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Persistent tic disorder (PTD) is a neuropsychiatric disorder characterized by involuntary and 

stereotypical movements called tics. Despite a multitude of research, questions still remain 

regarding the full neurological bases of tic generative activity, as well as the degree to which 

certain cognitive functions are impaired in children with PTD. This dissertation aims to further 

elucidate the atypical neural dynamics associated with PTD through an EEG perspective. To 

facilitate the investigation of these neural dynamics, we first evaluate an adapted approach for 

performing group-level analyses on localized EEG measures at the cortical source level and 

compares performance to classical methods. We examined three approaches (a voxel approach, a 
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region-of-interest (ROI) approach, and a k-means clustering approach) for detecting group 

differences in spectral activity in both a simulation analysis and visual attention task. Overall, we 

found that a voxel-approach produces reduced localization error, reduced spectral attenuation, and 

more accurate time-frequency detection of spectral effects, posing the method as an effective 

analysis approach. We then examined the degree to which behavioral performance and neural 

dynamics are atypical in children with PTD (compared to typically developing children) during an 

inhibitory control flanker paradigm, using measures of spectral power and effective connectivity. 

While task accuracy did not differ by diagnosis, children with PTD exhibited attenuated spectral 

activity in the anterior cingulate cortex (ACC), alongside greater information flow from the ACC 

to fronto-parietal network hubs relative to controls, while controls showed greater central and 

posterior connectivity. Correlations with clinical features (e.g., tic impairment) and task 

performance indicate these atypical activations may be neural adaptations from frequent 

engagement of inhibitory control pathways. Lastly, utilizing similar measures, we investigated the 

neural antecedents of tic expression, and the degree to which this activity is differentiable from 

normal resting state activity using a machine learning approach. Prior to tic occurrence, we 

observed increased spectral activity in the ACC, as well as changes in information flow in frontal, 

sensorimotor, and posterior regions, suggesting aberrant communication among multiple cognitive 

and sensory regions. These measurements were also found to be reliable discriminators between 

pre-tic activity and tic-free activity, using a Naïve Bayes classification model. We then discuss 

future directions for each of the three preceding studies, as well as a potential path for developing 

more effective treatment protocols in PTD.  
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Chapter 1: Introduction 

Persistent tic disorders (PTDs) including Tourette Syndrome (TS), are characterized by 

sudden, involuntary, and recurrent movements or vocalizations, referred to as tics. As one of the 

most common neurodevelopmental disorders, PTDs occur in approximately 1% of the childhood 

population worldwide (Robertson, 2008), and are often disruptive to typical childhood 

development through increased psychological distress and higher suicidal tendencies in 

individuals. Although tic severity often decreases by adulthood in a majority (75%) of cases (Bloch 

& Leckman, 2009), there is a need for more effective pediatric treatment protocols applicable 

during this critical developmental period given the modest efficacy of current treatment methods 

(Pedroarena-Leal & Ruge, 2017). However, it remains unclear the regions and mechanisms 

primarily responsible for tic/urge generation and the extent to which other related cognitive 

processes (such as inhibitory control) are impaired, information core to developing possible 

treatment targets and evaluating treatment efficacy among pediatric populations. The proposed 

studies contained in this dissertation aim to further elucidate the extent and locations of atypical 

cortical activity associated with affected cognitive and tic generative processes among children 

with tic disorders, utilizing an adapted method for more effectively detecting atypical cortical 

source-level EEG activity. 

Over the years, a multitude of studies have investigated the pathophysiological 

characteristics of brain development and activity in individuals with tic disorders in order to better 

understand the driving factors for tic symptomology and disorder progression. Given one of the 

primary manifestations of the disorder’s symptomology (i.e., motor tics), motor control pathways 

such as cortico-striato-thalamo-cortical (CSTC) circuitry have been a major focus of research 
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explorations. Structural deficits have been noted by a number of studies, including thinning of 

sensorimotor cortices (Sowell et al., 2008), atypical basal ganglia volumes (Greene et al., 2017; 

Peterson et al., 2003; Roessner et al., 2011), and abnormalities in white matter tract density among 

CSTC areas (Wen et al., 2016). Correlations between the degree of these structural abnormalities 

and tic severity (Wen et al., 2016), as well as longitudinal prediction of aberrant childhood basal 

ganglia volumes with adulthood tic severity (Bloch et al., 2005), provide support for relationships 

between neuroanatomical deficits and degree of clinical impairment.  

Functional abnormalities using various brain imaging modalities have been reported 

amongst PTD populations across a number of cognitive paradigms, including resting state, 

suppression, inhibitory control, and voluntary movement tasks. Studies examining network 

dynamics have observed aberrant connectivity patterns among the well-researched CSTC circuitry 

(Worbe et al., 2012), as well as fronto-parietal, posterior, and default-mode networks (Church, 

Fair, et al., 2009) and urge-tic network nodes (Tinaz et al., 2015). Region-based studies have 

indicated localized aberrant activation amongst insula, motor cortex, precuneus, cingulate cortex, 

as well as frontal cortices (Cui et al., 2014; Jung et al., 2013). Findings have also implicated 

midcingulate and insular cortices in the urge-based component of tics (Jackson, Parkinson, Kim, 

et al., 2011; O’Neill et al., 2019). However, a number of uncertainties remain regarding the regions 

and networks associated with cognitive impairments among tic disorder populations. While many 

studies to date have been performed using functional magnetic resonance imaging (fMRI), there 

has been limited research on neural dynamics of tic disorders using time-resolved methods such 

as EEG, which can provide millisecond-resolution recording of atypical activation patterns. This 

may be in part due to frequent reports on subcortical abnormalities in PTD, which EEG has 

difficulty measuring due to physiological limitations. However, as described previously, 
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functional and structural MRI studies have indeed reported aberrant activity and anatomical 

development beyond these subcortical areas, extending to several cortical regions across the brain. 

Utilizing EEG to study cortical areas is thus an opportune method for further examining neural 

dynamics of the disorder with temporally resolved specificity.  

Source-localized EEG activations, through methods such as independent component 

analysis (ICA), provide a way to enhance spatial localization of temporally resolved EEG activity 

in patient populations. Relative to scalp or electrode-level analysis, they may provide more 

effective localization of cortical sources (or dipoles) within neuroanatomical structures, an 

important feature for evaluating and interpreting any observed neural deficits. However, due to the 

uniqueness of source locations across subjects in ICA-based approaches, comparing source-level 

data between subjects and/or groups is nontrivial. To address this issue, group-level studies 

generally utilize clustering algorithms (e.g., k-means clustering) to group dipoles together based 

on spatial locations or signal characteristics, allowing analyses to be performed on these clusters. 

However, several subjective decision points exist within these methods that may result in non-

optimal solutions, including a priori parameter selection (e.g., number of clusters, variables to 

include in clustering criteria, etc.), dependence of spatial specificity on cluster sizes, as well as 

impartiality to anatomical partitions of the brain (e.g., regions defined by Brodmann or other 

similar partitioning schemes that may be responsible particular cognitive processes). Variability 

in these parameter selections and clustering solutions may affect both interpretation of findings as 

well as replicability. Recent EEG analysis toolboxes including the Measure Projection Toolbox 

(MPT) (Bigdely-Shamlo et al., 2013) and groupSIFT (Loo et al., 2019) have worked towards 

resolving these issues by representing cortical sources as probabilistic volumes in order to facilitate 

group-level analyses while minimizing arbitrary parameter selection. In Chapter 2, this 
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probabilistic approach will be applied towards evaluating between-group differences in localized 

spectral activity in both simulated and real datasets. In this process, a region-of-interest (ROI) 

approach, based on the foundation of groupSIFT (Loo et al., 2019), and a voxel-based approach 

will be compared and contrasted to the classical k-means clustering approach utilized in EEGLAB 

(Delorme & Makeig, 2004) in their ability to effectively detect, localize, and replicate spectral 

activation findings.  

The methods developed in Chapter 2 (if found to be beneficial over classical methods) will 

then be utilized in Chapters 3 and 4 to assess differing but potentially complementary aspects of 

tic symptomology and neural atypicality in children (ages 8-12 years old) with PTD. Chapter 3 

will evaluate cognitive impairments beyond generally visible tic symptomology, specifically with 

regards to inhibitory control. Prior studies have presented contrasting findings regarding whether 

inhibitory control is impaired in children with PTD, with different studies indicating contrasting 

trends of both better and worse behavioral performance. Yet very few studies have evaluated 

whether inhibitory control networks associated with these deficits/advantages are similar to 

neurotypical controls. The Study aims to further explore whether cortical EEG activation patterns 

of children with PTD differ from typically developing controls during an inhibitory control 

paradigm (flanker task). Relationships between neural measurements and clinical/behavioral 

metrics were evaluated to determine the brain regions and networks utilized by children with tic 

disorders when performing a cognitive inhibitory control task. These results will provide further 

insight into neural mechanisms underlying inhibitory control among individuals with tic disorder 

along with better understanding of how cognitive functions tic are affected. 
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Chapter 4 will examine neural correlates of tic generation by examining brain activity prior 

to tic occurrence relative to tic-free resting state activity. Although several studies have reported 

neural activity associated with tic generation in various cortical regions (Bohlhalter et al., 2006; 

Lerner et al., 2007; Neuner et al., 2014; Stern et al., 2000), these studies have primarily focused 

on adult populations using fMRI or positron emission topography (PET). However, while adult 

populations may provide inferences about stable disorder states following disorder adaptation, 

evaluating pediatric populations are a necessity for examining the development and progression of 

the disorder. Furthermore, imaging methods such as fMRI and PET may not capture temporally 

precise activity associated with tic generation. Therefore, Chapter 4 aims to provide further 

knowledge regarding neural antecedents of tic occurrence by utilizing EEG to evaluate spectral 

activity and effective connectivity associated tic generation in children. Using a resting-state 

paradigm, the Study will evaluate whether pre-tic neural activity across the brain is differentiable 

from within subject average resting state activity in a cohort of children with PTD, and whether 

upcoming tics can be predicted from this activity. To support and validate the classifier identified 

in this study, an independent test sample of comparable children with PTD will be evaluated using 

the same criteria to determine whether the findings are generalizable to other children with PTD. 

Altogether, these studies aim to first provide a foundation for more accurate and 

interpretable detection of cortical source-level activation patterns, and to secondly use this 

approach to further elucidate the neural locations and quantify brain network atypicality in PTD, 

with insight from currently unexplored temporally resolved spectral power and connectivity 

measurements.  
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Chapter 2: Development of a More Spatially Defined Method for 

Examining Group-Level, Cortical Source EEG Findings 

2.1 Abstract 

 Independent component analysis (ICA) based source level electroencephalography (EEG) 

analyses, while providing better localizability and interpretability relative to scalp level analyses, 

involve solving a nontrivial dilemma at the group level due to unique source locations across 

participants. Current solutions (such as k-means clustering) often involve semi-arbitrary parameter 

selection by the researcher, which can negatively affect replicability of findings due to results 

being dependent on the parameters used. The present analysis evaluates the feasibility and benefits 

of alternative approaches for group-level spectral analysis, which require minimal parameter 

selection by the user. To do this, we utilize a region of interest (ROI) and voxel-based approach 

drawn from features of two prior toolboxes (Measure Projection Toolbox (Bigdely-Shamlo et al., 

2013) and groupSIFT (Loo et al., 2019)) as applied towards group-level analysis of localized 

spectral activity. We compare these two proposed analysis methods towards the classical k-means 

clustering utilized in EEGLAB (Delorme & Makeig, 2004), with respect to robustness in detection, 

localization, and replicability of spectral effect findings in both a simulated and visual attention 

dataset. 

2.2 Introduction 

  A fundamental caveat of using electroencephalography (EEG) to record brain activity is 

that the time series data obtained at each scalp sensor is a superposition of an unknown number of 

true underlying cortical sources, due to the propagative nature of electrical fields from the cortex. 
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Estimating the activity and location of these sources is commonly referred to as the EEG inverse 

problem. In an attempt to estimate a solution to this problem, independent component analysis 

(ICA) (Bell & Sejnowski, 1995) is frequently applied to learn a set of spatial filters which 

decompose scalp level EEG data into a linear combination of maximally independent processes 

(i.e., independent components). By using the electrode projection weights of these independent 

components (ICs), source activities may then be localized to cortical patches of dipolar activity 

within the brain (Delorme et al., 2012a).  

Decomposing channel data into cortical sources using these prescribed methods provides 

multiple benefits for EEG analyses. One core benefit is the elimination of volume conductive 

characteristics present among spatially adjacent electrodes, which can otherwise negatively 

influence measurements such as neural connectivity due to spurious correlations. Second, it 

facilitates more effective physiological interpretations of findings, as measured activity is no 

longer at a projected scalp region but at the estimated cortical region of interest. However, there is 

a major pitfall, particularly with group-level analyses, which is that estimated dipole source 

locations are generally inconsistent across participants and, although to a lesser degree, recording 

sessions (Grandchamp et al., 2012). Thus, comparisons of cortical-source level measurements 

between participants become difficult, as not all subjects may possess a decomposed IC at a 

particular anatomical location. This is in contrast to scalp-level analyses where electrode montages 

are standardized and set to be consistent across subjects, thus making direct comparisons 

straightforward.  

In an attempt to reconcile the spatial variability (and presence) of cortical sources across 

participants, different approaches have been introduced to allow for group-level comparisons to 
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be performed. A commonly used approach is k-means clustering, where dipoles from all 

participants are pooled and spatially separated into k clusters which minimize the squared error of 

within-cluster Euclidean distances between dipoles.  Group-level analyses are then performed on 

these spatially distinct clusters by comparing the subset of dipoles between groups, circumventing 

the source inconsistency issue. However, several drawbacks are apparent when using this method. 

First, k-means (and several similar) clustering algorithms require a priori selection of semi-

arbitrary clustering parameters, such as number of clusters or outlier threshold.  However, the 

choice of parameter may affect study replicability as differing parameters may result in differing 

detection capabilities or specific locations of cortical findings. Secondly, clustering algorithms 

may unknowingly group ICs with effects of interest with other ICs displaying unrelated activity. 

