edges (green arrows), whereas image quality 
based on the other two methods continues to deteriorate. 
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Table 7-1 Qualitative comparisons of the different reconstruction strategies and the different 
under-sampling factors in the cardiac and abdominal imaging experiments. A total of 2000 images 
from the 8 testing subjects (healthy volunteers) in the cardiac imaging and a total of 1000 images 
from the 4 testing subjects (2 healthy volunteers and 2 patients) in the abdominal image were 
evaluated for the qualitative comparisons. nRMSE: normalized root mean square error; SSIM: 
structural similarity index. 

  nRMSE SSIM 
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 (3
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 Zero-Filling 0.284 0.528 

Single-coil Based Network 0.125 0.861 

L1-ESPIRiT 0.082 0.905 

PI-CNN Network 0.081 0.911 

C
ar
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 (4
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 Zero-Filling 0.425 0.456 

Single-coil Based Network 0.213 0.727 

L1-ESPIRiT 0.134 0.819 

PI-CNN Network 0.103 0.875 

C
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 Zero-Filling 0.586 0.379 

Single-coil Based Network 0.324 0.613 

L1-ESPIRiT 0.202 0.736 

PI-CNN Network 0.158 0.803 

A
bd

om
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Zero-Filling 0.302 0.506 

GRAPPA 0.163 0.803 

L1-ESPIRiT 0.116 0.846 

PI-CNN Network 0.094 0.889 

 

Figure 7-6 shows the results of applying the proposed network trained with one 

acceleration factor to reconstruct images under-sampled with other acceleration factors. 
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Applying the network trained on 4-fold under-sampled data to 3-fold under-sampled data 

produces images with the similar quality compared with the image reconstructed directly 

with a network trained on 3-fold under-sampled data. However, if such network is applied 

to 5-fold under-sampled data, additional artifact (yellow arrow) and overall increased 

blurriness can be seen in the reconstructed image. This indicates that for different under-

sampling scenarios, in contrast to non-training-based methods like L1-ESPIRiT, which 

only needs to adapt the regularization parameter value, the proposed network requires 

adaptive training process to achieve the best performance. 

 

Figure 7-6 Selected cardiac images reconstructed with different testing/training acceleration factor 
settings in the proposed PI-CNN network. Applying the network trained with 4-fold acceleration 
factor to data under-sampled with 3-fold can produce images with similar quality compared with 
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those reconstructed from a matched testing/training acceleration factor setting (both 3-fold). 
However, using such network to reconstruct data under-sampled with 5-fold demonstrates 
additional artifact (blue arrow) when compared with those from the matched testing/training 
acceleration factor setting (both 5-fold). The non-training-based L1-ESPIRiT reconstructions are 
also shown for comparison. nRMSE and SSIM evaluations for each scenario on the 8 volunteers 
(2000 images) were also reported in the figure. 

Figure 7-7 depicts the reconstruction results of prospectively under-sampled data from 

GRAPPA, L1-ESPIRiT and the proposed PI-CNN network. We observe the similar 

performance of the three reconstructions as for the retrospectively study. GRAPPA 

reconstruction suffers from a high noise level, and L1-ESPIRiT results in residual aliasing 

artifacts for certain case (blue arrows). On the other hand, the PI-CNN network can produce 

much cleaner reconstruction and is less prone to remaining artifacts. 

 

Figure 7-7 Reconstruction results of prospectively 4-fold under-sampled data from GRAPPA, L1-
ESPIRiT and the proposed PI-CNN network. Similar behavior is observed as for the retrospective 
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under-sampled data. GRAPPA reconstruction has high noise level that results in poor visualization 
of the myocardium (green arrows). L1-ESPIRiT reconstruction has small residual aliasing artifact 
(blue arrows) in certain case. Reconstructions from the proposed PI-CNN network have less under-
sampling artifacts and an improved SNR. As for the reconstruction time, linear GRAPPA 
reconstruction is the fastest among all three techniques (~82ms/slice), and the proposed PI-CNN 
network method is slightly slower (~93ms/slice). However, the L1-ESPIRiT took 1s to reconstruct 
one slice. 

