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ABSTRACT OF THE DISSERTATION

On log del Pezzo surfaces in characteristic different from two and three

by

Justin Lacini

Doctor of Philosophy in Mathematics

University of California San Diego, 2020

Professor James McKernan, Chair

A log del Pezzo surface is a klt projective surface whose canonical divisor is anti-

ample. We classify all log del Pezzo surfaces of Picard number one defined over alge-

braically closed fields of characteristic different from two and three. We also discuss some

consequences of the classification. For example, we show that log del Pezzo surfaces de-

fined over algebraically closed fields of characteristic higher than five have at most four

singular points and admit a log resolution that lifts to characteristic zero over a smooth

base.

x



Chapter 1

Preliminaries

1.1 Introduction

The canonical divisor plays a central role in the classification of algebraic varieties.

For example, the Minimal Model Program predicts that every smooth projective variety

can be “built” from the following three families:

1. Fano varieties, on which the canonical class is anti-ample.

2. Varieties with canonical class that is trivial (for example Calabi-Yau or abelian

varieties).

3. Canonical models, on which the canonical class is ample.

The aim of this dissertation is to classify all klt Fano surfaces (called log del Pezzo

surfaces) of Picard number one over algebraically closed fields of characteristic different
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from two and three. More precisely:

Theorem 1.1.1 (Classification of rank one log del Pezzo surfaces, Theorem 4.1.20).

Let S be a rank one log del Pezzo surface defined over an algebraically closed field of

characteristic different from two and three. If S is smooth then S = P2; if S is Gorenstein,

then S is one of the surfaces described in Theorem B.2.2; otherwise, it belongs to one of

the families LDP1 to LDP19 described in Section 4.

Theorem 1.1.1 has several immediate consequences. For instance, it is well-known

that rank one log del Pezzo surfaces defined over the complex numbers have at most

four singular points (see [KM99, Corollary 1.8.1] and [Bel09]). This result, known as

Bogomolov bound, fails in characteristic two, as Keel and McKernan exhibited examples

of rank one log del Pezzo surfaces with arbitrarily many singular points ([KM99, Chapter

9]). Nevertheless, in light of Theorem 1.1.1 we have the following:

Corollary 1.1.2 (Bogomolov bound). Let S be a rank one log del Pezzo surface defined

over an algebraically closed field of characteristic different from two, three and five. Then

S has at most four singular points.

By slightly modifying Keel and McKernan’s example, in characteristic three one

easily gets a rank one log del Pezzo surface with seven singularities (see Example 5.2.1).

By carefully examining the classification of extremal rational elliptic surfaces, we were

also able to find a counter-example to Bogomolov’s bound in characteristic five.
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Theorem 1.1.3. (Example 5.2.3) There exists a rank one log del Pezzo surface S defined

over any algebraically closed field of characteristic five and a curve C ⊆ S such that

1. −(KS + C) is ample.

2. KS + C is dlt.

3. S has five singular points.

There has been recently a great deal of interest in extending the classical results of

the Minimal Model Program to algebraically closed fields of positive characteristic (see for

instance [HX15]). It is therefore natural to ask which properties of complex log del Pezzo

surfaces carry to positive characteristic. Cascini, Tanaka and Witaszek [CTW17] have

proved that in large characteristic all log del Pezzo surfaces either lift to characteristic

zero over a smooth base, or are globally F-regular. Our desire to determine the exact

characteristic has been one of the main motivations behind Theorem 1.1.1.

Theorem 1.1.4 (Lifting to characteristic zero, Theorem 5.1.2). Let S be a rank one log

del Pezzo surface defined over an algebraically closed field of characteristic p > 5. Let

π : S̃ → S be the minimal resolution of S. Then (S̃,Ex(π)) lifts to characteristic zero

over a smooth base.

Notice that Theorem 1.1.4 is sharp, in light of Theorem 1.1.3 and of the Bogomolov

bound. Furthermore, Theorem 1.1.4 implies that Kodaira’s vanishing theorem holds for

rank one log del Pezzo surfaces in characteristic p > 5 (see Theorem 5.3.1). This behavior

3



in dimension two should be contrasted with the failure of Kodaira’s vanishing theorem in

higher dimension, even for smooth Fano varieties (see [Tot17]).

We give now a brief sketch of the proof of Theorem 1.1.1. Let S be a log del Pezzo

surface of Picard number one. A natural approach is to try to “simplify” the singularities

of S by extracting an exceptional divisor E1 of its minimal resolution. Let f : T1 → S

be the extraction of E1. Since S has Picard number one, T1 has Picard number two, and

therefore the closed cone of curves of T1 is generated by two rays. One of the two rays is

generated by the class of E1. The main idea is to realize that we may then play the two-

ray game on T1 by contracting the other ray. Let π : T1 → S1 be the contraction. There is

a priori no reason why S1 would be any “simpler” that S, and in fact this is not the case

for most choices of E1. The truly remarkable fact, which makes the classification possible

at all, is that by choosing E1 to be the divisor with the worst singularity (as measured

by the discrepancy), then S1 is indeed simpler than S, and one may even classify the

possibilities for the contraction π1.

The idea is then to continue this sequence of extractions and contractions, which

produces a sequence of increasingly simpler surfaces S1, S2 and so on. This process, which

was first introduced by Keel and McKernan [KM99], is called the hunt. The hunt is very

efficient and usually terminates within three steps, yielding either a Gorenstein log del

Pezzo surface of Picard number one, a cone over the rational normal curve of degree n,

or a Mori fiber space. One may therefore recover S by classifying all such surfaces and

the contractions πi that appear during the hunt.
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Keel and McKernan introduced the hunt in order to prove that the smooth locus

of log del Pezzo surfaces of rank one is uniruled. Their proof is divided in two cases, based

on the following notion:

Definition 1.1.5. Let (X,∆) be a Q-factorial projective log pair. A special tiger for

KX + ∆ is an effective Q-divisor α such that KX + ∆ + α is numerically trivial, but not

klt. If there is a special tiger, a tiger is any divisor E with discrepancy at most −1. J

For surfaces that admit a tiger they presented a short proof by using deformation

theory. To complete their argument, however, they classified all complex log del Pezzo

surfaces with no tigers (more precisely, they constructed a family of surfaces that contains

all those that have no tigers). By pushing these methods a bit further, they actually

classified all simply connected rank one log del Pezzo surfaces, with the exception of a

bounded family.

In this paper we use Keel and McKernan’s ideas to complete the classification over

the complex numbers, and to extend it to algebraically closed fields of characteristic p > 3.

In positive characteristic a whole set of additional difficulties appear. For starters, one

cannot use topological arguments in order to simplify the classification, such as reducing

to the simply connected case. Furthermore, one cannot use the Bogomolov bound as we

do not a priori know whether it holds in characteristic p > 5 or not. Other issues are

that the classification of rank one Gorenstein log del Pezzo surfaces was not available in

positive characteristic (to the best of author’s knowledge), and that the proof of [KM99,

Lemma 22.2] on the existence of complements does not a priori carry through in positive
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characteristic, as it uses the Kawamata-Viehweg vanishing theorem.

The rest of the paper is organized as follows. In Appendix A we describe in detail

klt, dlt and lc surfaces singularities and techniques to deal with them efficiently. In

Appendix B we classify Gorenstein log del Pezzo surfaces in characteristic different from

two and three. In Section 1.3 we recall the main results concerning the hunt from [KM99],

in an effort to make the presentation as self-contained as possible. We also develop the

hunt in the level case, which will play a role in classifying log del Pezzo surfaces with

tigers. In Section 2 we start carrying the hunt for log del Pezzo surfaces that do not have

tigers, and in Section 3 we deal instead with the case in which there are tigers. As a

byproduct, we classify all pairs (S,C) such that S is a rank one log del Pezzo surface and

C ⊆ S is a curve such that KS+C is anti-nef. In Section 4 we summarize our findings and

list all the families of rank one log del Pezzo surfaces. Finally, we conclude by considering

liftability to characteristic zero and other applications in Section 5.
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1.2 Notation

A pair (X,∆) is given by a normal projective variety X and a Weil Q-divisor ∆

such that KX + ∆ is Q-Cartier. If ∆ is effective, (X,∆) is a log pair. We say that ∆ is a

boundary if ∆ =
∑

i ciDi where Di are irreducible distinct Weil divisors and 0 < ai 6 1.

We say that a birational morphism f : Y → X is a log resolution of (X,∆) if Y is

smooth and f−1∗ (∆) + Ex(f) is a simple normal crossings divisor.

Let f : Y → X be any birational morphism with Y normal. We can write KY +

f−1∗ ∆ = f ∗(KX + ∆) +
∑

i aiEi where Ei are f -exceptional divisors. The numbers ai =

ai(Ei;X,∆) are called the discrepancy of Ei with respect to the pair (X,∆). We define

the coefficient of Ei with respect to the pair (X,∆) to be e(Ei;X,∆) = −ai. This is just

the coefficient with which Ei appears in the divisor Γ defined by KY + Γ = f ∗(KX + ∆).

We call Γ the log pullback of ∆.

We say that (X,∆) is log canonical (or simply lc) if ai > −1 for every Ei and every

f . We say that (X,∆) is Kawamata log terminal (or simply klt) if b∆c = 0 and ai > −1

for every Ei and every f . It is in fact sufficient to check the above definitions on any given

log resolution of (X,∆). Finally, we say that (X,∆) is divisorially log terminal (or

simply dlt) if there is a log resolution f : Y → (X,∆) such that a(Ei;X,∆) > −1 for all

f -exceptional divisors. This is equivalent to requiring that there is a closed subset Z ⊆ X

such that (X \ Z,∆|X\Z ) has simple normal crossings and, if E is an irreducible divisor

over X with center contained in Z, then a(E;X,∆) > −1.

In this paper we will mainly use the above definitions in the case of surfaces. If S is
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a normal surface we indicate by S̃ its minimal resolution. If C ⊆ S is an effective divisor,

then we indicate by C̃ ⊆ S̃ its strict transform. We indicate by Fn the Hirzebruch surface

P(O ⊕ O(n)) over P1
k. We denote by Fn the surface obtained by contracting the unique

(−n) curve of Fn. A log del Pezzo surface is a surface S with only klt singularities such

that −KS is ample. We often call the Picard number of a log del Pezzo surface simply as

rank. For example, Fn is a log del Pezzo surface of rank one.
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1.3 The hunt

Let S be a rank one log del Pezzo surface defined over an algebraically closed

field k of any characteristic. In this section we describe how to produce a sequence of

progressively simpler log del Pezzo surfaces. This process is called the “hunt”, and will

be the main tool of our analysis. A hunt step consists of a K-positive extraction and a

K-negative contraction. The reason that the hunt is so useful is that it is possible to

classify its birational transformations. Therefore, if we reach a log del Pezzo surface that

we fully understand, we can get useful information about S by reversing the process.

The hunt and its properties are described in [KM99, Chapter 8]. In addition to

the hunt for flush pairs, which is described in [KM99], we will also need the hunt for level

pairs (see Definition 1.3.2 for the definition of flush and level). Throughout this section

we adopt the following practice: we will state all the relevant results for which a proof can

be found in [KM99] and provide the reference within that paper, whereas we will prove

all the further results that we need, even if this only consists in making a minor change

to a proof from [KM99]. We hope in this way to keep the exposition as self-contained and

detailed as possible, while avoiding repetitions with [KM99].

1.3.1 Flush and level

Here we develop the general theory that will be used during the hunt. In this

sub-section ∆ is a boundary with support D.

9



Definition 1.3.1. Let (X,∆) be a log pair and suppose that ∆ =
∑

i aiDi is a boundary

(we assume thatDi are all irreducible and distinct). We definem = m(∆) be the minimum

of the non-zero ai, with the convention that if ∆ is empty then m(∆) = 0. J

Definition 1.3.2. Let (X,∆) be a log pair and suppose that ∆ is a boundary. Let E be

an exceptional divisor over X. We say that the pair (X,∆) is:

1. flush (respectively level) at E if e(E;X,∆) < m (respectively e(E;X,∆) 6 m).

2. flush (respectively level) if e(E;X,∆) < m (respectively e(E;X,∆) 6 m) for all

exceptional divisors E.

J

Lemma 1.3.3. Let X be a Q-factorial variety and let ∆ be a boundary. Suppose that

f : Y → X is a birational morphism with irreducible divisorial exceptional locus E.

Assume that e = e(E;X,∆) > 0. Let Γ = eE + f−1∗ ∆ be the log pullback of ∆. Assume

Γ is a boundary. Then:

1. If (X,∆) is level and E has maximal coefficient for (X,∆) then KY + Γ is level.

2. If (Y,Γ) is flush (respectively level), then (X,∆) is not flush (respectively level) for

a divisor F if and only F = E, and the coefficient of E in Γ is at least as large as

(respectively strictly larger than) the coefficient of some non exceptional component

of Γ.

Proof. Both statements immediately follow from the definitions.

10



The following lemma provides a useful criterion to check the flush and level prop-

erties.

Lemma 1.3.4. Let S be the germ of a klt surface at p in the étale topology.

1. If (S,D) has normal crossings (in particular, p is smooth) then (S,∆) is level. If

furthermore b∆c = 0 then (S,∆) is flush.

2. Assume (S,D) does not have normal crossings (that is either p is singular, or D has

worse than a simple node). Let f : T → S be a log resolution of (S,∆) and assume

that e(F ;S,∆) 6 1 for every f -exceptional divisor F . Then for any exceptional

divisor V there is an f -exceptional divisor F such that e(V ;S,∆) 6 e(F ;S,∆). In

particular, (S,∆) is flush (respectively level) if and only if it is flush (respectively

level) at all exceptional divisors of f .

Proof. This is [KM99, Lemma 8.3.2]. We only remark that it is sufficient to check the

property of being flush and level in an étale neighborhood, so that the same proof as in

[KM99] applies.

Now we remark that in the case of surfaces it suffices to check the property of being

divisorially log terminal or log canonical for divisors in the minimal resolution. This will

play an important role throughout the paper.

Lemma 1.3.5. Let S be the germ of a klt surface at p in the étale topology. Assume that

p is singular.

11



1. If the coefficient of every exceptional divisor of the minimal resolution π : S̃ → S

for (S,D) is strictly less than one, then (S,D) is dlt.

2. If the coefficient of every exceptional divisor of the minimal resolution π : S̃ → S

for (S,D) is less or equal than one, then (S,D) is lc, except the following cases:

(a) There is exactly one irreducible component of S̃ over p, and D is simply tangent

to it.

(b) There is exactly one irreducible component of S̃ over p, and D has two branches

meeting transversally on it.

(c) There are exactly two irreducible components E1 and E2 of S̃ over p, and D

has one branch meeting each component transversally at E1 ∩ E2.

Proof. Part (1) of the statement is [KM99, Lemma 8.3.3]. We will go over its proof to get

part (2) of the statement.

Suppose (S,D) is not log canonical. D is not empty, since S is klt by assumption.

Let E be the reduced exceptional locus of π. By Lemma 1.3.4, π is not a log resolution

for (S,D). By the classification of surface singularities in Appendix A (see in particular

Lemma A.0.5, Lemma A.0.6 and Lemma A.0.7), E has simple normal crossings and D̃

does not have simple normal crossings with E by Lemma 1.3.4. As the computation of

the coefficients is purely numerical (see the remark after Lemma A.0.7), we may replace

D̃ by a disjoint union of irreducible curves, each meeting E transversally and such that at

least two curves meet the same irreducible component of E. Let D′ be the pushforward

12



of the new configuration. Clearly π is a log resolution of (S,D′) by construction.

Suppose for the moment that (S,D′) is not log canonical at p. Then, by Lemma

1.3.4, there exists a component of E with coefficient strictly larger than one for (S,D′),

contradiction. Therefore assume that (S,D′) is log canonical at p. By Lemma A.0.6,

(S,D′) is not dlt. Also, by Lemma A.0.7, E has at most two components over p. The

only ways this can happen are listed in part (2) of the statement.

In order to capture the cases in Lemma 1.3.5 we introduce the following definition.

Definition 1.3.6. We say a pair (S,D) is almost log canonical if the coefficient of every

exceptional divisor of the minimal resolution with respect to (S,D) is less or equal than

one. Equivalently, either (S,D) is log canonical at singular points p or there is an étale

neighborhood of p such that one of the cases (a)-(c) in the previous lemma holds. J

The next results describe the geometric consequences of being flush and level.

These geometric consequences are the main reason why the hunt works. In fact, the hunt

(almost) preserves the property of being flush or level, which in turn controls the geometry

of the curves that we extract and contract.

Lemma 1.3.7. Let f : T → S extract the irreducible divisor E. Assume that e(E;S,∆) >

0. Let Γ be the log pullback of ∆ and assume Γ is also a boundary. Let π : S̃ → S be the

minimal resolution.

1. If p is singular, and (S,∆) is flush at every π-exceptional divisor F then (S,D) is

dlt and (S,∆) is flush.

13



2. If (S,∆) is dlt and (S,∆) is level at every π-exceptional divisor F , then (S, s∆) is

flush for every s > 1 such that s∆ is a boundary.

3. Suppose p is singular. If f is a KT -negative contraction and (T,Γ) is flush at every

exceptional divisor of the minimal resolution of T , then (S,∆) is flush.

4. Suppose p is singular and (S,D) is log canonical. Then for any exceptional divisor

V there is some π-exceptional divisor F with e(F ;S,∆) > e(V ;S,∆).

Proof. This is [KM99, Lemma 8.3.5].

We will also need a slightly different version of the previous lemma.

Lemma 1.3.8. Let f : T → S extract the irreducible divisor E. Assume that e(E;S,∆) >

0. Let Γ be the log pullback of ∆ and assume Γ is also a boundary. Let π : S̃ → S be the

minimal resolution.

1. If p is a singular point, and (S,∆) is level at every π-exceptional divisor F then

(S,D) is almost log canonical at p. If furthermore (S,D) is log canonical then

(S,∆) is level.

2. Suppose (S,D+D′) is log canonical. If there exists 0 < c 6 1 such that (S,D+cD′)

is level at every π-exceptional divisor F , then (S,D+sD′) is level for any c 6 s 6 1.

3. Suppose p = f(E) is singular. If f is a KT -negative contraction and (T,Γ) is level

at every exceptional divisor of the minimal resolution of T , then (S,D) is almost

log canonical at p.
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Proof. As usual, we go through the proof of [KM99] and make the necessary changes.

We start with (1). Let λ be the smallest coefficient of ∆. Let F be a π-exceptional

irreducible divisor and consider the function f(t) = e(F ;S, tD). Now f(0) > 0 since F is

π-exceptional. We have that f(λ) = e(F ;S, λD) 6 e(F ;S,∆) since λD 6 ∆. Also, since

(S,∆) is level at F , we have that e(F ;S,∆) 6 λ. Putting all this together we have

f(λ) 6 e(F ;S,∆) 6 λ

As f is an affine function, f(t) 6 t for all t > λ. In particular e(F ;S,D) 6 1, so

that (S,D) is almost log canonical. Suppose now that (X,D) is log canonical. Then π

is étale locally a log resolution of (X,D), so (X,∆) is level by Lemma 1.3.4. This proves

(1).

Now we prove (2). Since (S,D + D′) is log canonical, by Lemma 1.3.4 it suffices

to check that (S,D + sD′) is level at every π-exceptional divisor F . Consider f(t) =

e(F ;S,D+ tD′). Clearly f(1) 6 1 since (S,D+D′) is log canonical. Also, f(c) 6 c since

(S,D + cD′) is level at F . Hence f(t) 6 t for every c 6 t 6 1, giving the result.

Finally we prove (3). Since (T,Γ) is level at every exceptional divisor of the minimal

resolution of T , then (T, dΓe) is almost log canonical by (1). The pair (S,∆) is level at

each exceptional divisor of the minimal resolution of S above p, since every such divisor

also appears in the minimal resolution of T . Therefore (S,D) is almost log canonical at

p.
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The next lemma shows that being flush or level gives strong control on the singu-

larities of the boundary divisor at smooth points of S.

Lemma 1.3.9. Suppose p is smooth and the pair (S,∆) is flush. Let ∆ =
∑

i aiDi and

m = m(∆). Then

1. If Mi is the multiplicity of Di, then
∑

i aiMi− 1 < m. In particular m < 1/(M − 1)

where M is the multiplicity of D.

2. If D has a node of genus at least two at p, and the coefficient of the two branches

of D at p are a > b, then 2a+ b < 2.

3. If p is a cusp of D and a is the coefficient of the branch of D at p, then a < 4/5.

4. If m > 4/5 then D has normal crossings.

If (S,∆) is level at p instead then (1)− (4) hold by switching “<” and “6”.

Proof. This is [KM99, Lemma 8.3.7].

1.3.2 The first two hunt steps in the flush case

In this sub-section we describe the setting and the outcome of the hunt in the

flush case. This is the main type of hunt we run in this paper, and it is especially useful

in classifying log del Pezzo surfaces without tigers (see below for the definition). The

underlying idea is that this hunt preserves flushness, which in turn controls the geometry

involved. Let’s start with the following fundamental definition.
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Definition 1.3.10. Let (X,∆) be a log pair. Let f : Y → X be a birational morphism.

We say X has a tiger in Y if there exists an effective Q-Cartier divisor α such that

1. KX + ∆ + α is numerically trivial.

2. If Γ is the log pullback of ∆ +α in Y , there is a divisor E of coefficient at least one

in Γ.

Any such divisor E is called tiger. J

The following geometric situations will be common, and we name them according

to [KM99].

Definition 1.3.11. Let A and B be two rational curves on a klt surface S such that

KS +A+B is divisorially log terminal at any singular point of S. We say that (S,A+B)

is a

1. banana, if A and B meet in exactly two points, and there normally.

2. fence, if A and B meet at exactly one point, and there normally.

3. tacnode, if A and B meet at most at two points, there is one point q ∈ A ∩ B

such that A + B has a node of genus g > 2 at q, and if there is a second point of

intersection, then A and B meet there transversally.

J

Now we describe the scaling of the hunt in the flush case.
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Lemma 1.3.12. Let (S,∆) be a log pair such that S is a rank one log del Pezzo surface.

Let f : T → S be an extraction of relative Picard number one of an irreducible divisor E

of the minimal resolution. The cone of curves of T has two edges, one generated by the

class of E, and let the other be generated by the class of R. Let x = f(E), Γ such that

KT + Γ = f ∗(KS + ∆) and Γε = Γ + εE, where 0 < ε � 1. Assume that −(KS + ∆) is

ample, then

1. R is KT -negative and contractible, hence there is a rational curve Σ that generates

the same ray. Let π be the contraction morphism.

2. KT + Γε is anti-ample.

3. Γε is E negative.

4. There is a unique rational number λ such that with Γ′ = λΓε, KT + Γ′ is R trivial.

λ > 1.

5. KT + Γ′ is E negative.

6. π is either birational or a P1-fibration (called “net”).

7. If π : T → S1 is birational, and ∆1 = π(Γ′), then KS1 + ∆1 is anti-ample and S1 is

a rank one log del Pezzo.

8. If (S,∆) does not have a tiger in a surface Y that dominates T , then neither do

(T,Γ′) and (S1,∆1).
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Proof. See [KM99, Definition-Lemma 8.2.5].

Definition 1.3.13. We call the above transformations (f, π) a hunt step (in the flush case)

for (S,∆) if e(E;S,∆) is maximal among exceptional divisors of the minimal resolution

of S. There might be multiple choices. If x is a chain singularity we allow any choice

E that is not a (−2) curve (this is always possible). If x is a non chain singularity we

require E to be the central curve (which has maximal coefficient by Lemma A.0.14). If

two points have the same coefficient, we can pick one at our choice, but unless stated

otherwise our choice will be a chain singularity that allows us to extract the curve with

lowest self-intersection. J

We fix now the notation that we will always use when running the hunt in the

flush case.

Notation. We always start from a surface without boundary, so ∆0 = ∅. We index by

(fi, πi+1) the next hunt step for (Si,∆i). Define:

• xi = f(Ei+1) ∈ Si

• qi+1 = πi+1(Σi+1) ∈ Si+1.

