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OPEN

ORIGINAL ARTICLE

Genome-wide association data suggest ABCB1 and
immune-related gene sets may be involved in adult antisocial
behavior
JE Salvatore1, AC Edwards1, JN McClintick2, TB Bigdeli1, A Adkins1, F Aliev1,3, HJ Edenberg2, T Foroud4, V Hesselbrock5, J Kramer6,
JI Nurnberger7, M Schuckit8, JA Tischfield9, X Xuei2 and DM Dick1

Adult antisocial behavior (AAB) is moderately heritable, relatively common and has adverse consequences for individuals and
society. We examined the molecular genetic basis of AAB in 1379 participants from a case–control study in which the cases met
criteria for alcohol dependence. We also examined whether genes of interest were expressed in human brain. AAB was measured
using a count of the number of Antisocial Personality Disorder criteria endorsed under criterion A from the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition (DSM-IV). Participants were genotyped on the Illumina Human 1M BeadChip. In
total, all single-nucleotide polymorphisms (SNPs) accounted for 25% of the variance in AAB, although this estimate was not
significant (P= 0.09). Enrichment tests indicated that more significantly associated genes were over-represented in seven gene sets,
and most were immune related. Our most highly associated SNP (rs4728702, P= 5.77 × 10− 7) was located in the protein-coding
adenosine triphosphate-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1). In a gene-based test, ABCB1 was genome-
wide significant (q= 0.03). Expression analyses indicated that ABCB1 was robustly expressed in the brain. ABCB1 has been implicated
in substance use, and in post hoc tests we found that variation in ABCB1 was associated with DSM-IV alcohol and cocaine
dependence criterion counts. These results suggest that ABCB1 may confer risk across externalizing behaviors, and are consistent
with previous suggestions that immune pathways are associated with externalizing behaviors. The results should be tempered by
the fact that we did not replicate the associations for ABCB1 or the gene sets in a less-affected independent sample.

Translational Psychiatry (2015) 5, e558; doi:10.1038/tp.2015.36; published online 28 April 2015

INTRODUCTION
Adult antisocial behavior (AAB), which is broadly defined as a
‘pervasive pattern of disregard for and violation of the rights of
others’,1 is relatively common and is associated with adverse
consequences for both individuals and societies. According to
prevalence estimates from the 2001–2002 National Epidemiologic
Survey on Alcohol and Related Conditions, 3.63% (95% confidence
interval = 3.34–3.92) of adult Americans qualify for an antisocial
personality disorder (ASPD) diagnosis, and men are affected at a
greater rate than women.2 Findings from the all-male Vietnam Era
Twin Registry indicate that ASPD is highly heritable, with genetic
factors accounting for 69% of the variation in diagnoses.3 Twin
and adoption studies further indicate that dimensional measures
of AAB are moderately heritable, with genetic factors accounting
for ~ 40% of the variation in these behaviors.4–6 These figures are
similar to the results from a meta-analysis of 51 twin and adoption
studies from child, adolescent and adult samples, which found
that additive genetic influences accounted for 32% of the variance
in antisocial behavior.7

A number of studies of AAB have found statistically significant
genetic associations or gene-by-environment interactions with

measures of early environmental adversity for variants in
candidate genes or gene regions (for example, 5-HTTLPR, COMT
and MAOA).8–10 A recent meta-analysis found evidence for
associations between antisocial behavior (measured across a
range of ages) and variation in the serotonin transporter gene
SLC6A4 (that is, the 5-HTTLPR polymorphism) and the monoamine
oxidase A (MAOA) gene.11 Although there has been longstanding
controversy surrounding failures to replicate and publication bias
for candidate gene approaches,12 it was only recently that
researchers began to systematically examine how common
genetic variation across the genome is associated with AAB. No
single-nucleotide polymorphisms (SNPs) met genome-wide sig-
nificance in the genome-wide association study (GWAS) by
Tielbeek et al.13 of non-diagnostic categorical measures of AAB
in two Australian samples. The most highly associated gene to
emerge from their analysis was DYRK1A (P = 8.7 × 10− 5) on
chromosome 21, which is a candidate gene for developmental
disabilities.14 In this same study, attempts to replicate the
associations between seven candidate genes or polymorphisms
from the literature (DAT1, DRD2, DRD4, 5-HTTLPR, COMT, MAOA
and C1QTNF7) and AAB as a categorical variable were unsuccess-
ful. Likewise, studies in a community-based sample reported no
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significant associations between a closely related behavioral
disinhibition phenotype and rare nonsynonymous exonic or
common SNPs from across the genome.15,16