Figure 7-8 demonstrates the advantage of the proposed method in single to noise ratio 

(SNR) limited scenario and its generalization capacity in patient cases. For both healthy 

volunteers and tumor patients, the linear reconstruction GRAPPA suffers from high noise 

level due to the poor conditioning of the system matrix in low SNR situation. L1-ESPIRiT 

was able to reconstruct cleaner images but still has visible noise compared with the 

reference image. The proposed method, however, was able to reconstruct high quality 

images with well-delineated tumor regions (blue, yellow and red arrows). Reconstructed 

images also have a much lower noise floor that makes them comparable to the fully 

sampled reference. Quantitative measurements shown in Table 7-1 also confirm these 

observations. 
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Figure 7-8 Comparison of different reconstruction strategies at 3-fold acceleration factor for sagittal 
view abdominal acquisitions at 0.35T low-field environment. From left to right, each column 
represents selected frame reconstructed with zero-filling, GRAPPA, L1-ESPIRiT, proposed PI-
CNN network and reference, respectively. Both GRAPPA and L1-ESPIRiT reconstructions suffer 
from limited SNR that produce noisy images and fail to delineate tumor regions (yellow, blue and 
red arrows). On the contrary, the proposed PI-CNN network is able to recover much cleaner images 
that show the tumor region well enough. 

The single-coil based network, proposed network, as well as the GRAPPA method, 

are all compatible with on-the-fly reconstruction. Reconstruction time on eight cores and 

single GPU was 28ms/frame for the single-coil based network, 46-108ms/frame for 

proposed method depends on coil number, and 76-95ms/frame for GRAPPA including 
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calibration weight calculation. L1-ESPIRiT with spatial wavelet constraint, on the other 

hand, took 1.2-1.4s to reconstruct each frame. 

7.4 Discussion 

This work demonstrates the feasibility of using a PI and CNN combined network to 

perform low-latency reconstruction on accelerated real-time acquisitions. By taking 

advantage of an interleaved PI and CNN reconstruction, the network, once trained, is 

capable of reconstructing 2D images within tens of milliseconds and will likely enable on-

the-fly reconstruction for high spatial and high temporal resolution real-time MRI. In 

particular, we demonstrated that the PI-CNN network is superior to both previously 

proposed single-coil based network (144) and L1-ESPIRiT (50) at 4-fold acceleration in 

1.5T for real-time cardiac imaging. Comparison with L1-ESPIRiT and clinical available 

GRAPPA reconstructions at SNR-limited 0.35T environment for real-time abdominal 

imaging also shows the improved performance of proposed PI-CNN network with 3-fold 

acceleration. 

In recent years, while deep learning has resulted in clear breakthroughs in computer 

vision related tasks, the application of deep learning to MR reconstruction is just beginning. 

Previous literature (33,34,144,147) only shows the feasibility of reconstruction with single-

coil data and lacks a clear demonstration of how the clinical multiple-coil data are handled. 

Compared to the selected single-coil based network used in this work, the proposed PI-

CNN network includes multi-coil information to allow the network to better de-alias the 

artifact-contaminated zero-filled input image. Given the same amount of training data and 

number of epochs, we believed the improved results of the proposed method come from a 

faster convergence and a smaller gap between the training-testing errors (i.e., less over-
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fitting), all resulting from the fact that more (multi-coil) information is included in the PI-

CNN network. With a limited number of data available, which is a generally common 

scenario for deep learning applications in medical imaging, our PI-CNN network can 

effectively learn the general relationship between the aliasing-contaminated zero-filled 

image and the clean reference image, and generalize it well to the unseen new inputs. One 

may argue that more training samples may be easily obtained through image based data 

augmentation (152), including rigid and regional elastic deformation. However, since 

multi-coil k-space data is required for the interleaved data consistency layer, it is unclear 

how to link the deformed image with the k-space data.      

The over-fitting issue has always been a concern for learning-based methods, 

especially with a training dataset of a relatively small size. To alleviate this, the proposed 

PI-CNN network utilized a cascaded structure that interleaves the CNN layer and PI-DC 

layer to constrain the size of the receptive field for each layer. The benefit of such strategy 

can be clearly seen from Figure 7-3. We also carefully choose the parameters related to the 

network design (𝐾, 𝑁, 𝑆) that satisfies our application needs, which is essentially a trade-

off between model complexity and training efficiency. With increased model complexity 

(larger 𝐾, 𝑁, 𝑆), the network may be capable of delineating finer structures and removes 

stronger aliasing artifacts, but requires more training data and longer computation time. 