• Γi+1 to be the log pullback of ∆i: KTi+1
+ Γi+1 = f ∗i (KSi

+ ∆i).

• ∆i+1 = πi+1(Γ
′
i+1); it satisfies KTi+1

+ Γ′i+1 = π∗i+1(KSi+1
+ ∆i+1).

• A1 = π1(E1) ⊂ S1 and B2 = π2(E2) ⊂ S2.

• A2 the strict transform of A1 on S2.
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Let a1, b2 be the coefficients of A1, B2 in ∆1, ∆2 (which are also the coefficients of E1,

E2 in Γ′1, Γ′2) and a2 the coefficient of A2 in ∆2. We remark that a1, b2 < a2 by the flush

condition and the previous scaling. Let ei be the coefficient of Ei+1 in (Si+1,Γi+1). This

is also the coefficient of the pair (Si,∆i). Finally, we indicate by Σi the image of Σi in S0

or S1, depending on the context.

We are ready to describe the first two hunt steps in the flush case.

Proposition 1.3.14. Suppose that S is a rank one log del Pezzo surface that has no tigers

in S̃. For the first hunt step: KT1 +E1 is divisorially log terminal, KT1 + Γ′1 is flush and

one of the following holds.

1. T1 is a net.

Otherwise KS1 + a1A1 is flush and one of the following holds

2. g(A1) > 1.

3. g(A1) = 1 and A1 has an ordinary node at q = q1.

4. g(A1) = 1 and A1 has ordinary cusp at q = q1.

5. g(A1) = 0 and KS1 + A1 is divisorially log terminal.

For the second hunt step one of the following holds.

6. T2 is a net.
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7. A1 is contracted by π2, KT2 +Γ′2 is flush, KS1 +A1 is divisorially log terminal, q2 is a

smooth point of S2, B2 is singular at q2 with a unibranch singularity, and KS2 + ∆2

is flush away from q2, but is not level at q2. Σ2 is the only exceptional divisor at

which KS2 + ∆2 fails to be flush.

8. ∆2 has two components.

Suppose that in this last case that a2 + b2 > 1. Then Σ2 ∩ Sing(A1) = ∅, KT2 + Γ′2

is flush away from Sing(A1). KS2 + ∆2 is flush away from π2(Sing(A1)), and at least one

of −(KS2 + A2) or −(KS2 +B2) is ample. Also, one of the following holds:

9. (S2, A2 +B2) is a fence.

10. (S2, A2 +B2) is a banana, KS2 +B2 is plt, and x1 ∈ A.

11. (S2, A2 + B2) is a tacnode, with tacnode at q2. KS2 + B2 is plt. If x1 ∈ A1,

A2 ∩B2 = {x1, q2}. If x1 /∈ A1 then A2 ∩B2 = {q2}.

Proof. See [KM99, Proposition 8.4.7].

Remark 1.3.1. In Proposition 1.3.14 we only need the hypothesis that S has no tigers

in S̃ to ensure that the ∆i are always boundaries. Therefore the proposition still holds

under any assumptions that guarantees the same.
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1.3.3 The first two hunt steps in the level case

In classifying log del Pezzo surfaces with tigers we will use a slightly different

version of the hunt. In particular, we change the scaling convention so that the ∆i remain

boundary divisors.

Let (S,C) be a pair such that S is a rank one log del Pezzo surface and C is a

reduced curve in S. Suppose that KS + C is anti-nef and that (S,C) is log canonical. In

particular, C is a tiger of S and (S,C) is level. Let T1 → S be the extraction of a divisor

of coefficient maximal coefficient for (S,C). This divisor lies in the minimal resolution by

Lemma A.0.6, Lemma A.0.7 and Lemma 1.3.4. We write KT1 +C + e1E1 = f ∗0 (KS +C).

Lemma 1.3.12 (1) gives us a KT -negative contraction π1. Assume that π1 : T1 → S1

is a birational morphism and let A1 = π1(E1). Assume also that π1 does not contract

the strict transform of C in T1 and call C1 its image in S1. We define a1 > e1 be such

that (KT1 + C + a1E1) is π1-trivial. If a1 > 1, then KS1 + C1 + A1 is log canonical, since

KT1 +C+E1 is log canonical and Σ1 has negative coefficient. In particular, KS1 +C1 +A1

is anti-nef and level. In this case we re-define a1 = 1 and go to the second hunt step. If

instead a1 6 1, KS1 + C1 + a1A1 is anti-nef and KT1 + C + E1 = π∗1(KS1 + C1 + a1A1).

The pair (S1, C1 + a1A1) is level by Lemma 1.3.3. In particular, (S1, C1 + A1) is almost

log canonical at singular points by Lemma 1.3.8. This concludes the first hunt step in the

level case. For the second hunt step, let f1 : T2 → S1 be the extraction of the exceptional
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divisor of maximal coefficient E2 in S̃1 relative to the pair (S1, C1 + a1A1). We write

KT2 + C1 + a1A1 + e2E2 = f ∗(KS1 + C1 + a1A1)

Suppose that π2 : T2 → S1 is a birational transformation and that neither C1

or A1 get contracted. Call C2 and A2 the strict transforms of C and A1 in S2. Let

B2 = π2(E2). Define again b2 > e2 so that KT1 + C1 + b2E2 is π2-trivial. As above, if

b2 > 1 then KS2 + C2 + A2 + B2 is log canonical and anti-nef. We may therefore assume

that b2 6 1. Then KS2 +C2 +A2 + b2B2 is anti-nef, and level by Lemma 1.3.3. It follows

that (S2, C2 + A2 + B2) is almost log canonical at singular points by Lemma 1.3.8. At

smooth points, we can control singularities by Lemma 1.3.9.

1.3.4 Classification of the hunt contractions in the flush case

In this sub-section we describe the geometry of the contractions that appear during

a hunt in the flush case. The description we give is étale local. First, we explain our

setting, following [KM99, Chapter 11]. Let T be a Q-factorial klt projective surface and

let π : T → S be a proper birational contraction of a KT extremal ray. Denote by

Σ the exceptional divisor and let q be the image of Σ. We will be concerned with the

étale local description of T around Σ. Let W ⊂ T be a curve with smooth components

crossing normally. Assume W has at most two irreducible components X, Y and that

KT + cX + dY is π-trivial and flush, with 0 < c, d < 1. Assume also that π|W is finite
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(which is to say that Σ is not a component of W ). Thus KS +cX+dY is flush by Lemma

1.3.3. Let D be the image of W in S and let h : T̃ → S̃ be the induced map between the

minimal resolutions.

Before stating the classification, we need to give a name to some particular geo-

metric configurations.

Definition 1.3.15. Let S be a surface, and D be a curve in S. Choose a point q ∈ D. If

D has two smooth branches X and Y meeting to order g at q we say that D has a node

of order g. If g > 1 we have to blow g − 1 times to make X + Y have normal crossings.

We call this configuration 0. If we further blow up once at X ∩ Y we reach configuration

I. Now blow up at X ∩ Σ, where Σ is the unique (−1) curve. This is configuration II.

We denote by (II) and a string of x and y (for example (II, x, x, y)) a configuration that

is reached by starting with configuration II and then blowing up the intersection of the

unique (−1) curve with the branch corresponding to the letter of the string. J

Definition 1.3.16. Let S be a surface, and D be a curve in S. Choose a point q ∈ D.

If D has a unibranch double point at q we say D has a cusp of order g. We call X the

branch of D at q. We need g blowups along X to remove its singularity. We call this

configuration I. Next, we blow up at X ∩ Σ, where as usual Σ is the unique (−1) curve.

This is configuration II. Next, we blow up again at X ∩ Σ, reaching configuration III.

We have now three choices:

1. If we blow up at the intersection with the unique exceptional (−3) curve, we reach

configuration U .
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2. If we blow up at X ∩ Σ then we reach configuration V .

3. If we blow up at the intersection with the unique (−2) curve, we reach configuration

W .

After this, at each step we may only choose to blow up one of two points on the last (−1)

curve: either the nearest point to X, in which case we add an n to the string of letters

we have formed so far, or the farthest point from X, in which case we add an f . J

Notation. If p is a chain singularity, we mark with a prime the component touched by

Σ and we underline the component touched by D.

Going back to our original setting, if D has multiplicity two at q, then q is smooth

and we have the following classification.

Lemma 1.3.17. Suppose D has a node of order g. One of the following holds:

1. T has type I or 0, and c+ d = 1.

2. g > 2, T has type II and gd+ (g + 1)c = g + 1.

g = 1, KT + Σ +X + Y is log canonical and either

3. T has type (II, xr−1) with r > 1, there is a unique singularity, an Ar point, X

meets Σ at a smooth point, Y meets Σ at the Ar point, which has type (2, ..., 2′) and

c+ d
r+1

= 1.
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4. Σ meets X and Y each at a singular point of T , and those are the only singularities

along Σ.

Proof. See [KM99, Lemma 11.1.1].

Lemma 1.3.18. Suppose D has a cusp of order g. Then either

1. T has type I and c = 1/2.

2. T has type II and c = (g + 1)/(2g + 1).

3. T has type III and c = (g + 1)/(2g + 1).

4. g = 1, T has type u and c = 3/4 or g = 2 and c = 9/14.

5. g = 1, T has type v and c = 5/7 or g = 2 and c = 7/11.

6. g = 1, T has type w and c = 7/9.

7. g = 1, T has type (u;n) and c = 11/14.

8. g = 1, T has type (v; f) and c = 10/13.

9. g = 1, T has type (v; f 2) and c = 15/19.

10. g = 1, T has type (v;n) and c = 3/4.

11. g = 1, T has type (v;n2) and c = 7/9.

Proof. See [KM99, Lemma 11.2.1].
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In case D has multiplicity three, we only have the following two cases.

Lemma 1.3.19. Suppose that D has multiplicity three. If D has two branches at q, then

one branch has a double point, a simple cusp, and the other is smooth. If X is the branch

with the cusp, then Σ meets X normally at one smooth point, Σ contains two singularities

(2) and (3), and Y meets the −2 curve, and is disjoint from Σ on T̃ .

Proof. See [KM99, Lemma 11.3.2].

Lemma 1.3.20. Suppose that D has multiplicity three. If D is unibranch, then either

1. Σ has singularities (3, 2′), (3) and meets X normally at a smooth point

2. Σ has singularities (3), (2) and on the minimal resolution X meets Σ normally at

the intersection of Σ and the −2 curve.

Proof. See [KM99, Lemma 11.3.3].

The last type of contraction we are interested in are fibrations (which we call

“nets”, following [KM99]). Let π : T → C be a P1-fibration of relative Picard number

one, with T a normal surface. Let π̃ be the composition π̃ : T̃ → T → C, where T̃ is

the minimal resolution of T . We describe the fiber F of T̃ above p ∈ C as the sequence

k(−a) + l(−b) + · · ·+m(−c), by which we mean a chain of curves of self intersection −a,

−b and so on, with multiplicities k, l and so on.

We recall here the following definition from Appendix A.

27



Definition 1.3.21. A non Du Val klt singularity with coefficient strictly less than 1/2 is

called almost Du Val. They all are of the form (3, Ak) for some k. J

Lemma 1.3.22. Assume T is klt, G is a multiple fiber of π of multiplicity m, and G

contains a cyclic singularity, either Du Val or almost Du Val. If e(T ) < 2/3 then G is

one of the following:

If (T,G) is not dlt at any singular point:

1. (2, 2′, 2),m = 2.

2. (3, 2′, 2, 2),m = 3.

If (T,G) is dlt at one singular point, but not dlt:

3. (2′, z),m = 4. z is a non chain singularity, with center -2 and branches (2), (2) and

(2, · · · , 3′) (or (3′)).

4. (2, 3′, 2; 2′),m = 4.

If (T,G) is dlt:

5. (Ak; (k + 1)′), k 6 4,m = k + 1. The fiber is −(k + 1) + [k + 1](−1) + k(−2) + [k −

1](−2) + · · ·+ (−2).

6. (2, 3′; 2′, 3),m = 5. The fiber is (−2) + 2(−3) + 5(−1) + 3(−2) + (−3).

7. (3, 2, 2′; 4′, 2),m = 7. The fiber is (−3) + 3(−2) + 5(−2) + 7(−1) + 2(−4) + (−2).

8. (4, 2′; 3′, 2, 2),m = 7. The fiber is (−4) + 4(−2) + 3(−1) + 7(−3) + 2(−2) + (−2).
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Proof. See [KM99, Lemma 11.5.9].

Lemma 1.3.23. If G is a multiple fiber of multiplicity three and the coefficient e(T ) <

2/3, then G is one of the fibers of the above classification.

Proof. See [KM99, Lemma 11.5.13].

1.3.5 Useful facts

Here we collect some results that are somehow unrelated to the previous discussion,

but that will be useful later on.

Lemma 1.3.24. Let S be a rank one log del Pezzo surface and S̃ its minimal resolution.

Then K2
S̃

+ ρ(S̃) = 10.

Proof. Run the minimal model program on S̃. The end result Smin is a Mori fiber space

because S̃ is birational to S. Then Smin is either P2 or a ruled surface. In this last cast it’s

a Hirzebruch surface because it’s rational. In any case, it follows that K2
Smin

+ρ(Smin) = 10

and a sequence of smooth blow ups does not change the equality.

Lemma 1.3.25. Let S be a rank one log del Pezzo surface. Let n be the number of

exceptional components in the minimal resolution. Then

K2
S = 9− n+

∑
i

ei(−2− E2
i )

where ei is the coefficient of the divisor Ei. If e(S) < 1/2, u is the number of

exceptional components coming from Du Val singualrities, and nr is the number of points

29



of type (3, Ar), then the above formula takes the form

K2
S = 9− u−

∑
r

nr(r + 1)
(

1− 1

2r + 3

)

Proof. Obvious.

Lemma 1.3.26. Let S be a rank one log del Pezzo surface and S̃ its minimal resolution.

Then ρ(S̃) > 11 if S has no tigers in S̃.

Proof. This follows from [KM99, (10.3)].

Lemma 1.3.27. Let p be a klt singularity with n components and coefficient e < 3/5.

Then n >
∑
ei(−2− E2

i ) and equality holds if and only if p is of type (4).

Proof. Obvious by Proposition A.0.15.

Lemma 1.3.28. Suppose C is a smooth rational curve in the smooth locus of a rank one

log del Pezzo surface S. Then either S = P2 or S = Fn, in which case C ∈ |σn|.

Proof. See [KM99, Lemma 13.7].
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Chapter 2

Log del Pezzo surfaces without tigers

We will assume throughout this chapter that S0 is a rank one log del Pezzo surface

with no tigers in S̃0. Our goal is to explicitly classify all such surfaces. To this end we

will apply the hunt in the flush case (see Subsection 1.3.2) and carefully analyze each step

(all notation is fixed as in ()). We start by showing that T1 is not a net, in analogy with

[KM99, Chapter 14].

2.1 T1 a net

Here we assume that T1 is a net and, if char(k) 6= 3, we derive a contradiction (see

Proposition 2.1.3).

Recall that KT1 + a1E1 is flush, klt and anti-nef by Proposition 1.3.14. We start

with the following easy observation.
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Lemma 2.1.1. The f0-exceptional divisor E1 is not contained in a fiber of π1. Let F be

the general fiber of π1 and consider d = F · E1. Then d > 3 and e0 < a1 = 2/d.

Proof. The proof of [KM99, Lemma 14.2] applies independently of the characteristic, and

we briefly recall it here. Since E1 is f0-exceptional, E2
1 < 0 and thus E1 cannot be a fiber

of π1. It follows then that the two edges of the cone of curves of T1 are generated by F and

E1. Now notice that E2
1 < 0 implies that (KT1 + E1) · E1 < (KT1 + e0E1) · E1. The right

hand side of this inequality is equal to f ∗0 (KS0) · E1 = 0. Therefore (KT1 + E1) · E1 < 0.

On the other hand, (KT1 + E1) · F = −2 + d. The divisor −(KT1 + E1) is not nef

since S0 has no tigers in S̃0, and therefore −2 + d > 0. Since d is clearly an integer, we

get that d > 3. Finally, in order to find a1 we simply solve (KT1 + a1E1) · F = 0.

Lemma 2.1.2. If char(k) 6= 3, then e(S0) > 1/2.

Proof. Suppose that we have e0 < 1/2 instead. By the classification of klt singularities of

low coefficient (see Proposition A.0.15), all singularities are either Du Val or of the form

(3, Ar), for some r > 0. Suppose there are n non Du Val singularities. If n 6 2 then S0

has a tiger by [KM99, Lemma 10.4], so n > 3. In particular there are at least two non

Du Val points on T1, S0 is not Gorenstein and e0 > 1/3. Also, by Lemma 2.1.1, d 6 5.

The first hunt step extracts the (−3) curve E1 from a point with maximal r.

Case 1: Suppose for the moment that r = 0. On T1 we then only have singularities

of type (3) or Du Val. By Lemma 1.3.22, any fiber through a (3) point has multiplicity

three and contains only one other singularity, an A2 point. Since E1 is in the smooth
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locus of T1, m divides d and d = 3. There are at least two (3) points on T1, so that if

we apply Riemann-Hurwitz to the morphism π1|E1 → P1, we see that there are exactly

two multiple fibers. This implies that the Picard number of T̃1 is eight. But then S̃0 has

Picard number eight too and hence S0 has a tiger by Lemma 1.3.26.

Case 2: Hence r > 1 and on the exceptional divisor E1 we only have one singu-

larity, an Ar point. Also, e0 > 2/5, which in turn implies that d 6 4 by Lemma 2.1.1.

Note that a fiber can contain at most two singular points by Lemma 1.3.22, so there is at

least one non Du Val point which is not in the same fiber as the Ar point. Call this point

p and the respective fiber F . The fiber F meets E1 only at smooth points because of the

way we defined p. This tells us that the multiplicity of F can’t be more than four. The

only non Du Val fibers with multiplicity at most four have multiplicity exactly three by

Lemma 1.3.22 and the fact that e0 < 1/2. Hence d is a multiple of three, and so d = 3.

In summary, F has multiplicity exactly three and passes through either just one

singularity of type (3, 2, 2, 2), or two singularities, an A2 point and a (3) point. This

means that p is either of type (3, 2, 2, 2) or (3), and is the only non Du Val point on F .

By the above there is at least another non Du Val point on T1, which we call q. Finally,

let G be the fiber through the Ar point of E1.

Suppose first that q lies on G. By Lemma 1.3.22, the singularities on G are A2

and (3), G has multiplicity three and KT1 +G is dlt. This implies that the intersection of

E1 with G at q is either one or two, depending on whether they meet at opposite ends of

the A2 chain or at the same end. This means that they necessarily intersect at another
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point, but since all other points on E1 are smooth, we get that G ·E1 > 4, contradiction.

Hence q lies on a fiber distinct from F and G, which we call H. Clearly H has

multiplicity three. Notice now that one of the points of intersection of E1 and G is ramified

for π1|E1 , for either they only meet at the Ar point, which is then ramified, or they meet

at another point, which is ramified since it is a smooth point and G is a multiple fiber.

But then applying Riemann-Hurwitz we get a contradiction, since there would be at least

three ramified points, two of which ramified of order three.

Proposition 2.1.3. If char(k) 6= 3 then T1 is not a net.

Proof. Suppose T1 is a net. By Lemma 2.1.2, e(S0) > 1/2. By Lemma 2.1.1, d = 3 and

e(S0) < 2/3. The spectral value of each singularity along E1 is at most one by Lemma

A.0.11. The classification of Lemma 1.3.22 therefore applies: either the multiple fiber

meets E1 at smooth points, in which case we can use Lemma 1.3.23 because m = 3, or it

meets E1 in singular points of spectral value less or equal to one, which are cyclic Du Val

or almost Du Val by [KM99, Lemma 8.0.8]. There are four possible cases: T1 has zero,

one, two or three singularities on E1.

Case 1: T1 is smooth along E1. Every multiple fiber has multiplicity three and

either contains just one singularity, a (3, 2, 2, 2) point, or two singularities, a (3) point

and an A2 point. In any case, the singular points on a multiple fiber contribute at most

four to the Picard number of the minimal resolution. By Riemann-Hurwitz applied to

π1|E1 , there are exactly two singular fibers, and hence the Picard number of the minimal

resolution of S0 is at most ten, which contradicts Lemma 1.3.26.
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Case 2: There is just one singular point, which we call p, on E1. Let F be the

the fiber through it.

Case 2a: Let us first make the further assumption that the multiplicity of F is

at least three. Then p is ramified of order three and there can be at most one other

singular fiber, necessarily of multiplicity three. As we saw above, the singular points of

this other fiber contribute to the Picard number of the minimal resolution by at most four.

Therefore, the minimal resolution of T1 must have at least five exceptional components

above the singularities in F by Lemma 1.3.26. By Lemma 1.3.22, the list of possibilities

is (A4; 5) and m = 5 or (3, 2, 2; 4, 2) and m = 7 or (2; z) with z a non chain singularity

and m = 4. The first case does not occur: since the spectral value of p is at most one,

p must be the A4 point. Since in this case both KT1 + F and KT1 + E1 are dlt, an easy

computation shows that the intersection F ·E1 can’t be three, which contradicts the fact

that d = 3. In the second case p must be the (3, 2, 2) singularity. Again KT1 +F is dlt and

F can touch either end of the singularity. A computation shows that E1 · F = 3 is only

achieved when both the strict transforms of E1 and F on the minimal resolution touch

the (−3) curve, and do not meet on it. But then the singularity of x0 has to be of the

form (k, 3, 2, 2). Since E1 must be the (−k) curve, and since its coefficient is the highest

due to the definition of the hunt, we must have k > 5. However this gives e0 > 2/3,

contradiction. In the third case p is the (2) point, KT1 + F is dlt at p and F can’t

meet E1 on any other point since m = 4. Under these hypotheses however F · E1 6= 3,

contradiction.
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Case 2b: We now assume that the multiplicity of F is two. By Lemma 1.3.22, F

contains either only one A3 singularity or two A1 singularities. Notice that F can’t meet

E1 on three different points, so there is at least one ramification point on it. Any other

fiber has multiplicity three and contributes by at most four to the Picard number of the

minimal resolution. There must be at least two of them by Lemma 1.3.26, but then this

contradicts Riemann-Hurwitz applied to π1|E1 .

Case 3: Suppose there are exactly two singular points p and q on E1. If p and q

lie on the same fiber, they must be the only points of E1 on the fiber since d = 3 and the

fiber is multiple. In particular, exactly one of them is a ramification point for π1|E1 . Since

both p and q are Du Val or almost Du Val, their fiber contributes by at most four to the

Picard number of the minimal resolution by Lemma 1.3.22. There are then at least two

more singular fibers, each of multiplicity three, contradicting Riemann-Hurwitz. Hence p

and q lie on distinct fibers F and G respectively.

Case 3a: We further suppose there is another multiple fiber, which we call H, nec-

essarily of multiplicity three. Then F and G have multiplicity two by Riemann-Hurwitz.

Again by Lemma 1.3.26 and Lemma 1.3.22, at least one of the singularities on E1, say p, is

an A3 point. Notice F meets transversally the middle component of p and that KT1 +E1 is

dlt. This implies that F ·E1 = 1. Therefore F must intersect E1 on another point, which

is necessarily a smooth point of T1 and which is ramification point of order two for π1|E1 .

Note that x0 can’t have type (2, 2, 2, k, 2, 2, 2) with k > 3 because e(S0) < 2/3, hence G

contains two A1 singularities. H passes through a (3, 2, 2, 2) point by considerations on
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the Picard number. Notice that G is disjoint from E1 on the minimal resolution above the

singular point, since otherwise the A1 point would be a ramification point of order three,

contradicting Riemann-Hurwitz. It follows that G also meets E1 on a point different from

q, which is necessarily a smooth point of ramification of order two. Finally E1 is a (−3)

curve because e0 < 2/3. Contracting all the (−1) curves from the minimal resolution of

T1 we perform nine blowdowns on E1. This means that we reach a Hirzebruch surface,

the image of E1 has self intersection six and is a triple section. But there are no such

surfaces, hence this case is impossible too.