This may result in diluted or attenuated effects when activations are averaged across ICs within a 

given cluster, particularly when the cluster number k is small, potentially resulting in failed 

detection of the effect of interest at the group level. While including spectral characteristics of 

interest in the clustering criteria may help evade this issue and provide better clustering solutions 

for a given effect, this can cause statistical “double-dipping” and inflation of type 1 error due to 

the variance reduction that occurs when grouping ICs by similarities in their activation patterns 

(Kriegeskorte et al., 2009). Lastly, given that cluster locations may not align well with the true 

anatomical locations of the effects of interest, relevant findings may be mislocalized, affecting 

both interpretation of findings and study replicability. 

A more recent method, the Measure Projection Toolbox (MPT) (Bigdely-Shamlo et al., 

2013), has utilized an alternative probabilistic approach, whereby dipole sources are smoothed 

across a brain model via a Gaussian kernel, transforming unipoint dipoles into a probabilistic 

dipole density. When applied to all dipoles, this smoothing results in a spatially continuous 
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distribution of dipole activations at the group level, allowing for analyses to be performed on these 

specific regions. This smoothing is substantiated by uncertainties which arise in dipole localization 

during head co-registration, differences in tissue conductivity across participants, or between-

person differences in cortical organization/folding. Other tools have built upon this idea, 

particularly the groupSIFT toolbox (Loo et al., 2019), which utilizes the Gaussian smoothing 

application to examine source-level connectivity at the group level. Thus, an approach utilizing 

continuous dipole sources with appropriate statistical testing procedures may provide a better 

approach for examining source-level group differences.  

The present study aims to expand on the approaches introduced in the MPT and groupSIFT 

plug-ins in order to address the aforementioned issues which may be present in typical cortical 

source-level clustering analyses, including a priori parameter selection, attenuation of effects of 

interest, and inaccurate localization of cortical findings. We explore two alternative approaches 

(relative to conventional k-means clustering) for performing group-level analyses of localized 

source-level spectral power activity: 1) a region of interest (ROI) approach using a set of 76 regions 

defined by the anatomical labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002), and 2) a voxel-

based approach, using a set of 8mm spaced voxels spanning across the brain. A simulation analysis 

is first performed, whereby we show that the voxel-based approach provides better spatial 

localization as well as reduced attenuation of cortical effects of interest, resulting in more 

consistent and valid anatomical interpretations. The methods are then applied to a spectral power 

study examining visual attention in a sample of healthy children during a visual attention paradigm, 

where the voxel-based approach is evaluated alongside the k-means and ROI approaches with 

respect to interpretability and localization of effects.  
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2.3 Methods 

A simulation analysis was first performed to evaluate the effectiveness of three source-

level analysis methods in detecting a spatially defined time-frequency activation pattern at the 

group-level. In brief, the simulation analysis consisted of four steps: 1) Resting state EEG data for 

a set of subjects was processed (including source localization) and artificially epoched into a Signal 

and Control condition. 2) A point in the cortex was randomly selected to be the center of the 

artificial activation pattern, with an 8-12Hz (random), 500ms wavelet added to Signal condition 

epochs of cortical sources nearby this point (simulating a spatially defined neural activation). 3) 

Three source-level analysis approaches (k-means clustering, ROI approach, and voxel approach) 

were implemented along with permutation-based statistical testing, with a goal of detecting the 

artificial effect in the Signal condition compared to the unaltered Control condition. 4) This 

procedure was iterated 100 times, with the location of the activation changing during each 

iteration, and with details of findings (relative to ground truth) recorded during each iteration (e.g., 

error in detected activation location, detected ROI vs true ROI, detected spectral power vs true 

spectral power, etc.). 

2.3.1 Data Preprocessing 

The simulation analysis utilized resting state EEG data (approximately 7.5 minutes in 

length) recorded from 33 typically developing children, aged 8-12 years old, using a 128-channel 

HydroCel net in an extended international 10-10 configuration (Electrical Geodesics 

Incorporated). Electrode impedances were lower than 50kΩ, based on manufacturer 

recommendation. EEG data was recorded at a sample rate of 1000Hz and referenced to channel 
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Cz. Spatial coordinates of electrodes were obtained using Polhemus, Inc. digitizer software, using 

the nasion and preauricular notches as anatomical reference points.  

 Using the EEGLAB toolbox, data were preprocessed and cleaned using a standard pipeline, 

including a 1Hz high-pass finite impulse response filter, followed by Artifact Subspace 

Reconstruction (ASR) (Kothe & Makeig, 2013) via the EEGLAB plug-in clean_rawdata() in order 

to remove and interpolate signal artifacts. Data was downsampled to 100Hz and cortical source 

activity (independent components (ICs)) was estimated using adaptive mixture independent 

component analysis (AMICA) (Palmer et al., 2011). Dipole locations of source activations were 

then estimated using the DIPFIT plug-in of the Fieldtrip toolbox (Oostenveld et al., 2010a). Non-

neural ICs were rejected using the EEGLAB ICLabel plug-in, an algorithm trained to classify 

neural vs. non-neural ICs. ICs were also rejected if they were not spatially contained within the 

brain (based on coordinates), or if they displayed >15% residual variance relative to an equivalent 

dipole. A total of 439 dipoles were included in the analysis after data processing. 

To prepare a condition for the artificial signal, source level activity within each subject was 

epoched into non-overlapping, contiguous 4-second segments (labeled as -2 to +2 seconds). Data 

trials were then separated into even-trial and odd-trial conditions using a split-half approach for 

each subject, resulting in a paired analysis of approximately 50 trials per condition per subject.  

2.3.2 Establishing Ground Truth Spectral Activity 

The simulation analysis was an iterative process, whereby a spectral activation pattern at a 

randomly selected region (i.e., voxel point) of the brain was first established during each iteration. 

The three analysis methods (k-means, ROI, and voxel) were then performed and evaluated for their 
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ability to detect this ground truth activation pattern. A general procedure for this simulation process 

is displayed in Figure 2-1, with the full detailed procedure as follows.  

For each of the N = 100 simulations, a Signal condition and Control condition were first 

created for each subject by bootstrapping (with replacement) 50 data trials from the even-trial and 

odd-trial datasets, respectively. Next, a spatial location in the cortex was to be randomly selected 

as the centroid of the artificial activation pattern. A 3-dimensional (3-D) grid with 8mm spacing 

between grid points (voxels) was then placed on a standard brain model using the Measure 

Projection Toolbox, resulting in a set of 3908 voxels across the brain. To allow for a sufficient 

number of subjects to contain modified activations, and facilitate later ROI and voxel method 

implementations, only voxels which contained dipoles for at least 50% of subjects within a 50mm 

diameter sphere were included as potential centroids. This resulted in 1700 selectable voxels, one 

of which was then randomly chosen per iteration to be the spatial centroid of modified spectral 

activity. For the Signal condition, a simulated wavelet was then created and added to trials of 

dipoles within the 50mm sphere of the selected voxel for their Signal condition. This waveform 

consisted of a 500ms sine wave with frequency randomly selected from 8-12Hz, and an amplitude 

equal to the root-mean square (RMS) of data within the trial for a given dipole. The pure sine wave 

was then multiplied by a gaussian envelope (μ = 0.25, σ = 0.1), in order to prevent edge artifacts 

from appearing in the time-frequency domain. The resulting signal was then added to the 500-

1000ms portion of the trial. The process was repeated for all trials of all ICs within the spatial 

sphere, creating a ground truth spectral activation centered around 10Hz and 750ms in the Signal 

condition, and spatially localized around the selected voxel. The Control condition containing the 

original resting state EEG epochs was left unmodified.  
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 Event-related spectral perturbation (ERSP), a time-frequency measurement of evoked 

changes in spectral power activity relative to a baseline, was utilized as the method for measuring 

the simulated time-frequency activation. To calculate ERSP for each of the two conditions, a 

sliding window of 1s in length was applied across each trial in 20ms steps to extract spectral 

magnitudes for each time-frequency bin of the trial. This resulted in a 100 frequency (3 to 50Hz) 

x 189 time (-1.5s to 1.5s) matrix of spectral magnitudes for each trial. Time-frequency matrices 

were then averaged within each subject, followed by baselining (divisive) of spectral magnitudes 

within each frequency using average power between -500ms to 0ms. These spectral magnitude 

ratios were then log-transformed to decibel (dB) units using the formula 10*log10(X), creating a 

gain model describing changes in spectral power relative to the baseline (i.e., ERSP). 

  

Figure 2-1. Creation of simulated ground truth spectral activation. (1) A 3-dimensional grid 

is placed on the brain model containing dipoles from all subjects. (2) Grid points (voxels) 

containing contributions from dipoles (defined by the dipole being within 25mm of the grid point) 
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from at least 50% of subjects are marked as potential locations for the artificial signal. (3) During 

each simulation iteration, dipoles contributing to the voxel are selected. (4) For each data trial, a 

wavelet of 8-12Hz (random) frequency, 500ms length, and amplitude equal to the root mean square 

of the data trial is added to the data trial. (5) Spectral plots indicate activation created in the 8-

12Hz frequency band, and 500-1000ms time period of the epoch. ERSP = event-related spectral 

perturbation, IC = independent component. 

2.3.3 Clustering Approaches for Detecting Ground Truth Signal 

 Three group-level cortical source analysis approaches were then evaluated on their ability 

to detect this between-condition (i.e., Signal vs Control) time-frequency difference in ground truth 

ERSP activation: a classical k-means clustering approach across a range of k-values, a ROI 

approach (using 76 regions defined by the anatomical labeling atlas), and a voxel approach (8mm 

spacing). A general overview of the three approaches is shown in Figure 2-2. 

K-means clustering was implemented using the standard algorithm, which aims to separate 

data (here, dipoles) into K clusters which minimize the within-cluster squared Euclidean distances. 

Dipoles for all subjects were pooled together, and clustering solutions were obtained for values of 

k = 5 to k = 15, where dipole outliers spaced greater than 3σ from any cluster centroid were placed 

into an outlier group and not considered for the solution. For each cluster in a given solution, 

subject-level estimates of ERSP were obtained by taking within-subject averages of ICs in the 

cluster, resulting in a single ERSP for each subject.   

The ROI approach employed 76 predefined anatomical ROIs from the anatomical labeling 

atlas (AAL). In order to estimate ERSP activity for each subject at each ROI, the previously 

described 8mm-spaced set of 3908 voxels was utilized. ROI labels were first assigned to these 
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voxels based on their Montreal Neurological Institute (MNI) coordinates relative to anatomical 

boundaries as defined by the AAL. Voxels with no corresponding ROI were left unlabeled. Dipoles 

were then smoothed into probabilistic spheres using a 3-D Gaussian kernel (full width half 

maximum of 20mm truncated at 3σ), as introduced in Bigdely-Shamlo et al. (2013). The Gaussian 

probability values of contributions from each dipole to nearby voxels was stored in a 439 (dipole) 

x 3908 (voxel) probabilistic weight matrix. For each subject in each ROI, a single ERSP matrix 

was calculated by using a weighted average of dipoles contributing to any voxels in the ROI, 

normalized such that the total probability contribution summed to one. ROIs with dipole 

contributions from fewer than 50% of subjects were excluded from the analysis. 

The voxel approach followed a similar methodology as the ROI approach, but average 

ERSP for each subject was estimated at each voxel rather than atlas-based ROIs. Average ERSP 

for each subject at each voxel was calculated using a similar normalized within-subject, weighted 

average of dipole contributions to the respective voxel. A 50% subject inclusion requirement was 

similarly applied as well, resulting in a subject-level estimate of ERSP for 1700 of the original 

3908 voxels. 
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Figure 2-2. Overview of the three source-level analysis methods being compared. 

 

2.3.4 Statistical Analysis 

 For both the ground truth modified sphere and results from each of the three detection 

methods, between-condition comparisons and statistics were calculated using a mass-univariate, 
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permutation testing approach on time-frequency ERSP matrices (Groppe et al., 2011; Pernet et al., 

2015). The goal was to first examine the group-level ground truth differences in ERSP between 

the Signal vs Control condition at the modified sphere at a particular statistical threshold, and then 

test each method for their ability to replicate this finding at the same threshold.  

For the ground truth, the group-level difference in ERSP between the two conditions was 

first evaluated based on ICs contained in the modified sphere. If a subject had more than one IC in 

the sphere, ERSP activity from these were averaged together, such that subjects had a single ERSP 

for the sphere. A mass-univariate statistical approach was utilized, whereby paired t-tests were run 

between conditions on each time-frequency pixel of the ERSP matrices for the sphere.  Resulting 

t-statistic matrices were then masked using a p = 0.001 threshold, with nonsignificant bins set to 

zero. T-statistics of adjacent surviving pixels were summed to form t-statistic cluster masses, 

representing significant time-frequency ranges of between-condition ERSP effects. The time-

frequency range of the ground truth effect was measured by the mask boundaries, and ground-truth 

ERSP averages for each condition were obtained by averaging ERSP values within this mask. No 

permutation tests were performed as the effect of interest was known. 

For each of the detection methods, statistical comparisons between conditions were 

performed on their respective IC groupings using a similar mass-univariate testing approach. For 

k-means clustering, this meant on each cluster of each clustering solution; for the ROI approach, 

each ROI; and for the voxel approach, each voxel. For each method, paired t-tests and statistical 

masking at a p < 0.001 threshold were performed on each pixel of the ERSP matrices between 

conditions.  
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To account for multiple comparisons, cluster level correction was implemented using a 

permutation testing approach. For the k-means and ROI methods, t-statistic cluster masses were 

similarly formed by summing adjacent significant time-frequency pixels of the ERSP matrices, 

representing detected effects. For N = 1000 iterations, condition labels of each set of cluster/ROI 

ERSP matrices were shuffled. Statistical testing and cluster mass formation were repeated during 

each iteration, with the most extreme (absolute value) t-statistic cluster mass stored during each 

iteration to form a surrogate null distribution (one for each clustering solution and one for all 

ROIs). True-data cluster masses were then compared to this null distribution using a one-tail p < 

0.001 significance threshold to obtain cluster level corrected results. Cluster masses from the true 

data that survived this thresholding/correction were considered significant. 