With increased training efficiency (smaller 𝐾, 𝑁, 𝑆), the network converges much quicker 

and need less training data, but it will perform poorly when the under-sampling factor 

increases. With the current setup (𝐾 = 4, 𝑁 = 5, 𝑆 = 48), our experiments show the 

proposed network can recover high quality images with less than 100ms from moderate 

under-sampled images. 
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Compared with the conventional CS approaches, the proposed learning-based PI-

CNN network offers two distinct advantages for image reconstruction. First, CS methods 

usually require the selection of specific sparsifying transform(s) as regularization term(s) 

to constrain the solution space for the under-determined problem, which is not a trivial task. 

Using the learning-based approach allows the network to adapt its kernels to the underlying 

features of the image and artifacts automatically and requires minimal human interaction. 

Based on criteria given by the loss function, the training process optimally adjusts the 

convolutional kernels such that the output matches well with the reference. However, such 

data-driven-based adaption from the training process can also limit the way that a learned 

network is used for reconstruction. As shown in Figure 6, if the severity of aliasing artifacts 

is drastically different between the training and application stages, learning-based PI-CNN 

network performs inferior to the CS approach. Fortunately, recent research results have 

highlighted the potential of transfer learning (35) to handle this training-application 

mismatch. Its applicability to our proposed PI-CNN network warrants future study. Second, 

CS reconstruction usually requires long reconstruction time since every reconstruction is 

treated as an individual optimization problem. On the contrary, the learning-based PI-CNN 

network offloads the computational expensive optimization process offline and pre-

calculates the network parameters. Once the parameters are determined, the application to 

new data is extremely fast since no optimization is needed. 

Our study shows that the proposed network can learn the general and global mapping 

from under-sampled aliased image to reference image, using different sampling patterns 

with fixed under-sampling factor during the training. This suggests that a fixed aliasing 

pattern or strong incoherence is not required, although more incoherent aliasing from 
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trajectories such as radial sampling might be helpful at higher under-sampling factor. To 

further improve the network, one may pre-train the network with various under-sampling 

masks, and fine tune it with a fixed pattern that will be finally used in the prospective study. 

Furthermore, jointly training the under-sampling mask and aliased image for 

reconstruction may provide further improvement. 

 In the proposed PI-CNN network, we utilized the multi-coil information through an 

interleaved PI-DC layer, which is essentially solving a parallel image problem with pre-

calculated sensitivity maps. Alternatively, the multi-coil data can be input into the network 

directly, and let the network itself to learn the implicit relationship between coils. This 

could be better than the proposed approach which uses the coil sensitivity explicitly, but 

will greatly increase the network size and requires more processing such as data shuffling 

to prevent the network from learning a fixed coil arrangement. 

In the low-field abdominal imaging experiment, we incorporated patient cases to 

demonstrate the generalization capability of the proposed network. We ascribe the high 

quality reconstruction on patient data partly to the fact that we incorporate k-space data 

into the network and enforce the consistency repeatedly. This allows the network to capture 

the unseen features, including the pathology related features, during the application stage. 

However, since there is no clear idea what exactly the convolutional kernels represent in a 

learned network, the capacity of the proposed network to handle more complicated 

pathology cases remains undefined and warrants further investigation. 

7.5 Conclusion 

In conclusion, by taking advantage of multi-coil information and convolutional neural 

network, a PI-CNN reconstruction network has been successfully implemented and 
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evaluated in both cardiac and abdominal real-time imaging on retrospective and 

prospective data. Better image quality was achieved using the proposed PI-CNN network 

than a single-coil based reconstruction network, L1-ESPIRiT and GRAPPA on moderate 

3X-4X acceleration. In terms of reconstruction speed, the proposed method can achieve 

less than 100ms reconstruction for clinical multi-coil data, which implies its potential of 

real-time reconstruction for real-time imaging applications. 
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Chapter 8 Summary and Future Work 