Case 3b: Now assume there are only two singular fibers. One of them contributes

by at least five to the Picard number of the minimal resolution by Lemma 1.3.26. But

this kind of fiber was ruled out in Case 2a.

Case 4: As the last case, suppose there are three singularities p, q and r along

E1. Since x0 is a klt singularity with coefficient less than 2/3, the singularities on E1 are

respectively (2), (2) and (Aj, 3) for some j. The two A1 points p and q can’t lie on the

same fiber F , otherwise KT1 + F is dlt and there is no configuration in which E1 · F = 3.

So F and G contain each two A1 points and KT1 +F +G is dlt. By Lemma 1.3.22 an A1

point and (Aj, 3) can’t lie on the same fiber either. Hence p, q and r lie on different fibers,

say F , G and H. The fibers through the A1 points can’t contain a non chain singularity,

for otherwise m = 4 and there is no way to get E1 · F = 3. Since the (Aj, 3) point can

lie only in fibers of multiplicity at least three, π1|E1 is ramified of order three at r. The

contribution of G to the Picard number of the minimal resolution of T1 must be at least
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five, since there are no more multiple fibers by Riemann-Hurwitz. Then j = 2 and G

contains a (4, 2) point by Lemma 1.3.22. The coefficient of (4, 2) is 4/7 > 1/2, which

contradicts the choice of x0 in the hunt.
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2.2 g(A1) > 1

In the previous section we saw that T1 can’t be a net, so π1 is a birational contrac-

tion. Here we prove:

Proposition 2.2.1. If g(A1) > 1 and char(k) 6= 2, then S0 is the surface of [KM99,

Lemma 15.2].

We will compare the local information we get by the geometry of the hunt con-

traction, and the global information we get from Lemma 1.3.25 to obtain numerical ob-

structions. First note that S0 is not Gorenstein, for otherwise it would have a tiger by

Lemma [KM99, Lemma 10.4]. Hence 1/3 6 e0 < a1. Therefore A1 has either a point of

multiplicity three or a double point by Lemma 1.3.9.

Lemma 2.2.2. A1 cannot have multiplicity three.

Proof. Suppose that A1 has multiplicity three. Then a1 < 1/2 by Lemma 1.3.9 and all

the singularities in S0 are either Du Val or almost Du Val. The possible configurations

for the contraction are given by Lemma 1.3.19 and Lemma 1.3.20.

Assume that π1 is given by Lemma 1.3.19. Then x0 has type (3, 2). Say that on

S0 we have n singularities of type (3), m of type (3, 2) and possibly some Du Val ones.

We compute

K2
S0

=
(KS0 · Σ1)

2

Σ
2

1

=
1

15 · 11

From the push-pull formula we get that K2
S0

= K2
S̃

+ n/3 + 2m/5, but this can’t happen

because there is a factor eleven in the denominator of K2
S0

and K2
S̃

is an integer.
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Now assume that π1 is given by the first case of Lemma 1.3.20 (the second case

is numerically the same as above). Say x0 has type (3, Ar), with r > 1. We have that

KS0 ·Σ1 = −7/15 + (r+ 1)/(2r+ 3). By adjunction Σ
2

1 = −1/15 + (r+ 1)/(2r+ 3). Then,

as above,

K2
S0

=
(r − 6)2

15(2r + 3)(13r + 12)

Since KS0 ·Σ1 < 0, we have that r 6 5, hence the non Du Val singularities can only be of

type (3, Aj) with j 6 r 6 5. One checks that for any r 6 5 Lemma 1.3.25 cannot hold.

Suppose for example that r = 1. Then K2
S0

= 1/75, hence there is a factor twenty five in

the denominator, contradiction by Lemma A.0.15. All the other cases are similar, except

when r = 5. In this case K2
S0

= 1/(3 · 5 · 7 · 11 · 13). For this to be possible, there should

be a singularity of type (3, Aj) for j = 0, 1, 2, 4, 5. But then, again by Lemma 1.3.25 and

Lemma 1.3.27 we get K2
S0
< 0, contradiction.

Now we consider double points of genus g > 2. We analyze them via Lemma 1.3.17

and Lemma 1.3.18. Note that configuration 0 of Lemma 1.3.17 does not arise since E1

is smooth. Also note that configurations I and II are numerically the same in the node

and cusp cases. In these cases we will only discuss cusps since we only use the numerical

properties of the configuration. Let’s start with configuration I, where we allow also g = 1

because it simplifies some work later on.

Lemma 2.2.3. Suppose A1 has a double point and g(A1) > 1. Then configuration I does

not arise.

40



Proof. By Lemma 1.3.17 a1 = 1/2, so that 1/3 6 e0 < 1/2. Therefore x0 is of type (3, Ar)

for some r > 0. The local configuration tells us that

K2
S0

=
(KS0 · Σ1)

2

Σ
2

1

=
(−1 + 2e0)

2

4e0 − 1/g

Lemma 1.3.25 has finitely many solutions thanks to Lemma 1.3.27. By running

a computer program (or by a direct and tedious computation) one sees that the only

solutions for Lemma 1.3.25 are r = 0, g = 1 and r = 1, g = 1.

In the case r = 0, g = 1, A1 is in the smooth locus and is a tiger by adjunction.

So assume r = 1, g = 1. There are three solutions compatible with these numbers: in

the notation of Lemma 1.3.25, we have u = 6, n0 = 2, n1 = 1 or u = 4, n0 = 5, n1 = 1

or u = 2, n0 = 8, n1 = 1. Now we will apply the results of [KM99, Chapter 12] to

our situation. By [KM99, Lemma 12.1] we have that F = ∅ and M ∈ |KS1 + A1| is an

irreducible rational curve that passes through the only singular point on A1, a (2) point.

M also passes through all the non Du Val points of S1, which are all (3) points because

n1 = 1 and ni = 0 for i > 2. Let M be the reduction of M . Since (KS1 + M) ·M < 0

and M passes through a (2) point and at least two (3) points, we have by adjunction

that KS1 +M is dlt and there are exactly two (3) points on M . Hence we are in the case

u = 6, n0 = 2, n1 = 1. Now consider the transformation S1 99K W of [KM99, Lemma-

Definition 12.4]. W is a Gorenstein log del Pezzo of Picard number one. Let C be the

exceptional (−2) curve over the singular point contained in A1. Then, after contracting
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M , C becomes a (−1) curve passing through the intersection of the exceptional curves of

an A2 point. Notice that K2
W = 1 by Lemma 1.3.24 since u = 6 and there is a A2 point.

By the discussion in Appendix B.2, after blowing up the unique base point p of | −KW̃ |

we get an extremal rational elliptic surface. Notice that we must have p = A1 ∩ C since

A1 ≡ C ≡ −KW and the Picard group of W̃ has no torsion. By blowing up p, we get an

elliptic fibration which has I1 and IV among its singular fibers, but this does not appear

in the classification of Theorem B.1.5, contradiction.

Lemma 2.2.4. Suppose A1 has a double point and g(A1) > 2. If char(k) 6= 2 then

configuration II does not arise, unless S0 is the surface described in [KM99, Lemma

15.2].

Proof. By Lemma 1.3.18 we get that e0 < a1 = (g+1)/(2g+1) 6 3/5. By the classification

of klt singularities of low coefficient (see Appendix A and in particular Lemma A.0.15),

either x0 = (2, 3, 2, 2) and g = 2, or x0 = (3, Ag).

Case 1: Suppose that x0 = (3, Ag) and hence e0 < 1/2. The local configuration

tells us that

K2
S0

=
(KS0 · Σ1)

2

Σ
2

1

=
(−1 + 2g+1

2g+3
)2

6g+1
2g+3
− 1

By running a computer program we see that the only solutions to Lemma 1.3.25

are g = 2, u = 3, n0 = 5, n2 = 1 and g = 2, u = 5, n0 = 2, n2 = 1. In any case, we

have g = 2 and u > 0. Again, since a1 = 3/5 > 1/2, let F and M be as in [KM99,

Chapter 12]. A1 is in the smooth locus of S1 by the description of configuration II and
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by the assumption that x0 = (3, Ag). Also, A2
1 = −3 + 9 = 6. It follows by [KM99,

Lemma 12.1.7] that M = ∅. Since (KS1 + F ) · F < 0 and since F passes through all

the non Du Val points, we must be in the case u = 5, n0 = 2. After extracting the two

(−3) curves E2 and E3, |F | is base point free and gives a fibration T → P1 by [KM99,

12.3]. Since the relative Picard number of T is two, there is exactly one reducible fiber

with two irreducible components F1 and F2. All other fibers lie in the smooth locus, since

E2 are E3 are sections. Since all singularities on T are Du Val, F1 and F2 must meet

at an A5 point at the opposite ends of the chain. The component F1 cannot meet both

E1 and E2 since otherwise F2 would be contractible on S1. Therefore assume Fi · Ei = 1

for i = 1, 2. By contracting F2, we reach the Hirzebruch surface F3. Let us denote by a

bar the image of the curves in F3. With this convention, A1 is a double section, E1 is

the negative section and E2 is a positive section disjoint from E1. Depending on whether

F1 ∩A1 = 2 or F1 ∩A1 = 1, we have that A1
2

= 6 or A1
2

= 0 respectively. The first case

cannot happen since numerically A1 ≡ aE1 + 2F and the equation 3a2 − 4a + 6 = 0 has

no solutions. The second case cannot happen either since A2 cannot be a fiber.

Case 2: Suppose now that x0 = (2, 3, 2, 2), which gives e0 = 6/11. For this case,

the argument given in [KM99, Chapter 15] goes through without any changes, but we’ll

show it here too for sake of clarity. Since K2
S0

= 1/(11 · 13), Lemma 1.3.25 implies that

there must be a (3, A5) point to compensate for the factor thirteen in the denominator.

The equality in Lemma 1.3.25 is already satisfied with these two singularities, hence the

additional singular points can only be (4) points by Lemma 1.3.27. By [KM99, Lemma
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12.3] all these additional points need to be on M , and since KS1 + M is negative, there

can be at most one such point. If M passed through a (4) point, M would be smooth by

adjunction. One could then contract M on S1, contradiction. This means that (2, 3, 2, 2)

and (3, A5) are the only singularities in S0, so now one can proceed as in [KM99, Definition-

Lemma 15.2].

Lemma 2.2.5. Suppose A1 has a double point and g(A1) > 2. Then configuration III

does not arise.

Proof. We will only sketch the proof, as the idea behind it is very simple but the com-

putations are rather tedious. By Lemma 1.3.17, a1 = (g + 1)/(2g + 1). We explicitly

know the geometry of configuration III, so that if we were able to determine the type of

singularity at x0 as well, we could compute

K2
S0

=
(KS0 · Σ1)

2

Σ
2

1

One could then use a computer program to see if there are any combinations of

singularities that satisfy Lemma 1.3.25. Note however that the possibilities for x0 are

limited by the fact that e0 < 3/5 and by Lemma A.0.15. One can therefore repeat the

above procedure for each case of the singularity at x0 and conclude. In the following

we only mention the cases in which Lemma 1.3.25 has a solution and the case in which

e0 < 1/2 (which does not yield a solution to Lemma 1.3.25) as an example of the strategy

we just described.
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The only cases that give solutions to Lemma 1.3.25 are x0 = (4) and x0 = (4, 2),

both for g = 2. Suppose first that x0 = (4). By [KM99, Lemma 12.1] we have that

M = ∅. By [KM99, 12.3] F only passes through almost Du Val points. The only solution

to Lemma 1.3.25 that is compatible with (KS1 + F ) · F < 0, is u = 6, n0 = 2 and n1 = 1.

We may run therefore the same argument of Lemma 2.2.4, Case 1. After contracting F2,

however, we reach immediately a contradiction: E1 and E2 are disjoint sections with self

intersections −3 and 4 respectively.

Suppose then that x0 = (4, 2). Then K2
S0

= 2
13·35 . By Lemma 1.3.25 and Lemma

1.3.27 the singular points of S0 are (4, 2), (3, 2), (2), (3, A5) and possibly some (4) points.

Case 1: Suppose there is at least one (4) point. The second hunt step extracts

an exceptional (−4) curve E2, which lies in the smooth locus of T2. We also have that

a2 > b2 > e1 = 1/2. In particular, Proposition 1.3.14 applies.

Case 1a: Suppose furthermore that T2 is a net. E2 is then a multi-section. If E2 is

not a section, then Σ2 ·E2 > 2. This in turn implies that (KT +(3/5)A1+(1/2)E2)·Σ2 > 0,

contradiction. If E2 is instead a section, then T2 is smooth, also a contradiction.

Case 1b: Assume that (S2, A2 + B2) is a fence. Since E2 is in the smooth locus,

and since B2
2 > 0, we must have that Σ2 meets A1 at an Ar point with r > 4, contradicting

the fact that A1 does not contain any such point.

Case 1c: Let (S2, A2 + B2) be a tacnode of genus g. Since E2 is in the smooth

locus and since there is only a (2) point in A1, the genus of the node is exactly one and

we are in either configuration I or II. In any case, B2
2 < 0 since E2

2 = −4, contradiction.
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Since A1 can’t be contracted, and since x1 /∈ A1, the above cases exhaust all the

possibilities in Proposition 1.3.14. Therefore there cannot be a (4) point in S1. This

means that the second hunt step extracts the (−3) curve of the (3, A5) singularity. We

again go over all cases.

Case 2a: Suppose that T2 is a net. Just as in case (1a) we can deduce that E2 is

a section. This however contradicts Lemma 1.3.22.

Case 2b: Assume that (S2, A2 + B2) is a fence. Just as in case (1b) this implies

that B2
2 < 0, contradiction.

Case 2c: Let (S2, A2 + B2) be a tacnode of genus g. The only configuration

compatible with the geometry at hand is II, where Σ2 meets E2 at the A5 point. Therefore

g = 5. This implies that B2 is in the smooth locus of S2, B
2
2 = 6, and the only singular

point of S2 is a (2) point. This contradicts Lemma 1.3.28.

The above cases show that x0 is not a (4) point or a (4, 2) point. We show now,

just as an example, how one can exclude simple based on numerical computations the

case in which e0 < 1/2 (the other cases are involve entirely analogous computations). Let

x0 be of type (3, Ar). Then

K2
S0

=
2(g + r + 2)2

(2g + 1)(2r + 3)(4gr + 4g − 1)

Since there is (2) point and since g−1 = r, in the sum of the singularities of Lemma

1.3.25 we already have a term which is at least 1 + 2g(1− 1
2g+1

). By Lemma 1.3.27 we get

that 8 > 2g(1 − 1
2g+1

) and hence g 6 4. For the case g = 4 note that by Lemma 1.3.25
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we have r = 3, otherwise the right hand side would be negative. By the above we get

K2
S0

= 2/(7 ·9), which means that there would be an (3, A2) point. This again contradicts

Lemma 1.3.25. Suppose g = 3. If 3 6 r 6 5, the 12r + 11 part of the denominator has

big primes in its factorization, contradicting Lemma 1.3.25. If r = 2, then K2
S0

= 2/35,

hence the only non Du Val singularities are of type (3, 2) and (3, 2, 2). However it’s easy

to see that 2/35 = 9− u− (8/5)n1 − (18/7)n2 has no solutions in integers.

Finally, for the case g = 2, running a computer program shows there are no

solutions either.

Lemma 2.2.6. If char(k) 6= 2 and π1 has type U or V , then S0 has a tiger.

Proof. The proof goes almost exactly along the lines of [KM99, Lemma 15.4], with only

minor modifications. In particular, we have that F passes through at least two singular

points (we need char(k) 6= 2 in order to apply [KM99, Lemma 15.3]), M is empty, and

A1 is in the Du Val locus of S1, with at most one singular point on it.

Suppose first that A1 is in the in the smooth locus of S1. By [KM99, Lemma 12.3]

all the non Du Val points on S1 are almost Du Val and F does not pass through Du Val

points. By [KM99, 15.4.1], there can’t be two non Du Val points on F , contradiction.

So there is exactly one Du Val point on A1 (necessarily in A∩F ), and it must be a

(2) point by [KM99, 15.4.1]. Again by [KM99, 15.4.1], there is exactly one other singular

point on F , which is almost Du Val. We can’t be in configuration U , since otherwise

x0 = (2, 3, 2, 2) or x0 = (2, 4, 2, 2). In the first case, the point (4, 2, 2) in configuration U

has higher coefficient, contradicting the choice of x0 in the hunt. In the second case, x0
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has coefficient e(x0) > 2/3, contradicting Lemma 1.3.18. So we are in configuration V and

x0 = (4, 2). Now we compute (KS1 +A1) ·A1 = 5/2 by adjunction. Also, A2
1 = 15/2 by the

description of the configuration. This implies that KS1 ≡ −(2/3)A1 and that K2
S1

= 10/3.

In particular, the only non Du Val point in S2 is a (3) point. By Lemma 1.3.25 applied

to S1 we see that there must be at least two singular components coming from Du Val

points outside A1. Now extract the Du val singularity on A1 and the only non Du Val

singularity. Following the argument in Lemma 2.2.4, Case 1, get a contradiction. In fact,

say E2
1 = −2, E2

2 = −3 and Fi · Ei = 1. By contracting F2 we go to F2, but the image of

E2 is a section of self intersection zero, contradiction.

Proof of Proposition 2.2.1. This follows from Lemma 1.3.17, Lemma 1.3.18 and the lem-

mas above.
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2.3 A1 has a simple cusp

Here we prove:

Proposition 2.3.1. If char(k) 6= 2, 3 and A1 has a cusp of genus one then S̃0 is isomor-

phic to one of the following:

1. Take the cubic C given by Z2X = Y 3 in P2, the line L given by Y = 0 and a line

E meeting C at L ∩ C and two other distinct points p and q. Blow up four times

above [0, 0, 1] along C. This gives the minimal resolution of the Gorenstein log del

Pezzo S(A4). Now blow up twice on p along E. This gives the minimal resolution

of the Gorenstein log del Pezzo surface S(A1 +A5). Next, blow up on the cusp of C

four times along C.

2. Take the cubic C given by Z2X = Y 3 in P2, the line L given by Y = 0 and a line E

meeting C at two points p and q with order two and one respectively. Blow up three

times above [0, 0, 1] along C. This gives the minimal resolution of the Gorenstein log

del Pezzo S(A1 +A2). Now blow up twice above p along E. This gives the minimal

resolution of the Gorenstein log del Pezzo surface S(3A2). Next, blow up on the cusp

of C four times along C.

In the following discussion we always assume that char(k) 6= 2, 3 and we discuss the

case char(k) = 5 separately when needed. First notice that KT1 +a1Σ1 and KS1 +a1A1 are

flush by Proposition 1.3.14. The geometric configurations are described in Lemma 1.3.18.

As case I has been ruled out in Lemma 2.2.3, we may assume that a1 > 2/3. Clearly
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A1 is not the in smooth locus of S1, for otherwise it would be a tiger by adjunction. By

Lemma 1.3.18 we have that 2/3 6 a1 < 4/5. Note that A1 6= Σ2 because Σ2 is smooth.

By Lemma A.0.13 we have that e1 > 1/3, so that a1 + e1 > 1 and the second hunt step

is classified in Proposition 1.3.14. Clearly A2 is still a rational curve with a single cusp,

of genus one, by Proposition 1.3.14. Also, at least one of −(KS2 + A2) and −(KS2 + B2)

is ample, hence −(KS2 +B2) is ample and B2 is smooth.

Lemma 2.3.2. The pair (S2, A2 +B2) is not a fence.

Proof. Assume (S2, A2 +B2) is a fence.

Case 1: Suppose first that A2 is not in the smooth locus of S2. Then, since

KS2 + (2/3)A2 is negative, we have a birational map to a Gorenstein log del Pezzo surface

W by [KM99, Lemma-Definition 12.4]. As usual, we let M be as in [KM99, Chapter

12] (and F = ∅). The rank of W is one more than the difference between the number

of singular points on A2 and the number of irreducible components of M . By [KM99,

Lemma 12.5], no irreducible component of M passes through more than two singular

points. Furthermore 0 < (KS2 + A2) · B2 < 1, hence M meets B2 at least once, and

only at singular points of S2. If the rank of W were more than one, there would be a

component of M which passes through two singular points of A2. This is however absurd,

since it would also meet B2 at a singular point, and therefore it would pass through at

least three singular points. So the rank of W is one. Let G be the exceptional divisor

adjacent to A2. We have that A2 is a cuspidal rational curve in the smooth locus of W ,

A2 ∈ |−KW | and KW ·G = KW ·B2 = −1. If char(k) 6= 5 this contradicts Lemma B.2.4.
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Suppose then that char(k) = 5. In this case W is the Gorenstein log del Pezzo surface

described in Example B.3.1. Therefore W has exactly two singularities, p and q, each of

type A4. Notice that G and B2 meet only once in W and are both nodal, with each a node

at one of p and q. This, however, is impossible by the description of the transformation

S2 99K W .

Case 2: Suppose now that A2 is in the smooth locus of S2. This clearly implies

that S2 is Gorenstein. Notice that since KS2 + B2 is dlt we can immediately rule out

the case char(k) = 5 by the explicit description of S(2A4) in this case (Example B.3.1).

Suppose therefore that char(k) 6= 5. Again using the fact that KS2 +B2 is dlt we deduce

that 0 < B2
2 = −2 + deg(DiffB2

(0))−KS2 ·B2 by adjunction. However KS2 ≡ −A2, hence

deg(DiffB2
(0)) > 1, and there are at least two singular points on B2. By Lemma B.2.4, S2

is S(A1 +A2), and is obtained by taking a flex cubic in P2 and the tangent line to its flex,

blowing up three times to separate them and the blowing down the (−2) curves. However

then we have tigers: if a2 > 5/6 there is a tiger over the singular point of A2, the (−1)

curve of the resolution of the cusp, and otherwise B2 is a tiger as KS2 + (5/6)A2 + B2 is

numerically trivial.

Lemma 2.3.3. The Gorenstein log del Pezzo surface W associated to S1 as in [KM99,

Lemma-Definition 12.4] has rank at least two.

Proof. Suppose W has rank one.

Case 1: Suppose also that A1 contains at least two singular points of S1. By

[KM99, Lemma-Definition 12.4], the image of A1 in W has a cusp and meets two (−1)
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curves. Furthermore these two (−1) curves must meet the image of A1 in W at different

points by [KM99, Lemma 12.1 (7)]. But then we obtain a contradiction by Lemma B.2.4

as in Lemma 2.3.2 Case 1.

Case 2: Suppose now that A1 has just one singularity, which implies that M

of [KM99, Definition-Lemma 12.0] is irreducible by [KM99, Lemma-Definition 12.4 (1)].

Consider the morphism f : Y → S1 extracting the exceptional divisor G adjacent to A1

and the morphism π : Y → W contracting M . Define Γ by KY + Γ = f ∗(KS1 +a1A1) and

Γ′ = λ(Γ+εG) such that KY +Γ′ is π-trivial. Let ∆′ = π(Γ′). Clearly KW +∆′ is negative

by Lemma 1.3.12. Now A1 is in the smooth locus of W and KW ·G = −A1 ·G = −1. If

K2
W > 2, then KW +G is anti-ample because (KW +G) ·A1 < 0, and hence G is a smooth

(−1) curve. If K2
W = 1, we consider the associated extremal rational elliptic surface. For

the moment we would like to show that G is smooth. There are two cases.

Case 2a: Suppose char(k) 6= 5. Then W = S(E8) by Lemma B.2.4. Since the

pullback of G is in | −KW̃ |, it follows by the description of the fibers of Theorem B.1.5

that G is smooth.