2.3.5 Real Dataset Analysis (Visual Attention Task) 

 The three methods were then applied to a visual attention dataset in order to evaluate the 

ability of each method to detect evoked activations associated with related cognitive functions. In 

this dataset, each participant performed a modified Eriksen flanker task (Fig. 2-3), where for each 

trial a set of five horizontal white arrows appeared on a black screen either above or below a white 

fixation cross. The arrows could appear in congruent orientation, where all arrows pointed in the 

same direction, or in incongruent orientation, where the middle arrow points in the opposite 

direction of the four flanking arrows.  The arrows remained on the screen for 250ms before 

disappearing. During the response period (1300ms), the participant used the left and right computer 

mouse buttons to select whether the central arrow was pointing to the left or right, respectively. 

The response period was followed by a jittered 800-1200ms intertrial interval. Each participant 

performed 72 congruent and 144 incongruent trials, lasting approximately 7 minutes in length.  
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 Congruent trials with correct responses from each participant were epoched from -2000ms 

to +2000ms around the stimulus (arrows) presentation. Using a -550 to -50ms baseline, ERSP 

activity was analyzed during the 0-800ms post-stimulus period using the three approaches, along 

with the same statistical correction techniques described prior. Findings between the approaches 

were then compared and contrasted with respect to anatomical regions of detected effects. 

 

Figure 2-3. Modified Eriksen flanker task. The figure illustrates an incongruent flanker trial (in 

which the middle arrow points in a different direction than the flanking arrows) followed by a 

congruent flanker trial (in which all arrows point in the same direction). 

2.4 Results 

2.4.1 Comparison of Analysis Methods on Simulation Dataset 

Several measures relating to the reliability and spatial accuracy of each detection method 

were extracted and compared, based principally on the types of measures that would be extracted 

from typical ERSP analyses.  
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The first metric evaluated was the localization error (Euclidean distance) between the 

centroid MNI coordinate of the detected effect compared to the centroid MNI coordinate of the 

established ground truth (i.e., the selected voxel). For k-means clustering, this MNI coordinate was 

the centroid of ICs in a particular cluster for a given clustering solution. For the ROI approach, 

this was the spatial centroid of voxels belonging to the ROI. For the voxel approach, this was the 

centroid of voxels contained in the detected spatial cluster mass of significant findings. As 

displayed in Figure 2-4, the voxel approach produced the smallest localization error of the three 

methods, with 6.1 ± 2.7 mm error for the voxel approach, 20.1 ± 5.4 to 22.8 ± 8.1 mm error for the 

k-means approach (increasing as cluster value k decreases), and 26.1 ± 9.0 mm for the ROI 

approach. One reasoning for this increased localization capability is the greater spatial resolution 

provided by the voxel method compared to the k-means and ROI methods. While the k-means 

method is limited to k = 5 to 15 centroids, and the ROI method is limited to 76 centroids, the voxel 

approach contains 1700 voxels (using 8mm resolution) which may be possible centroids of spatial 

activity.  
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Figure 2-4. Localization error of each analysis method. Error is measured as Euclidean distance 

between the centroid MNI coordinate of the modified dipoles (ground truth) and the centroids of 

the activation detected in each of the three analysis methods. K values pertain to k-means clustering 

solutions for a given value of k. 

 Next, we assessed whether this decrease in localization error provided more accurate and 

reliable detection of the primary ROI of the ground truth activation, as interpretations of findings 

in applied EEG analyses may vary based on which ROI the effect is detected in. Two commonly 

used approaches were evaluated. The first was a centroid method, whereby the ROI label of the 

ground truth voxel (i.e., the centroid of modulated activity) was defined as the ground truth ROI. 

For the voxel approach, the detected ROI was defined by the ROI label of the central voxel of the 

detected spatial cluster mass. For the k-means approach, the detected ROI was defined by the ROI 
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label of the voxel nearest to the spatial centroid of a particular cluster. The ROI approach was not 

included as it included several ROIs detected per simulation, rather than a single ROI like the other 

two methods. The second was a percentage overlap method, where detected effects are considered 

a volume and are allowed to overlap multiple ROIs. For the ground truth, ROI labels were obtained 

for each voxel within the modified sphere, and ROI percentages were defined by the fraction of 

voxels (out of all voxels in the ground truth cluster mass) contained in a given ROI. For the voxel 

approach, ROI labels were obtained for each voxel in the detected spatial cluster mass, and overlap 

percentages were similarly calculated. For the k-means approach, distances between each IC and 

the centroid of a given cluster were calculated, and a sphere was created with radius equal to the 

90% quantile of distances. This quantile percentage was used in order to reduce the impact of near-

outlier dipoles on the diameter of the cluster. Overlap percentages were calculated similarly based 

on ROI labels of voxels in this cluster sphere. The ROI method was not included in this evaluation 

as there was no similarly unique ROI, nor percent overlap measure, for each iteration due to the 

approach used. 

 Match rates between the ROI detected from each method compared to the true ROI of the 

simulated signal across all 100 simulations are displayed in Figure 2-5. On average, the voxel 

method showed greater match rates for both the centroid (78%) and overlap (73%) approaches 

compared to the other two methods. K-means clustering displayed a 14-24% ROI detection rate 

(increasing as a function of cluster value k) using the centroid approach, and 24-34% ROI detection 

rate using the overlap approach, both exhibiting a decreasing trend as the k value decreased. 

Similar to the reasoning of the decreased localization error in the voxel approach, more effective 

ROI match rates (error) in the voxel and ROI approaches can be attributed to increased spatial 

resolution. However, while the ROI approach provides high sensitivity towards detection of 
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effects, it exhibits low specificity in rejection of ROIs where the signal is projected to but does not 

originate from. 

 

 

Figure 2-5. Percent of simulations where the primary ROI of the detected results matches 

the primary ROI of the ground truth. Two methods (centroid and overlap) are displayed. In the 

centroid approach, the ROI corresponding to the centroid of the ground truth is compared to the 

centroid of the detected voxels or k-means cluster. In the overlap approach, the ROI which has the 

greatest overlap with the ground truth sphere is compared to the ROI with the greatest overlap with 

the set of detected voxels or k-means cluster. Here, findings using the voxel approach show a high 
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degree of match (>70%) with the actual ground truth ROI. K values pertain to k-means clustering 

solutions for a given value of k. 

We then aimed to evaluate the degree to which power attenuation/loss, that is the difference 

in masked ground truth activation power (dB) relative to masked detected activation power (dB), 

occurred in each approach. Since each approach is naïve to which dipoles are associated with the 

underlying effect, dipoles both associated and unassociated with the effect may be averaged 

together, attenuating the signal of interest. This power loss between the true signal and detected 

signal was calculated as the percent difference in averaged dB power (across the significance 

masked time-frequency indices) between the ground truth sphere and the detected group-level 

ERSP in each method. An ideal power loss of 0% would occur when the detected sphere and time-

frequency cluster mass of activity perfectly matches/overlaps the ground truth. 

 Power loss between the ground truth and detection methods was evaluated using two 

possible significance masks: first by using the ground truth ERSP mask and applying it to the 

ERSP measured in each method, and second by using the detected ERSP mask from each method 

and applying it back to the ground truth ERSP. When using the ground truth mask, the lowest 

power attenuations were observed for the voxel and high k value clustering solutions, while the 

ROI approach showed greater attenuation across significant ROIs (Fig. 2-6A). When using the 

detected mask, the voxel approach showed lower power attenuation than all k value clustering 

solutions as well as the ROI method (Fig. 2-6B). The outcome of lower attenuation for the voxel 

approach using the latter detected mask but not the former ground truth mask is likely due to the 

unique masks among each spatially distinct voxel. Voxels closer to the edge of the detected spatial 

cluster mass are more likely to include only the most significant portions of the ground truth, 
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resulting in smaller time-frequency cluster masses in their ERSP matrices. Furthermore, greater 

variability was observed in the k-means and ROI approaches with respect to the degree of 

attenuation which occurred. For the k-means and ROI methods, this large variability is likely due 

to variations in how well the clustering (or ROI) solutions separated signal-associated and 

unassociated dipoles. If the modulated activity sphere was situated completely inside a particular 

cluster/ROI, power loss would be minimized, but if the sphere resided in more than one 

cluster/ROI, effects become diluted and attenuations in the signal occur.  
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Figure 2-6. Attenuation of detected spectral power results relative to ground truth power. 

(A) Power attenuation between the ground truth spectral power and that detected in each analysis, 

using a time-frequency significance mask obtained by comparing the ground truth Signal condition 

to Control condition. (B) The same power attenuation measure but using a time-frequency 
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significance mask obtained from the resultant findings. Here, the voxel approach shows the lowest 

reduction in power, relative to the other two approaches, indicating an ability to better detect the 

true power of the underlying effect. K values pertain to k-means clustering solutions for a given 

value of k. 

The ability of each approach to capture the true time-frequency ranges of the spectral effect 

was next evaluated. This effectiveness was measured by calculating the percent of time-frequency 

pixels in the ground-truth ERSP mask captured by (i.e., overlapping) the detected ERSP mask for 

each method. While the k-means and ROI methods each contained a single masked ERSP plot for 

each solution, there was more than one ERSP mask for the voxel approach as each voxel could 

have a unique mask. Therefore, the ERSP mask best representative of the voxel cluster mass was 

selected to be the mask contained at the most central voxel of the cluster mass. As displayed in 

Figure 2-7, the ERSP mask at the center of the voxel cluster mass showed a high degree of overlap 

(95 ± 4%) with the true time-frequency range of the effect, while the ROI and k-means methods 

displayed a lower degree of time-frequency overlap, with 65 ± 22% and 60 ± 22% to 66 ± 26% 

overlap (generally increasing as a function of increasing k value), respectively. This finding 

suggests a greater effectiveness of the voxel approach to capture the true time-frequency extent of 

the underlying spectral activity.  
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Figure 2-7. Percent overlap of detected time-frequency effects relative to ground truth effect. 

The time-frequency bins obtained in the significant findings for each method are compared to those 

which are significant in the ground truth. The greatest time-frequency overlap between the detected 

and ground truth effect was observed for the voxel approach, suggesting a better ability to 

accurately estimate both the temporal and frequency extent of the spectral effect. K values 

represent k-means clustering solutions for a given value of k. 

 Lastly, hit rates of signal detection were estimated for each method, quantified by the 

percent of simulations in which a significant difference in ERSP activity (associated with the 

ground truth activation) was detected in each method. Such detection “misses” could result from 

nonideal cluster locations relative to activation location, as well as attenuation of activation effects 

due to averaging with a high number of unrelated ICs. The simulation results indicated a 100% 

detection rate of the ground truth signal using the voxel approach, and a similar 100% detection 
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rate using the ROI approach. For the k-means method, however, lower detection rates were 

observed regardless of the cluster value k used, with a 10-19% false negative rate when using the 

same statistical threshold as the ground truth (Fig. 2-8). This decreased detection rate in the k-

means approach is likely due to the occasional misalignment between the spatial location of the 

ground truth activity and the locations of the available clusters. Such misalignment may cause 

splitting of cortical sources associated with the effect of interest into different adjacent clusters, 

where the effect becomes diluted and unable to survive statistical comparisons and/or corrections. 

 

Figure 2-8. Percent of simulations with successful detection of ground truth activation by 

each method. Both the voxel and ROI approaches successfully detected the ground truth effect in 

100% of the simulations, while the k-means approach only detected the effect in 78-86% of the 
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simulation iterations, dependent on the value of k (where k values represent k-means clustering 

solutions for a given value of k). 

2.4.2 Comparison of Analysis Methods During Visual Attention Task 

 Given the superior effectiveness of the voxel method to provide more spatially accurate 

and interpretable detection of spectral activations based on the simulation analysis, we then applied 

this approach to correct congruent trials of an arrow flanker task for measuring effects of visual 

attention. The findings from this method were then compared and contrasted to those one would 

obtain using either a k-means or ROI approach. 

 The voxel method revealed three main ERSP effects, following pixelwise thresholding at 

p < 0.001 and cluster-level correction at p < 0.05 (Fig. 2-9). The first notable effect is an early 

increase in theta and alpha power, occurring from near stimulus presentation to around 800ms post 

stimulus. Beginning shortly after, an increase in theta power is observed more anterior and 

medially in the left supplementary motor and superior frontal cortices, occurring from 

approximately 250ms to 800ms post-stimulus. A decrease in alpha and beta power during the same 

time period was observed in a large portion of the posterior cortex, consisting of voxels primarily 

in the bilateral precuneus and occipital cortices. These findings are in line with prior oscillation-

based MEG studies of visual attention, which have reported similar increases in frontal theta power 

and decreased posterior alpha power during a flanker paradigm (McDermott et al., 2017). Together 

these activations involve mechanisms associated with visual signaling to motor areas, which plan 

and execute the movement associated with the arrow stimuli. 
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Figure 2-9. Significant spectral effects detected using the voxel approach during an arrow 

flanker paradigm. 

 Using a similar statistical thresholding and correction, the k-means and ROI approaches 

detected time-frequency activations comparable to the voxel approach (i.e., posterior alpha 

desynchronization and frontal theta synchronization). However, the regions of involvement and 

unique underlying effects were more vague (Fig. 2-10). For example, while a decrease in posterior 

alpha and beta power was clear in clusters of occipital and parietal regions, this decrease was also 

observed more anteriorly in the midcingulate and postcentral gyri, likely due to more posterior 

dipoles being included in the clusters. Using a clustering approach, it is more difficult to infer 



32 
 
 

where these activations are originating from in the cortex. Additionally, while the voxel approach 

detected a robust early alpha activation localized primarily to the left precentral cortex, this finding 

was not as pronounced in the clustering analysis as there was no precentral cortex cluster centroid. 

Instead, a smaller effect was obtained in a cluster with the postcentral cortex as the centroid, which 

only made up 17% of the detected voxel mass (the other 83% being the precentral cortex) in the 

voxel analysis. The activity detected in this cluster was likely attenuated due to a nonideal mapping 

of the cluster onto the location of the spectral effect.  