This dissertation presented several application-tailored accelerated MR imaging 

methods. More specifically, two methods to improve the scan efficiency were discussed 

for Ferumoxytol-enhanced 4D multi-phase cardiovascular MR in Chapter 3 and 4; one 

method to reduce temporal blurring was exploited for ASL-based noncontrast-enhanced 

4D intracranial MR angiography in Chapter 5 and stands upon this, a general strategy to 

improve 3D volumetric imaging using radial trajectory was analyzed in Chapter 6; finally 

one method to enable low-latency on-the-fly reconstruction was demonstrated for real-time 

imaging in Chapter 7. The proposed methods were all designed with application specificity 

and clinically utility in mind, and they can be applied to many other applications that have 

similar SNR level, clinical requirement etc. By exploiting the potential of these particular 

applications, the idea was not to only improve the performance of current applications, but 

to build ideology for solving other limitations that may occur in future applications. 

In this chapter, the technical developments mentioned in this dissertation are first 

summarized. Potential directions for future works are then described at the end of this 

chapter. 

8.1 Summary of technical development 

8.1.1 4D MUSIC with Reduced Acquisition Time 

By taking advantage of the high SNR results from Ferumoxytol contrast enhancement 

in 4D MUSIC, acquisition time was reduced using k-space under-sampling with a carefully 

designed center-out elliptical variable density Poisson-disc pattern. A simple yet effective 

compressed sensing and parallel imaging reconstruction was employed to reconstruct 
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under-sampled data to maintain the image quality. In addition, an inline image 

reconstruction pipeline was also developed and fully integrated with the existing clinical 

workflow that provides a powerful platform to translate the advanced image reconstruction 

algorithms into daily clinical practice without interrupting normal clinical workflow. 

8.1.2 4D MUSIC with Improved Temporal Resolution 

4D MUSIC in its current format provides exquisite delineation of anatomical 

structures but fails short of allowing comprehensive cardiac functional assessment due to 

the limited temporal resolution. A motion weighted reconstruction approach is utilized to 

reconstruct the same 4D MUSIC dataset but binned into more cardiac phases for improved 

temporal resolution. By incorporating k-space data acquired in adjacent cardiac phases, 

and assignment corresponding 0 to 1 weights in the data fidelity, effective under-sampling 

factor can be reduced while cardiac motion is suppressed through the iterative 

reconstruction process. As result, spatial resolution is preserved without motion corruption 

and temporal resolution is doubled. 

8.1.3 Magnitude Subtraction for Accelerated ASL-based MR Angiography  

 Considering the inherently low SNR level of ASL signal, straightforward 

employment of conventional simple compressed sensing and parallel imaging 

reconstruction as in 4D MUSIC application usually results in blurry and artifact 

contaminated reconstruction. A magnitude subtraction regularization term that exploits the 

unique image generation process of MR angiography with ASL-based acquisition is 

incorporated in the reconstruction process. This in combination with the radial stack-of-

stars trajectory permits a higher level of sparsity and finer constraint on the solution space 

in the optimization reconstruction, which translates to sharper images. 
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8.1.4 Rotated Stack-of-Stars Trajectory 

Conventional stack-of-stars trajectory, for example the one used in ASL-based MRA 

application, acquires the same spoke angles for all partitions. In k-space under-sampling 

scenario, this only generates incoherent artifacts within each partition but not across 

partitions. By simply rotating the angle arrangement in a golden-angle manner along the 

partition direction (regardless of the angle arrangement within each partition), streaking 

artifacts can be greatly reduced due to a more efficient 3D k-space sampling and more 

spread-out incoherent artifacts. This in turn allows improved image quality for general 3D 

volumetric imaging. 

8.1.5 Low-Latency Accelerated Real-Time Imaging 

Despite the great success and wide adoption of optimization-based reconstruction 

methods, which are used for the previous two applications, its reconstruction speed is 

sometimes insufficient for application such as real-time imaging, which benefits from on-

the-fly image feedback. By resolving the conventional parallel imaging reconstruction as 

gradient descent steps and interleaving with convolutional layers in a general convolutional 

neural network, a learning based reconstruction framework is proposed to offload the 

computation burden as an offline training process. Once parameters for the network are 

learned, it can be applied to reconstruct un-seen under-sampled data within hundreds of 

milliseconds. 