Case 2b: Suppose char(k) = 5. Since KS1 + M is negative, M is a smooth

rational curve. Again by Theorem B.1.5 we deduce that either W = S(E8), in which case

we conclude as above, or W = S(2A4). Suppose we have the latter. The fact that the

pullback of G is in |−KW̃ | implies that G is a nodal rational curve, with the node passing

through an A4 point. It is easy to see however that since KS1 +A1 is dlt, and since M is

smooth, there is no way to get such a geometric configuration. Therefore this case does
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not occur either.

In conclusion, G is a smooth (−1) curve. Now, if KW +G is dlt, A1 +G is a fence

and we can proceed as in Lemma 2.3.2.

Otherwise, G meets a unique curve V of the minimal resolution since it’s a fiber

of the associated extremal rational elliptic surface. Let h : Q → W extract V . G is a

(−1) curve in the smooth locus of Q, so we can contract it with r : Q→ W1. Notice that

K2
W1

= K2
W − 1. Scaling again as in Lemma 1.3.12 and repeating the process with A1 and

r(V ), we can induct on K2
W , by Lemma 1.3.12. Eventually we therefore we reach the case

in which KW +G dlt, which we can discard as above via Lemma 2.3.2.

Lemma 2.3.4. S1 is singular along A1 in at least two points and is Du Val outside A1.

Proof. The first part is obvious from the above and second part follows from [KM99,

Lemma 12.5] (compare with [KM99, Lemma 16.3]).

Lemma 2.3.5. S1 is not Gorenstein unless S0 is one of the surfaces described in Propo-

sition 2.3.1.

Proof. From now on we suppose that S1 is Gorenstein. Let’s start by noticing that

(KS1 + A1) · A1 > 1 by adjunction. Since (KS1 + 2/3A1) · A1 < 0, we have that A2
1 > 3.

Note also that K2
S1
> (4/9)A2

1, hence K2
S1

> 2. Also, recall that a1 < 4/5 and e0 > e1 > 0,

so that E2
1 < −2.

Case 1: Suppose that A1 passes through three singularities. By the classification

of klt singularities, these would be either 2A1 + An or A1 + A2 + Ak, with k 6 4. By
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Theorem B.2.2 the only possibilities for S1 are S1 = S(2A1 + A3) or S1 = S(3A1 + D4).

In the first case, 4/5 6 e0 < a1, contradicting the fact that a1 < 4/5. In the second

case a1 > e0 > 2/3. Since (KS1 + A1) · A1 = 3/2 we get that K2
S1

> 3 following the

same reasoning at the beginning of the proof of this lemma, contradicting the fact that

S1 = S(3A1 +D4) implies that K2
S1

= 2.

Case 2: So A1 passes through just two singularities. We start by proving that

they can’t be both A1 points. Suppose by contradiction that both of the singular points

are A1 points. It immediately follows by adjunction that (KS1 + A1) · A1 = 1. Therefore

M · A1 = 1, which implies that KS1 + M is dlt. Notice that M does not contain other

singular points by [KM99, Lemma 12.5]. Extract the (−2) curves of the A1 points and

contract M and one of the extracted curves. The other curve becomes a curve with

self-intersection zero, contradicting the fact that the Picard number is one.

Now we prove that the two singular points on A1 can’t be an A1 and one A2 point

respectively. In fact, by the classification of Theorem B.2.2 and the fact that K2
S1

> 2,

we see that S1 = S(A1 + A2) and K2
S1

= 6. But then Ã1
2

= K2
W > K2

Y = K2
S1

= 6, and

we obtain a contradiction thanks to [KM99, Lemma 16.5].

In summary, so far we have we have shown that if A1 has a (2) point on it, then it

also has either an A3 or an A5, again by the classification of Theorem B.2.2. Configurations

II, u, w, (U ;n), (V ; f), (V ; f 2) of Lemma 1.3.18 do not occur, for otherwise x0 would be

a non chain singularity and e0 > 4/5, contradiction. Now we are left with configurations

V , (V ;n), (V ;n2). We have an improved estimate on a1, namely a1 > 5/7. If K2
S1

> 6,
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we are done as in the case K2
S1

= 6 described above. Also, there are no Gorenstein log

del Pezzo surfaces with K2
S = 5 and at least two singularities, by the list in Theorem

B.2.2. On the other hand, combining KS1 + 5/7A1 6 0 and (KS1 + A1) · A1 > 5/4, we

get that K2
S1

> 3. Hence K2
S1

is either three or four, and the only possibilities for S1 are

S(2A1 + A3), S(A1 + A5) and S(3A2).

Consider M as in [KM99, Chapter 12]. Every component of M contains at least

two singularities by [KM99, Lemma 12.2] and the number of components of M is at

most two by [KM99, Lemma 12.1]. Suppose that M has two components M1 and M2.

Consider W of [KM99, Lemma - Definition 12.4]. Since K2
W = K2

S1
+ 2 6 6, W is either

S(A4) or S(A1 + A2) by Lemma B.2.4. Now M1 + M2 is log canonical at b = M1 ∩M2

and dlt away from b by adjunction. It is easy now to see that there are no compatible

configurations with this geometric description. We may therefore assume that M has only

one component. Now we analyze the possible contractions π1.

Configurations V and (V ;n): We have that E2
1 = −3 since e0 < a1. Recalling

that M ≡ KS1 +A1 one then computes (KS1 +M) ·M = −2/3 if S1 is either S(A1 +A5)

or S(3A2), and (KS1 + M) ·M = −55/64. Adjunction implies that only the first two

cases are possible, and in both of them M passes only through the two singular points

in A1. Furthermore, since M · A1 = (KS1 + A1) · A1 = 4/3 we have that M meets the

same exceptional curves as A1 in S̃1. In the case in which S1 = S(3A2) extract one of

the exceptional divisors E of the A2 points touching A1. By contracting M we get that

W = S(A1 +A2) and the image of E is a curve of self intersection one which touches the
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strict transform of A1 in two points with multiplicities one and two. Working backwards,

one gets the description in Lemma 2.3.1 (a).

Suppose now S1 = S(A1 + A5) and extract the (−2) curve E above the A5 point

which is adjacent to A1. Let W be the surface obtained by contracting M . We have that

W = S(A4) and the image of E is a zero curve. Working backwards, one may see that S

is the surface described in Lemma 2.3.1 (b).

Configuration (V ;n2): Since there is a point of coefficient 2/3 we necessarily

have that E2
1 = −4. If S1 = S(A1 + A5) or S1 = S(3A2), one computes K2

S0
= 1

18·19 ,

which contradicts Lemma 1.3.25. Finally, if S = S1(2A1 + A3), then one computes

(KS1 +M) ·M = −15/16, which is impossible by adjunction.

Lemma 2.3.6. If char(k) 6= 2, 3 then S2 is not a banana or a net.

Proof. The proofs in [KM99, Lemma 16.5, Lemma 16.6] carry through. We just point out

that the argument in [KM99, Lemma 16.5] does not actually use the Bogomolov bound,

and that the reduction to S(A1), S(A1 + A2) and S(A4) still holds without the simply

connected hypothesis thanks to Lemma B.2.2 and Theorem B.1.5.

Proof of Proposition 2.3.1. This follows from Lemmas 2.3.2 - 2.3.6 and Proposition 1.3.14.
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2.4 A1 has a simple node

Throughout this section we suppose that char(k) 6= 2, 3, that A1 has a simple node

and that S0 doesn’t have tigers in S̃0.

Remark 2.4.1. The proof of [KM99, Proposition 13.5] still works in our setting.

We fix notation as in [KM99, Chapter 17].

Notation. Let C and D be the two branches of A1 at the node, and c, d be the points of

T1 where the branches meet Σ1. We can assume that the first two blow ups of h : T̃1 → S1

are along C. Let r + 1 be the initial number of blow ups along C, r > 1. Note that d in

necessarily singular.

Lemma 2.4.1. Notation as above.

1. KT1 + Σ1 + E1 is log canonical.

2. Σ1 has two smooth branches through x0 and meets no other singularities.

3. If c is smooth, then d in an Ar point, r > 1 and a1 = (r + 1)/(r + 2).

4. T1 is singular at some point of E1 \ E1 ∩ Σ1.

5. A1 contains exactly one singularity.

6. S0 has exactly two non Du Val points and e0 > 1/2.

7. a1 > 2/3, and a1 > 4/5, unless we have (3) with r 6 2.
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Proof. This is [KM99, Lemma 17.2]. The same proof applies, using Lemma B.2.5.

Let x0 and y be the non Du Val points on S0, and let z be the singular point of

S1 contained in A1, of index s.

Proposition 2.4.2. (S2, A2 +B2) is a fence. g(A2) = 1 and B2 is smooth.

1. If x1 ∈ A1 then Σ2 meets E2 at a smooth point, and contains a unique singular point

(At, 3, Aj−2) for some t. KT + Σ2 is dlt and Σ2 meets the end of the Aj−2 chain.

(S2, A2 +B2) is given by [KM99, 13.5] and q2 is an At+1 point.

2. If x1 /∈ A1 and A2 is not in the smooth locus of S2, then S2 is obtained by starting

from S(2A1 + A3) (see Lemma B.2.5 for a detailed description of this surface),

picking a (−1) curve B, blowing up on the (−1) curve C 6= B at the A3 point once

and then contracting C. Let A be the nodal curve contained in the smooth locus of

S2. To obtain S1 blow up on the intersection of A B twice along A, then contract

B. To obtain S0 blow up twice along one of the branches of A1 and then contract

A. In particular x0 is a chain singularity.

3. If x1 /∈ A1 and A2 is in the smooth locus of S2, then one of the following holds:

(a) a2 < 6/7 and (S2, A2 +B2) is given by [KM99, 13.5.1], or

(b) S0 is obtained as follows: start with S(A1 + A5) or S(3A2), consider a (−1)

curve B passing through two of the singularities, consider a rational nodal curve

A in the smooth locus, blow up twice on A∩B along B, three times on the node
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of A along the same branch, and then contract all the negative curves with self

intersection less than (−1); or

(c) S0 is obtained as follows: start with S(2A1 + A3), consider a (−1) curve B

passing through two singularities, blow up on A∩B twice along B, blow up on

the node either four or five times along the same branch, the contract as above;

or

(d) S0 is obtained as follows: start with S(2A1 + A3), consider a (−1) curve B

passing through two singularities, blow up three times on A ∩B along B, blow

up four times on the node along the same branch and then contract as above.

In particular, if S2 6= S(A1 + A2) then x0 is a chain singularity.

Proof. Part (1) follows as in [KM99, Proposition 17.3], therefore from now on we assume

that x1 /∈ A1.

Case 1: Suppose also that A2 + B2 has a node of genus g > 2. Then we have

that z ∈ Σ2, a1 = 2/3, g = 2, r = 1, E2
1 6 −3 exactly as in [KM99, Proposition 17.3].

The point x0 is a chain singularity of type (2, 2,−E2
1 , 2), hence E2

1 = −3, for otherwise

the coefficient would be too high. Thus K2
S2

= A2
2 = r+ 4 + g+E2

1 = 4. Now notice that

(KS2 + 2/3A2 + B2) · B2 > 0 because there are no tigers, hence (KS2 + B2) · B2 > −2/3.

By adjunction there are at least two singular points of S2 on B2. By checking the list

in Theorem B.2.2, we see that S2 = S(2A1 + A3) because it’s the only surface with

K2
S = 4 and at least two singularities. But then, applying adjunction again we see that
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B2 has to contain all of these singularities. This implies that x1 is a non chain singularity.

Furthermore, since it’s not Du Val by Lemma 2.4.1, E2
2 6 −3 and e1 > 2/3, contradiction.

Case 2: So we must go to a fence. If A2 is not in the smooth locus of S2, the proof

of [KM99, Proposition 17.3] gives the result. Suppose therefore that A2 is in the smooth

locus. If S2 = S(A1 + A2), the result follows again by the proof of [KM99, Proposition

17.3]. Assume then that S2 6= S(A1 + A2).

Case 2a: Let’s start with the case in which x1 is a non chain singularity. Since S2

has no tigers we must have (KS2+A2+B2)·B2 > 0. It then follows that B2 contains at least

two singularities and they can’t be both (2) points. Looking at the possibilities of [KM99,

Lemma 13.5] and comparing them with the classification of non chain klt singularities, we

see that Σ2 meets E2 at a point of index two, or three if S2 = S(2A1 + A3). If Σ2 meets

E2 at a (2) point, then z = (Ak, 3) and Ẽ2
2 = −3− k, with k > 0. Since S2 6= S(A1 +A2)

we have that A2
2 = K2

S2
6 4, which means that KS̃1

· Ã1 > −3 by adjunction and the

description of the configuration. Hence KS1 · A1 > −3 + 1/(2k + 3). We also have that

(KS1 + A1) · A1 = (2k + 2)/(2k + 3) by adjunction, and therefore by linearity of the

intersection product we get

a1 <
3− 1/(2k + 3)

3− 1/(2k + 3) + (2k + 2)/(2k + 3)
=

3k + 4

4k + 5

One checks that the singularity at x1 has always greater coefficient, contradiction.

Let’s consider now the case where Σ2 meets E2 at a (3) point. If it meets A1 at a

(2) point, then E1 is a (−2) curve, Ã2
1 = 2, KS1 ·A1 = −2 and (KS1 +A1) ·A1 = 1/2. That
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gives us that a1 < 4/5 = e1, contradiction. Otherwise Σ2 meets A1 at an (Ak,−3,−2)

point. By making the same computations as above, we get that Ẽ2
2 = −3− k and

a1 <
3− 2/(3k + 5)

3− 2/(3k + 5) + (3k + 4)/(3k + 5)
=

9k + 13

12k + 17

Again, the singularity at x1 has always greater coefficient, contradiction. The only

remaining case is that Σ2 meets E2 at an A2 point and A1 at a (Ak,−4) point. We do

not treat this case, as it can be ruled out by analogous computations as above.

Case 2b: Let’s consider now the case in which x1 is a chain singularity. Then

the configuration is given by (3) of Lemma 1.3.17, Σ2 meets A1 at an Ak point and

b2 + a2/(k + 1) = 1. Since (KS2 + a2A2 + b2B2) · A2 < 0, we get that

a2 <
K2
S2
− 1

K2
S2
− 1/(k + 1)

We must have K2
S2

> 3, for otherwise a1 < 2/3, contradicting Lemma 2.4.1 (7).

If K2
S2

= 3, then S2 = S(A1 + A5) or S(3A2) by Lemma B.2.2. Also, a1 6 3/4,

again by the above inequality and Lemma 2.4.1. Since B2 is a (−1) curve, we get that

Ẽ2
2 = −2− k, and hence k = 1 because e1 < a2. One computes e1 = 3/5, hence Ẽ2

1 = −4

and r = 2. This is case (b) in Proposition 2.4.2 (3).

Suppose now that K2
S2

= 4, which implies that S2 = S(2A1 + A3). One computes

e1 = 4k
4k+3

. Setting e1 < a2 we get that k = 1 or k = 2, and that a2 < 6/7 or a2 < 9/11

respectively. Suppose that x0 is a chain singularity. It follows from Lemma 2.4.1 that
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a1 = (r + 1)/(r + 2). Let’s start with k = 1. Then Ẽ2
1 = −1− r, and e0 = 2r2−2

2r2+r+1
. The

only solutions to e1 < e0 < a2 are r = 3 or r = 4. This leads to case (c) of Proposition

2.4.2 (3). In the case with k = 2, one finds again r = 3 exactly as above. This is case (d)

of Proposition 2.4.2 (3).

If x0 is a non chain singularity instead there are no solutions, for one can check

that if there are many blow ups at the node, the coefficient is at least 6/7, and if there

are few then the coefficient the coefficient is lower than e1.

Lemma 2.4.3. Suppose that x0 is a non chain singularity. Then x1 ∈ A1 and S0 is

obtained by blowing up the end of the A5 point in S(A1 + A5) along the (−1) curve Y ,

then blowing up the node twice along one branch and then once along the nearest point of

the other branch, and finally contracting down all the K-positive curves.

Proof. The proof is the same as in [KM99, Lemma 17.4], by using Proposition 2.4.2 instead

of [KM99, Proposition 17.3].

We conclude this section by noting now that the same classification as in [KM99,

17.7 - 17.14] carries through, by the previous results.
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2.5 Smooth fences

In this section we collect some useful facts about abstract smooth fences. We will

then apply these results during the hunt in the next sections. Throughout the subsection

(S,X + Y ) will be a smooth fence. By this we mean that S is a rank one log del Pezzo

surface and that X + Y is a fence, with X and Y both smooth rational curves. No

assumption about the existence of tigers and about the characteristic of the ground field

are made. We define α = −(KS + X) ·X and β = −(KS + Y ) · Y . Let’s begin with the

following elementary but fundamental lemma.

Lemma 2.5.1. The following hold:

1. α = 1 if and only if β = 1.

2. α < 1 if and only if β < 1.

3. If β 6= 1 then X2 = 1−α
1−β .

4. If β 6= 1 then (KS + tX) ·X = (t− β)1−α
1−β − 1.

5. If KS + aX + bY is anti-ample and α, β < 1, then a(1− α) + b(1− β) < 1− αβ.

Proof. Since S is rank one and X + Y is a fence, KS + X ≡ −αY and KS + Y ≡ −βX.

Hence KS +X +αY ≡ KS + Y + βX, from which (1− β)X ≡ (1−α)Y . Now the results

follows easily.

Lemma 2.5.2. If α > 0 then Ỹ 2 6= −1.
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Proof. Suppose that Y is a (−1) curve. Then KS · Y > −1, hence (KS + X) · Y > 0. It

follows then that KS +X is nef, contradicting the fact that α > 0.

Lemma 2.5.3. Suppose Y passes through exactly two singular points and X passes

through at least two singular points. Then Ỹ 2 6= 0.

Proof. Suppose by contradiction that Ỹ 2 = 0. Let f : T → S be the extraction of the two

adjacent curves L and M to Y . Since Ỹ 2 = 0, then we have a contraction π : T → P1.

Clearly Y is a fiber and X and the two extracted curves are sections. Since the relative

Picard number of the contraction is two, there is exactly one reducible fiber. However,

since X contains at least two singularities of T , there is a multiple and irreducible fiber

F . This fiber can contain at most two singularities, hence it touches either L or M at a

smooth point, contradiction.

Lemma 2.5.4. X and Y can’t both contain exactly two singularities.

Proof. Suppose they do. Then α, β > 0. Without loss of generality we may assume that

Y 2 6 1. However, this contradicts either Lemma 2.5.2 or Lemma 2.5.3.

Corollary 2.5.5. Let S(X+Y ) be a fence such that X contains at least two singularities

of S and Y contains exactly two singularities, one Du Val and the other a (−n) point.

Then Ỹ 2 6= −1.

Proof. Suppose Ỹ 2 = −1. Let f : T → S be the extraction of the (−n) curve E on Y .

Then the strict transform of Y is the curve that gets contracted in Lemma 1.3.12. Clearly
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we get a birational morphism π : T → S1, and the image of E is a smooth rational curve

in the smooth locus of S1. However, since there are at least two singularities along X, we

get a contradiction by Lemma 1.3.28.

Corollary 2.5.6. Let S(X+Y ) be a fence such that X contains exactly three singularities

and Y contains exactly two singularities. Suppose also that one of the two singularities

on Y , p, is an A1 point. Then Ỹ 2 6= −1.

Proof. Suppose Ỹ 2 = −1. Let f0 : T1 → S be the extraction of the divisor E adjacent to

Y which does not lie over p. As above, let π1 : T1 → S1 be the contraction of Y . We have

that X and E meet once with order two on S1. If E is in the smooth locus of S1, we are

done by Lemma 1.3.28. Otherwise there is a singular point on E. Notice that E is either

a (−1)-curve or a zero curve on S1 since is has self intersection at most (−2) on T1 and

KS1 ·E < 0. It can’t be a (−1) curve, for otherwise it would contract on S1, contradiction.

Therefore it is a zero curve. Let f1 : T2 → S1 be the extraction of the adjacent divisor

G to E. Since E is a zero curve, it is contractible and therefore T2 is a net. Clearly G

is a section. There is at most one singular fiber on T2 since G has at most one singular

point. However there are two singular points in X, which are not contained in G. Since

a multiple fiber can contain at most two singular points, we have a contradiction in this

case too. In conclusion, Ỹ 2 6= −1.

Lemma 2.5.7. Suppose that X contains at least three singularities and that Y contains

exactly two singularities. Then β 6 2/3.
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Proof. Suppose β > 2/3. Then there is an A1 singularity on Y by adjunction. Since X

has at least three singularities α 6 1/2, so that Y 2 = 1−β
1−α < 1. Therefore Ỹ 2 is either

zero or negative one and we can conclude by Lemmas 2.5.6 and 2.5.3.

Lemma 2.5.8. Suppose that X contains exactly three singularities and that Y contains

exactly two singularities. Then α 6 1/6, and if α > 0 then β < α.

Proof. Let’s start by noticing that if α 6 β, then Y 2 6 1 by Lemma 2.5.1. Therefore Y

must be a (−1) curve by Lemma 2.5.3. In that case we must have α 6 0 by Lemma 2.5.2.

It remains to see that α 6 1/6. Suppose that α > 1/6. We must have β < α for

otherwise α 6 0 by the previous remark. By adjunction we see that the singularities on

X are two A1 points and a point of index k, with 2 6 k 6 5. A simple local computation

shows that X2 = l/k, with k and l coprime. Since α = 1/k by adjunction, we also have

that X2 = (k−1)/k
1−β by Lemma 2.5.1. This leads to β = 1 − k−1

l
. By the above β < α,

therefore k−1
l
> k−1

k
and l < k. But then β 6 0, contradiction by adjunction.

Lemma 2.5.9. Suppose that X contains exactly three singularities and that Y contains

exactly two singularities. Then KS + (4/5)X + (2/3)Y is nef.

Proof. Clearly α < 1 by adjunction. Suppose by contradiction that KS+(4/5)X+(2/3)Y

is anti-ample. By Lemma 2.5.1, we have that (4/5)α + (2/3)β − αβ > 7/15. Notice that

α 6 1/6 by Lemma 2.5.8 and that β 6 2/3 by Lemma 2.5.7. But then

7/15 = (4/5) · (1/6) + (2/3) · (2/3)− (1/6) · (2/3) > (4/5)α + (2/3)β − αβ > 7/15
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which is a contradiction.

Lemma 2.5.10. If X contains at most one singularity, so does Y .

Proof. Suppose Y contains at least two singularities. Then β 6 1 < α, but this can’t

happen by Lemma 2.5.1.

Now we characterize smooth fences with that contain exactly one singular points

on each branch.

Lemma 2.5.11. Suppose that X and Y contain both exactly one singular point and as-

sume Y 2 6 X2. Then S̃ is obtained as follows: on the Hirzebruch surface Fn pick the

section with negative self intersection C, choose a disjoint section D (which has neces-

sarily positive self intersection) and choose a fiber F ; now blow up once at F ∩ C or

F ∩D, then blow up once more at the intersection of the exceptional divisor and F and

keep blowing up at either end of the (−1) curve. To get S we contract all the K-positive

curves. X will be the strict transform of D and Y will be the strict transform of a fiber

different from F .

Proof. Notice that Y is a curve with zero self intersection on the minimal resolution since

Y 2 6 1 and Y passes exactly through one singularity. Therefore, after extracting it’s

adjacent divisor E, we get a net T . It’s clear that Y is a fiber, X and E are sections.

The divisor E does not lie in the smooth locus of T , for otherwise T would be smooth.

Therefore E passes through a unique singularity, which lies on the same fiber as the
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singularity contained in X. Now the result easily follows from running a relative MMP

on the minimal resolution of T , just as in [KM99, 11.5.4].
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2.6 A1 is smooth

In this section we classify all cases in which A1 is smooth. Recall that KS1 + a1A1

is flush and that KS1 + A1 is dlt by Proposition 1.3.14. Since S0 has no tigers in S̃0, we

must have (KS1 + A1) · A1 > 0. We deduce then by adjunction that A1 contains at least

three singularities. On the other hand, by the description of klt singularities and by the

description of the hunt contractions, A1 contains at most four singularities. Most of this

subsection is devoted to proving the following proposition.