Additional screens of high-risk samples that are likely to be
enriched for AAB are needed to detect genetic associations. Our
goal in the present study was to fill this gap and examine the
molecular genetic basis of AAB in such a sample. We examined
SNP heritability of a dimensional measure of AAB, followed by a
GWAS, gene-based tests and gene set enrichment tests. Partici-
pants were part of a case–control sample in which cases met the
criteria for alcohol dependence. Alcohol-use disorders are
phenotypically and genetically correlated with AAB and
ASPD,17,18 suggesting that this sample is likely to be enriched
for variants contributing to AAB. We then examined whether
genes of interest were expressed in human brain to evaluate the
biological plausibility that identified genes would be associated
with a behavioral outcome.

MATERIALS AND METHODS
Sample and participants
Participants came from the Collaborative Study on the Genetics of
Alcoholism (COGA).19 The primary goal of COGA is to identify genes
involved in alcohol dependence and related disorders. Alcohol-dependent
probands were identified through alcohol treatment programs at seven US
sites and were invited to participate if they had a sufficiently large family
(usually sibships 43 with parents available) with two or more members in
the COGA catchment area. Community probands and their families were
recruited through driver’s license records, mailings to randomly selected
employees and students at a university, and attendees at medical and
dental clinics. The institutional review boards at all sites approved this
study and written consent was obtained from all participants. The present
study included the participants in the European-American subset from the
COGA case–control GWAS sample (in which cases met Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition (DSM-IV) alcohol
dependence criteria20) for whom adult antisocial behavior interview data
were also available (n= 1379; 739 (54%) male and 640 (46%) female).
European ancestry was determined using a principal-component-based
analysis in PLINK.20 The average age at assessment was 43.8 years (s.
d. = 11.7; range= 18–79).

AAB
AAB was measured using a count of the number of ASPD criteria endorsed
under criterion A from the DSM-IV.1 In view of our modest sample size, we
chose to use a more powerful dimensional phenotype rather than a less
powerful diagnostic phenotype. The seven criteria included: engaging in
illegal activities; deceitfulness; impulsivity and failing to plan ahead;
irritability and aggressiveness; disregard for the safety of self and others;
consistent irresponsibility at work or with finances; and lack of remorse.
Criterion counts were obtained from items in the reliable (with a
kappa= 0.70 for ASPD diagnoses) and valid Semi-Structured Assessment
for the Genetics of Alcoholism (SSAGA).21,22 We note that 203 (15%) of
participants were administered an early version of the SSAGA that included
a skip pattern whereby participants were asked the ASPD questions only if
they had endorsed two or more alcohol dependence/abuse, marijuana
dependence/abuse or other drug dependence/abuse symptoms. In total,
42 participants (representing 3% of the overall sample) were not asked the
ASPD questions because of the skip pattern.

Genotyping and imputation
Participants were genotyped on the Illumina Human 1M BeadChip (San
Diego, CA, USA); detailed genotyping and quality control information for
this sample can be found in Edenberg et al.20 The European-American and
African-American participants in the case–control sample were imputed
together (n=1884). Prior to imputation, monomorphic SNPs (that is, SNPs
with a minor allele frequency o0.0001), SNPs with missingness 42%,
SNPs with Hardy–Weinberg equilibrium Po1 × 10− 6 and SNPs that did not
map to the Hg19 reference genome were filtered out, leaving 936 240
SNPs. Phasing of entire chromosomes or chromosome arms was
performed using SHAPEIT.23,24 Genotype imputation of additional SNPs
was carried out with IMPUTE2 v.2.031 using the March 2012 release (v3) of

the 1000 Genomes Project data (www.1000genomes.org25). Imputation
analysis was performed for genomic windows of 5 Mb with an overlap
interval of 500 kb between adjacent segments. Following the recommen-
dations of the authors of IMPUTE2, we did not limit our imputation
procedure to European reference samples. Monomorphic sites were
excluded.