 

Figure 2-10. Surviving spectral effects from k-means clustering analysis. Spectral analysis 

using the classical k-means clustering approach (with a typical value of k = 12) indicated ten 

clusters with significantly increased or decreased spectral power. Two clusters (cerebellum, left 

midtemporal cortex) displayed no significant results. Two broad effects are observed: a significant 

increase in late theta power in three frontal clusters (left supplementary motor area, right 

midcingulate, and left superior frontal cortex). Several clusters in central and posterior regions 
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show a decrease in spectral power in the alpha and theta band. Inf = inferior, L = left, N = number 

of subjects in cluster, R = right, Sup = superior, Supp = supplementary. 

 While the ROI approach allowed for more effective mapping of analysis regions onto 

potential areas where spectral effects may exist, there was a reduction in the ability to localize 

effects to the principal ROIs due to the nature of the dipole smoothing onto nearby ROIs. As shown 

in Figure 2-11, a number of ROIs contained the effects observed in the voxel and k-means 

approaches. A first observation was that the increased alpha power observed directly after stimulus 

presentation in the left precentral cortex, which was also partially observed in the left postcentral 

cortex k-means cluster, was not observed in any of the left lateralized ROIs. The reasoning for this 

is likely due to the fact that the voxel approach was able to resolve this early alpha activity to the 

central portion of the precentral cortex ROI. These voxels made up a subset of those contained in 

the ROI and contained activity from a particular set of nearby dipoles, while the ROI approach 

was required to take additional dipoles (i.e., those contributing to other voxels of the ROI) 

contributing to the entire ROI into account for statistical comparisons. Thus, different dipoles 

containing different spectral activity may have attenuated this early effect, leading to it not 

surviving statistical correction. 

 A second observation regarding the ROI findings is the broader spatial volume detected to 

be associated with the increased frontal theta activity and decreased posterior alpha and beta 

activity. While increased frontal theta was localized primarily to the left precentral and left 

supplementary motor areas in the voxel approach, this effect was extended more medially towards 

the anterior cingulate as well as towards the right superior frontal and inferior frontal cortices. The 

decrease in posterior alpha and beta activity localized to the precuneus and occipital cortex in the 
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voxel approach additionally extended beyond these regions, with surviving findings obtained more 

anteriorly in the bilateral postcentral and midcingulate cortices. It can be seen that while the ROI 

approach provides similar detection of these broader effects, it loses both spatial accuracy with 

respect to the true cortical area of the effect, as well as sensitivity towards smaller effects which 

may be more localized in both the space and time-frequency domains (e.g., the early precentral 

alpha synchronization). 

 

Figure 2-11. ROIs with significant time-frequency effects as obtained during the ROI 

analysis. Regions are marked as increased late frontal theta or decrease posterior alpha + beta, 

where these effects are comparable to those noted in the k-means clustering analysis. 
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2.5 Discussion 

 The present study evaluated two alternative approaches for group-level analysis of 

localized spectral activity (a voxel approach and a ROI approach), in comparison to the commonly 

used k-means clustering method. While k-means clustering is a straightforward approach to 

address the issues of dipole sparsity in source-level analyses, there are several downsides of the 

approach, including a priori parameter selection, lack of spatial resolution in effect detection due 

to the brain partitions (i.e., k clusters) created, and lack of control over where the clusters are 

located. We showed through a simulation analysis that a contiguous 3-D voxel approach is more 

effective at providing spatial localization and ROI estimation, minimizing power loss due to 

contributions from unrelated signals, detecting the true time-frequency range of a spectral effect 

of interest, as well as detecting the spectral effect itself. Applying these three methods to a study 

analyzing a visual attention task provided support for the voxel approach, which resulted in more 

effective spatial localization and ROI estimation of spectral effects of interest, as well as 

facilitating more accurate and compact anatomical interpretations of findings. 

 Spatial localization of the simulated effects in the voxel method showed a greater than 50% 

reduction in localization error relative to the k-means clustering and ROI methods. This can be 

attributed to multiple factors. The first is that spectral effects can be detected with higher (8mm) 

spatial resolution, rather than limited to the areas dictated by the k-means or ROI methods. Voxel-

based cluster masses can be formed to the unique spatial volume of the effect of interest. In 

contrast, k-means clustering produces generally spherical clusters due to the minimization of 

squared error of Euclidean distances which occurs when forming the clusters. Interestingly, even 

while using a spherical ground truth activation, k-means clusters were still not as effective at 



36 
 
 

localizing the effects in this ideal scenario. In real datasets and analyses, activation effects are 

likely to be more spatially amorphous in both shape and size, which do not fit well with spherical 

clusters. Another factor may be that, for this and most other EEG studies performed, unique 

physiological parameters of subjects are not considered, including skull thickness, tissue 

conductivity, or variability in functionally equivalent cortical locations. It is plausible that the ROI 

method may show more effective localization if individual participant head model scans are 

available and utilized, such that ROIs may be more accurately created on a subject-by-subject 

basis. 

Two other primary findings, which are both intertwined, are the reduced power loss and 

greater overall signal detection rate provided by the voxel approach compared to the k-means 

clustering approach in particular. Greater power loss occurs during clustering likely due to a 

misalignment between the location of the spectral effect and that of the cluster. For example, the 

present analysis simulated a spatially varying activation across iterations while the dipole locations 

of the dataset remained constant. Since repeated k-means clustering on this set of dipoles resulted 

in generally consistent clustering solutions across iterations, it is implausible that clustering 

solutions based solely on dipole locations will accurately localize the ground truth effect during 

each iteration. In real EEG analyses, a somewhat similar situation can occur when multiple 

cognitive tasks are concatenated and included in the ICA decomposition and dipole localization 

stages. While each task may have a cognitive effect which is of interest to the investigator (which 

exists in a particular area of the cortex), the clustering solution across the same set of dipoles will, 

for the most part, be similar regardless of task due to consistent dipole locations across tasks. It 

can be inferred that across all the tasks, cognitive effects which are not well-aligned with the 

clusters will not be picked up as easily (or at all) as those which are well-aligned. As discussed 



37 
 
 

prior, it is possible to include activity associated with the effect of interest in the clustering 

algorithm criteria to better cluster dipoles, but this may introduce increased type 1 error due to the 

variance minimization that occurs (Kriegeskorte et al., 2009). 

 The effectiveness of the voxel approach to measure and locate effects associated with 

visual attention during an arrow flanker paradigm was demonstrated, localizing increased theta 

activity to voxels of the left frontal cortex and decreases in posterior alpha activity to voxels of the 

precuneus and occipital cortex. With respect to the classical k-means method, in a similar fashion 

to the simulation analysis, comparable time-frequency activity was detected across a variety of 

clusters and clustering solutions. However, a mismatch between the clusters and the location of 

the effect based on the voxel approach was observed, where the voxel approach detected an early 

alpha increase primarily in the left precentral cortex, but the nearest k-means cluster centroid was 

in the left postcentral cluster. Based on the surviving time-frequency results, a less robust early 

alpha increase was detected as well as mislocalized. The ROI approach displayed a separate issue 

of decreased spatial resolution, and overestimation of where the effects were present due to the 

dipole smoothing performed. Early left precentral alpha activity was also not detected using this 

approach, possibly due to this activity only being present in a subset of voxels contained in the 

ROI as found in the voxel approach analysis. Detection capabilities of the ROI approach may 

therefore be related to the spatial size of the effect relative to the spatial size of the ROI. 

 While we have indicated that the voxel approach provides more effective and accurate 

localization of ERSP effects, there are some important considerations and caveats with this 

approach. Firstly, the true magnitude of the effect of interest, as well as subject sample size, may 

affect the ability of the effect to survive the multiple comparisons correction described in these 
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approaches. The effects analyzed in the simulation and visual attention task are fairly robust, and 

smaller effects (e.g., between two somewhat similar cognitive tasks) may be difficult to detect with 

the large number of voxels corrected over in the voxel approach. In these cases, a sacrifice between 

localization and detectability may need to be made, and the k-means or ROI approaches may be 

more useful for exploratory analyses. Secondly, if there are hypotheses regarding the specific ROIs 

in which the effects of interest are expected, the ROI approach may be particularly beneficial to 

use, where these regions are solely included in the analysis. This method is advantageous over the 

k-means approach, which has a potential risk of the clustering solution not being well aligned with 

the area of interest. 

 In conclusion, the present study examined the effectiveness of these methods through an 

ERSP-based view. However, the same conceptual pipeline and statistical procedures can be 

straightforwardly applied to other commonly used localized measures (event-related potentials, 

cross-frequency coupling, etc.). Together, such approaches can aim to further advance the 

interpretability and replicability of cortical source-level analyses. 
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Chapter 3: Neural Mechanisms of Inhibitory Control in Persistent 

Tic Disorder 

3.1 Abstract 

Persistent tic disorders, including Tourette Syndrome, are typically thought to have deficits 

in cognitive inhibition and top-down cognitive control due to the frequent and repetitive 

occurrence of tics, yet studies reporting task performance results have been equivocal. Despite 

similar behavioral performance, individuals with persistent tic disorders have exhibited aberrant 

patterns of neural activation in multiple frontal and parietal regions relative to healthy controls 

during inhibitory control paradigms. In addition to these top-down attentional control regions, 

widespread alterations in brain activity across multiple neural networks have been reported. There 

is a dearth, however, of studies examining event-related connectivity during cognitive inhibitory 

paradigms among affected individuals. The goal of this study was to characterize neural oscillatory 

activity and effective connectivity, using a case-control design, among children with and without 

persistent tic disorder during performance of a cognitive inhibition task. Electroencephalogram 

data was recorded in a cohort of children aged 8-12 years old (60 with persistent tic disorder, 35 

typically developing controls) while they performed a flanker task. While task accuracy did not 

differ by diagnosis, children with persistent tic disorder displayed significant cortical source-level, 

event-related spectral power differences during incongruent flanker trials, which required 

inhibitory control. Specifically, attenuated broad band oscillatory power modulation within the 

anterior cingulate cortex was observed relative to controls. Whole brain effective connectivity 

analyses indicated that children with persistent tic disorder exhibit greater information flow 

between the anterior cingulate and other fronto-parietal network hubs (midcingulate cortex and 
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precuneus) relative to controls, who instead showed stronger connectivity between central and 

posterior nodes. Spectral power within the anterior cingulate was not significantly correlated with 

any connectivity edges, suggesting lower power and higher connectivity are independent (versus 

resultant) neural mechanisms. Significant correlations between clinical features, task performance 

and anterior cingulate spectral power and connectivity suggest this region is associated with tic 

impairment (r = -0.31, p = 0.03) and flanker task incongruent trial accuracy (r’s = -0.27 to -0.42, 

p’s = 0.0008 to 0.04). Attenuated activation of the anterior cingulate along with dysregulated 

information flow between and among nodes within the fronto-parietal attention network may be 

neural adaptations that result from frequent engagement of neural pathways needed for inhibitory 

control in persistent tic disorder. 

3.2 Introduction 

Persistent tic disorders (PTDs), including Tourette Syndrome (TS), are characterized by 

sudden, involuntary, and recurrent movements or vocalizations, referred to as tics. Given the 

frequent and repetitive occurrence of tics, it has been hypothesized that this atypical behavior is 

due, at least in large part, to deficits in motor inhibition and top-down cognitive control, as these 

processes are thought to mediate the selection of appropriate actions and behaviors. Numerous 

tasks have been used to evaluate the presence of inhibitory control deficits in PTD, however, 

results have been equivocal. For example, previous studies using different cognitive control 

paradigms have reported no differences in task performance between individuals with PTD and 

healthy controls (Ozonoff et al., 1998; Roessner et al., 2008). In contrast, others have observed 

worse performance (Crawford et al., 2005; Wylie et al., 2013) as well as better performance in 

PTD when compared to controls (Jackson, Parkinson, Jung, et al., 2011; Mueller et al., 2006), 
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leading to uncertainty as to the scope of potential deficits in cognitive control. A recent meta-

analysis found a moderate effect (Cohen’s d = 0.33) of general inhibitory deficits in PTD relative 

to typically developing controls, however, the effect size varied by task with commonly used 

inhibitory paradigms (Stop Signal, Flanker, and Go/No-go tasks) being not significantly different 

between diagnostic groups (Morand-Beaulieu et al., 2017). Findings of similar or better 

performance in individuals with PTD have been attributed to compensatory mechanisms 

developed from repeated voluntary tic suppression (Jackson, Parkinson, Jung, et al., 2011; Mueller 

et al., 2006). 

The Eriksen flanker task is a common cognitive paradigm for measuring inhibitory control 

where the subject must quickly indicate the direction of a central arrow flanked by arrows pointing 

in a congruent or conflicting direction (Eriksen & Eriksen, 1974). Among healthy adults, activation 

of the anterior cingulate cortex (ACC) occurs during incongruent flanker trials (Fan et al., 2005), 

which is thought to play an important role in monitoring and/or resolving such conflict. The 

anterior insular cortex, precentral gyrus, intraparietal sulcus, and bilateral occipital cortices have 

also been reported to be involved in inhibitory control (Fan et al., 2007; Xuan et al., 2016). In 

contrast, typically developing children demonstrate developmental differences during inhibitory 

processing with activation of more central and posterior regions (premotor cortex, superior 

temporal gyrus, bilateral parietal and occipital cortices) relative to inferior and medial frontal gyri 

and ACC, potentially suggesting the inhibitory network is slower to develop in frontal areas 

(Bunge et al., 2002; Santhana Gopalan et al., 2019).  

Despite similar inhibitory control task performance, individuals with PTD have exhibited 

aberrant patterns of neural activation in the supplemental motor area, anterior cingulate, 



42 
 
 

sensorimotor, inferior frontal and inferior parietal cortices relative to healthy controls (Baym et 

al., 2008; Ganos, Kahl, et al., 2014; Jung et al., 2013). Several of these same brain areas have been 

implicated in other experimental conditions such as resting state, voluntary movement, and 

voluntary tic suppression (Cui et al., 2014; Ganos et al., 2018; Loo et al., 2019; Tinaz et al., 2014; 

Zapparoli et al., 2019). While regional activation analyses are valuable for pathophysiological 

hypothesis testing, whole brain analysis using effective connectivity may be particularly useful yet 

underexplored in PTD. Prior studies and meta-analyses have suggested that alterations in brain 

activity are present across multiple neural systems (Hashemiyoon et al., 2017; Polyanska et al., 

2017; Wen et al., 2016), and thus identification of mechanistic pathways of dysfunction may reveal 

greater insights than higher or lower neural activation. 