Proposition 2.6.1. Suppose char(k) 6= 2, 3. If A1 is smooth, then A1 contains exactly

three singularities and (S2, A2 +B2) is a smooth banana.

Let’s start with a preliminary lemma.

Lemma 2.6.2. Ã2
1 > −1, a1 > 2/3, e1 > 1/2.

Proof. Ã2
1 > −1 is clear, since KS1 · A1 < 0.

Notice that the lemma follows from [KM99, Lemma 18.2.4] in the case in which A1

contains three singularities of S1. Suppose then that A1 contains four singularities. This

implies that x0 is a non chain singularity and that Σ1 meets E1 at a smooth point. Let’s

start by showing that a1 > 2/3. If e0 6= 1/2 then a1 > e0 > 2/3 and we are done. Suppose

that e0 = 1/2. If there was a chain singularity with maximal coefficient we would have

chosen that singularity in the hunt by Definition 1.3.13. Therefore all chain singularities

are either Du Val or almost Du Val. Let the branches of x0 be (2), (2) and (Ar, 3). In

order to create the fourth singular point, there is a (3, Ak) point (with possibly k = 0)
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in S0. If k > 1 and Σ1 meets the end corresponding to a (−2)-curve, then a1 > 2/3.

Suppose therefore that Σ1 meets the (−3) curve. Then KS0 ·Σ1 = −1/2+(k+1)/(2k+3)

and Σ
2

1 = −(k + 2)/(2k + 3) + r + 3/2. By Lemma 1.3.25 and the estimate K2
S0
> 0 we

immediately get r + k 6 4. To rule out each one of these cases, one computes:

K2
S0

=
(KS0 · Σ1)

2

Σ
2

1

=
1

2(2k + 3)(4k + 4kr + 6r + 5)

The only solutions to Lemma 1.3.25 are given by k = r = 0, in which case there

must be three extra (3, 2) points and no other singularities. In this situation, a1 = 2/3

and the (3) point on A1 has coefficient 5/9. The second hunt step extracts this divisor,

which we call E2.

Case 1: Suppose that T2 is a net. Then E2 is a multi-section. A1 is not a fiber

since it contains three singular points. Since (KT2 + (2/3)A1 + (5/9)E2) · F < 0 for the

general fiber, and since E2 cannot be a section, we see that A1 must be a section. There

are therefore three triple fibers, each containing a (3, 2) and an A1 point. This implies

that E2 is a triple section, which is ramified at least in three points with order three.

This, however, contradicts Riemann-Hurwitz.

Case 2: Suppose that π2 : T2 → S2 is a birational contraction. The curve A1 is

not contracted since it contains three (2) points. (S2, A2 + B2) cannot be a banana, for

otherwise B2 would be in the smooth locus of S2, contradicting Lemma 1.3.28. (S2, A2 +

B2) cannot be a tacnode because the curve A1 only contains A1 singularities and E2 is
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in the smooth locus of T2. (S2, A2 +B2) cannot be a smooth fence by Lemma 2.5.10 and

cannot be a singular fence either by the description of the singularities in S2. Therefore

we get a contradiction by Proposition 1.3.14.

Let’s now show that e1 > 1/2. If there is either a non Du Val point or a point

of index at least four on A1, we conclude by Lemma A.0.13. If not, then E1 is not a

(−2) curve, for otherwise e0 = 0. If there is a branch of index three in x0, we get that

a1 > e0 > 3/4 and we conclude again by Lemma A.0.13. Suppose therefore that the three

branches of x0 are all (2) points. If E2
1 6 −4 we have that a1 > e0 > 4/5, so that e1 > 1/2

by Lemma A.0.13. If not, E2
1 = −3 and e0 = 2/3. The fourth singular point on A1 can’t

be (2), for otherwise there would be a tiger, hence it’s (2, 2). That means that Σ1 meets

the first curve of an (Ak, 3, 2) singularity, with k possibly zero. Now we can compute

KS1 · A1 = −k and A2
1 = k + 1/6, hence K2

S1
= 6k2/(6k + 1). If we had e1 6 1/2, using

Lemma 1.3.25 one obtains immediately a contradiction.

Lemma 2.6.3. (S2, A2 +B2) is not a tacnode.

Proof. Suppose that S2 is a tacnode and define l so that A1 is a (l − 2) curve. As in

[KM99, Lemma 18.3 - 18.5], one shows that

1. S1 is Du Val along A1.

2. (KS1 + A1) · A1 > l/3 > 1/3.

3. (KS1 + (3/4)A1) · A1 > 0.
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By Lemma 1.3.17 we have that c+ dg/(g+ 1) = 1, where d is the coefficient of the

branch containing the Ag point. Since a2 > 2/3 and b2 > 1/2, the only possibility is that

g = 2 and the singularity lies on the curve A1 (in other words, c = b2 and d = a2).

Case 1: Suppose that A1 contains exactly three singular points. Let the two

singular points that are not contained in Σ1 be an At and an Am point respectively, with

t > m. By adjunction (KS1 + A1) · A1 < 2/3, hence l = 1. Since S1 is Du Val along

A1, we have that KS1 · A1 = −1 and A2
1 = −1/3 + t/(t + 1) + m/(m + 1). However

(KS1 + 3/4A1) · A1 > 0, hence −1− 1/4 + 3/4(t/(t+ 1) +m/(m+ 1)) > 0. This implies

that t/(t+ 1) +m/(m+ 1) > 5/3. Now recall that b2 + (2/3)a2 = 1. Since b2 > a2t/(t+ 1)

by Lemma A.0.13 and since a2 > 2/3, we have that t/t(+1) < 5/6, which contradicts the

previous inequality.

Case 2: Let’s consider the case in which A1 contains four singular points. Then x0

is necessarily a non chain singularity. It follows by adjunction that (KS1 +A1) ·A1 < 2/3

and therefore l = 1. Also, e0 = 2/3 since a1 < 3/4. This implies that E2
1 = −2 by

inspecting all non chain singularities of coefficient 2/3. The fourth singularity on A1

is necessarily created by contracting Σ1, which meets E1 at a smooth point and meets a

(3, Ak) point at its (−3) curve. But then KS0 ·Σ1 > −1+1/3+2/3 = 0, contradiction.

The next step towards the proof of Proposition 2.6.1 is to prove that S2(A2 +B2)

can’t be a fence. The main tools for this will be the results in Section 2.5. Let’s start

with the following.

Lemma 2.6.4. Suppose that S2(A2 +B2) is a fence and x1 /∈ A1. Then Σ2 can’t meet E2
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at an Ar point and A1 at a smooth point.

Proof. Suppose it does. Then a2 + b2/(r+1) = 1, hence b2 < (r+1)/(r+2). Since S0 has

no tigers in S̃0, B2 contains at least two singular points. This implies that B2 contains

exactly two singular points and that x1 is a non chain singularity. We know from Lemma

2.6.2 that e1 > 1/2, which implies that e1 > 2/3 since x0 is a non chain singularity.

Therefore b2 > e1 > 2/3. The two singular points on B2 can’t be both A1 points because

S0 would have a tiger, hence r 6 4 by the classification of klt singularities. Note also that

r 6= 1 because b2 > 2/3, so that the two singular points on B2 are a (2) point and a point

of index d, with 3 6 d 6 5. But then we conclude by Lemma 2.5.7.

Lemma 2.6.5. Suppose that S2(A2 +B2) is a fence and x1 /∈ A1. Then Σ2 can’t meet E2

at a smooth point and A1 at an Ar point.

Proof. Suppose it does. Then a2/(r + 1) + b2 = 1, hence a2 > (r + 1)/(r + 2) > b2. On

the other hand (KS1 +A1) ·Σ2 = −1 + e1 + 1/(r+ 1) > 0, hence e1 > r/(r+ 1). If x1 is a

non chain singularity, its coefficient is a rational number of the form m/(m+ 1) for some

m by [KM99, Lemma 8.3.9], contradicting the inequality (r+ 1)/(r+ 2) > e1 > r/(r+ 1).

So x1 is a chain singularity, and A1 must contain four singular points by Lemma 2.5.4.

Let’s proceed by cases on r.

Case 1: Suppose r = 1. Then 1/2 < e1 < 2/3. Since B2
2 > 0, we necessarily have

that E2
2 = −3, hence B̃2 is a (−1) curve. It follows by Lemma 2.5.2 that α 6 0. This, on

the other hand, implies that the (2) point that gets contracted by Σ2 is a branch of the

non chain singularity x0. If b2 < 3/5, then x1 is of the form (2, 3, Ak) for 2 6 k 6 4, but
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this is impossible by Lemma 2.5.6. So b2 > 3/5, and we also get that e0 < a2 6 4/5. This

implies that e0 is either 2/3 or 3/4.

Case 1a: Suppose e0 = 3/4. Then by e0/2 + b2 < 1 we get that b2 < 5/8. By

inspecting all non chain singularities of coefficient 3/4 we may conclude that the branches

of x0 are (2), (2) and (2, 2), for otherwise one of them would have been chosen in the

second hunt step. Since α 6 0, the fourth singularity on A1 has index at least six. But

then it would be chosen by the second hunt step, contradiction.

Case 1b: Suppose e0 = 2/3. Then x0 can’t have a branch which is either (Ak, 4)

or (Ak, 3, 2), because in both cases they would be chosen by the second hunt step. Hence

E2
1 = −2 and x0 has branches (2), (2, 2) and (3). To rule out this case, some extra work

is needed. First of all notice that by Lemma 2.5.6 and by the inequality 1/2 < e1 < 2/3

the singularities on B2 are (2, 2) and either (2, 2) or (2, 2, 2). These cases correspond to

B2
2 = 1/3 or 5/12. In each case we must have α = 0, hence the third singularity on

A2 is either (2, 2) or (3). Suppose this singularity is a (3) point, so that it is obtained

by contracting Σ1 which passes through an (Ak, 4) point. Since KS0 · Σ1 < 0 we must

have that k > 1. If k > 2 we have that A2
2 > 2 and if k = 1 we have that A2

2 = 7/3.

In each case A2
2 · B2

2 6= 1, contradiction. One similarly rules out the case in which the

third singularity on A2 is an (2, 2) point and it is obtained by contracting a curve passing

through an (Ak, 3, 2) point.

Case 2: Suppose now that r = 2. This implies that e1 > 2/3 and e0 > 3/4. We

divide our analysis in cases once again, depending on whether the A2 point belongs to E1
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or not.

Case 2a: Suppose that the A2 point is constructed by contracting Σ1 which passes

through an (Ak, 3, 2) point. Then a1 = (3k + 3)/(3k + 5), with k > 1 since a1 > 2/3.

Hence k > 2 and a1 > 9/11 > 4/5. Now we conclude by Lemma 2.5.9.

Case 2b: Suppose that the A2 point belongs to E1 instead. If e0 > 4/5 we are

done again by Lemma 2.5.9. Suppose that e0 = 3/4. Then the two other singularities

on E1 must be both A1 points. This implies that α > 0 and therefore β < α 6 1/6 by

Lemma 2.5.8. We can finally conclude by applying Lemma 2.5.1.

Case 3: As the last case, suppose that r > 3. In this instance, we can directly

conclude by Lemma 2.5.9 since a2 > 4/5 and b2 > 3/4.

Lemma 2.6.6. Suppose that S2(A2 + B2) is a fence and x1 /∈ A1. Then Σ2 can’t meet

both A1 and E2 at singular points.

Proof. Suppose it does. The point x1 must by a non chain singularity by Lemma 2.5.10.

Also, A1 must have four singular points by Lemma 2.5.4, so that x0 is a non chain

singularity as well. The singular points on B2 can’t be both (2) points, for otherwise B2

would be a tiger. If Σ2 meets E2 at a point of index bigger than two, then there is a (2)

point on B2 and the other point has index at most five by the classification of non-chain

klt singularities. Therefore we get a contradiction by Lemma 2.5.7.

If Σ2 meets E2 on a (2) point instead, then it meets A1 on an (3, Ak), with Σ2

touching the (−3) curve and A1 touching the (−2) curve on the minimal resolution. By

imposing KS1 · Σ2 < 0 and (KS1 + A1) · Σ2 > 0, we get that (2k + 2)/(2k + 3) < e1 <

75



(2k + 4)/(2k + 5) < a2, hence e1 = (2k + 3)/(2k + 4). Now we conclude by Lemma

2.5.9.

Lemma 2.6.7. Suppose that S2(A2 +B2) is a fence. Then B2 is singular.

Proof. By the previous lemmas, x1 ∈ A1. Suppose by contradiction that B2 is smooth. A2

contains either two or three singular points, while B2 contains either one or two singular

points. We can then see by Lemma 2.5.10 and Lemma 2.5.4 that the only possibility is

that A2 contains three singular points and B2 two. In particular this implies that x0 is

a non-chain singularity and therefore e0 > 2/3. Let x ∈ A1 be the fourth singularity.

Suppose that E2 lies over x. Then by explicit computation one can see that there exists

an integer n such that α = 1/n > 0. By Lemma 2.5.8 we have that 0 < β < α 6 1/6.

In particular n > 6 and 0 < A2
2 < 1. It’s also easy to see by an explicit computation

that this implies that A2
2 6 (n− 1)/n, since different possible singularities on A2 give rise

to values of A2
2 which differ by multiples of 1/n. But then by Lemma 2.5.1 we get that

n−1
n(1−β) 6 n−1

n
, which implies that β 6 0, contradiction. Therefore E2 is extracted from

one of the singularities of E1.

If E1 contains two (2) points, then we get again that α = 1/n > 0 for some integer

n and the above argument still holds. The same happens if E1 does not contain two (2)

points, but the index of singularity at x is at most five. Therefore we may assume that the

index of x is at least six. Also, E1 must contain a singularity of index at least four which

is not Du Val, for otherwise the hunt would extract E2 from x. In particular, e0 > 4/5.

We see then by Lemma A.0.13 that e1 > 2/3. This contradicts Lemma 2.5.9.
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Lemma 2.6.8. If (S2, A2 +B2) is a fence. Then

1. x1 ∈ A1.

2. B2 is singular and contains at most one singular point of S2.

3. Ã2
2 = −1.

4. A2 contains at least one non Du Val point.

5. If char(k) 6= 2, 3 then B2 has genus at least two.

Proof. Suppose that (S2, A2 + B2) is a fence. By the previous lemmas, x1 ∈ A1, B2 is

singular and contains at most one singular point of S2. The argument in [KM99, Lemma

18.6] then proves that A2 is a (−1) curve. The argument presented there uses deformation

theory, and we give here a more elementary proof using Lemma 2.5.1. First of all notice

that since B2 is singular β 6 0. If β = 0 then B2 is a genus one rational curve lying in the

smooth locus of S2. This implies that S2 is Gorenstein, and since KS2 ·A2 = −B2·A2 = −1,

we get that A2 is a (−1) curve. If β 6= 0, on the other hand, we must have β 6 −1/2. It’s

easy to see then that α > β. In fact if A2 contains at most two singularities, then α > 0.

If A2 contains instead three singularities, then at least two of them are already present on

E1. This implies that their indexes are at most two and three respectively, which yields

α > −(−2 + 1/2 + 2/3 + 1) = −1/6 > β. By Lemma 2.5.1 and the fact that α > β, we

get that A2
2 < 1. Clearly Ã2

2 6= 0 since otherwise we would get a net and B2 would be a

section, contradicting the fact that B2 is singular. Therefore Ã2
2 = −1.
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Next, we notice that A2 is in the Du Val locus if and only if B2 has genus one and

is in the smooth locus. In fact, if A2 is in the Du Val locus, then (KS2 + B2) · A2 = 0,

which implies that (KS2 + B2) · B2 = 0 and B2 is in the smooth locus. Vice versa, if B2

has genus one and is in the smooth locus, then S2 is Gorenstein and obviously A2 is in

the Du Val locus.

If B2 has genus one and lies in the smooth locus, however, S2 is Gorenstein and, in

the notation of Lemma 2.5.1, β = 0. Since B2
2 is an integer, we must have that 1/(1− α)

is an integer. This implies that α = 0 and therefore A2
2 = 1. It’s now easy to see that this

is impossible since Ã2
2 = −1 and A2 contains at most three singularities, just as above.

This proves (4).

Finally, suppose that B2 has genus one. If B2 has a cusp, then consider the

Gorenstein log del Pezzo surface W of [KM99, Lemma-Definition 12.4]. Since there are at

least two (−1) curve touching the strict transform of B2, the Mordell-Weil group of the

corresponding elliptic surface has at least two elements. By Lemma B.2.4 we must have

that char(k) = 5 and W = S(2A4). In the notation of [KM99, Lemma 12.4], the image

of G in W is a smooth (−1) curve. By the description in Example B.3.1, the image of G

must pass through both the two A4 singularities. Therefore M must meet G at a smooth

point and contract to an A4 singularity. Since there cannot be any other singularities,

M must pass through all the singular points of A2. In particular the image of G will

meet the A4 point created by the contraction of M at the intersection of two exceptional

components. This contradicts the description in Example B.3.1, contradiction.
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Therefore if B2 has genus one, then B2 is nodal. Also, since both E2 and B2

contain exactly one singular point, Σ2 must meet E2 at smooth points. By Lemma 1.3.17,

b2 = 1/2. However by Lemma 2.6.2, e1 > 1/2, contradiction.

Lemma 2.6.9. If char(k) 6= 2, 3 then (S2, A2 +B2) is not a fence.

Proof. Suppose it is. By Lemma 2.6.8 the genus of B2 is at least two. By Lemma 1.3.17

and Lemma 1.3.18 we have that b2 < 2/3, so that the spectral value of ∆1 is at most one

by [KM99, Lemma 8.0.7]. Therefore, by Lemma A.0.11, A1 has Du Val or almost Du Val

singularities. By Lemma 2.6.2 we have that e1 > 1/2 so that configuration I of Lemma

1.3.17 and Lemma 1.3.18 does not occur.

Case 1: Suppose we have a contraction of type II (recall that the nodal case and

the cuspidal case are numerically the same in this configuration). Then we argue as in

[KM99, Lemma 18.6]. We have:

e1 < b2 < (g + 1)/(2g + 1) 6 2/3

Notice now that x1 is an Ag+1 point and Σ2 passes through the Ag point of E2. In

fact, if x1 was an (3, Ag) point, then its spectral value would be at least two. Recall there

is at least one non Du Val point on A2. Therefore, A1 does have a point of spectral value

at least one. Since we still chose the Du Val point x1 in the hunt, we must have that

1/3 + a1/3 6 a1(g + 1)/(g + 2)
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Thus a1 > (g + 2)/(2g + 1) and e1 > a1(g + 1)/(g + 2) = (g + 1)/(2g + 1),

contradiction.

As a consequence, we have shown that B2 must have a cusp since there are no

more configurations for Lemma 1.3.17. Now we go over the remaining configurations of

Lemma 1.3.18.

Case 2: Suppose we have a contraction of type III. Let r be the index of a non

Du Val point on A2. By Lemma A.0.13 and Lemma 2.6.2 we get that b2 > 2/3− 1/(3r).

However b2 6 3/5 by Lemma 1.3.18, hence r 6 4.

Case 2a: Suppose x1 is non Du Val, hence a (3) point. We see from the configu-

ration and adjunction that (KS2 + B2) · B2 = 2g − 2 and B2
2 = 4g − 1. By Lemma 2.5.1

we see that 4g− 1 = (2g− 1)/(1−α), hence α = 2g/(4g− 1). Since α > 1/2, A2 contains

only two singular points of S2. The idea now is to apply Lemma 1.3.25 on S2, since the

configurations are greatly simplified by the inequality b2 6 3/5 and by the shape of α.

If we call x and y the indexes of the singularities in A2, we get 1/x + 1/y = α by the

definition of α. Let’s start with g = 2, which gives α = 4/7. This implies that x = 2 and

y = 14. Therefore there is an A14 point on A2, which of course contradicts Lemma 1.3.25.

One can similarly check all cases up to g = 7 by hand. If g > 8, however, one concludes

immediately by Lemma 1.3.25 since K2
S2

= (KS2 ·B2)
2/(B2)

2 > g + 1.

Case 2b: Suppose then that x1 is Du Val, say an Aj+1 point. Since there is a non

Du Val point on A1, but x1 got extracted anyway, we must have j > 3. Now, applying

adjunction on B2 we get (KS2 + B2) · B2 = −2 + 2g + j/(j + 1). By the description of
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configuration III we get that B2
2 = 4g + j/(j + 1). But then

K2
S2

>
4(1 + g)2

4g + 1
> 4

By Lemma 1.3.25 there must be just two singularities on A2, either two (3) points

or a (2) point and a (3) point. In each case, we get A2
2 > 2/3. Since B2

2 > 2, this

contradicts Lemma 2.5.1.

Case 3: Suppose now that we are in configuration U . In particular, g = 2 and

b2 = 9/14. By the configuration, x1 = (j, 2, 2). The spectral value is at most one so

j = 2. But then B2
2 = 8, again by the configuration. By Lemma 2.5.1 we also have that

B2
2 = 3/(1− α), hence α = 5/8. This implies as above that A2 has two singularities, one

of which with index eight. But this clearly contradicts the choice of x1 in the hunt.

Case 4: Finally, suppose we are in configuration V . In particular, g = 2 and

b2 = 7/11.

Case 4a: Let x1 be Du Val, say an Aj+1 point. Just as above in Case 2b,

we get that j > 3. By adjunction by the description of the configuration, one gets

(KS2 +B2) ·B2 = 2 + j/(j + 1) and B2
2 = 9 + j/(j + 1). But then α = (6j + 6)/(10j + 9).

Since α > 1/2 one immediately sees that A2 has only two singularities on it. It is easy to

see however that the equation 1/x + 1/y = (6j + 6)/(10j + 9) does not have a solutions

in positive integers.

Case 4b: Suppose that x1 is a (3) point. The same computation as in Case 3
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gives α = 5/8. One the concludes exactly as in Case 3.

Case 4c: Suppose that x1 is almost Du Val, say of type (3, Aj) with j > 1. Since

the spectral value of ∆1 is at most one, A1 meets the last (−2) curve. Again by adjunction

we get that (KS2 +B2) ·B2 = 2 + 2j/(2j + 1). Also, B2
2 = 9 + (2j − 1)/(2j + 1), so that

α = (12j + 5)/(20j + 8). The equation 1/x+ 1/y = (12j + 5)/(20j + 8) has no solutions

in positive integers.

Lemma 2.6.10. Let S(X + Y ) be a smooth banana. Then X and Y can’t have contain

exactly two and one singular points respectively.

Proof. Suppose they do. Let f : T → S extract the adjacent divisor E to Y . We get a

contraction π from Lemma 1.3.12.

Case 1: Suppose T is a net. If Y is a fiber, then E is a section with at most

one singular point, hence there is exactly one singular fiber. However X has two singular

points, contradicting the fact that singular fibers contain at most two singular point. If Y

is a multisection, then Y · F > 2 because T is not smooth. But then (KS + Y ) · f∗F > 0.

However KS + Y is negative by adjunction, contradiction.

Case 2: Suppose π : T → S1 is a birational contraction. Clearly π contracts a

curve Σ that doesn’t touch Y . If S1 is not smooth, then Y 2 > 2 by Lemma 1.3.28. On S

we have that X2 > Y 2 by adjunction (and the analogue of Lemma 2.5.1). Hence Y 2 < 2,

contradiction. On the other hand, if S1 is smooth, then it’s P2. Since E · Y = 1, they

must both be lines and X is a smooth conic. However Σ must pass through both it’s

singularities, hence X has a node, contradiction.

82



Proof of 2.6.1. By Lemma 2.6.9, S2(A2 + B2) is not a fence. Lemmas [KM99, Lemma

18.7 - 18.8] show that A1 can’t be contracted and T2 is not a net. The only option left in

Proposition 1.3.14 is that (S2, A2 + B2) is a smooth banana. By Lemma 2.6.10 we may

also deduce that A1 contains exactly three singularities.