Analytic plan
We used genome-wide complex trait analysis (GCTA26) to estimate the
extent to which autosomal common genetic variation accounted for
variance in AAB. GCTA estimates the genetic relationships among
individuals in a sample from genome-wide SNP data, and then
uses a mixed-linear modeling framework to estimate heritability.
The Illumina 1M BeadChip provides sufficient coverage of variation
across the genome for the purposes of estimating common SNP
heritability using GCTA; accordingly, we used non-imputed genotypic
data for this analysis.
For the GWAS, the imputed gene dosage data were analyzed in PLINK.27

Covariates included: cohort (a four-category variable based on year of birth
that was included to control for potential cohort effects: 1896–1929; 1930–
1949; 1950–1969; and after 1970), age at assessment, sex and the first four
principal components derived from a principal component-based analysis
performed in PLINK on the measured genotypic data to cluster the
samples along with HapMap reference samples (CEU, YRI, CHB and JPT).
Results were filtered to include only SNPs with minor allele frequency
40.01 that also met an information criterion of 40.80. In total, 7 287 851
SNPs met these criteria.
We used KGG 2.5 (refs. 28,29) to conduct gene-based tests of our GWAS

results. This gene-based test examines whether the set of SNPs in a gene is
associated with the phenotype at a level greater than chance. We used
publicly available 1000 Genomes Phase 1 version 3 (European subsample)
linkage disequilibrium (LD) files to build the ‘analysis genome’ by position,
for autosomes only. We included extended gene lengths of 5 kb at both
the 5′ and 3′ ends. SNPs in high LD (r240.9) were connected; those in
low LD (r2 o0.02) were considered independent. We used the hybrid
set-based test for genome-wide association studies29 and report both the
uncorrected P-values as well as the q-value based on a Benjamini and
Hochberg30 false discovery rate. q-values o0.05 are considered genome-
wide significant. Following this, we used i-GSEA4GWAS31 to assess
enrichment across canonical pathways (defined by the authors of the
i-GSEA4GWAS program) and gene ontologies. In total, 23 153 genes
were submitted along with P-values (which were log-transformed by
i-GSEA4GWAS). We set the minimum number of genes per category to 20,
and the maximum to 200.
Genes of interest (that is, meeting a P-value threshold of less than

1× 10− 4) were compared with microarray data from nine brain regions
(prefrontal cortex, cerebral cortex, thalamus, visual cortex, hippocampus,
amygdala, caudate nucleus, putamen and cerebellum) from post-mortem
tissue from two males and two females, which included an alcoholic and a
control of each sex, to determine whether they were expressed in the
brain.32 These nine regions were chosen to provide broad coverage across
the brain. The expression values for our genes of interest did not
substantially vary across these regions, and we therefore report the
maximum of the average expression value. A gene was presumed to be
expressed in the brain if the maximum expression level across the nine
regions was higher than 16.0, because this is above the background signal
for the arrays.

Robustness check and pleiotropy analyses
The sample used in the present study was originally recruited as part of a
case–control GWAS of alcohol dependence. To check that our results were
not simply driven by the phenotypic association between AAB and alcohol
dependence, we examined whether the genome-wide significant gene to
emerge from our analysis of AAB remained at least nominally significant
after statistically controlling for DSM-IV alcohol dependence case–control
status using a gene-based test. We also conducted a series of post hoc
gene-based pleiotropy analyses to examine whether the genome-wide
significant gene to emerge from our analysis showed evidence for
association across a broader range of genetically correlated externalizing
phenotypes.18 To pursue this, we examined association between our
gene of interest and DSM-IV criterion counts for four major drug classes:
alcohol dependence, cannabis dependence, cocaine dependence
and opioid dependence. Because these were separate analyses of
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correlated phenotypes, a Bonferroni correction would be too stringent. We
therefore used a nominal P-value cutoff of Po0.05 as evidence for
association.

Replication study
Independent replication was tested in the COGA family-based GWAS
(fGWAS) sample. The fGWAS sample includes 118 European-American
COGA families densely affected with alcohol dependence (at least 3+
affected members) for whom genome-wide association data are
available.33 The 270 individuals from the COGA case–control sample who
were also in the fGWAS sample were removed from the replication data
set. In total, AAB data from 1796 individuals in the fGWAS sample were
available for analysis. Of these, 823 (46%) participants were male and 973
(54%) were female. The average age at assessment was 36.2 years
(s.d. = 15.2; range= 18–88). AAB was measured using a count of the
number of endorsed ASPD criteria under criterion A from the DSM-IV, as for
our initial analysis. Association analyses in this sample were run using
GWAF,34 which accounts for familial nesting and genetic distance using a
kinship matrix. Covariates included cohort, age at assessment, sex and the
first four principal components to control for genetic ancestry. Unimputed
genotypic data were used.