Several studies examining resting state connectivity within PTDs have reported widespread 

atypical network connectivity that vary according to development. For example, pediatric studies 

have reported a trend of hypo- and immature connectivity among circuitry including fronto-

parietal, posterior, and default-mode networks (Church, Fair, et al., 2009; Openneer et al., 2020; 

Wen et al., 2017). In contrast, adult studies suggest increased structural (Ramkiran et al., 2019; 

Worbe et al., 2015) and functional connectivity with decreased functional hub count (Worbe et al., 

2012) within cortico-basal ganglia circuitry and urge-tic networks, with are positive correlated 

with tic severity (Tinaz et al., 2015; Worbe et al., 2012, 2015). Such differences may be due to the 

heterogenous and developmental nature of childhood PTD compared to the more stable state of 

adult PTD, as well as compensatory mechanisms that develop over time through learned self-

regulation (Jackson, Parkinson, Jung, et al., 2011). Consistent with this are recent findings that 

functional connections that best discriminate individuals with PTD from controls are age-specific, 

with default mode and fronto-parietal connections providing the best discrimination among 
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children and salience, somatomotor, and default mode features best discriminating adults with 

PTD (Nielsen et al., 2020). Collectively, both biregional and whole-brain connectivity patterns 

among individuals with PTD are aberrant with the nature of deficit being across development. 

Resting state paradigms, however, do not clarify the effect of differential neural 

connectivity on cognitive processes, nor whether particular connectivity patterns are adaptive or 

disruptive features of the disorder, an important factor for evaluating developmental trajectories. 

Across brain imaging modalities, aberrant connectivity during self-paced finger movements 

(Franzkowiak et al., 2012), waiting motor impulsivity (Atkinson-Clement et al., 2020), and face 

perception paradigms (Rae et al., 2018) have been noted among individuals with PTD. There is a 

notable dearth, however, of studies examining event-related connectivity during inhibitory control 

paradigms among individuals with PTD, particularly those using electroencephalography (EEG), 

which can reveal network activities with millisecond time resolution. There are two EEG-based 

studies that reported higher frontomesial and fronto-motor functional connectivity during 

voluntary tic suppression (Hong et al., 2013; Serrien et al., 2005) as well as during a Go/No-Go 

task (compared to controls) (Serrien et al., 2005). However, both studies were small (N = 9-10 

children with PTD, 10 controls) and utilized a low number (10-19) of EEG channels. In addition, 

the studies examined scalp-level connectivity, where there is often concern of spurious 

connectivity measurements due to volume conduction between nearby scalp electrodes (Nunez et 

al., 1997). We have recently developed an algorithm for estimating cortical-source level, effective 

connectivity based on high density EEG (Koshiyama et al., 2020; Loo et al., 2019) and will apply 

that approach here to gain insight into putative atypical connectivity patterns within a sample of 

children with PTD while performing an inhibitory task. We hypothesized that children with PTD 

would not differ from typically developing controls in flanker task accuracy based on prior meta-
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analytic findings (Morand-Beaulieu et al., 2017). We did, however, hypothesize that the diagnostic 

groups would diverge in terms of activation and connectivity patterns of top-down attentional 

control and inhibitory networks within frontal and parietal cortices. 

3.3 Materials and Methods 

3.3.1 Sample 

The case-control study sample consisted of 95 children (60 with persistent tic disorder 

(PTD), 35 healthy controls (HC)), ages 8-12 years old. Participants were recruited through 

community advertisements, internet postings, and from an academic medical center anxiety and 

tic disorder clinic between 2013 and 2019. Verbal and written explanations of study criteria were 

provided to participants and their parents, and written parent permission/assent were obtained prior 

to study participation. All study procedures and consents were approved by the local Institutional 

Review Board. 

3.3.2 Procedure 

All participants participated in a single experimental session that lasted approximately 2-3 

hours, during which time diagnostic interviews, cognitive testing, and EEG recording were 

administered. Psychiatric diagnoses were determined using a semi-structured diagnostic interview, 

the Anxiety Disorder Interview Schedule, Child Version (ADIS) (Silverman, 1996) modified to 

assess persistent tic disorders. Diagnostic interviews were administered either by supervised 

graduate level psychologists or directly administered by a licensed psychologist, who confirmed 

the presence of DSM-5 psychiatric diagnoses. The ADIS was supplemented by the clinician-

administered Yale Global Tic Severity Scale (YGTSS) (Leckman et al., 1989), Child Yale-Brown 
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Obsessive-Compulsive Scale (CYBOCS) (Scahill et al., 1997), and Strengths and Weaknesses of 

ADHD symptoms and Normal behavior (SWAN) scale (Swanson et al., 2012). Estimated 

intelligence (IQ) was assessed using the Wechsler Abbreviated Scale of Intelligence (WASI)  

(Wechsler, 1999).  

 Participants were included in the study if they met the following criteria: 1) male or female 

aged 8-12 years; 2) resided with their primary caretaker for at least 6 months prior to consent; 3) 

both participant and guardian(s) were able to complete all study measures in English; and 4) 

capable of completing all required study procedures (as determined by psychologist). Individuals 

with PTD were required to have a primary DSM-5 diagnosis of Persistent Motor Tic Disorder, 

Persistent Vocal Tic Disorder, or Tourette Disorder as diagnosed by ADIS and confirmed by 

diagnostic interview, as well as YGTSS ≥ 15 at baseline. Individuals with PTD were excluded 

from participation if they had a history of any of the following: 1) head injury resulting in 

concussion; 2) diagnoses of autism, major depression, bipolar disorder, panic disorder, or 

psychosis; 3) estimated Full Scale IQ < 80; or 4) YGTSS < 15 (PTD only). Individuals taking 

stimulant medication for comorbid ADHD discontinued use for 24 hours prior to their visit. Other 

psychotropic medications were included as covariates of no interest in analyses. Healthy controls 

were excluded if they had any major Axis I diagnosis or were on a psychoactive medication. 

3.3.3 Experimental Task 

Participants performed a modified Eriksen flanker task (Eriksen & Eriksen, 1974) while 

EEG was recorded (Fig. 3-1). Each trial consisted of five white arrows appearing horizontally 

across a black screen either above or below a centralized, static white fixation cross. Each arrow 

spanned 1.2° x 1.2° visual angle with 0.6° spacing between arrows. The arrows remained on the 
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screen for 250ms before disappearing. Following subject response or trial expiration due to lack 

of response after 1300ms from stimulus onset, a jittered 700-1200ms intertrial interval succeeded 

the trial until the next set of arrows appeared. The arrows could appear in congruent orientation, 

where all arrows pointed in the same direction, or incongruent orientation, where the central arrow 

pointed in the opposite direction of the side flanking arrows. The subject used a computer mouse 

with their right hand to press the left or right mouse button to select the respective direction of the 

central arrow. The task consisted of a high number of incongruent trials (n = 144) versus congruent 

trials (n = 72) to increase the inhibitory control required, which was a primary focus of the study. 

Trials were presented in random order and the task lasted approximately 7 minutes; dependent 

variables were percent accuracy, reaction time (on correct trials only), and reaction time 

variability. 
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Figure 3-1. Modified Eriksen flanker task. The figure illustrates an incongruent flanker trial (in 

which the middle arrow points in a different direction than the flanking arrows) followed by a 

congruent flanker trial (in which all arrows point in the same direction). 

3.3.4 EEG Recording and Processing 

EEG was recorded using a 128 Hydrocel electrode net in an extended international 10-10 

configuration (Electrical Geodesics Incorporated). Electrode scalp coordinates were transcribed 

through Polhemus, Inc. digitizer software, using the nasion and preauricular notches as anatomical 

reference points. Data were sampled at 1000Hz, referenced to Cz, and electrode impedances were 

lower than 50kΩ (per manufacturer recommendation). Task event markers from E-Prime software 

were merged with raw EEG signals using Lab Streaming Layer (LSL, 

https://github.com/sccn/labstreaminglayer). 
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Data cleaning and processing was performed using EEGLAB (Delorme & Makeig, 2004). 

Spectral power analyses utilized data that were down sampled to 250Hz and filtered using a 0.5-

55Hz bandpass filter. To remove channel artifacts, Artifact Subspace Reconstruction (ASR) (Blum 

et al., 2019; Chang et al., 2018; Kothe & Makeig, 2013; Mullen et al., 2015) was employed via 

EEGLAB plug-in clean_rawdata(), which removed channels with over 5 seconds of flat signal as 

well as those poorly correlated (r < 0.85) with adjacent channels. ASR additionally helped to 

remove and interpolate non-stationary high amplitude bursts. Scalp signals were then decomposed 

into independent source level activations, also known as independent components (ICs), using 

adaptive mixture independent component analysis (AMICA) (Delorme et al., 2012b; Hsu et al., 

2018; Palmer et al., 2011). This was performed within EEGLAB on the full EEG dataset, using 

approximately 525,000 data points (35 minutes of data sampled at 250Hz) for 128-channel 

decomposition. IC rejection was performed using the EEGLAB plug-in ICLabel (Pion-Tonachini 

et al., 2017), an algorithm trained to detect neural vs non-neural IC activations. ICs were rejected 

if the brain was not the highest probability source. Dipole locations of source activations were 

subsequently estimated using Fieldtrip (Oostenveld et al., 2010b). For the effective connectivity 

analysis, EEG data was down sampled to 100Hz to reduce model complexity and the potential 

influence of line noise. Each subject was also restricted to their top 10 ICs based on variance 

accounted for. This facilitated proper fitting of a multivariate autoregressive (MVAR) model using 

a sufficient data point ratio as proposed in Korzeniewska et al. (2008) based on the equality: 

𝐾𝐾2(𝑝𝑝 + 1)
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

≤ 0.1 

where K denotes the number of ICs, p is the model order, Ns is the number of samples in the sliding 

window, and Nt is the number of trials. This equation was modified slightly (using K2 instead of 
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K) based on recommendations from the Source Information Flow Toolbox (SIFT) (Delorme et al., 

2011).  

 To perform event-related analyses, the preprocessed source-level data was epoched (from 

-2000ms to 2000ms around stimulus) into three trial types: congruent trials with correct responses, 

incongruent trials with correct responses, and incongruent trials with incorrect responses. 

Congruent trials with incorrect responses were excluded due to sparsity.  

3.3.5 Event-Related Spectral Power  

Event-related spectral perturbation (ERSP) is a time-frequency analysis method that 

measures event-related changes, relative to baseline, in spectral power evoked by a stimulus (see 

Fig. 3-2). To calculate ERSP, a sliding window of 1-second in length was applied across each 

epoch in 25ms steps from which the average amplitude spectra of each frequency interval was 

calculated for each window using a Morlet kernel and the EEGLAB function newtimef(). These 

values were first averaged across trials, baseline normalized using average power between -550 to 

-50ms prior to stimulus, and then converted into decibel (dB) values using 10*log10(X), producing 

time-frequency plots of log-scale spectral power. This time selection for baseline ensured that prior 

trial response phenomena were not included. Average ERSP values in frequency bands (Theta [4-

7Hz], Alpha [8-12Hz], Low Beta [13-20Hz], High Beta [20-30Hz]) and time ranges related to 

stimulus presentation (0-200ms) and conflict resolution/response preparation (250-600ms) were 

extracted.  

Dipoles were spatially grouped at the study level using k-means clustering weighted by 

dipole location (dimension, 3; weight, 10), event-related potential (dimension, 4; weight, 1), ERSP 

(dimension, 4; weight, 1), and scalp map (dimension, 6; weight, 1) to create a 12-cluster solution. 
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Clusters that contained at least 70% of unique subjects were included in the spectral power 

analysis.  

3.3.6 Connectivity Analysis 

To examine network information flow, source-level effective connectivity was measured 

in the form of renormalized partial directed coherence (rPDC), a frequency-domain measurement 

of causal (directed) information flow between multivariate time series (see Fig. 3-2) (Schelter et 

al., 2009). This was done using the EEGLAB plugin groupSIFT (Loo et al., 2019), which utilizes 

the EEGLAB-compatible SIFT plug-in to calculate subject-level multivariate effective 

connectivity and perform group-level analyses. For each subject, rPDC was calculated between 

ICs using a MVAR model fitted from the Vieira-Morf algorithm. A 1-second sliding window was 

applied to the epoched data in 20ms steps, along with 30 log-scaled frequencies from 2 to 49 Hz. 

This resulted in a 150 timepoint x 30 frequency matrix of rPDC values for each connection.  

A challenge of source-space analyses is the variability in the locations of estimated dipole 

locations for each subject, which makes group-level comparisons of connectivity between regions 

difficult. To resolve this issue, groupSIFT utilizes a 3-D gaussian kernel to “smooth” dipoles from 

single points into probabilistic dipole densities. The full width at half maximum was set to 20mm 

and the gaussian was truncated to 3σ, resulting in a density radius of 25.5mm. The automated 

anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002), customized to integrate non-

cortical regions into upper and lower basal regions to avoid misleading use of subcortical regions 

as EEG sources, was then referenced to segment a brain model into 76 regions of interest (ROI). 

From this, each subject maintained a four-dimensional matrix of size 76 (region, leaders) x 76 

(region, followers) x 30 (frequency) x 150 (time). Distributed dipole density for all subjects were 
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placed in this voxelized brain model, and ROIs which contained overlapping smoothed dipoles for 

at least 70% of unique subjects were included in the analysis.  

3.3.7 Correction for Multiple Comparisons  

For each connection in the whole-brain connectivity analysis, pairwise t-tests between 

diagnostic groups were performed on each rPDC time-frequency plot at the pixel level and masked 

at p < 0.01 significance. Groups of neighboring pixels with surviving t-statistics were combined 

and summed to “t-statistic cluster masses”, representing time-frequency ranges of significant 

group differences. To correct for multiple comparisons, cluster-level correction (Groppe et al., 

2011; Korn et al., 2004a) was implemented for control of familywise error rate (FWER) using a 

non-parametric permutation test (N = 10,000) by shuffling diagnostic group labels of rPDC 

matrices. For each iteration, pairwise t-tests, significance thresholding, and t-statistic cluster 

generation were repeated using the prior method. Observing across all graph edges, the second 

largest t-statistic cluster mass was stored to form a surrogate null distribution. True-data cluster 

masses were then compared to the surrogate null distribution using a one-tail p < 0.05 significance 

threshold to obtain across-edge corrected results. This implementation of cluster-level correction 

ensured that the number of false discoveries did not exceed a chosen value of u = 1, with at least 

95% confidence (Korn et al., 2004a).  