Thanks to Lemma 2.6.10 S2 is one of the smooth bananas described in [KM99,

Lemma 13.2] and we can get the classification of [KM99, Chapter 19].
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Chapter 3

Log del Pezzo surfaces with tigers

In this chapter we classify all log canonical pairs (S,C) such that S is a rank one

log del Pezzo surface, C is a reduced integral Weil divisor and KS + C is anti-nef. This

classification will allow us to complete the classification of log del Pezzo surfaces of rank

one in the next section.

3.1 (S,C) is divisorially log terminal

In this section we furthermore assume that KS + C is dlt. In the following, we

shall slightly change the scaling convention of Lemma 1.3.12 to avoid getting coefficients

higher than one.

Case 1: If C contains at least three singular points, we run the hunt for (KS, aC)

with 1−ε < a < 1 and we don’t rescale by multiplying by λ. Instead, we write KT1 +Γ1 =

f ∗(KS + aC), Γ′1 = Γ + b1E1 with R · Γ′1 = 0, and ∆1 = (π1)∗(Γ
′
1). It’s easy to see that
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if π1 is a birational contraction, then b1 < a and the statement of Proposition 1.3.14

remains true with these conventions. In fact, multiplication by λ was only needed to

ensure flushness with respect to the divisor aC in Γ′1, but in our setting this is immediate

since a > 1− ε (compare with the claim on page 141 of [KM99]). Furthermore, since we

can pass to the limit a→ 1 by continuity, we may even assume a = 1.

Case 2: Suppose instead that C contains at most two singular points. Then we

run the hunt in the level case for (S,C). Notice that the discussion in Section 1.3.3 shows

that (S1, C1 + A1) is dlt since (S,C) is dlt.

We start our analysis by extending [KM99, Proposition 23.5].

Proposition 3.1.1. Suppose char(k) 6= 2, 3 and that C contains at least three singulari-

ties.

If −(KS + C) is ample then:

1. If char(k) 6= 5 then S \ C has exactly one singular point, a non cyclic singularity,

z. If Z → S extracts the central divisor E of z, then Z is a P1 fibration and E

and C are sections. The pair (S,C) is uniquely determined by z, and all non cyclic

singularities z occur in this way for some pair (S,C). These surfaces are classified

in [KM99, Lemma 23.5.1.1].

2. If char(k) = 5, in addition to the above, (S,C) could also be obtained by resolving

the singularity of the unique cuspidal rational curve in the smooth locus of S(2A4)

and taking C to be the last (−1) curve. This is example 5.2.3.
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If KS+C is numerically trivial then S is Du Val, and (S,C) is one of five families:

3. S = S(A1+2A3). (S,C) is given by [KM99, Lemma 19.2], Case 1, s = 3 and r = 1.

4. S = S(3A2). (S,C) is given by [KM99, Lemma 19.2], Case 2, s = 2 and r = 1.

5. K2
S = 1, C is a (−1) curve and S is one of S(A1 +A2 +A5), S(2A1 +A3), S(4A1).

The pairs are obtained from [KM99, Lemma 13.5] by blowing up the node of the

nodal curve always along the same branch.

Proof. The proof of [KM99, Proposition 23.5] goes through with only minor modifications,

which we shall point out.

Notice that e1 > 1/2 by Lemma A.0.13 since a = 1 and since there is a singular

point on C. Furthermore, e1 > 2/3 unless all the singularities on C are A1 points. If

follows that 2a+ b1 > 2. Hence we can’t have a tacnode or a triple point by Lemma 1.3.9.

Case 1: Suppose x /∈ C. Notice that Σ1 passes through a singular point of C, for

otherwise (KT1 + C + b1E1) · Σ1 > 0.

Case 1a: Suppose we have a birational contraction to S1 (notice that our con-

vention has a different indexing with respect to [KM99]). This must be a smooth fence

by Proposition 1.3.14. If C contains four singular points, then its corresponding branch

in the fence contains three (2) points. The branch corresponding to E can’t contain two

singular points by Lemma 2.5.8 or one singular point by Lemma 2.5.10. But then x is

a non chain singularity, and its coefficient is 1/2 since (KT1 + C + b1E1) · Σ1 = 0. From

this we deduce that Ẽ2
1 = −2. The description of the configuration then tells us that the
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corresponding branch of the fence will be a zero curve. Extracting its singularities we get

a net on which C is a section. Also, there is a smooth section corresponding to the (−2)

branch of x. Now one proceeds as in the proof of Lemma 2.5.3: there is an irreducible

multiple fiber since there are three singularities on C, and this contradicts the existence

of a smooth section.

Suppose then that C has exactly three singular points. Notice that Σ1 can’t meet

E1 at a singular point because of Lemma 2.5.4 and Lemma 2.5.10. From this argument

it also follows that x is a non chain singularity. We want to apply the results of Section

2.5 with X = A1 and Y = C1. Now, since KS1 + C1 + b1A1 is anti-nef, in the notation of

Lemma 2.5.1 we get that b1 6 −(KS1 +C1) ·C1 = β. Since β > b1 > 1/2 > α > 0 we get

a contradiction by Lemma 2.5.8.

Case 1b: Suppose instead we get a net. Then we get description (1) by the

argument in [KM99, Proposition 23.5].

Case 2: Suppose now that x ∈ C. If we get a banana in the hunt, then we get

descriptions (3) and (4) by using Lemma 2.6.10 and [KM99, Lemma 13.2].

We can’t get a smooth fence in the hunt because of Lemma 2.5.4 and Lemma

2.5.10. Hence if we get a fence, it will be a singular one. Notice that C1 is smooth and

C̃2
1 = −1 by the proof of Lemma 2.6.8 (3). C1 is contained in the Du Val locus if and

only if A1 is contained in the smooth locus by adjunction. Now we can again use the

argument in [KM99, Proposition 23.5] to get description (5). A little bit of care is needed

in applying [KM99, Proposition 13.4]: if char(k) 6= 5 then one uses Lemma B.2.4 as usual
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to replace arguments about triviality of the fundamental group; if char(k) = 5 one has to

further discard the case in which W = S(2A4). To do so, notice that C1 is a (−1) curve

which contains two singular points and such that KS1 + C1 is dlt. This contradicts the

explicit description in Example B.3.1.

If we get a net, then the proof given [KM99, Proposition 23.5] carries through with

no modifications. In the case in which C gets contracted, however, there is a difference if

char(k) = 5. In fact, if A1 is in the smooth locus, then S1 can also be S(2A4), leading to

description (2). All the rest proceeds in the same way as in [KM99].

Proposition 3.1.2. Assume C contains exactly two singular points. Then (S̃, C̃) is one

of the following

1. Start with Fn, pick the negative section E and a positive section C disjoint from E.

Blow up along C or E to create two multiple fibers, while keeping C and E disjoint,

E K-positive and the K-positive curves contractible to klt singularities.

2. Start with a smooth fence containing one singular point in each branch. These

are classified in Lemma 2.5.11. Blow up X ∩ Y and then keep blowing up at the

intersection of the last exceptional divisor with either branch of the fence, while

keeping the K-positive curves contractible to klt singularities. C̃ will be the strict

transform of X.

3. Stat with Fn, pick the negative section E and a positive section C meeting E exactly

once. Blow up along C or E to create one multiple fiber, while keeping E K-positive
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and the K-positive curves contractible to klt singularities.

4. Start with either F2 or P2 and pick a banana. Blow up repeatedly above one in-

tersection point to make one of the branches K-positive, while keeping the other

branch K-negative and the K-positive curves contractible to klt singularities. The

K-negative branch is C̃.

5. Start with either a fence as described in Lemma 2.5.11, or by the fence in Fn given

by a fiber C and a positive section E. Then blow up repeatedly over E in order to

make E contractile to a klt chain singularity.

6. Start with a dlt pair (S ′, C ′), where C ′ is a smooth rational curve containing either

one or two singular points. Blow up one of the singular points (or a smooth point if

C ′ has only one singularity) always along C ′ to make C ′ K-positive and contractible

to a klt singularity. C̃ is the last (−1) curve.

Proof. We run the hunt in the level case for (S,C) and analyze all possible cases.

Case 1: Suppose x /∈ C.

Case 1a: Suppose furthermore that T1 is a net. Clearly C is not contractible

on S and therefore it’s not contractible on T1 either since x /∈ C. On the other hand,

E1 has negative self intersection because it’s exceptional over S. Therefore C and E1

are are both multi-sections on T1. Let F be a general fiber of the net and recall that

(KT1 +C + b1E1) ·F = 0 by definition. Since b1 > 1/2, either C and E1 are both sections

or C is a section and E1 is a double section. The latter case does not occur: since in this
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case b1 = 1/2, the two singular points on C are A1 points; by Lemma 1.3.22 then KT1 +F

is dlt and there is exactly one other A1 point on F , contradicting F · E1 = 2.

Suppose therefore that C and E are both sections. Running a relative MMP for

the morphism T̃1 → P1 one gets a Hirzebruch surface M = Fn. On M the curves C and

E1 are disjoint, C is a section of positive self intersection, and E1 is the section of negative

self intersection. This process can be reversed to obtain S̃. More precisely, one can start

from Fn, pick the negative section E1 and a disjoint positive section C, and then blow up

either on E1 or C so that to create disjoint two multiple fibers. This is case (1).

Case 1b: If we get a birational contraction instead, we must have a fence. By

using Lemma 2.5.10 and Lemma 2.5.4 we see that x must be a chain singularity, that Σ1

meets C at a singular point, and E1 either at a smooth point (if E1 has just one singular

point on it) or at a singular point (if E1 has two singular points on it). Smooth fences

with one singular point on each branch are classified in Lemma 2.5.11. Then one can

obtain S̃ by blowing up at the intersection of the branches of the fence. This is case (2).

Case 2: Suppose now that x ∈ C.

Case 2a: Suppose T1 is a net. C can’t be a fiber because it’s dlt and has only one

singularity. Hence C and E1 are both sections as above, since (KT1 + C + b1E1) · F = 0.

Since C contains only one singular point, there is exactly one multiple fiber. Therefore

E1 must also contain exactly one singular point on that multiple fiber. Running a relative

MMP over the base we go to Fn. E1 must be the negative section of Fn. C is a positive

section meeting E1 exactly once in Fn. This gives case (3).
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Case 2b: Suppose then that we get a birational contraction down to S1. If we

go to a banana, Σ1 must meet C. Since (KT1 + C + b1E1) · Σ1 = 0, Σ1 meets C at a

singular point and therefore C1 is in the smooth locus of S1. By adjunction, A1 also is in

the smooth locus. Since C1 · A1 = 2 we must have S1 = F2 or P2 by Lemma 1.3.28. To

get back to S it suffices to reverse the process: pick a smooth banana in F2 or P2, blow

up repeatedly one of the intersection points, then contract one of the two branches of the

banana. This gives case (4).

If we go to a smooth fence, we have at most one singularity on the branch corre-

sponding to E1 by Lemma 2.5.10. This is case (5).

Suppose we go to a singular fence. If A1 is in the smooth locus of S1 then S1

is Gorenstein. But then C1 is contracible, since it contains only one singular point,

contradiction. If instead A1 contains a singular point on S1, we must have that b1 = 1/2

by (KT1 + C + b1E1) · Σ1 = 0. This however implies that in S the singularities on C are

both A1 points, contradiction.

Finally, if C gets contracted we can induct on (S1, A1), giving description (6).

Proposition 3.1.3. Assume C contains exactly one singular point. Then (S̃, C̃) is one

of the following:

1. Start with Fn. Pick the negative section E and a positive section C, which is disjoint

from E. Blow up repeatedly points on a fixed fiber so that C remains a positive

curve, there are K-positive curves lying both over E and C, the K-positive curves

are contractible to klt chain singularities and C and E are disjoint.
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2. Start with P2. Pick two lines C and E and blow up at the intersection three times

along E. Then continue blowing up while keeping the K-positive curves contractible

to klt chain singularities and C and E disjoint.

3. Start with Fn. Pick a positive section C and a fiber F . Blow up twice at F ∩ C

along F . Then continue blowing up while keeping the K-positive curves contractible

to klt chain singularities and C and F disjoint.

4. (Fn, C), where n > 2 and C is any positive section meeting the negative section

exactly once.

5. Start with Fn. Pick the negative section E, a point p and a fiber C not passing

through p. Blow up at p to obtain at most one multiple fiber, while keeping the

K-positive curves contractible to klt chain singularities.

6. Start with P2. Pick two lines C and E. Pick a point p ∈ E \C, blow up p along E,

while keeping the K-positive curves contractible to klt chain singularities.

7. Start with Fn. Pick the negative section E, a fiber F and a positive section C. Blow

up at a point in F \ (C ∪ E) to make F contractible. Continue blowing up while

keeping the K-positive curves contractible to klt chain singularities.

Proof. We run the hunt in the level case for (S,C) and analyze all possible cases.

Case 1: Suppose x /∈ C.

Case 1a: Suppose that T1 is a net. With usual arguments as in Lemma 3.1.1 and

Lemma 3.1.2, we see that C and E1 are both sections. Since there is one singular point
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on C, there must be one singular point on E1 as well, and they must lie on the same

multiple fiber. By running a relative MMP we get Fn. C must be a positive section and

E1 must be the negative section. This is case (1).

Case 1b: If we get a birational contraction, we must go to a fence. Since a = 1,

Σ1 must pass through the only singular point on C. Therefore the strict transform of

C is a smooth rational curve in the smooth locus of S1. By Lemma 2.5.10, x is a chain

singularity. Therefore E1 contains either one or two singular points of T1. In the first case,

S1 is P2, and C1 and A1 are lines in S1. This is case (2). If E contains two singularities

instead, we get case (3) by Lemma 1.3.28.

Case 2: Suppose now that x ∈ C.

Case 2a: Suppose T1 is a net. If C is a section, then T1 is smooth. Therefore

T1 = Fn for some n, and S is just Fn. This is case (4). Suppose then that C is a fiber.

Clearly this implies that E1 is a section. Running a relative MMP one gets case (5).

Case 2b: Suppose we get a birational contraction. We can’t get a banana because

C has only one singular point of S and a + b1 > 1. We can’t get a singular fence either,

for otherwise C would be a (−1) curve, hence contractible on S. Notice furthermore that

C can’t get contracted on T1 for otherwise C2 < 0 in S.

Therefore we get a smooth fence. If A1 is in the smooth locus of S1, then S1 is P2,

C1 and A1 are lines, and we obtain T1 by blowing up a point of A1 multiple times. This

is case (6). If A1 is not in the smooth locus of S1 instead, we get case (7).

We conclude with an almost trivial case.
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Lemma 3.1.4. Assume that C is in the smooth locus of S. Then (S̃, C̃) is one of the

following:

1. (P2, C), where C is a line.

2. (P2, C), where C is a smooth conic.

3. (Fn, C), where C is a positive section not meeting the negative section.

Proof. This follows immediately from Lemma 1.3.28.

94



3.2 (S,C) is log canonical but not divisorially log ter-

minal

In this section we classify pairs (S,C) of a log del Pezzo surface S and a curve

C such that KS + C is anti-nef and log canonical, but not divisorially log terminal.

Throughout this subsection we run the hunt in the level case as in Section 1.3.3.

Lemma 3.2.1. Let (S,C) be a pair of a rank one log del Pezzo S and an irreducible curve

C such that KS + C is anti-nef, log canonical but not dlt. Suppose also that C contains

three singular points of S. Then (S̃, C̃) is described as follows. Start with Fn, pick the

negative section E and a positive section C such that C ∩ E contains at most one point.

Now create two dlt multiple fibers of multiplicity two. If C ∩E contains exactly one point

stop. If C ∩ E = ∅, create a third multiple fiber such that it contains exactly one chain

singularity.

Proof. Two of the singular points on C must be A1 points, at which KS + C is dlt by

Lemma A.1.4. For the last point, p, there are two cases:

1. p is a non chain singularity, with two (2) branches. C meets the opposite end of the

third branch, or

2. p is a (2, n, 2) point, and C̃ meets the central curve.

Case 1: Let the hunt extract the central curve of the singularity at p.
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Case 1a: Suppose we get a net. Clearly C can’t be a fiber since it contains

three singularities. Hence C and E1 are multisections, and they are both sections since

KT1 + C + E1 is numerically trivial. There are two multiple fibers with multiplicity two

passing through the (2) points. Finally there is a third multiple fiber passing through

C ∩ E1. This is precisely one of the two situations described in the statement.

Case 1b: Suppose we get a birational contraction. Clearly C does not get con-

tracted as it contains three singular points. KS1 + C + A1 is log canonical at singular

points and doesn’t have triple points because it’s level. Σ1 meets C and E1 only at singu-

lar points, hence the only possibility is that it passes through C ∩ E1, by contractibility

considerations. In this case, however, we get that C2
1 = A2

1 = 1 by symmetry (proceeding

as in Lemma 2.5.1). Extract the two (−2) curves on C1. Since C2
1 = 1, C1 becomes

a curve of zero self-intersection after the extraction. Therefore we get a net of relative

Picard number two. This is however impossible, since C1 would be an irreducible dlt

multiple fiber containing only one singularity, contradiction.

Case 2: This case can be thought of as a “degenerate” version of Case 1. The

first hunt step extracts the middle curve above p. It’s easy to see that the contraction

of Σ1 does not yield a birational contraction. In fact, there are only A1 points lying on

C and E1, and there is no configuration that allows a birational contraction. Suppose

therefore that T1 is a net. If C is a fiber, then it has multiplicity two and E1 is a double

section, which is impossible since Ẽ2
1 6 −2 (see also [Har77, Chapter V, Proposition

2.20]). Therefore C and E1 are both sections, meeting at a smooth point. This situation
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is described in the statement.

Lemma 3.2.2. Suppose (S,C) is a pair of a rank one log del Pezzo S and a curve C

such that KS + C is anti-nef, log canonical but not divisorially log terminal. If C passes

through two singular points, and is dlt at one of them, say p, then (S̃, C̃) is one of the

following:

1. Pick a pair (S,E) such that E passes through a (2, n, 2), and E is lc but not dlt at

this point (in other words E crosses transversally the (−n) curve). Suppose that E

contains at most one other singular point, and E is dlt along it. These are described

in parts (2) and (3) of the statement. Blow up above the dlt point (or at a smooth

point if E has just one singularity), always along E so that it becomes contractible

to a klt singularity. C̃ is the final (−1) curve.

2. Start with a dlt pair (S,E) such that E contains two A1 points, and possibly a third

singular point. If there are just two singular points, blow up above a smooth point

of E always along E, otherwise blow up above the third point, always along E. C̃ is

the last (−1) curve.

3. Start with a fence as described in Lemma 2.5.11 with a branch, E, containing an A1

point. C̃ is the other branch. Now blow up a smooth point on E to create another

A1 point and make E contractible.

Proof. The configurations for the non dlt point are classified by Lemma A.1.4 just as in

Lemma 3.2.1. We continue to use the same division in cases as in Lemma 3.2.1.
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Case 1: This time we choose to extract the adjacent curve E1 of the non chain

singularity on C.

Case 1a: Suppose T1 is a net. C and E1 can’t be sections since they don’t touch

on the multiple fiber, but one of the singularities is not dlt for this fiber. C can’t be a

fiber either because it’s dlt and has only one singular point on it.

Case 1b: Hence we get a birational contraction. If C gets contracted, then we

are in the same situation as in the hypothesis of the lemma, but with a a log canonical

point of smaller index, therefore we can apply induction. This is description (1). If Σ1

passes through both the singularities on C and E1, then we would get two smooth rational

curves meeting at a smooth point and at a chain singularity at the opposite ends of it.

Notice that one may argue as in Lemma 2.5.1 in the case of bananas as well. Since α,

β 6= −2, we get C2
1 = A2

1 = 2 by symmetry. Adjunction, however, would then give a

non integer value for C̃2, contradiction. Also, Σ1 can’t meet E1 at a smooth point since

KS + C is anti-ample and E1 has coefficient one. The only option left is that Σ1 meets

one of the two (2) ends of the non chain singularity in E1, and therefore S1 is a smooth

fence. However then E1 would have positive self-intersection in T1, contradiction.

Case 2: As above one can show that T1 is not a net. If C gets contracted, E is dlt

with two A1 points and possibly another dlt point on it. We can then we can use Lemma

3.1.1 and Lemma 3.1.2 to classify such configurations and get back to the original pair

(S,C). This is description (2).

If Σ1 meets both C and E1 at singular points, we must go to a banana. It is easy
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to see however this cannot happen since the singular points on E are A1 points. The

only remaining option is that Σ1 passes through an A1 point of E1 and another singular

point on T1. Since we then go to a fence, we see that Σ1 contracts to a smooth point on

A1 by Lemma 2.5.10. We get therefore a fence with one singular point on each branch,

one of which is an A1 point. It is possible to get then S by starting with such a fence,

as classified in Lemma 2.5.11, and then blowing up a point in along E1 multiple times,

and finally blowing up once away, to create Σ1. Finally one can contract E1. This is case

(3).

Lemma 3.2.3. Suppose (S,C) is a pair of a rank one log del Pezzo S and a curve C

such that KS + C is anti-nef, log canonical but not divisorially log terminal. If C passes

through two singularities, and is not dlt at either, then (S̃, C̃) is one of the following:

1. Start with Fn, pick a double section E and let the two fibers tangent to E be F and

G. Blow up on the intersection F ∩ E any number of times, always along E. C

is the last (−1) curve. Now blow up at E ∩ G twice to separate them and call H

the (−1) curve. Finally blow up on H at a point not contained in any of the other

components, always along H.

2. Start with Fn, pick a double section E, a tangent fiber F and a transverse fiber G.

Blow up on the intersection F ∩E any number of times along E; C̃ is the last (−1)

curve. Then blow on one of the points in G∩E, and once at the intersection of the

two (−1) curves.
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3. Start from Fn, pick a positive section E and a negative section F . Blow up to create

two dlt double fibers. Now blow up any point on E always along E, and if the point

was singular then make a last blow up away from E to create an A1 point on E. C̃

is given by the choice of any smooth fiber.

Proof. Let p and q be the two singularities. There are three cases.

Case 1: Suppose first that both of them are non chain singularities and extract

the adjacent divisor E1 above q.

Case 1a: Suppose T1 is a net. C and E1 can’t be both sections because otherwise

they would meet on the singular fiber. If C is a fiber instead, it must have multiplicity two

because for a general fiber F we have (KT1 +C+E1) ·F = 0, so that F ·E1 = 2 = 2C ·E1.

This is description (1).

Case 1b: Suppose we get a birational contraction instead. If C gets contracted,

then it contracts to a smooth point since KS1 + A1 is anti-nef and log canonical. This is

however not possible since C contains a non chain singular point. Thus Σ1 6= C. Therefore

Σ1 can meet C and E1 only at singular points. If it meets both curves we must go to a

smooth banana since KS1 +C+A1 is anti-nef and log canonical. It’s easy to see that this

is again impossible since C contains a non chain singular point. Therefore Σ1 only meets

E1 and we go to a smooth fence. By Lemma 2.5.1 we must have a non chain singularity

on each branch. By symmetry C2
1 = A2

1 = 1, hence after extracting the adjacent curve D

of p at C1, we get that C2
1 = 0, E1 and D are sections. But then we would have a multiple

fiber with two non dlt sections, which is impossible.
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Case 2: Suppose p is a non chain singularity, and q is a (2, n, 2) point. Extract

the (−n) curve E1. If T1 is a net, then C must be a double fiber and E1 a double section.

This is description (2). If we get a birational contraction, we must go to a fence, where C

has a non chain point and A1 has two (2) points. After extracting the adjacent divisor D

of the non chain singularity we would have a net, with A1 and D being a sections, which

is impossible.

Case 3: Finally, suppose p is a (2, n, 2) point and q is a (2,m, 2) point. Extract

the (−m) curve E. If T is a net, we get again description (2). Suppose therefore that we

have a birational contraction to S1. Using the usual arguments we deduce that C1 + A1

is a fence. Now, after extracting the (−n) curve D from C1, we clearly get a net where

C1 is a fiber, D and E1 are sections. This is description (3).