RESULTS
In the case–control sample, participants endorsed an average of
2.56 AAB criteria (s.d. = 2.26; range= 0–7). A total of 621 (45%)
participants (468 males and 153 females) met criterion A for ASPD,
defined by endorsement of three or more of the seven criteria.
Males had higher AAB criterion counts than females (male
mean= 3.45, female mean= 1.53; Po0.0001). Age was negatively
associated with AAB criterion counts (r=− 0.29, Po0.0001),
indicating that older participants endorsed fewer lifetime AAB
criteria. As expected, individuals classified as alcohol-dependent
cases in the sample had higher AAB criterion counts (mean 3.8,

s.d. = 2.0) than those without alcohol dependence (mean 0.67,
s.d. = 0.96, Po0.0001).
According to GCTA, the heritability of AAB was moderate, but

the estimate did not reach statistical significance (h2 = 0.25,
s.e. = 0.20, P= 0.09). The GWAS results are summarized in a
Manhattan plot in Figure 1 and the quantile–quantile plot is
shown in Supplementary Figure S1. The genomic inflation factor
was acceptable, λ= 1.004, suggesting that technical issues and
population stratification did not inflate the results. No single SNP
met the strict genome-wide significance threshold (P⩽ 5 × 10− 8).
The most highly associated SNP was rs4728702 (P= 5.8 × 10− 7),
located in the protein-coding gene adenosine triphosphate-
binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1) on
chromosome 7. The top SNP results (P⩽ 5 × 10− 6) from this
analysis are summarized in Table 1.
In our gene-based test, ABCB1 met the threshold for genome-

wide significance (q-value = 0.03). This gene was robustly
expressed in brain tissue (maximum expression value across nine
brain regions = 210). The regional association plot for this gene is
shown in Figure 2a. The 17 genes from this analysis meeting
a P-value threshold of less than 1 × 10− 4 are listed in Table 2,
along with their expression values. Two clusters of genes on
chromosome 9 appear in this list. As shown in Figures 2b and c,
four of these genes are genes for type I interferon (IFNA7, IFNA10,
IFNA16 and IFNA17) on chromosome 9p, and five others (STRBP,
MIR600, RABGAP1, MIR600HG and ZBTB26) appear in a cluster on
chromosome 9q.
Enrichment analyses indicated that the genes meeting more

stringent significance criteria were more likely to fall into seven
known canonical pathways and gene ontologies that are
summarized in Table 3. Most of these gene sets are immune
related. Many of the same genes were represented across multiple
gene sets, and thus these sets are not independent.

Figure 1. Association results from the genome-wide association study of adult antisocial behavior. On the x axis are single-nucleotide
polymorphism (SNP) positions for chromosomes 1–22. On the y axis are negative logarithms (base 10) of the P-values for each SNP, whereby
higher values indicate smaller P-values.
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Robustness check and pleiotropy analyses
In our robustness check, the association between ABCB1 variation
and AAB was attenuated after controlling for alcohol dependence,
but did not disappear (P= 1.3 × 10− 2). Gene-based tests do not
have corresponding effect sizes, but the beta coefficient for our
most significantly associated SNP (rs4728702) was reduced from
− 0.36 to − 0.17. The sample averages for the four drug classes
analyzed as part of our pleiotropy analyses are shown in
Supplementary Table S1. The results from a series of gene-based
tests indicated that ABCB1 variation was associated with alcohol
dependence criteria (P= 7.1 × 10-5) and cocaine dependence
criteria (P= 0.01), but not cannabis dependence criteria (P= 0.19)
or opioid dependence criteria (P= 0.50).

Replication attempt
The sample average for AAB in the COGA fGWAS sample was 1.76
criteria (s.d. = 1.76; range = 0–7), which was significantly lower than
in the case–control data set (unpaired t-test: t(3137) = 11.21,
Po0.01). A total of 498 (28%) participants (330 males and 168
females) met criterion A for ASPD. There was no evidence for
replication of ABCB1 with AAB in the fGWAS sample (P= 0.88), nor
did any of the other genes or gene sets from Tables 2 and 3
replicate at Po0.05.

DISCUSSION
Historically, molecular genetic research on AAB has been limited
to the examination of a small number of candidate genes with
purported biological relevance; only recently have researchers
begun to conduct atheoretical genome-wide scans for this
phenotype.13,15,16 In our genome-wide investigation, we found
that autosomal SNPs accounted for ~ 25% of the variation in a
dimensional measure of AAB. Although this estimate was not
statistically significant (P= 0.09), which is likely attributable to our
modest sample size, it maps nicely to meta-analytic findings that
additive genetic influences account for 32% of the variation in
antisocial behavior.7 Our finding also maps to recent GCTA
analyses in a community-based sample, where it was found that
common genetic variation accounted for 26% (P= 0.002) of the
variation in a behavioral disinhibition phenotype.16