136 
 

8.2 Future outlook 

8.2.1 Dual Motion-Weighted 4D MUSIC 

For the motion weighted reconstruction introduced in chapter 4, acquired k-space data 

were first rejected or accepted through a binary thresholding mask along the respiratory 

dimension to perform respiratory gating. However, the similar motion weighting idea used 

along cardiac dimension in motion weighted reconstruction can be directly applied in the 

respiratory dimension. This can incorporate more k-space into image reconstruction, which 

allows for an SNR boost in the final reconstruction. 

A schematic plot of respiratory and cardiac dual motion weighted reconstruction is 

shown in Figure 8-1. Each readout was first weighted according to the respiratory distance 

of its corresponding position to the reference position (end-expiration) using a Gaussian 

kernel that centered at reference position (respiratory motion weighting). The kernel 

parameter was chosen such that only 25% of data’s weight is larger than 0.8. Respiratory 

weighted data was further weighted according to their cardiac position using a flat-topped 

Gaussian kernel that slides through each cardiac phase (cardiac motion weighting). 

Resulting dual motion-weighted (or soft-gating as contrast binary hard-gating) data was 

feed into the same phase-by-phase reconstruction using Equation 4-2. 

Figure 8-2 shows an example for an 18-phases reconstruction using the dual motion-

weighted strategy and motion regularized strategy (Strategy 2 in chapter 4) on a 2-day-old 

male patient with heart rate of 135bpm. As shown, both reconstructions are able to suppress 

respiratory motion with sharp diaphragm boundary and resolve cardiac motion with clear 

visualization of mitral valve. However, reconstruction time of the dual motion-weighted 

reconstruction is only 1/9 of that of motion regularized reconstruction. 
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Figure 8-1 Schematics of proposed workflow. K-space is acquired with golden-angle rotated spiral-
like arms on Cartesian grid. Frequently sampled SI projections provide accurate estimation of 
physiological motions, based on which soft-gating (SG) weights are generated using Gaussian 
kernels. Combining these weights, acquired k-space are retrospectively binned into 18 cardiac 
phases. 

 

 

Figure 8-2 Example reconstruction images from respiratory and cardiac dual motion-weighted 
strategy, and conventional motion regularized strategy. 
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8.2.2 Rotated Stack-of-Stars at Low-Field Environment 

The rotated stack-of-star radial trajectory developed in chapter 6 is an efficient 3D k-

space sampling strategy. Its advantage over conventional aligned stack-of-stars trajectory 

not only lies in the regime of heavy k-space under-sampling, as shown in detail in chapter 

6, but also lies in the SNR-limited scenario, which is partially demonstrated in chapter 6 

using the ASL application. Such advantage in SNR-limited scenario can be further 

investigated in the low-filed environment, where SNR is proportional to the field strength. 

We have ported the rotated stack-of-stars sequence to a 0.35T low-filed MR scanner, 

which is essentially a sub-portion of a MRI-guided radiotherapy system (ViewRay, 

Cleveland, OH). Daily basis treatment planning and radiation delivery were performed on 

this system, with conventional 3D Cartesian bSSFP sequence being used as the baseline 

anatomical reference volumetric imaging. The rotated radial stack-of-stars sequence allows 

free-breathing acquisition and is insensitive to bulk body motion when compared to the 

conventional Cartesian acquisition. In combination with compressed sensing 

reconstruction algorithm, it can be a useful tool for MR-based treatment planning, 

especially for patients who cannot hold their breath or remain still. Figure 8-3 shows an 

example of patient with intrahepatic bile duct carcinoma, with images acquired during free-

breathing using the rotated radial stack-of-stars sequence and conventional Cartesian 

sequence. As clearly visualized, the patient failed to hold his breath during the standard 

Cartesian acquisition, resulting in strong motion artifacts (yellow arrow). The proposed 

sequence was able to reduce such motion artifacts and reveal clear boundary of the tumor 

region (blue arrow). 
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Figure 8-3 Example of rotated radial stack-of-stars sequence on the ViewRay system. It has better 
motion robustness when compared with standard Cartesian sequence.  
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