In order to examine potential relationships between connectivity and spectral power 

findings, separate ROI analyses were run on regions with significant spectral power findings. This 

ROI analysis was achieved using a similar statistical procedure as the whole-brain analysis, except 

that the surrogate distribution was instead created from the largest cluster mass from each 
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permutation/iteration of the single graph edge of interest (rather than across all edges). This 

resulted in within-edge control of FWER.  

 

Figure 3-2. Summary of EEG analysis methods for spectral power and effective connectivity. 

ANOVA = analysis of variance, IC = independent component, MANOVA = multivariate analysis 

of variance, ROI = region of interest 
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3.3.8 Statistical Analysis 

All analyses were run in the R programming environment (R Core Team, 2020) using 

customized scripts. In summary, we used the following analysis path for obtaining and interpreting 

results. First, spectral power calculations were performed on k-means clustered sources to examine 

localized group differences in spectral power in pre-selected time and frequency ranges. To aide 

in functional interpretation, Pearson partial correlations (controlling for age) were then run 

between significant spectral power findings and clinical metrics (YGTSS scores) along with task 

performance. Next, whole-brain effective connectivity was examined along with supplemental 

ROI connectivity analyses on any regions with significant spectral power findings. Pearson partial 

correlations were run between significant connectivity findings and task performance, and with 

any corresponding spectral power differences to investigate potential compensatory relationships 

between local power and regional connectivity. Previous EEG analyses among children with and 

without PTD indicated large effect sizes in brain measurements during voluntary movement (Loo 

et al., 2019). Although the tasks differ across studies, our current sample size (N = 95) had 

sufficient power (>80%) to detect an alpha of 0.05 with a medium effect size (f = 0.20) (Cohen, 

1988).  

Flanker task behavioral data were tested for diagnostic group differences using analysis of 

variance (ANOVA) for the dependent variables (accuracy, reaction time, reaction time variability) 

from congruent and incongruent trials separately. Effects of covariates (gender, age, and 

ADHD/OCD comorbidity) on significant group differences were tested by re-running ANCOVAs 

with each covariate. To reduce dimensionality and type 1 error rate within the EEG spectral power 

analyses, multivariate analysis of variance (MANOVA) tests were used to examine significant 
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group differences in spectral power. MANOVAs were run for each trial type, source cluster, and 

time period, with theta, alpha, low beta, and high beta band spectral power as dependent variables. 

MANOVAs with significant diagnostic group differences (p < 0.05) were followed by univariate 

ANOVAs to test the effect of diagnostic group on the spectral power of each frequency band. 

Effects of covariates (gender, age, and ADHD/OCD comorbidity) on significant group differences 

were tested by re-running ANCOVAs with each covariate. Statistical procedures to control type 1 

error for the connectivity analysis were performed in the groupSIFT toolbox described prior.  

3.4 Results 

Participants in the HC (N = 35) and PTD (N = 60) groups were well matched in age (HC 

= 9.6 ± 1.4, PTD = 10.0 ± 1.4, t = -1.2, p = 0.25). Estimated intelligence (IQ) was above the average 

range in both groups but modestly lower in the PTD group (HC = 115 ± 15, PTD = 110 ± 13, t = 

2.1, p = 0.04), which has been reported for other clinical samples (Debes et al., 2011). Gender ratio 

differed, as the HC group was 46% male and the PTD group was 80% male (χ2 = 10.3, p = 0.001). 

To account for this imbalance, significant spectral power results were re-run using gender and IQ 

as covariates. The PTD group had an average YGTSS Total score of 27 ± 8.6, suggesting moderate 

clinical impairment. Within the PTD group, 10 had comorbid OCD, 15 had comorbid ADHD, and 

nine had both OCD and ADHD comorbidities, which is similar to rates of comorbidity for ADHD 

and/or OCD in other samples (Kumar et al., 2016). A total of 10 participants were on non-stimulant 

psychotropic medication and one patient with PTD was taking a stimulant, which was discontinued 

for 24 hours prior to their visit. 

3.4.1 Flanker Performance 
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Significant diagnostic group differences on behavioral performance measures in reaction 

time for congruent and incongruent trials emerged, reflecting faster reaction times in the PTD 

group relative to controls (see Table 3-1). Accuracy and reaction time variability for both trial 

types were not significantly different across groups. When controlling for covariates, the congruent 

trial reaction time differences remained significant, while the incongruent trial reaction time 

differences continued to be significant when controlling for age and IQ, but not gender, OCD or 

ADHD symptoms.  

Table 3-1. Spectral Power Group Differences 

Cluster Time (ms) Freq ERSP, HC (dB) ERSP, PTD (dB) 

Anterior Cingulate 

 

0-200 

 

Theta* 

Alpha** 

0.00 (1.06) 

0.30 (0.82) 

-0.42 (0.71) 

-0.26 (0.67) 

 

 

250-600 

 

 

 

Theta* 

Alpha** 

Low Beta** 

High Beta* 

0.48 (0.80) 

0.36 (0.76) 

0.06 (0.67) 

0.12 (0.80) 

0.03 (0.83) 

-0.11 (0.76) 

-0.34 (0.52) 

-0.23 (0.55) 

** p < 0.01, * p < 0.05. Analyses revealed significant between-group differences in spectral power 

solely in the anterior cingulate cortex cluster during incongruent trials with correct responses. 

Values in the ERSP column represent mean spectral power and standard deviation (in parenthesis), 

measured in decibels (dB), relative to baseline. 

3.4.2 Oscillatory Dynamics - Clustering Solution  

From the 12-cluster solution, three clusters (left temporal, right temporal, and inferior 

occipital) were excluded after using 70% unique subject criteria. The resulting nine clusters and 
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their corresponding scalp topographies are described in Figure 3-3. Montreal Neurological 

Institute (MNI) coordinates of cluster centroids were used to estimate Brodmann areas for each 

cluster via the Yale BioImage Suite (Lacadie et al., 2008).  

 

Figure 3-3. Source-level independent component cluster topographies. Scalp map views of 

propagated activity from the nine underlying source-level clusters included in the spectral power 

analysis. Number of subjects and independent components (ICs) within each cluster are listed for 

healthy control (HC) and persistent tic disorder (PTD) groups, as well as corresponding Brodmann 

Area (BA). Coordinates reflect cluster centroid with standard deviation of locations for all ICs in 

that cluster. ACC = anterior cingulate cortex, DLPFC = dorsolateral prefrontal cortex, L = left, 

MPFC = medial prefrontal cortex, PMC = premotor cortex, R = right, SD = standard deviation, 

SMA = supplementary motor area. 

3.4.3 Spectral Power During Inhibitory Control 

Oscillatory power during flanker performance was examined in the nine clusters selected 

for analysis for three conditions: congruent trials with correct responses, incongruent trials with 

correct responses, and incongruent trials with incorrect responses. MANOVA results were 

significant only for correct incongruent flanker trials, suggesting that task difficulty and successful 

management of conflict were important factors for evoking neural activation patterns unique to 

affected individuals. These group differences were present specifically in the ACC cluster during 
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both the 0-200ms (Wilk’s Λ = 0.86, F(4,69) = 2.8, p = 0.03) and 250-600ms (Wilk’s Λ = 0.85, 

F(4,69) = 3.0, p = 0.03) time periods (Table 3-1; Fig. 3-4). Univariate ANOVAs revealed that 

directly after incongruent flanker presentation (0-200ms), individuals with PTD exhibited 

attenuated theta (F(1,72) = 4.2, p = 0.04) and alpha (F(1,72) = 10.1, p = 0.002) band power in the 

ACC relative to controls. In the subsequent 250-600ms period, the HC group exhibited greater 

ACC spectral power compared to the PTD group in theta (F(1,72) = 5.2, p = 0.03), alpha (F(1,72) 

= 6.5, p = 0.01), low beta (F(1,72) = 8.1, p = 0.006), and high beta (F(1,72) = 4.9, p = 0.03). Group 

differences remained significant after controlling for gender, age, and IQ, with the exception of 

ACC theta power during the 0-200ms period, which was reduced to a trend level finding.  

Controlling for age, partial correlations among spectral power, task performance, and 

clinical measures indicated significant negative association between early (0-200ms) alpha power 

with YGTSS Impairment (r = -0.31, p = 0.03) and later (250-600ms) high beta power with 

incongruent trial accuracy (r = -0.25, p = 0.04). These results indicate that higher tic-related 

impairment and lower incongruent flanker accuracy were associated with EEG power modulations 

seen in PTD. 
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Figure 3-4. Attenuated ACC power in persistent tic disorder. During incongruent trials, 

subjects with persistent tic disorder (PTD) showed broadband attenuation in spectral power in the 

anterior cingulate cortex. Time-frequency ranges of significant between-group differences are 

marked by boxes for theta (θ, 4-7Hz), alpha (α, 8-12Hz), and low (13-20Hz) and high beta (β, 20-

30Hz) frequency bands. 

3.4.4 Connectivity Dynamics 

Following findings of diagnostic group differences in spectral power exclusively on correct 

incongruent trials, effective connectivity was examined solely in this condition. In addition to 

whole-brain connectivity, we examined connectivity edges involving the ACC due to significant 

group differences in spectral power. Together, these two analyses revealed 10 connections (seven 

from the whole-brain analysis and three from the ACC analysis) with significant group differences 

in information flow. Each connection involved a minimum of 66 subjects using the 70% unique 

subject thresholding criteria. Notably, all connections were associated with bilateral precuneus or 

midcingulate cortex nodes, regions within the fronto-parietal network that have been shown to be 

highly involved in processes of cognitive control, integration of information, and mental imagery 



59 
 
 

(Margulies et al., 2009; Shackman et al., 2011). These hubs showed differences in both information 

inflow and outflow with eight other anatomical regions located in mid-frontal, left motor, left 

temporal, and bilateral occipital cortices.  

Topographically, controls exhibited greater information flow within the central and 

posterior brain regions through integration of the precuneus with left precentral, left mid-temporal, 

and right occipital cortical sources (Fig. 3-5A). In contrast, individuals with PTD exhibited 

stronger effective connectivity along the midline and with anterior frontal areas, including the 

ACC and superior medial frontal cortex. Examination of the time dynamics of group differences 

revealed that differences in information flow occurred throughout the period from stimulus 

presentation until subject response (Fig. 3-5B). The HC group, however, displayed a notable period 

of relatively stronger information flow directly after stimulus presentation.   

 

Figure 3-5. Network view of effective connectivity during inhibitory control. A) The persistent 

tic disorder (PTD) group exhibited greater information flow along the midline and with frontal 

regions (blue), while greater causal flow among central and posterior regions was observed in the 

healthy control (HC) group (red). The arrows represent the direction of information flow for a 
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given connection, and node sizes represent dipole density for a given node. The brain model was 

visualized using BrainNet Viewer software (Xia et al., 2013). B) Time series representation of 

outflow for significant between-group connections from (A). Information flow which is stronger 

in the HC group is represented by positive values while stronger in the PTD group is represented 

by negative values. Stimulus onset was at t = 0; mean response time was ~600ms, averaged across 

both groups. Ant = anterior, L = left, Med = medial, R = right, Sup = superior. 

Controls exhibited greater information flow from the left precentral gyrus to right 

precuneus from 200-400ms, revealing the first appearance of motor cortex differences in the study 

and suggesting atypical motor signaling from this area in individuals with PTD (Fig. 6). While 

controls displayed greater early left precuneus to right occipital communication, the PTD group 

showed stronger early connectivity from the right precuneus to ACC (Fig. 7), possibly representing 

different stimulus appraisal strategies. Recruitment of additional frontal regions for task processing 

in PTD was further indicated by greater information flow from the superior medial frontal cortex 

to midcingulate (Fig. 3-6), as well as greater bidirectional connectivity between the ACC and left 

midcingulate (Fig. 3-7). Given their timing (200-500ms), these connections suggest atypically 

greater signaling of frontal conflict processing/response preparation mechanisms in individuals 

with PTD.  
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Figure 3-6. Diagnostic group differences in causal information flow. Time-frequency plots of 

effective connectivity patterns (represented as t-statistics) for healthy controls (HC, left), 

individuals with persistent tic disorder (PTD, middle), and the between-group differences (right). 

The precuneus in the HC group displayed greater connectivity with the right occipital and left 

precentral gyrus (red in difference plots), while the PTD group showed greater information flow 

with frontal and left occipital cortices (blue in difference plots). The dashed line represents 

stimulus presentation at t = 0. L = left, Med = medial, MCC = midcingulate cortex, R = right, 

Sup = superior. 
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Figure 3-7. Significant causal interactions involving the anterior cingulate. Time-frequency 

plots of effective connectivity patterns (represented as t-statistics) for healthy controls (HC, left), 

individuals with persistent tic disorder (PTD, middle), and the between-group differences (right). 

Individuals with PTD exhibited greater effective connectivity (blue in difference plots) from the 

right precuneus to anterior cingulate cortex (ACC), as well as bidirectionally between the ACC 

and midcingulate cortex (MCC). The dashed line represents stimulus presentation at t = 0. L = left, 

R = right. 

3.4.5 Correlations with Behavior and Performance 

 Partial correlations (controlling for age) between rPDC information flow and incongruent 

trial performance metrics indicated significant associations with several connections (p < 0.05).  

Accuracy was negatively correlated with left precentral to right precuneus (r = -0.27, p = 0.03) 

connectivity (which was stronger in controls) as well as with frontal connections (all of which 

were stronger in PTD) between the left superior medial frontal and midcingulate (r = -0.25, p = 

0.04), ACC to midcingulate (r = -0.35, p = 0.003), midcingulate to ACC (r = -0.42, p = 0.0004), 



63 
 
 

and right precuneus to ACC (r = -0.42, p = 0.0008). Midcingulate to ACC connectivity was also 

negatively correlated with incongruent trial reaction time (r = -0.31, p = 0.009). Correlations 

between ACC connectivity and spectral power were not significant (all p’s > 0.05), suggesting: 1) 

these are separate neural mechanisms that are not resultant from one another, and 2) higher 

connectivity between frontal and midcingulate regions was an alternative neural pathway utilized 

by individuals with PTD that resulted in faster response times but similar accuracy. 