No SNP reached genome-wide significance in our GWAS of AAB.
Our most associated SNP, rs4728702, was located in ABCB1 on
chromosome 7. In our gene-based tests, ABCB1 was significant at
the genome-wide level; however, we did not find an association
for this gene in our replication sample. In expression analyses,
we also found that ABCB1 is robustly expressed in human brain.
This provides some biologically plausible evidence that ABCB1
variation could be associated with behavioral outcomes. ABCB1
codes for a member of the adenosine triphosphate-binding
cassette transporters, ABCB1 or P-glycoprotein, which transport

Table 1. Top SNPs (Po5× 10-6) from a GWAS of adult antisocial
behavior

SNP CHR POS EFF NEFF AF BETA P

rs4728702 7 87180678 A T 0.43 − 0.36 5.77E− 07
rs1016793 7 87199182 G A 0.59 0.37 5.91E− 07
rs1128503 7 87179601 A G 0.43 − 0.36 5.97E− 07
rs4728700 7 87171659 T C 0.45 − 0.36 6.08E− 07
rs868755 7 87189930 T G 0.41 − 0.37 6.15E− 07
rs10276036 7 87180198 C T 0.43 − 0.36 6.22E− 07
rs3789244 7 87181849 G T 0.43 − 0.36 6.22E− 07
rs2235026 7 87182882 T C 0.43 − 0.36 6.32E− 07
rs2235021 7 87199264 C A 0.57 0.36 7.15E− 07
rs2235020 7 87199265 T A 0.57 0.36 7.30E− 07
rs2235046 7 87174066 T C 0.45 − 0.35 8.20E− 07
rs10985923 9 126038684 G T 0.93 0.71 9.10E− 07
rs6959435 7 87158185 G T 0.43 − 0.36 9.82E− 07
rs2373586 7 87157583 A C 0.43 − 0.36 9.85E− 07
rs62817660 7 87200529 G A 0.57 0.35 1.03E− 06
rs12539098 7 87200639 T C 0.57 0.35 1.04E− 06
rs11975994 7 87192731 G A 0.43 − 0.35 1.05E− 06
rs1016794 7 87198459 G A 0.57 0.35 1.05E− 06
rs2520464 7 87201086 C T 0.57 0.35 1.06E− 06
rs2032582 7 87160618 A C 0.45 − 0.35 1.23E− 06
rs1202167 7 87197059 C T 0.57 0.35 1.37E− 06
rs6504898 17 52427312 G T 0.56 − 0.36 1.42E− 06
rs1202168 7 87195962 G A 0.57 0.35 1.53E− 06
rs1202169 7 87195850 T C 0.57 0.35 1.55E− 06
rs2235013 7 87178626 C T 0.51 − 0.34 1.83E− 06
rs2235033 7 87179143 A G 0.51 − 0.34 1.83E− 06
rs12704364 7 87181175 C T 0.51 − 0.34 1.83E− 06
rs6961665 7 87181418 C A 0.51 − 0.34 1.83E− 06
rs58738000 2 11704426 C G 0.92 − 0.66 1.87E− 06
rs6504902 17 52433609 T C 0.56 − 0.35 1.88E− 06
rs4810138 20 57144231 G C 0.33 0.38 1.90E− 06
rs2235027 7 87182779 G T 0.51 − 0.34 1.91E− 06
rs10234411 7 87164892 T A 0.45 − 0.34 1.94E− 06
rs4148738 7 87163049 C T 0.45 − 0.34 1.96E− 06
rs68152859 2 11699747 G A 0.92 − 0.67 2.02E− 06
rs10985911 9 126007069 T C 0.93 0.68 2.04E− 06
rs5020877 2 11694370 A G 0.92 − 0.67 2.12E− 06
rs142285425 9 125951669 A G 0.93 0.67 2.34E− 06
rs10985900 9 125954349 T C 0.93 0.67 2.34E− 06
rs7870519 9 125917716 A T 0.93 0.67 2.34E− 06
rs62579000 9 125973531 C T 0.93 0.67 2.34E− 06
rs10985892 9 125908794 T C 0.93 0.67 2.35E− 06
rs10985908 9 125986335 C T 0.93 0.67 2.35E− 06
rs62578996 9 125919594 G A 0.93 0.66 2.56E− 06
rs10808072 7 87176463 A G 0.51 − 0.33 2.69E− 06
rs55980995 5 121875565 A G 0.88 − 0.52 2.84E− 06
rs6893509 5 121860590 T G 0.89 − 0.55 2.92E− 06
rs28368138 9 21207334 C G 0.95 − 0.82 2.97E− 06
rs1202165 7 87197594 G A 0.59 0.35 3.00E− 06
rs12002466 9 125865899 T C 0.93 0.65 3.40E− 06
rs180996880 2 11693084 C A 0.92 − 0.65 3.41E− 06
rs74602468 5 121863973 C T 0.90 − 0.56 3.48E− 06
rs67242082 6 94334202 A G 0.86 − 0.48 3.66E− 06
rs76585835 5 121867413 G A 0.90 − 0.56 3.83E− 06
rs41277128 9 125610975 G A 0.93 0.66 3.85E− 06
rs7033878 9 125618080 T G 0.93 0.66 3.88E− 06
rs62580884 9 125619738 C A 0.93 0.66 3.88E− 06
rs10985798 9 125624520 G C 0.93 0.66 3.88E− 06
rs62580922 9 125631594 T C 0.93 0.66 3.88E− 06
rs10985807 9 125652376 C T 0.93 0.66 3.88E− 06
rs78303085 9 125869322 T A 0.93 0.66 3.96E− 06
rs62578960 9 125869287 G A 0.93 0.66 3.97E− 06
rs80233205 5 121871869 G A 0.90 − 0.56 4.03E− 06
rs55919124 5 121880314 T A 0.90 − 0.56 4.05E− 06
rs62580923 9 125635317 A T 0.93 0.65 4.13E− 06
rs6413435 19 18497137 G A 0.83 − 0.44 4.18E− 06
rs6948766 7 87191246 G A 0.52 − 0.33 4.32E− 06
rs11763872 7 87217215 T C 0.49 0.33 4.40E− 06
rs7034822 9 125621808 G A 0.93 0.65 4.46E− 06