Lemma 3.2.4. Suppose (S,C) is a pair of a rank one log del Pezzo S and a curve C

such that KS + C is anti-nef, log canonical but not divisorially log terminal. If C passes

through only one singular point p of S then (S̃, C̃) is obtained as follows.

1. Start with Fn, pick the negative section E, and a positive section C meeting E just

once and transversally. Pick a point in (C ∪E) \ (C ∩E) and blow up any number

of times to make a divisorially log terminal fiber. Then perform a blow up on an

interior point of the last (−1) curve so that it creates a chain singularity connecting

C and E, and finally continue blowing up on the (−1) curve at the nearest point to

C and E.
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2. Start with Fn, pick the negative section E, and a positive section C meeting E

exactly twice and transversally. Blow up at one of intersections once, then blow up

at the intersection of the exceptional component and the strict transform of the fiber.

Now keep blowing up at the intersection of the last (−1) curve with the exceptional

component joining C and E any number of times.

3. Start with a log canonical pair (S,E), where S is a rank one log del Pezzo surface,

KS + E ≡ 0, E has exactly one node, which is a singular point of S as well. Blow

up repeatedly at one of the branches of the node, so that E becomes K-positive, and

the K-positive curves are contractible to klt singularities. C̃ is the last (−1) curve.

4. Start with a Gorenstein log del Pezzo surface of rank one, with a nodal rational

curve E in its smooth locus. Then blow up at the node of E always along the same

branch, finally contract. C is the last (−1) curve.

5. Start with a smooth banana in either P2 or F2. Then blow up on one intersection

until one curve is negative enough, continue blowing up to make a chain singularity

connecting the two branches. C̃ is the other branch of the banana.

6. Start with Fn, pick the negative section E and a fiber C. Then create two dlt double

fibers away from C.

7. Start from F2, pick a fiber E and a positive section C. Blow up at a smooth point

of E so that E is negative and has an A1 point on it.
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Proof. We divide once again our analysis on the type of log canonical singularity at p.

Since C contains exactly one singular point of S, in addition to the cases of the previous

lemmas, C could also be nodal at p (see Lemma A.1.4).

Case 1: Suppose p is a non chain singular point. Then after extracting the divisor

E1 adjacent to C, the curve C is in the smooth locus of T1.

Case 1a: Suppose T1 is a net. C can’t be a section as T1 is singular. If C is a

fiber, E1 is a section. But then KT1 + E1 must be dlt, contradiction.

Case 1b: Suppose we get a birational contraction to S1. C can’t get contracted

because C̃2 > −1. Σ1 can only meet E1 since C is in the smooth locus of T1, so that we

get a smooth fence. Notice that C1 is in the smooth locus of S1. Therefore S1 = Fn for

some n by Lemma 1.3.28. However there is no configuration in which Σ1 contracts to a

(−n) singularity, given the fact that KT1 + E1 is not divisorially log terminal.

Case 2: Suppose now that p is a node of C and extract one of the two divisors

adjacent to C. Notice that KS + C ≡ 0.

Case 2a: Suppose T1 is a net and C contains a singular point of T1. C can’t be

a fiber since KT1 + C is dlt and C contains only one singular point. If C and E1 are

sections, we get description (1).

Case 2b: Suppose T1 is a net and C lies in the smooth locus of T1. If C is a

section, we get description (2). If C is a fiber instead, then E1 is a double section with

negative self-intersection, contradiction.

Case 2c: Assume we get a birational transformation. If C contracts, then (S1, A1)
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satisfies again the hypothesis of the lemma, unless S1 is Gorenstein. This way we get

descriptions (3) and (4). If we go to a smooth banana instead, C1 ∩ A1 must consist of

smooth points (since otherwise C2
1 = 2 and A2

1 = 2, which would contradict the fact that

C̃1 is an integer) and we get description (5).

Case 3: The last case is the one in which C passes through a (2, n, 2) point.

Extract the (−n) curve. If T1 is a net, then C must be a fiber, E1 a section. This is

description (6). If we have a birational contraction instead, C can’t contract and we must

have a fence. Clearly there must be only one (2) point on A1 since C1 is in the smooth

locus of S1, therefore Σ1 contracts the other A1 point down to a smooth point. This is

description (7).

We conclude with the following easy observation.

Lemma 3.2.5. Suppose (S,C) is a pair of a rank one log del Pezzo S and a curve C

such that KS + C is anti-nef, log canonical but not divisorially log terminal. If C is in

the smooth locus of S then C is nodal and S is Gorenstein.

Proof. Immediate from adjunction.
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Chapter 4

Classification

Let k be an algebraically closed field of characteristic different from two and three.

In this section we classify all rank one log del Pezzo surfaces defined over k. We start

with a preliminary definition.

Definition 4.0.1. A tiger E for S is called exceptional if E does not lie in S. J

Theorem 4.0.2. Let S be a rank one log del Pezzo surface.

1. If S has no tigers in S̃ then S is one of the surfaces described in Section 2.

2. If S has an exceptional tiger in S̃ then S is obtained by starting with a log canonical

pair (S1, C) such that KS1 + C is anti-nef (these are described in Section 3), by

choosing a point in C̃ and blowing up on that point so that C̃ becomes contractible,

and the K-positive curves are contractible to klt singularities.
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3. If S has tigers in S̃, but none of which is exceptional, then S is one of the surfaces

described in Section 3.

Proof. Part (1) of the statement is clear. Suppose S has an exceptional tiger E in S̃. By

definition, this means that there is an effective divisor α such that KS +α is anti-nef and

an extraction f : T → S of an exceptional divisor E in S̃ such that KT + E + f−1∗ (α) =

f ∗(KS + α). Choose E and α such that the coefficient of E for (S, ∅) is maximal. Let

π : T → S1 be the associated KT -negative contraction as Lemma 1.3.12 and let C = π(E).

Choose a > e such that KT + aE is π1-trivial. Notice that KS1 + C is clearly anti-nef

since

π∗(KS1 + C) · E 6 (KT + E + f−1∗ (α)) · E 6 0

If a > 1, the pair (S1, C) is log canonical, since so is KT1 +E1. Suppose a < 1. We claim

that (S1 + C) is still log canonical. If that was not the case, let c be the log canonical

threshold. Clearly c > a since KS1 + aC is log canonical. By Lemma A.1.3, C and

the exceptional curves of the minimal resolution mapping to C form the graph of a log

canonical singularity. The proof also tells us that c is exactly the coefficient of C in this

log canonical singularity, and that there is a curve of coefficient one for KS1 + cC lying in

the minimal resolution of S1. Let E1 be this curve and let Ẽ1 be its strict transform in S̃.

Let e1 be the coefficient of E1 for (S1, ∅). Denote by f(t) = e(Ẽ1;S1, tC). Clearly f(0) > 0

since E1 is exceptional. Also, f(c) = 1 by definition. Since f(t) is an affine function, we

must have f(a) > a. But then e(Ẽ1;T, aE) > a. Consider g(t) = e(Ẽ1;T, tE). We have
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just seen that g(a) > a. Also, g(0) > 0. Therefore g(e) > e. However this contradics the

maximality of e since e(Ẽ1;S, α) = e(Ẽ1;T,E + f−1∗ (α)) > e(Ẽ1;S1, cC) = 1. Therefore

(S1, C) is log canonical and KS1 +C is anti-nef, so that we can again use Section 3, proving

part (2).

Finally, we prove part (3). Let C be a non-exceptional tiger, so that KS + C is

anti-nef. If (S,C) is log canonical, we are done. If (S,C) is not log canonical let c be

the log canonical threshold. By Lemma A.1.3, there is a divisor of coefficient one with

respect to (S, cC) in the minimal resolution of S. Therefore there is an exceptional tiger,

contradiction.

4.1 The list

Definition 4.1.1 (LDP 1). Let A and B be two smooth conics meeting to order four in

P2 at a point c. Pick a point b 6= c of B. Pick a point a in the intersection of A with

the tangent line Mb to B at b. Let b′ be the other point of the the intersection of B with

the line passing through a and c. Let a′ be a point of the intersection of A with the line

through b and b′.

Let S̃ → P2 blow up once at a, a′, b′, twice along Mb at b, and five times along A

at c. J

Definition 4.1.2 (LDP 2). Take the cubic C given by Z2X = Y 3 in P2, the line L given

by Y = 0 and a line E meeting C at L ∩ C and two other distinct points p and q. Blow
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up four times above [0, 0, 1] along C. This gives the minimal resolution of the Gorenstein

log del Pezzo S(A4). Now blow up twice on p along E. This gives the minimal resolution

of the Gorenstein log del Pezzo surface S(A1 +A5). Next, blow up on the cusp of C four

times along C. J

Definition 4.1.3 (LDP 3). Take the cubic C given by Z2X = Y 3 in P2, the line L

given by Y = 0 and a line E meeting C at two points p and q with order two and one

respectively. Blow up three times above [0, 0, 1] along C. This gives the minimal resolution

of the Gorenstein log del Pezzo S(A1 + A2). Now blow up twice above p along E. This

gives the minimal resolution of the Gorenstein log del Pezzo surface S(3A2). Next, blow

up on the cusp of C four times along C. J

Definition 4.1.4 (LDP 4). Let B and C be two dlt (−1) curves meeting a nodal curve of

S(2A1+A3) at smooth points, each passing through an A1 point, and meeting at opposite

ends of the A3 point (as in Lemma B.2.5).

Let S̃ → S̃(2A1 + A3) blow up once at the intersection of C with the (−2) curve

at the A3 singularity, twice at A∩B along A and twice along on the branches of the node

of A. J

Definition 4.1.5 (LDP 5). Let B be a (−1) curve in either S2 = S(A1 + A5) or S2 =

S(3A2) passing through two singularities, B dlt. Let A be a nodal rational curve in the

smooth locus of S2.

Let S̃ → S̃2 blow up twice at A ∩ B along B and three times on the node of A

along the same branch. J
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Definition 4.1.6 (LDP 6). Let A be a nodal curve in the smooth locus of S(2A1 +A3),

B a dlt (−1) curve through A1 and A3.

Let S̃ → S̃(2A1 + A3) blow up on A ∩ B twice along B, blow up the node of A

four or five times along the same branch. J

Definition 4.1.7 (LDP 7). Let A be a nodal curve in the smooth locus of S(2A1 +A3),

B a dlt (−1) curve through A1 and A3.

Let S̃ → S̃(2A1 + A3) blow up three times on A ∩B along B, blow up four times

on the node along the same branch. J

Definition 4.1.8 (LDP 8). Let A be a nodal curve in the smooth locus of S(A1 + A5)

and B a log terminal (−1) curve.

Let S̃ → S̃(A1 + A5) blow up at the intersection of B with the (−2) curve in the

A5 singularity, blow up the node of A twice along one branch and then once along the

nearest point of the other branch. J

Definition 4.1.9 (LDP 9). Let A be a nodal curve in the smooth locus of the Gorenstein

log del Pezzo S2 and B a dlt (−1) curve that passes through two singular points. Let

S̃ → S̃2 blow up t times on the intersection of B with the (−2) curve relative to the

specified point p, always along B, then blow up s times at the node of A, always along

the same branch, for p,t and s as follows.

1. S2 = S(A1 + A2), p = A1 and (t, s) = (2, 6), (1, 6), (1, 7).

2. S2 = S(A1 + A2), p = A2 and (t, s) = (3, 6), (2, 6), (1, 6), (1, 7), (1, 8).
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3. S2 = S(A1 + A5), p = A1 and (t, s) = (1, 3).

4. S2 = S(A1 + A5), p = A5 and (t, s) = (2, 3), (1, 3), (1, 4).

5. S2 = S(3A2), p = A2 and (t, s) = (1, 3).

6. S2 = S(A2 + A5), p = A5 and (t, s) = (1, 2).

7. S2 = S(A2 + A5), p = A2 and (t, s) = (1, 2).

8. S2 = S(A1 + 2A3), p = A3 and (t, s) = (1, 2).

9. S2 = S(2A1 + A3), p = A3 and (t, s) = (1, 5), (1, 4), (2, 4).

10. S2 = S(2A1 + A3), p = A1 and (t, s) = (1, 4).

J

Definition 4.1.10 (LDP 10). Let A be a nodal rational curve in the smooth locus of

S(A1 + A2), and B a dlt (−1) curve passing through the two singularities.

Let S̃ → S̃(A1 +A2) blow up t times A∩B along B and s times at the node of A,

always along the same branch for (t, s) = (2, 5), (2, 6), (3, 6), (4, 6), (5, 6), (2, 7),(3, 7),

(2, 8),(2, 9). J

Definition 4.1.11 (LDP 11). Let A be a nodal rational curve in the smooth locus of

S(A1 + A2), and B a dlt (−1) curve passing through the two singularities.

Let S̃ → S̃(A1 + A2) blow up A ∩ B twice along A, and once near B, then blow

up the node at A five, six or seven times along the same branch. J
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Definition 4.1.12 (LDP 12). Let A be the nodal rational curve in the smooth locus of

S(A1 + A2), and B the dlt (−1) curve passing through the two singularities.

Let S̃ → S̃(A1 + A2) blow up A ∩ B twice along B, and once near A, then blow

up the node at A six times. J

Definition 4.1.13 (LDP 13). Let A and B be two positive sections disjoint from the

negative section in F2. Suppose A and B intersect at p and q. Let F be a fiber, not

passing through p and q. Blow up r+ 1 times at u = A∩F along F and s+ 1 times at p

along B. Now continue in one of the following manners.

If (s, r) = (3, 2) then

1. Blow up above q along A four or five times, or

2. Blow up above p along A three or four times, or

3. Blow up on u along A three times.

If (s, r) = (4, 1) then

1. Blow up above q along A five, six, seven or eight times, or

2. Blow up above p along A k times with 3 6 k 6 7, or

3. Blow up on u along A three or four times.

J
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Definition 4.1.14 (LDP 14). Let A and B be two positive sections not intersecting the

negative section in f F2 intersecting at p and q. Let F be a fiber, not passing through p

and q. Blow up r + 1 times at u = B ∩ F along F and s + 1 times at p along B. Now

continue in one of the following manners.

If (s, r) = (3, 2) then blow up A ∩ F along A four times.

If (s, r) = (4, 1) then

1. Blow up q along A six times, or

2. Blow up above A ∩ F along A four times, or

3. Blow up on p along A five times.

If (s, r) = (3, 1) then

1. Blow up q along A k times, with 5 6 9 times, or

2. Blow up A ∩ F k times, with 4 6 7, or

3. Blow up p along A k times, with 4 6 k 6 8.

J

Definition 4.1.15 (LDP 15). Let A and B be two positive sections disjoint from the

negative section in F2 intersecting at p and q. Let F be a fiber, not passing through p

and q. Blow up twice at u = A ∩ F along A, and five times at p along B, twice along A

and once away from A. J
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Definition 4.1.16 (LDP 16). Let A be a positive section on Fn and E the negative

section. Pick three points on E or A all lying in distinct fibers, blow them up once,

then blow up at the intersection of the (−1) curves and continue blowing up to get log

terminal fibers such that E and the singularities on it form a log terminal non chain

singularity. Now to define S̃ pick any point on A intersecting a K-positive curve, and

blow up that point in any fashion so that A becomes K-positive and the K-positive curves

are contractible to klt singularities. J

Definition 4.1.17 (LDP 17). Suppose char(k) = 5. Start with the surface in Definition

B.3.1. Blow up its cusp three times, then contract the resulting rational curve and two

of the exceptional divisors. Therefore we obtain a log del Pezzo surface with singularities

2A4 + (5) + (3) + (2). J

Definition 4.1.18 (LDP 18). Let (S,C) be one of the surfaces in Proposition 3.1.1 (3)-

(5), Lemma 3.1.2, Lemma 3.1.3, Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3 or Lemma

3.2.4. Define S̃ = S1. J

Definition 4.1.19 (LDP 19). Let (S,C) be one of the surfaces in Proposition 3.1.1,

Lemma 3.1.2, Lemma 3.1.3, Lemma 3.1.4, Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.3,

Lemma 3.2.4 or Lemma 3.2.5. Then define S̃ by a sequence of blow ups on C such that

C becomes K-positive, and K-positive curves are contractible to klt singularities. J

We are now ready to state the classification theorem.
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Theorem 4.1.20 (Classification of rank one log del Pezzo surfaces). Let S be a rank one

log del Pezzo surface over an algebraically closed field of characteristic different from two

and three. If S is smooth then S = P2; if S is Gorenstein, then S is one of the surfaces

in Theorem B.2.2, otherwise it is one of the log del Pezzo surfaces in the families LDP1

to LDP19.

Proof. This is the content of Theorem 4.0.2.
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Chapter 5

Applications

In this section we highlight some rather immediate applications of Theorem 4.1.20.

5.1 Liftability to characteristic zero

One of the main applications is that every log del Pezzo surface defined over an

algebraically closed field of characteristic strictly higher than five lifts to characteristic

zero over a smooth base.

This answers the question after [CTW17, Theorem 1.1]. Let’s start first with the

definition of liftability as in [CTW17].

Definition 5.1.1. Let X be a smooth variety over a perfect field k of characteristic p > 0,

and let D be a simple normal crossing divisor on X. Write D =
∑

iDi, where Di are the

irreducible components of D. We say that a pair (X,D) is liftable to characteristic zero
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over a smooth base if there exists

1. A scheme T smooth and separated over Spec Z.

2. A smooth and separated morphism X → T .

3. Effective Cartier divisors D1...,Dr on X such that the scheme-theoretic intersection⋂
iDi for any subset J ⊆ {1, ..., r} is smooth over T .

4. Amorphism α : Spec k → T such that the base changes of the schemes X ,Di over

T by α are isomorphic to X,Di respectively.

J

Theorem 5.1.2. Let S be a rank one log del Pezzo surface over an algebraically closed field

of characteristic p > 5. Then there is a log resolution ν : V → S such that (V,Exc(ν)) is

liftable to characteristic zero over a smooth base.

Proof. If S is Gorenstein, the result follows by writing the integral Weierstrass model of the

corresponding elliptic surface (see [JLR12]). Suppose therefore that S is not Gorenstein.

Notice that in the classification of Theorem 4.1.20 each S is determined by the geometry

of the first surface from which we start the construction of S. Since these clearly lift to

characteristic zero, and the smooth blow ups also do, we deduce that S has a log resolution

that lifts as well.

As a byproduct of Section 3 we also get the following:
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Theorem 5.1.3. Let S be a rank one log del Pezzo surface over an algebraically closed

field of characteristic p > 5 and C a curve in S. Suppose that KS +C is anti-nef and log

canonical. Then (S,C) lifts to characteristic zero over a smooth base.

Proof. Immediate from the classification in Section 3.

5.2 Non liftable examples in low characteristic

In this subsection we will see that in characteristic two, three and five, there are log

del Pezzo surfaces of rank one that do not lift to characteristic zero over a smooth base.

Therefore the conclusion of Theorem 5.1.2 is sharp. The first such example was shown

in [KM99, Chapter 9] in characteristic two. The following examples are not liftable to

characteristic zero because they do not satisfy the Bogomolov bound of [KM99, Chapter

9] (see the proof of [CTW17, Theorem 1.3]).

We start with an example in characteristic three due to Fabio Bernasconi.

Example 5.2.1 (characteristic 3). Pick C to be y = x3 in P1 × P1. Choose three points

on C and blow up three times each along C. This gives a log del Pezzo surface with

singularities 4(3) + 3A2.

The following example in characteristic three is new.

Example 5.2.2 (characteristic 3). Pick C to be y = x3 in P2. Choose three flex lines

L1, L2, L3 such that their intersection with C lie on a line L4. Blow up three times two

flex points, blow up twice the third one,always along C and then blow up L1 ∩ L2 ∩ L3.
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Finally blow up the cusp of C. This gives a log del Pezzo surface with singularities

2(3) + E6 + (2, 3).

Finally let’s conclude with an example in characteristic five.

Example 5.2.3 (characteristic 5). Start with the surface in Definition B.3.1. Blow up

its cusp three times, then contract the resulting rational curve and two of the exceptional

divisors. Therefore we obtain a log del Pezzo surface with singularities 2A4+(5)+(3)+(2).

5.3 Kodaira’s vanishing theorem

Kodaira’s vanishing theorem is known to fail for log del Pezzo surfaces in charac-

teristic two and three. However, a consequence of Theorem 5.1.2 is that it holds for rank

one log del Pezzo surfaces in characteristic strictly higher than five. More precisely:

Theorem 5.3.1. Let k be an algebraically closed field of characteristic char(k) > 5. Let

S be a rank one log del Pezzo surface defined over k and let A be an ample Cartier divisor

on S. Then H i(S,KS + A) = 0 for all i > 1.

Proof. See [CTW17, Lemma 6.1].
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Appendix A

Appendix: Surface singularities

In this Appendix we give a detailed description of klt, lc and dlt surface singular-

ities. We also provide techniques that are useful in computations. The main references

for the discussion are [Kol97, Chapter 3] and [KM99]. In what follows, unless specified

otherwise, S indicates the germ (in the Zariski topology) of a normal surface at a point

p ∈ S. We start with some definitions.

Definition A.0.1. Let p ∈ S be a singular point and let π : S̃ → S be the minimal

resolution. The point p is a chain singularity if the dual graph of the minimal resolutions

above p is a chain. If the dual graph is not a chain, we will say that p is a non chain

singularity.

If p is a chain singularity, we say that p has type (−E2
1 ,−E2

2 , · · · ,−E2
n), where

E1, · · · , En are the exceptional curves over p. J

Definition A.0.2. A point p ∈ S is called Du Val if the coefficient of any exceptional
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irreducible divisor of the minimal resolution over p is zero. By adjunction, this is equiva-

lent to saying that for every such divisor E is a smooth rational curve and that we have

E2 = −2. J

Remark A.0.1. In the case of surfaces, Du Val singularities are the same as klt Gorenstein

singularities.

Definition A.0.3. We denote the singularity (2, · · · , 2) by Aj, where j is the number of

components of the dual graph. J

Definition A.0.4. Let p ∈ S be a singular point and let Γ be the dual graph of its minimal

resolution. The index ∆(Γ) is the absolute value of the determinant of the intersection

matrix of Γ. J

Lemma A.0.5. Let p ∈ S be a klt singularity. Then every curve of the dual graph of its

minimal resolution is a smooth rational curve. If p is a non chain singularity, then p has

a fork with three chain branches. The indexes (∆1,∆2,∆3) of the branches are one of the

following: (2, 2, n), (2, 3, 3), (2, 3, 4) or (2, 3, 5). We will refer to the fork vertex as the

central curve of p.

There is an analogous description for lc singularities, for which we refer to [Kol97,

Chapter 3, page 58].

Lemma A.0.6. Let p ∈ S and let C be an irreducible and reduced curve through p. If

(S,C) is dlt at p then either:
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1. p is smooth and C has simple normal crossings at p or

2. p is singular, in which case it must be a chain singularity, C is smooth at p and

touches normally one of the ends of the chain.

Lemma A.0.7. Let p ∈ S and let C be an irreducible and reduced curve through p. If

(S,C) is lc but not dlt at p then either:

1. p is smooth and C has a simple node at p or

2. p is a chain singularity and C touches both ends of the singularity normally or

3. p is a chain singularity with exactly three components and C touches the central

component normally or

4. p is a non chain singularity, in which case two of the branches have index two, and

C touches the opposite end of the third branch normally.

Once we know the dual graph of the minimal resolution over a klt singularity p

and all the self-intersections E2
i , we can compute the coefficients of the Ei. In fact it’s

sufficient to solve the n equations (KS̃ +
∑

i eiEi) · Ei = 0 by using adjunction. The

following lemmas can be useful in speeding up computations, especially when p is a non

chain singularity.