3.5 Discussion 

The present study provides the first report of cortical source-resolved, event-related brain 

oscillatory dynamics and effective connectivity during inhibitory processing in PTD. Overall, 

children with PTD exhibited lower spectral power in the ACC but higher causal information flow 

between the ACC and other midline central and posterior regions, despite similar levels of task 

accuracy, relative to typically developing controls. In addition, whole-brain connectivity analyses 

indicated that the midcingulate and precuneus serve as fronto-parietal network hubs whose 

connections with several motor and sensory areas such as left precentral, left temporal, and 

bilateral occipital nodes were atypical in PTD. Finally, attenuated ACC activation and higher 

information flow between and among nodes within the fronto-parietal attention network were 

significantly associated with tic impairment, faster reaction time, and worse inhibitory 

performance, suggesting these alternate cortical patterns may be a putative neural adaptation 

among individuals with PTD. 

Significant differences in neural dynamics were observed between controls and individuals 

with PTD despite equivocal differences in inhibitory task performance, a finding that is consistent 

with other event-related potential (ERP) and functional MRI cognitive control studies (Baym et 
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al., 2008; Ganos, Kühn, et al., 2014; Jung et al., 2013). Interestingly, these differences in dynamics 

were observed solely in incongruent trials despite the group differences present in congruent trial 

reaction time. A potential explanation for this may be found from the correlation analyses, which 

revealed significant EEG correlations primarily with incongruent trial accuracy. This could be due 

to a greater sensitivity of the EEG measurements used to neural mechanisms associated with 

accuracy rather than network activity related to reaction time, which may be widely distributed.  

Within the current study, the ACC showed between-group differences in both activation 

and connectivity patterns, suggesting it plays a key role in the cognitive inhibition process. The 

involvement of this region is well supported, as the ACC has repeatedly been shown to be engaged 

during monitoring of conflict (Botvinick et al., 2004; Fan et al., 2003; Van Veen & Carter, 2002). 

In PTD, studies have reported structural and neurochemical ACC deficits among affected 

individuals, including lower grey matter in adults (Müller-Vahl et al., 2009) and lower γ-

aminobutyric acid (GABA) levels in youth (Freed et al., 2016). Aberrant ACC activity has also 

been observed in pediatric and adult samples during inhibitory control tasks (Jung et al., 2013; 

Marsh et al., 2007) as well as prior to tic occurrence (Wang et al., 2011), suggesting the ACC 

subserves multiple roles common to both tic occurrence and inhibitory control in PTD. This 

hypothesis is further supported by negative correlations observed here between alpha band power 

in the ACC and higher YGTSS Impairment scores, indicating greater tic impairment was 

associated with attenuated ACC activity during inhibitory processing. 

Several additional brain regions exhibited aberrant effective connectivity, suggesting 

widespread atypical network communication in individuals with PTD during inhibitory control. 

The precuneus and midcingulate were involved with nearly all significant connections. Both 
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regions are known to be associated with the integration of various processing areas and cortical 

functions, including cognitive control (Cavanna & Trimble, 2006; Fan et al., 2003; Shackman et 

al., 2011), and have been implicated in PTD during an adaptive control paradigm (Church, 

Wenger, et al., 2009). The precuneus communicates with peripheral visual, frontal, and motor 

regions (Margulies et al., 2009), and the presence of altered hub connectivity in PTD may indicate 

difficulties with the integration of multimodal information that is required when performing 

sensory-driven movements. The precuneus is also associated with internally guided attention 

(Cavanna & Trimble, 2006) as well as with attention shifting between object features (Nagahama 

et al., 1999). Given that the paradigm was designed for assessing features of attentional control 

(Fan et al., 2002), altered connectivity patterns between the precuneus and visual cortex could 

suggest mechanistic and/or procedural differences in attention shifting between important stimulus 

features (e.g., arrow directionality) in PTD, as reflected by contrasting directions of information 

flow between the precuneus and bilateral occipital cortices by diagnostic group. Together these 

would suggest individuals with PTD utilize atypical communication patterns between attention, 

visual and sensorimotor networks 

While the involvement of the MCC in cognitive control and response selection is well 

established, greater engagement of the midcingulate with other frontal areas could provide support 

for an urge-based motoric role that has been previously hypothesized (Jackson, Parkinson, Kim, 

et al., 2011). In particular, this hypothesis proposes a separation between a “urge-driven action” 

network involving the insula and MCC and a “willed, intentional action” network primarily 

involving the premotor and parietal cortices. The present findings fit well with this anatomical 

separation, as while a premotor and parietal-based connectivity pattern was observed in controls, 

an additional MCC-based network was present in the PTD group. This idea is also supported by 
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the fact that negative, rather than positive, correlations were observed between MCC connectivity 

and accuracy as well as reaction time, indicating that the influence of the MCC did not necessarily 

help participants perform better on the task. Additionally, the involvement of the MCC in goal-

directed (including impulsive and body-directed) actions (Caruana et al., 2018) could signify 

greater impulsive signaling within these motor pathways in PTD and help explain the EEG-

behavior relationships. 

Whole brain effective connectivity analyses revealed greater information flow among the 

central and posterior network hubs in the HC group, while the PTD group exhibited greater 

connectivity along the midline fronto-parietal axis during inhibitory processing. Greater fronto-

parietal connectivity is typically considered to be a developmentally mature neural pattern 

(Church, Fair, et al., 2009), which may arise among children with PTD as a result of frequent 

inhibition of tics and the need to control tic expression (Ganos et al., 2018; Nielsen et al., 2020). 

On the other hand, integration of the ACC into the fronto-parietal network as opposed to the 

cingulo-opercular control network is an immature developmental pattern observed in youth with 

PTD that is most commonly seen among typically developing children but not adolescents or 

adults (Church, Fair, et al., 2009). Thus, these results suggest altered network connectivity patterns 

that cannot be characterized as unidirectional along the developmental spectrum. 

While qualitatively different developmental trajectories of neural connectivity has been 

reported previously (Nielsen et al., 2020), we note that another reason these results don’t map 

directly onto previous findings may be the lack of comparable studies given the dearth of task 

dependent, event-related connectivity studies in PTD. Many MRI-based studies reporting 

functional or structural connectivity have been performed on resting state, which may differ 
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significantly from task dependent effective connectivity due to increased top-down control of 

cortico-striatal-thalamic activity under task conditions (Zapparoli et al., 2017). While several 

studies have examined connectivity dynamics during tic suppression and other inhibitory control 

paradigms (Zapparoli et al., 2015), of the two EEG-based studies examining scalp-based 

connectivity, children with PTD exhibited higher coherence values relative to controls in fronto-

central connections during tic suppression (Hong et al., 2013) and motor inhibition (Serrien et al., 

2005). Our results are thus consistent with these previous studies and extend the findings with a 

higher density electrode montage and cortical-source level effective connectivity, allowing 

identification of directional information flow to specific nodes along the fronto-parietal network 

with precise timing. In light of these associations, altered task-dependent network connectivity 

patterns within PTD appear to have greater involvement of frontal regions than is generally 

reported for typically developing children. We hypothesize that greater frontal connectivity is 

likely a neural adaptation to coping with the illness, but one that does not necessarily result in 

better behavioral performance. 

A strength of this study is the large sample size of children with and without PTDs (N = 

95) who are within a relatively tight age range of 8-12 years. In addition, state of the art EEG 

recording and processing techniques allowed for sub-second quantification of oscillatory activity 

and effective connectivity with greater spatial resolution of cortical-source resolved generators. 

One limitation is that pediatric populations are developmentally heterogenous and at the early 

stages of diagnosis, which may make it difficult to generalize findings towards older individuals 

with tic disorder. Nevertheless, evaluations of early diagnostic stages are prudent for examining 

disorder progression and optimizing early intervention techniques. A second limitation is that EEG 

is blind to activity from deeper subcortical sources within the cortico-striato-thalamo-cortical 
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network, which are thought to play a key role in tic generation within PTDs (Ganos et al., 2013). 

Key distinctions have been made, however, between the neural mechanisms that generate tics 

versus those that play a role in suppression of involuntary and voluntary movements, as well as 

inhibition of internally driven versus externally triggered events (Ganos et al., 2018). Recent 

studies and a meta-analysis of task-based neuroimaging studies did not find significant diagnostic 

group differences in activation and network disruptions involving basal ganglia or thalamic regions 

(Polyanska et al., 2017; Wen et al., 2016, 2017), suggesting there are clear cortical dysfunctions 

that contribute meaningfully to PTD phenomenology that can be assessed with EEG. Furthermore, 

the atypical cortical activity reported here may provide potential non-invasive neuromodulation 

targets for future treatment of PTD. A final consideration is that the PTD sample contained more 

boys and some subjects with comorbid OCD and ADHD. The occurrence of comorbid disorders 

in patients with PTD is typical but creates potential issues when attempting to interpret results and 

their association with PTD. However, most group differences remained significant after 

controlling for sex as well as ADHD and OCD symptoms, suggesting that the group differences 

observed are not systematically associated with gender or diagnostic comorbidity.  

In summary, we have provided evidence of aberrant activation and communication patterns 

within the fronto-parietal network, specifically in the anterior cingulate cortex, which had 

attenuated spectral power but greater causal information flow with several fronto-parietal hub 

regions, particularly the midcingulate and precuneus, in PTD. Further research into these 

temporally resolved mechanisms will better elucidate neural mechanisms and potential patterns of 

atypical network communication that lead to tic expression and suppression in PTD.  
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Chapter 4: Neural Dynamics Preceding Tic Expression in Persistent 

Tic Disorder 

4.1 Abstract 

 Persistent tic disorders (PTDs) are characterized by stereotypical and involuntary 

movements referred to as tics. Prior EEG and imaging-based studies have indicated a number of 

cortical and subcortical regions with aberrant activity in the seconds preceding tic expression. Of 

the EEG studies examining the neural activity preceding tic events, however, none have taken a 

whole-brain approach, particularly with respect to measurements of causal information flow, 

which may provide insight into the temporally resolved cortical mechanisms and regions driving 

tic expression. The goal of this study was to further examine these neural antecedents of tic 

expression using EEG measures of spectral power and effective connectivity in a whole-brain 

approach in a sample of children with PTD (N = 50) during a free ticcing resting state paradigm. 

Using a Tic condition made up of tic-locked activity, and a NoTic condition made up of resting 

state activity without tics, changes in spectral power and effective connectivity were evaluated.  

Following detection and localization of significant changes activity, these significant measures 

were used as features in a Naïve Bayes classifier to determine the differentiability between the Tic 

and NoTic epochs. The classifier was first trained using a cross-validation approach and was 

afterwards tested using comparable measures extracted from an independent set of children (N = 

15) with PTD performing the same task. Spectral power analyses indicated significant increases 

in activity in the anterior cingulate cortex prior to tic expression relative to typical resting state 

activity. Changes in information flow were detected across the brain, implicating frontal, 

sensorimotor, and posterior regions, suggesting aberrant communication among multiple 
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cognitive, sensory, and motor-based regions. High classification accuracies (both sensitivity and 

specificity) were observed in the both the training and test datasets, indicating these changes in 

spectral power and information flow to be reliable discriminators of tic generative processes. 

4.2 Introduction 

Tics are the core symptom of persistent tic disorders (PTD), consisting of stereotypical and 

involuntary movements performed by individuals with the disorder. Prior to tic expression, there 

are a number of neurological mechanisms which are hypothesized to be involved, including 

excessive activity in motor pathways, insufficient inhibitory control, and  strong premonitory urges 

(Conceição et al., 2017; Wang et al., 2011). These premonitory urges, which show apparent 

increasing rates as development progresses (Banaschewski et al., 2003), are generally described 

as a feeling of discomfort that is relieved by performing the tic, and are particularly unique in that 

they notify individuals of instances of symptomatic activity. Despite the often involuntary and 

habitual nature of tics, many individuals with PTD are able to direct internalized attention towards 

these sensory urges to voluntarily detect and suppress oncoming tics to some degree (Himle & 

Woods, 2005). Thus, there appear to be neurological processes associated with tic generation and 

expression that are able to be consciously and internally intercepted before the tic is expressed. 

These tic-generative processes may also provide an avenue for external interception through non-

invasive intervention approaches such as neurostimulation, assuming that they can be adequately 

localized and detected (with high temporal resolution) relative to typical resting state periods 

without tics.  

Neurophysiological studies have investigated the neural dynamics involved in tic 

generation and expression, with reports of several cortical and subcortical regions activated prior 
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to tic onset. In adults with Tourette syndrome, atypical activations upwards of 2 seconds prior to 

tic onset have been observed in the anterior cingulate cortex (ACC), insular cortex, supplementary 

motor area (SMA), primary motor cortex (M1), somatosensory cortex (SMC), and parietal 

operculum during tic freely conditions in functional magnetic resonance imaging (fMRI) studies 

(Bohlhalter et al., 2006; Neuner et al., 2014). One second prior to tic onset, both cortical and 

subcortical regions have also been implicated, including the extrastriate visual cortex, putamen, 

amygdala, and cerebellum (Neuner et al., 2014). Activation during tic occurrence of limbic areas 

including the insula and ACC, as well as SMA have been similarly supported by positron emission 

topography (PET) studies (Lerner et al., 2007; Stern et al., 2000). The insula has also been 

indicated to display atypical connectivity with fronto-striatal nodes of the urge-tic network in adult 

patients (Tinaz et al., 2015), and its involvement in urge-related behavior is supported by other tic 

disorder and behavioral studies (Jackson et al., 2020; Jackson, Parkinson, Kim, et al., 2011).  