Table 1. (Continued )

SNP CHR POS EFF NEFF AF BETA P

rs12378760 9 125661283 T C 0.93 0.65 4.46E− 06
rs17149293 5 121864140 G T 0.90 − 0.55 4.53E− 06
rs76809806 5 121873792 G A 0.90 − 0.55 4.66E− 06
rs12979706 19 18495424 G A 0.83 − 0.44 4.75E− 06
rs12514901 5 121878119 T G 0.89 − 0.54 4.84E− 06
rs78479583 5 121871427 G A 0.90 − 0.55 4.96E− 06

Abbreviations: AF, allele frequency of the effect allele; BETA, regression
coefficient; CHR, chromosome; EFF, effect allele; GWAS, genome-wide
association study; NEFF, non-effect allele; POS, position (in base pairs); SNP,
single-nucleotide polymorphism.
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molecules across cellular membranes and also across the blood–
brain barrier. ABCB1 is considered a pharmacogenetic candidate
gene in view of ABCB1 transporters’ ability to change drug
pharmacokinetics.

Variation in ABCB1 has been previously associated with a
number of psychiatric phenotypes, including opioid36 and
cannabis37 dependence, as well as with treatment outcomes for
depression38 and addiction.39 The related rodent gene, Abcb1a, is
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Figure 2. (a) Association results from the genome-wide association study (GWAS) of adult antisocial behavior (AAB) for a 200-kb region
surrounding rs4728702 in ABCB1 on chromosome 7. (b) Association results from the GWAS of AAB for a 200-kb region surrounding rs28368138
on chromosome 9p. Four genes for type I interferon (IFNA7, IFNA10, IFNA16 and IFNA17) depicted here reached nominal significance (P-value
threshold of less than 1 × 10− 4) in gene-based tests. (c) Association results from the GWAS of AAB for a 200-kb region surrounding rs10985923
on chromosome 9q. Five genes (STRBP, MIR600, RABGAP1, MIR600HG and ZBTB26) depicted here reached nominal significance (P-value
threshold of less than 1 × 10− 4) in gene-based tests. All plots were constructed using LocusZoom.35 Shown on the x axis of all figures are
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Adult antisocial behavior GWAS
JE Salvatore et al

5

Translational Psychiatry (2015), 1 – 9



differentially expressed in three brain regions (accumbens shell,
central amygdala and ventral tegmental area) of alcohol-
preferring animals compared with non-preferring animals.40,41

Furthermore, ethanol exposure changes ABCB1 expression. An
in vitro study of human intestinal cells found that ethanol

exposure increased messenger RNA ABCB1 expression level,
and that these increases were maintained even after a week
of ethanol withdrawal.42 Similarly, ABCB1 expression was increased
in lymphoblastoid cell lines following ethanol exposure,32 and
in rodents, Abcb1a expression was increased in the nucleus
accumbens of alcohol-preferring rats following alcohol
exposure.43