Lemma A.0.8. Let Γ be the dual graph of the minimal resolution at p and let v be a
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vertex of Γ. Let v1, · · · , vs be the vertices adjacent to v. Then

Γ(∆) = n ·∆(Γ− v)−
∑
i

∆(Γ− v − vi)

Lemma A.0.9. The coefficients of the exceptional divisors Ej over p are given by

1− ei =
1

∆(Γ)

∑
k

∆(Γ− (path from vj to vk)) · ck

where ck is given by ck = 2 − Ek(
∑

l 6=k El). It is useful to notice that ck = 0 if and only

if vk has exactly two neighbors, ck = 1 if and only if it has one neighbor and ck = −1 if

and only if it has three neighbors.

Definition A.0.10. Let p be a klt cyclic singularity (−E2
1 , · · · ,−E2

n). We say that p

has spectral value k if the coefficient of E1 has the form k/r where r is the index of the

singularity at p. J

Lemma A.0.11. If β = (j, α) then the difference of the spectral value of β and α is

(j − 2)r, where r is the index of α. In particular:

1. α has spectral value 0 if and only if α = Aj.

2. α has spectral value 1 if and only if α = (Aj, 3) or (3).

3. α has spectral value 2 if and only if α = (4) or α = (3, 2).

Definition A.0.12. We say that a point p ∈ S of spectral value 1 is almost Du Val. J
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While the notion of spectral value is important for the “hunt”, the main relevance

in the present discussion comes from the following lemmas.

Lemma A.0.13. Suppose that p ∈ S is a klt chain singularity and that D is an irreducible

divisor through p, touching E1 normally (i.e. (S,D) is dlt at p). Then

e(E1, KS + λD) = (k/r) + λ(r − 1− k)/r = λ(r − 1)/r + (1− λ)(k/r)

Lemma A.0.14. Let p be a klt non chain singularity with branches β1, β2, β3. Assume

that the central curve is a (−l) curve. Then the coefficient of e of p is the same as the

coefficient of the central curve, and it is a rational number of the form k/(k+ 1) for some

positive integer k.

Moreover, if β1 = β2 = (2) and α = (l, β3) then k is the spectral value of α.

For the convenience of the reader, we list below all klt singularities with small

coefficient. This can be done with a straightforward computation and we refer to [KM99,

Proposition 10.1].

Proposition A.0.15. Let p ∈ S be a klt singularity with coefficient 0 < e < 3/5. Then

the possibilities for p are as follows.

1. e < 1/2: (3, Aj). e = (j + 1)/(2j + 1).

2. e = 1/2:

(a) (4)
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(b) (3, Aj, 3)

(c) (2, 3, 2)

(d) p is a non chain singularity, with center (2) and branches (2), (2) and (Aj, 3),

with the central curve and the unique (−3) curve meeting opposite ends of the

Aj chain. This is the only non chain singularity with e < 2/3.

3. 1/2 < e < 3/5:

(a) (2, 3, Aj) with 2 6 j 6 4. e = (2j + 2)/(3j5).

(b) (4, 2). e = 4/7.

A.1 Adjunction

A recurring topic in our discussion is the fact that “negativity” of the canonical

divisor should control the behavior of singularities. In the following we collect some useful

lemmas that deal with the case in whichKS+∆ is non-positive and ∆ is an integral divisor.

We start first by recalling the results in [KM99, Appendix L]

Lemma A.1.1. Let C ⊆ S be a reduced irreducible curve on a Q-factorial projective

surface. If (KS + C) · C < 0 then C is rational.

Proof. See [KM99, Lemma L.2.2]

Lemma A.1.2. Let S be a Q-factorial projective surface, and C, D ⊆ S two curves,

with C integral. If (KS + C + D) · C 6 0, and C ∩D contains at least two points, then
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KS+C+D is log canonical, C∩D consists exactly of two points, and (KS+C+D)·C = 0.

We will also need the following stronger results.

Lemma A.1.3. Suppose that S is a surface with only klt singularities and that C is a

curve such that (KS + C) · C 6 0. Then the dual graph of the singularities on C and the

curve C is the dual graph of a log canonical singularity.

Proof. If C has any singularity in the smooth locus of S there is nothing to prove. Suppose

therefore that all singularities of C are contained in Sing(S). We can furthermore assume

that C is not contained in the smooth locus of S. Therefore C is rational curve. If KS+C

is log canonical the statement follows from the classification of surface log canonical

singularities (see, for example [Kol97, Chapter 3]). Suppose then that KS + C is not

log canonical and consider its log canonical threshold e < 1. Let S̃ → S be the minimal

resolution of S, with exceptional divisors Ei. We let ai = C̃ ·Ei and we define the numbers

bi by f ∗(KS + C) = KT + C̃ +
∑

i biEi. Notice that the numbers bi are solutions to the

equations f ∗(KS +C) ·Ei = 0, and they are therefore determined by the numbers ai and

by the self-intersections E2
i . The hypothesis of the lemma is also determined by the same

data since (KS + C) · C 6 0 if and only if −2 +
∑

i aibi 6 0. Therefore the datum of C̃2

does not influence neither the hypothesis of the lemma, nor the conclusion. Define now

the numbers di by f ∗(C) = C̃ +
∑

i diEi. The coefficients ei of the divisors Ei are given

by ei = bi − di. Clearly, 0 6 ei < 1. The datum of C2 = C̃2 +
∑

i aidiE
2
i is determined

by the numbers ai, ei, E
2
i and C̃2. Since we have the freedom of changing C̃2 as we want
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while keeping ai, ei and E2
i constant, we also have the freedom of changing the value of

C2 in order to prove the lemma.

In particular, we can declare C2 to be such that (KS + eC) ·C = 0. From this and

the fact that (KS + C) · C 6 0, we get that C2 < 0. Define D = f ∗(C) and consider the

intersection matrix of the divisors Ei and D. It is clearly negative definite on the space

generated by the Ei. Also, D is orthogonal to that space. We may therefore conclude that

the whole intersection matrix is negative definite since D2 = C2 < 0. It follows that the

intersection matrix of Ei and C̃ is also negative definite since D is obtained by applying

the Gram-Schmidt process to C̃. Now we can conclude by using [Kol97, Lemma 2.19.3]

and the argument in [Kol97, Chapter 3].

Lemma A.1.4. Let S be a log del Pezzo surface and C an irreducible curve in S. Suppose

that (S,C) is log canonical but not divisorially log terminal.

1. If KS+C is anti-ample, then C contains at most two singular points. If furthermore

C contains exactly two singular points, then KX + C is dlt at one of them.

2. If KS + C is numerically trivial, C contains at most three singular points. If fur-

thermore C contains exactly three singular points, then two of them are A1 points

and (S,C) is dlt along them, and (S,C) is not dlt at the third point.

3. If KS +C is anti-nef and C contains at least two singular points, then C is smooth.

Proof. Let start by proving (1). Suppose by contradiction that C contains at least three

singular points p, q, r. We may assume that KS + C is not dlt at p. By inversion of
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adjunction, the coefficient of p in DiffC(0) is at least one. Since the coefficient of any

singular point is at least 1/2, however, we have that (KS + C) · C = deg(DiffC(0)) > 0,

contradiction. Therefore C contains at most two singular points. Suppose now that C

contains exactly two singular points. If (S,C) is not dlt at either point, then both of their

coefficients in DiffC(0) are one. This implies again that (KS +C) ·C = deg(DiffC(0)) = 0,

contradiction.

This proves (1). The same type of reasoning gives (2). For (3) notice that if C is

not smooth then by adjunction (KS + C) · C > 0, with equality exactly when C has one

node and contains no singularities of S outside the node. Equivalently, one may just use

Lemma A.1.3.
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Appendix B

Appendix: Gorenstein log del Pezzo

surfaces

Recall that a normal projective variety X is called Gorenstein if the canonical

divisor KX is Cartier. In this appendix we classify Gorenstein log del Pezzo surfaces

of Picard number one over algebraically closed fields of characteristic different from two

and three. Their singularities were first classified over the complex numbers by Furushima

[Fur86]. The analogous result in positive characteristic can easily be derived from existing

papers, but we were unable to find it explicitly stated in the literature. In the following

treatment, we take the approach of Ye [Ye02], who reduces the study of Gorenstein log

del Pezzo surfaces to the study of extremal rational elliptic surfaces. These were classified

over the complex numbers by Miranda and Persson in [MP86], and over algebraically

closed fields of positive characteristic by Lang in [Lan91] and [Lan94].
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B.1 Extremal rational elliptic surfaces

Definition B.1.1. An elliptic surface is a smooth relatively minimal surface X over a

curve C, such that the general fiber is a smooth curve of genus one. J

Let X be a smooth projective variety and let f : X → C be a fibration such that

the general fiber is irreducible. Over the complex numbers we can deduce that the general

fiber is in fact smooth by generic smoothness. In positive characteristic, however, generic

smoothness no longer holds and some care is needed. The following lemma, largely taken

from [Mir89], shows that we recover smoothness of the general fiber in a special case.

Lemma B.1.2. Let f : X → P1 be a smooth relatively minimal surface with section

such the general fiber is irreducible and of arithmetic genus one. Suppose also that X is

rational, the image of the section is a (−1) curve and char(k) 6= 2, 3. Then f : X → P1

is obtained by resolving the rational map induced by a pencil of cubic curves in P2 whose

general member is smooth. In particular X is an elliptic surface.

Proof. For the general fiber F we have that KX · F = 0 by adjunction, hence KX ≡ nF

for some integer n. Consider the image S of the section of f , which is a (−1) curve

by assumption. Again by adjunction we get that KX · S = −1, hence KX ≡ −F . It

follows that −KX is nef and that every rational curve has self intersection at least −2.

Let g : X →M be a blowdown to a Mori fiber space M . From the above considerations,

M can only be F0,F2 or P2. In each of these cases X dominates P2 and therefore we get a

contraction h : X → P2. Pushing forward |F | in P2 we obtain a pencil of curves that are
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numerically equivalent to the push forward elements in |−KX |. It follows then that f∗|F |

is a pencil in | −KP2|, and it is therefore a pencil of cubics. Finally note that the general

member of a pencil of cubics in characteristic different from two or three is smooth by

[Mir89, Lemma I.5.2] and the comment after it.

Definition B.1.3. Let f : X → C be an elliptic surface with section σ. The section σ

naturally gives all the fibers the structure of elliptic curves. The set of all sections of f is

then a group, where the multiplication is done fiber by fiber and σ is the identity element.

This group is called the Mordell-Weil group of X and is denoted by MW(X). J

Definition B.1.4. Let f : X → C be a rational elliptic surface with section σ. We say

that X is extremal if the Mordell-Weil group of X is finite and NS(X)Q is generated by

the classes of σ(C) and of the vertical components. J

Theorem B.1.5. The classification of the singular fibers of extremal rational elliptic

surfaces over algebraically closed fields with char(k) 6= 2, 3, 5 is the same as over C. The

configurations are listed in the following table using Kodaira’s notation:
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Singular fibers |MW(X)| Singular fibers |MW(X)|

II, II∗ 1 I∗1 , I4, I1 2

III, III∗ 2 I∗2 , I2, I2 4

IV, IV ∗ 3 I9, I1, I1, I1 3

I∗0 , I
∗
0 4 I8, I2, I1, I1 4

II∗, I1, I1 1 I6, I3, I2, I1 6

III∗, I2, I1 2 I5, I5, I1, I1 5

IV ∗, I3, I1 3 I4, I4, I2, I2 8

I∗4 , I1, I1 2 I3, I3, I3, I3 9

If char(k) = 5 the classification is the same, except that in the above table one

replaces I5, I5, I1, I1 with I5, I5, II. Furthermore, if char(k) 6= 2, 3, for every config-

uration of possible singular fibers in the above table there is a unique extremal rational

elliptic surface with section with that configuration of singular fibers, except for the case

(I∗0 , I
∗
0 ). In this case there are infinitely many extremal rational elliptic surfaces with that

configuration of fibers.

Proof. See [Lan91, Theorem 2.1], [Lan94, Theorem 4.1], [MP86, Theorem 4.1] and [Mir89,

Theorem VIII.1.5].
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B.2 Reduction to elliptic surfaces

We recall here the relation between Gorenstein log del Pezzo surfaces and extremal

rational elliptic surfaces. Throughout this discussion we assume char(k) 6= 2, 3. Let V be

a Gorenstein log del Pezzo surface of rank one such that K2
V = 1. Let U be its minimal

resolution, with exceptional locus D, consisting of eight (−2) curves by Lemma 1.3.24.

The general member of the pencil | −KU | is reduced and irreducible by [Dem80, Chapter

III, Théorème 1, (b’)] (see the remark in the introduction to Chapter IV), and of arithmetic

genus one by adjunction. This pencil has only one base point p by [Dem80, Chapter III,

Proposition 2]. After blowing it up, we are in the hypothesis of Lemma B.1.2, where we

may take the exceptional curve of the blow up as a section. Therefore X = Blp(U) is an

elliptic surface. Notice that p in not contained in the support of D because KU ·D = 0.

Hence the strict transform of D in X is contained in the union of the singular fibers and

does not meet the section. By Lemma 1.3.24 we have that ρ(U) = 10 − K2
U = 9, and

therefore ρ(X) = 10. By the Shioda-Tate formula ([SS10, Corollary 6.13]), however, we

have that ρ(X) = ]D+ rank(MW(X)) + 2, where ]D indicates the number of irreducible

components of the support of D. It follows then that the Mordell-Weil group of X is

finite and therefore X is an extremal rational elliptic surface.

From this discussion we see that we may obtain every rank one Gorenstein log del

Pezzo surface V with K2
V = 1 by starting with an extremal rational elliptic surface of

Picard number ten, selecting a section, contracting all the (−2) curves not meeting the

section and then blowing down the section. If K2
V = 8 then V is obviously isomorphic to
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F2.

Suppose now that V is a Gorenstein log del Pezzo surface such that 2 6 K2
V 6 7

and let U be its minimal resolution. Let C be any (−1) curve on U (such a curve exists

because the Picard number of U is at least three). Every irreducible divisor A in the linear

system | − KU | meets C exactly once, and by taking A to be general, we may assume

that there are no other (−1) curves passing through p = A ∩ C. Blowing up p and then

contracting all the (−2) curves, we get a rank one log del Pezzo surface V ′ such that

K2
V ′ = K2

V − 1. By repeating this process we may reduce our analysis to the case when

K2
V = 1, which is the content of Lemma [Ye02, Lemma 3.2].

We summarize our conclusions in the following result:

Theorem B.2.1. Let V be a rank one Gorenstein log del Pezzo surface with K2
V 6 7 and

let U → V be the minimal resolution. If char(k) 6= 2, 3, there exists an extremal rational

elliptic surface Y and a morphism f : Y → U that is a composition of blow downs of

some (−1)-curves.

Proof. Immediate from the previous description. For more detail see [Ye02, Theorem

3.4].

Thanks to Theorem B.2.1 and Theorem B.1.5, one can now classify all Gorenstein

log del Pezzo surfaces. In fact, the only (−1) curves in an extremal rational elliptic surface

W are the members of the Mordell-Weil group. In order to get the minimal resolution

of any Gorenstein log del Pezzo surface it is therefore enough to consider an extremal
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rational elliptic surface X, contract a section, and then keep contracting the (−1) curves

that are formed in the process along the singular fibers. The result is the following:

Theorem B.2.2. Let V be a rank one Gorenstein log del Pezzo surface over an alge-

braically closed field such that char(k) 6= 2, 3. The singularity types on V are listed in

the following table. Furthermore, V is uniquely determined by its singularities, with the

exception of the cases E8, A1 +E7, A2 +E6, which have two classes of isomorphism each,

and the case 2D4, which has infinitely many classes of isomorphism.

A1 A1 + A2 A4 2A1 + A3 D5 A1 + A5

3A2 E6 3A1 +D4 A7 A1 +D6 E7

A1 + 2A3 A2 + A5 D8 2A1 +D6 E8 A1 + E7

A1 + A7 2A4 A8 A1 + A2 + A5 A2 + E6 A3 +D5

4A2 2A1 + 2A3 2D4

Proof. The same proof as in [Ye02, Theorem 1.2] applies, using Theorem B.1.5.

Notation. We will denote any Gorenstien log del Pezzo surface by the corresponding

singularity type. For example, S(A1) denotes the unique Gorenstein log del Pezzo surface

with only one singularity, of type A1. Obviously, S(A1) is isomorphic to F2.

Lemma B.2.3. Let char(k) 6= 2, 3 and let S be a rank one Gorenstein log del Pezzo

surface. Suppose that S̃ is obtained by contracting (−1) curves of the extremal rational

elliptic surface X as in Theorem B.2.1. Then the (−1) curves of S̃ are either images of

elements of MW(X) or images of the rational curves contained in the fibers of X.
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Proof. Obvious by Theorem B.2.1 and the discussion after it.

Lemma B.2.4. Let char(k) 6= 2, 3 and let S be a rank one log del Pezzo surface. Suppose

that there is a rational cuspidal curve C in the smooth locus of S. Then S is Gorenstein.

Furthermore:

1. if char(k) 6= 5, S is obtained by blowing down (−1) curves on the extremal rational

elliptic surface with singular fibers II, II∗ and is one of the following: S(E8), S(E7),

S(E6), S(D5), S(A4) or S(A1 + A2). On S there is one and only one (−1) curve.

2. if char(k) = 5, there is one more case: S is obtained by blowing down one of the

sections of the extremal rational elliptic surface with singular fibers I5, I5, II. In

this case S = S(2A4), which is fully described in Example B.3.1.

Proof. Notice that C ≡ −KS by adjunction, so S is Gorenstein. Every rank one Goren-

stein log Del Pezzo surface is obtained by blowing down (−1) curves in an extremal

rational elliptic surface X by Theorem B.2.1. Consider the strict transform C̃ of C in

X and let F be a general fiber. If C̃ · F > 1 then by looking at the description of the

contractions we see that there is a (−1) curve D in S such that C ·D > 1, contradicting

the fact that KS · D = −1. If C̃ · F = 1 then C̃ is a section of the fibration X → P1,

contradicting the fact that C̃ is cuspidal. Therefore we see that C̃ is a fiber of X. This

concludes the proof by Theorem B.1.5 and Lemma B.2.3.

Lemma B.2.5. Let char(k) 6= 2, 3 and let S be a rank one log del Pezzo surface. Suppose

that:
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1. There is a rational nodal curve A in its smooth locus

2. There are two rational curves C and D such that KS · C = KS ·D = −1

3. K2
S > 4.

Then S is Gorenstein and S = S(2A1 + A3). Furthermore, C ∩ D ∩ A = ∅, C

and D each pass through one of the A1 points and meet at opposite ends of the A3 point.

Finally, C and D are the only two (−1) curves on S.

Proof. We have again that A ≡ −KS by adjunction, so S is Gorenstein. Notice that

(KS +C+D) ·A 6 −2, hence C and D are smooth by adjunction. Let X be an extremal

rational elliptic surface that dominates S̃ as in Theorem B.2.1. By Lemma B.2.3 we have

that |MW(X)| > 2. Also, by the same reasoning as in Lemma B.2.4, we have that the

strict transform of A in X is a fiber. By looking at the classification in Theorem B.1.5, we

see that starting with an extremal rational elliptic surface X with non trivial Mordell-Weil

group and a fiber of type I1, the only Gorenstein log del Pezzo surface with K2
S > 4 that

we obtain is S(2A1 +A3). This case is achieved by taking X to be the extremal rational

elliptic surface with singular fibers III∗, I2, I1. Now one can get the result by either

looking at the description of the elliptic surface, or by following the argument in [KM99,

Lemma 3.9.2].
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B.3 Special examples

Here we study more in detail some specific Gorenstein log del Pezzo surfaces that

turn out to be especially important in the present paper.

Example B.3.1. Let char(k) = 5 and consider S = S(2A4). This surface is obtained by

taking W to be the unique extremal rational elliptic surface with singular fibers of type

I5, I5, II, contracting one of the five sections and the contracting all the (−2) curves. It is

clear from this description that there is a unique rational cuspidal curve D in its smooth

locus. We would like to present in the following a slightly more explicit approach, and

explicitly carry on the computations.

Consider the following four points in P2
k: a = [−1, 1, 1], b = [−1,−1, 1], c =

[1,−1, 1] and d = [1, 1, 1]. Let Lab, Lac, Lad, Lbc, Lbd and Lcd be the six lines between

them. Consider the conics C0 = Lab +Lac +Lcd and C∞ = Lad +Lbd +Lbc. The equation

of C0 is (Y 2−Z2)(X+Y ) = 0 and the equation of C∞ is (X2−Z2)(Y −X) = 0. Consider

the pencil of cubics Ct generated by C0 and C∞, namely the curves Ct whose equations

are

(Y 2 − Z2)(X + Y ) + t(X2 − Z2)(Y −X) = 0

Clearly the case locus of this pencil is given by the points a, b, c, d counted with

multiplicity two, and by the point f = [0, 0, 1], counted with multiplicity one. We claim

that the curve C2 is a rational cuspidal curve, with cusp at [1, 3, 0]. First, it’s immediate
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to check that C2 passes through [1, 3, 0]. Now we study C2 in the chart X 6= 1, with local

coordinates y = Y/X and z = Z/X. Its equation is

(y2 − z2)(y + 1) + 2(1− z2)(y − 1) = 0

The Jacobian and the Hessian of C2 in these coordinates are

J = (3y2 + 2z2 + 2y + 2,−yz + 2z)

and

H =

 y + 2 4z

4z −y + 2


respectively. Evaluating J and H in (3, 0) shows that C2 has a cusp.

Now we resolve the base locus of the pencil at a, b, c, d. Since the multiplicity

at these points is two, we need to blow ups at each point. We denote by Ea
1 the first

blow up over a, and we use the analogous notation for the other points. We also slightly

abuse notation by denoting the strict transforms of the lines and of the cubics considered

so far with their original names. Consider the blow up S̃ → P2 on Ea
1 ∩ Lad, Eb

1 ∩ Lab,

Ec
1 ∩ Lbc and Ed

1 ∩ Lcd and call Ea
2 , Eb

2, E
c
2 and Ed

2 the respective exceptional divisors.

Notice that the curves Ea
1 , Lab, Lcd and Ec

1 form an ordered chain of four (−2) curves.

Similarly the curves Ed
1 , Lad, Lbc and Eb

1 form another ordered chain of (−2) curves. Our
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surface S is therefore obtained by contracting these two chains to two points, p and q

respectively. The strict transform of C2 in S is contained in the smooth locus and is a

member of |−KS| by adjunction. There strict transforms of Lac and Lbd are the only two

(−1) curves in | −KS|. There are exactly four other (−1) curves on S by Lemma B.2.3:

the images of Ea
2 , Eb

2, E
c
2 and Ed

2 .

Next we study the geometry of these curves with respect to the singular points on

S. The curve Lac is nodal, with a node in p. The two branches of the node touch the

opposite curves of the A4 chain singularity at p. Similarly Lbd is nodal with a node at q.

Notice that Lac ∩ Lbd is the only point in the base locus of | − KS|, which is the image

of [0, 0, 1]. For the remaining (−1) curves we notice that they are smooth, pass through

both p and q, are dlt at one but not lc at the other. Furthermore, given any two such

curves, p and q are the only points where they intersect.

Example B.3.2. Let char(k) 6= 2, 3, 5 and S = S(2A4). Most of the analysis in Example

B.3.1 carries through. The only difference is that S contains exactly two singular rational

curves in its smooth locus, both with nodal singularities.

Example B.3.3. Let char(k) 6= 2, 3 and S = S(A1 +A2). Then S is obtained as follows.

Consider the flex cubic C given by XZ2 = Y 3 in P2
k and the line L given by Y = 0. Blow

up three times over the intersection L∩C to separate them, then contract the three (−2)

curves obtained in the process. Notice that the strict transform of C in S is a cuspidal

rational curve contained in the smooth locus. The image of the last exceptional curve

created by blowing up at L ∩ C is a (−1) curve. This is also the unique (−1) curve, for

139



example by Lemma B.2.4.
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