Taken as a whole, this pattern suggests that ABCB1 has
pleiotropic effects across a number of externalizing spectrum
behaviors/disorders, and that its expression is affected by ethanol
exposure. The former is consistent with findings from the twin and
molecular genetics literature, demonstrating that common
externalizing disorders and behaviors (for example, alcohol
dependence, other drug abuse or dependence, AAB and conduct
disorder) share genetic influences,18,44 and that this shared
genetic factor is highly heritable (h2 = 80%).45 Supplementary
analyses in our own sample were consistent with this hypothesis,
and we found evidence that ABCB1 variation was associated with
alcohol and cocaine dependence criterion counts. However, we
did not find associations between ABCB1 and marijuana or opioid
dependence criterion counts.
We also found evidence for enrichment (q-values⩽ 0.05) across

multiple canonical pathways and gene ontologies including
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Table 2. Top genes associated with adult antisocial behavior

Gene name Chromosome Gene P-value Gene q-value Brain exp

ABCB1 7 1.42E− 06 0.033 210
CD46 1 1.28E− 05 0.297 451
ABCB5 7 2.06E− 05 0.476 —

IFNA7 9 2.34E− 05 0.542 —

MIR600 9 2.53E− 05 0.584 NA
MIR600HG 9 2.53E− 05 0.584 NA
STRBP 9 3.55E− 05 0.821 359
GREB1 2 3.85E− 05 0.891 163
RC3H2 9 3.88E− 05 0.897 498
ZBTB6 9 4.28E− 05 0.989 190
IFNA17 9 4.55E− 05 1.000 —

RABGAP1 9 7.97E− 05 1.000 1228
NKAIN3 8 8.04E− 05 1.000 281
OLIG2 21 8.11E− 05 1.000 155
ZBTB26 9 8.24E− 05 1.000 153
IFNA16 9 8.52E− 05 1.000 —

IFNA10 9 9.68E−05 1.000 —

Brain exp. is the maximum of average expression for nine brain regions;
‘—’ is below background; NA indicates measurement not available because
the gene was not present on array. Notes: Gene P-value and gene q-value
refer to the uncorrected P-values and the q-values based on a Benjamini
and Hochberg false discovery rate for the gene-based tests. A gene was
presumed to be expressed in the brain if the maximum expression level
across the nine regions was higher than 16.0 because this is above the
background signal for the arrays. Expression ranges from 5–20,140;
median= 108; 90th percentile= 484. For comparison, the neurotransmitter
receptor gene HTR1B (serotonin 1D beta receptor) that is normally
expressed in the brain has a maximum expression of 182.

Table 3. Canonical pathways and gene ontologies

Gene set name Gene set q-value

Cytokine activity o0.0001
Jak-STAT signaling pathway o0.0001
Toll-like receptor signaling pathway 0.0005
Antigen processing and presentation 0.0008
Hematopoietin interferon class D200 domain
cytokine receptor binding

0.002

Natural killer cell-mediated cytotoxicity 0.005
Tryptophan metabolism 0.05
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cytokine activity, Jak-STAT signaling pathway, toll-like receptor
signaling pathway, antigen processing and presentation, cytokine
receptor binding and natural killer cell-mediated cytotoxicity.
Although the immediate biological relevance of these categories
to AAB is not clear, these enrichment findings include many
immune-related pathways and may be best interpreted in light of
the associations among AAB and alcohol, cannabis, cocaine and
opioid dependence criterion counts in the sample. Immune and
inflammatory pathways have been hypothesized to be associated
with psychiatric disorders across the internalizing and externaliz-
ing spectra.46 For example, it is known that alcohol alters cytokine
activity,47 induces changes in neuroimmune signaling in the
brain48 and that alcohol dependence is associated with low-grade
systemic inflammation.49 Likewise, the monocytes of individuals
who are cocaine dependent show decreased expression of tumor
necrosis factor-α and interleukin-6 proinflammatory cytokines in
response to a bacterial ligand relative to controls.50 Four of the top
genes (based on P-values) to emerge in our analysis are genes for
type I interferon (IFNA7, IFNA10, IFNA16 and IFNA17), which reside
in a cluster on chromosome 9p. Previous studies demonstrate that
interferon A treatment of hepatitis C patients can induce multiple
psychiatric symptoms including depression51 and impulsivity.52

Although we did not find significant enrichment for these
pathways in our replication sample, these results add preliminary
evidence to a growing literature that variation in genes in
immune-relevant pathways may predispose individuals to AAB
and closely related behaviors.
The present study expands upon the initial AAB GWAS by

Tielbeek et al.13 as well as more recently published GWAS of a
behavioral disinhibition phenotype15,16 in two important ways.
First, we used a case–control sample where the cases met criteria
for alcohol dependence. By virtue of the association between
alcohol dependence and AAB, and the relatively high rates of
individuals meeting clinical cutoffs for criterion A for ASPD in the
present sample (63% of males and 24% of females) compared
with American population-based prevalence estimates, it is likely
that the sample was enriched for genetic variants predisposing
individuals toward externalizing spectrum behaviors such as AAB.
Previous work indicates that the genetic influences on AAB
completely overlap with the genetic influences on alcohol
dependence, other drug abuse/dependence and conduct dis-
order—that is, AAB does not have unique genetic influences
above and beyond those shared with these other externalizing
disorders.18 In view of this, gene identification efforts for AAB are
likely to be more successful in more severely affected samples or
in samples where participants high in AAB also tend to have
comorbid alcohol or substance-use disorders, such as the COGA
sample. In contrast, for example, only 6% of the participants in the
Tielbeek et al.13 community-based sample met their non-
diagnostic AAB case criteria. This sample may also have had low
rates of comorbid alcohol and other drug diagnoses, limiting the
ability to find genome-wide significant effects. Second, we used a
dimensional measure of AAB, which is more powerful than a
binary diagnostic variable, and better represents the underlying
dimensional structure of AAB.53 These differences may explain, in
part, why we were able to detect a significant genetic association
in the present sample.
Our study should be interpreted in the context of several

limitations. First, our sample size was relatively small. Second,
because the COGA case–control alcohol dependence sample is
highly affected by AAB, the findings emerging from our study may
not generalize to lower-risk populations or other types of high-risk
populations. Our null replication attempt may be attributable,
in part, to the replication sample being relatively less affected
than the discovery sample. There are other instances where
genetic associations for externalizing behaviors have replicated
within highly affected samples, but not less-affected samples.
For example, GABRA2 is associated with alcohol dependence

in samples where alcohol-dependent cases came from clinically
recruited samples and families densely affected by
alcoholism,54–56 but not community-based samples.57 A sample
recruited for this purpose is likely to be enriched for genetic
variation that predisposes individuals to a range of externalizing
behavior problems, including AAB;18 however, whether our
findings generalize to other populations at high risk for AAB (for
example, incarcerated inmates58) is unknown. Third, because we
limited the current analyses to European-Americans, our results
may not generalize to other racial and ethnic groups.
Fourth, similar to all psychiatric outcomes, antisocial behavior

has a developmental component, and evidence from the twin
literature suggests that there are genetic influences on adolescent
and adult antisocial behavior that are distinct from genetic
influences on child antisocial behavior.4 The degree to which the
genetic associations documented here for AAB are also associated
with child or adolescent antisocial behavior is not clear. The results
from this study provide an empirical starting point for subsequent
developmental analyses to examine these questions. Fifth, there
are likely to be aspects of the environment that moderate genetic
influences on AAB that we did not explicitly examine here but that
may be valuable to pursue in subsequent studies. Finally, our
genome-wide association approach examined only common
genetic variation. There is suggestive evidence that rare non-
synonymous exonic SNPs account for 14% (P= 0.05) of the
variance in a behavioral disinhibition phenotype.16 As rare
variant-genotyping arrays and whole-genome sequencing
become more widely available and cost effective, our under-
standing of the genetics of AAB will improve.
In summary, our goal in this study was to take an atheoretical

approach to investigate the molecular genetic basis of AAB in a
high-risk sample. The heritability of AAB was 25%, although this
estimate did not differ significantly from zero. No SNP reached
strict genome-wide significance, but gene-based tests identified
an association between ABCB1 and AAB. Expression analyses
further indicated that ABCB1 is robustly expressed in the brain,
providing some evidence that variation in this gene could be
related to a behavioral outcome. Previously documented associa-
tions between variants in ABCB1 and other drugs of abuse suggest
that ABCB1 may confer general risk across a range of externalizing
behaviors, rather than risk that is unique to AAB. This was
consistent with post hoc analyses in our sample, where we found
that variation in ABCB1 was associated with DSM-IV alcohol and
cocaine dependence criteria. These pieces of evidence suggest
that ABCB1 may be a gene of interest for further study. We also
found enrichment of several immune-related canonical pathways
and gene ontologies, which is consistent with previous sugges-
tions that immune and inflammatory pathways are associated
with externalizing spectrum behaviors. As a whole, our study goes
beyond the candidate gene approach typically taken in studies of
AAB, and implicates a gene and gene sets for which there is
convergent evidence from other lines of research. These findings,
although novel and promising, would benefit from direct
replication.
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