Electroencephalographic (EEG) approaches have been sparsely utilized to examine cortical 

activity prior to tic occurrence, primarily in the sensorimotor cortices. Early event-related potential 

(ERP) studies have suggested an absence of readiness potentials prior to tic onset in some (Obeso 

et al., 1981), but not all patients with tic disorders (Karp et al., 1996). Reasoning for this 

discrepancy has been theorized to be related to the presence (or absence) of internal tic-related 

urge phenomena, which varies from patient to patient. A lack of beta band power decrease or 

desynchronization has also been reported in motor cortices prior to tics, in contrast to the 

desynchronization observed prior to voluntary movements, suggesting tics may engage a unique 

set of brain regions not involved in volitional movements, including insular, cingulate, and 

subcortical basal-ganglia regions reported in prior studies (Maiquez et al., 2020). Although 

connectivity changes prior to tics have remained mostly unexplored, one study has reported 
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changes in thalamo-cortical (motor cortex) coherence beginning approximately one second prior 

to tic occurrence (Bour et al., 2015), suggesting that atypical communication patterns prior to tics 

may be present.  

While the majority of previous studies have solely focused on fMRI, or applying EEG/ERP 

approaches to sensorimotor cortices, there is a gap in the literature regarding whether there are 

detectable oscillation-based EEG activations driving tic expression in other cortical regions. 

Furthermore, there is a lack of research regarding the causal, rather than functional, mechanisms 

of cortical-cortical communication involved in tic generation, which may facilitate understanding 

of cortical regions driving tics. The present study aimed to address this topic by utilizing high-

density EEG to examine cortical source-level, whole-brain spectral power and effective 

connectivity during the time periods directly preceding spontaneous tic events. Utilizing a tic 

freely resting state paradigm, the goals of the study were two-fold. Firstly, the study aimed to 

identify cortical regions exhibiting atypical spectral dynamics prior to tic events, relative to periods 

of no tic activity. Secondly, the study aimed to measure the degree to which this tic-associated 

activity was discriminable from periods of no tic activity using a classification approach. We first 

trained a classifier and examined performance using the primary dataset, and then evaluated the 

classifier model on EEG data from an independent dataset of similar-aged children with PTD. 

Based on prior studies, we hypothesized that tic-associated activity, and discriminable features, 

would consist of activations and connections among sensorimotor and cingulate cortices, and that 

these activation patterns would be associated with both tic and urge severity.  

4.3 Methods 

4.3.1 Sample 
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The primary study sample consisted of 50 children, aged 8-12 years old, with persistent tic 

disorder recruited from the community from radio and newspaper advertisements, local schools, 

an academic medical center anxiety and tic disorder clinic between 2013 and 2020.  Prior to 

screening and any study procedures, participants and their parents received verbal and written 

explanations of study criteria and provided written permission/assent. All studies procedures and 

consents were approved by the local Institutional Review Board. 

During a single experimental session that lasted approximately 2-3 hours, participants 

underwent semi-structured diagnostic interviews, cognitive testing, and a comprehensive EEG 

recording. Participants were required to be male or female aged 8-12 years, possess a primary 

DSM-V diagnosis of Persistent Motor Tic Disorder, Persistent Vocal Tic Disorder, or Tourette 

Disorder from both the Anxiety Disorder Interview Schedule, Child Version (ADIS) (Silverman, 

1996) and diagnostic interview, as well as have a tic severity score ≥15 on the Yale Global Tic 

Severity Scale (YGTSS) (Leckman et al., 1989). Presence and strength of premonitory urges were 

evaluated using the Premonitory Urge for Tics Scale (PUTS) (Woods et al., 2005). Comorbidity 

of ADHD was diagnosed using the Strengths and Weaknesses of ADHD-symptoms and Normal-

behavior (SWAN) scale (Swanson et al., 2012), and obsessive-compulsive disorder (OCD) using 

the Child Yale-Brown Obsessive-Compulsive Scale (CYBOCS) (Scahill et al., 1997). Estimated 

intelligence (IQ) was assessed using the Wechsler Abbreviated Scale of Intelligence (WASI) 

(Wechsler, 1999).  

 Exclusion criteria included an estimated Full Scale IQ < 80, or a history of head injury 

resulting in concussion, autism spectrum disorder, major depression, bipolar disorder, panic 

disorder, or psychosis. Individuals taking stimulant medication for comorbid ADHD discontinued 
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use for 24 hours prior to their visit. Other psychotropic medications were included as covariates 

of no interest in analyses.  

An independent test sample of children with persistent tic disorder, for usage only in testing 

the classifier model, was obtained from the baseline visit of a prior published behavioral 

intervention study (McGuire et al., 2022). This sample consisted of 15 subjects, aged 8-14 years 

old, recruited under comparable inclusion and exclusion study criteria. 

4.3.2 Experimental Task 

Participants performed a resting-state, eyes open paradigm while EEG was recorded. The 

task lasted for 7.5 minutes, with a static dot shown on the center of the computer screen for the 

entirety of the task. Participants were instructed to keep their attention towards the screen and were 

free to tic as needed. High-definition video (at 30fps) of each participant was simultaneously 

recorded during the EEG session. Following the EEG recording session, a trained staff member 

performed a frame-by-frame review of the session video for tic events and marked the time point 

of each tic onset throughout the resting-state paradigm in the EEG data stream. From this task, a 

“tics per minute” dependent variable was calculated for each participant. 

4.3.3 EEG Recording and Processing 

EEG was recorded using a 128 Hydrocel electrode net in an extended international 10-10 

configuration (Electrical Geodesics Incorporated). Electrode scalp coordinates were transcribed 

through Polhemus, Inc. digitizer software, using the nasion and preauricular notches as anatomical 

reference points. Data were sampled at 1000Hz, referenced to Cz, and electrode impedances were 

lower than 50kΩ (per manufacturer recommendation).  
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Processing of data was performed using the EEGLAB toolbox (Delorme & Makeig, 2004). 

Data was first downsampled to 250Hz and filtered using a 0.5-55Hz bandpass filter. Artifact 

subspace reconstruction (ASR) (Blum et al., 2019; Chang et al., 2018; Kothe & Makeig, 2013; 

Mullen et al., 2015) was the employed by the EEGLAB plug-in clean_rawdata() for removing 

large artifacts, bad channels, and line noise. Scalp signals were then be decomposed into 

independent source level activations, also known as independent components (ICs), using adaptive 

mixture independent component analysis (AMICA) (Delorme et al., 2012a; Hsu et al., 2018; 

Palmer et al., 2011). Dipole locations of source activations were then subsequently estimated using 

Fieldtrip (Oostenveld et al., 2010b). To remove muscle, ocular, and line noise source components, 

the EEGLAB plug-in ICLabel, a classifier trained to detect neural vs non-neural IC activations, 

was utilized to select only brain-based sources, with non-neural sources being rejected from the 

data. In order to ensure model stability in the effective connectivity analysis, each subject’s dataset 

was limited to the top 15 ICs, ranked based on the percent of EEG variance accounted for. 

Preprocessed source-level resting state data was epoched into two sets of trials: a Tic 

condition and NoTic condition. The Tic condition consisted of tic-locked epochs -4000ms to 0ms 

relative to the start of each tic. In order to prevent contamination from motor artifacts of preceding 

tic events, epochs were excluded if a preceding tic was within 5000ms of the tic. The NoTic 

condition consisted of non-overlapping epochs selected from portions of the data where there were 

no tics, and neither pre-tic activity nor post-tic artifacts occurred. To achieve this, epochs were 

matching in length (4000ms), with the left edge of the epoch required to be at least 2000ms after 

any tic event and right edge required to be 3000ms prior to any tic event.  

4.3.4 Measures 
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Two measurements were implemented at the cortical source level to examine changes in 

both local neural activity and region-to-region communication. 

 Local activation at each cortical source was measured using event-related spectral 

perturbation (ERSP), a time-frequency analysis method that measures event-related changes in 

spectral power relative to a baseline. ERSP was estimated using the EEGLAB function newtimef(), 

using a similar sliding window of 1-second in length with 25ms step size was applied. Spectral 

magnitudes were averaged across trials, baselined using a divisive gain model of average 

magnitudes from the -3500ms to -2500ms baseline period, and log transformed to decibel (dB) 

units. 

Information flow between pairs of cortical sources within subjects was measured using 

renormalized partial directed coherence (rPDC), a frequency-domain form of effective 

connectivity (Schelter et al., 2009), as implemented in the groupSIFT (Loo et al., 2019) and SIFT 

(Delorme et al., 2011) plug-ins for EEGLAB. For each subject, connectivity was estimated 

between sources using a multivariate autoregressive model fit from the Vieira-Morf algorithm, 

with 30 log-scaled frequencies from 2 to 40Hz, along with a 1-second sliding window of 25ms 

step size. Connectivity values were baselined by subtracting average connectivity from the 

preceding -3500ms to -2500ms baseline period. 

 In order to facilitate group-level analyses on these cortical sources and measures, a source 

projection methodology was applied to dipoles (Loo et al., 2019). The method employed a 3-D 

Gaussian kernel (full-width half maximum of 20mm truncated at 3σ) to spatially smooth dipoles 

from single points into probabilistic dipole densities. A 3-dimensional, 8mm-spaced voxel system 

was then placed on the brain model. For the ERSP analysis, estimates of ERSP activity for each 
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subject were calculated at each voxel using a within-subject weighted average of dipole densities 

contributing to the voxel. This produced a Voxel x Time x Frequency ERSP matrices for each 

subject. Voxels that had dipole contributions from at least 50% of subjects were included in the 

analysis. For the connectivity analysis, the brain model was parcellated into 76 regions of interest 

(ROI) using the automated anatomical labelling atlas (Tzourio-Mazoyer et al., 2002). For each 

subject, connectivity was then calculated between ROI pairs based on contributions of dipoles to 

each ROI using a within-subject weighted average, producing a ROI x ROI x Time x Frequency 

connectivity matrix. ROIs which had dipole contributions from at least 80% of subjects were 

included in the analyses. To note, greater subject inclusion criteria was achievable in the ROI 

approach (compared to the voxel approach) due to their larger anatomical size and thus greater 

dipole contribution. These inclusion criteria values were selected on the basis of maintaining 

sufficient statistical power (from subject inclusion) while also ensuring a sufficient portion of the 

cortex was included in the analysis.  

4.3.5 Statistical Analysis 

A mass univariate approach was utilized in the time-frequency domain for comparing the 

Tic and NoTic condition epochs for both the spectral power (ERSP) and effective connectivity 

(rPDC) analyses. For each time-frequency pixel of each measure, a paired t-test was performed 

between the two conditions. Significance values were then masked at a threshold of p < 0.05, and 

t-statistics among surviving adjacent pixels were summed together to form statistical cluster 

masses. To control for familywise error rate (i.e., correct for multiple comparisons), cluster level 

correction was performed using an iterative permutation approach (N = 1000) by shuffling 

condition labels of spectral power and connectivity time-frequency matrices. During each iteration, 
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pairwise statistical testing and cluster mass formation were repeated, with the second largest 

cluster mass across all voxels/ROIs (for spectral power and connectivity, respectively) recorded 

and stored to form a surrogate null distribution. Using the second largest cluster mass ensured that 

the number of false discoveries did not exceed u = 1, with 95% confidence (Korn et al., 2004b). 

True data time-frequency cluster masses were compared to the null distribution using a p < 0.05 

threshold. Following the whole-brain effective connectivity analysis, an additional ROI-specific 

connectivity analysis was performed on regions showing significant changes in activity in the 

spectral power analysis. Multiple comparisons were accounted for through false discovery rate 

(FDR) control at p = 0.05.  

In an effort to examine clinical interpretations of EEG findings, Pearson correlations were 

run in the R environment (R Core Team, 2020) between behavioral scores (including clinical scales 

and tic-related metrics) and significant findings from the spectral power and connectivity analyses. 

4.3.6 Classification of Tic and NoTic Conditions 

 A kernel naïve Bayes classifier, run in the MATLAB environment, was utilized to 

determine the discriminability between trial-averaged activity of Tic trials from that of NoTic 

trials. Broadly, this supervised classifier assigns outcome labels to observations based on a 

probabilistic model learned from applying Bayes Theorem to features from a set of training data.  

Predictors/features consisted of significant spectral power and connectivity measures obtained 

from the group-level analysis, while observations (N = 100) were made up of the 50 subjects, each 

with two conditions (pre-tic and rest). The classifier was first trained through a training and 

validation set using a 10-fold cross-validation approach, obtaining measures of overall classifier 

accuracy (sensitivity and specificity) as well as area under the curve (AUC). The classifier model 
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was then applied to predict labels of unseen data from the independent test set of 15 subjects with 

the same two conditions (Tic and NoTic). 

4.4 Results 

4.4.1 Demographics  

 Demographic data for the primary study sample as well as classifier test sample are 

described in Table 4-1. The primary sample displayed moderate tic severity with a mean total 

YGTSS score of 27.4 ± 8.6. Comorbidities of ADHD, OCD, or an anxiety disorder were present 

in 70% of participants, as is typical for such populations (Hirschtritt et al., 2015).  

Table 4-1. Demographics and clinical characteristics of participants. 

Demographics 

 

Primary Sample 

 

Test Sample (only 

for classifier) 

N 50 15 

Age, M (SD)  9.8 (1.6) 11.8 (2.0) 

Sex, males, N (%) 38 (76%) 11 (73%) 

Full Scale IQ, M (SD) 113 (15) 109 (13) 

Clinical Characteristics   

ADHD, N (%) 25 (50%) 3 (20%) 

OCD, N (%) 21 (42%) 6 (40%) 

Generalized anxiety disorder, N (%) 14 (28%) 3 (20%) 

No comorbidities, N (%) 15 (30%) 6 (40%) 

YGTSS, M (SD)   
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 Total score 27.4 (8.6) 26.1 (5.1) 

 Impairment 26.8 (8.7) 29.0 (6.3) 

 Motor 16.5 (3.4) 15.5 (2.8) 

 Vocal 11.2 (6.5) 10.6 (4.1) 

PUTS, M (SD)   

 Urge presence 4.4 (2.2) N/A 

 Urge strength 4.2 (2.1) N/A 

 Tic frequency 5.2 (2.1) N/A 

CBCL total, M (SD) 56.8 (11.3) 60.7 (8.5) 

SWAN, M (SD)   

 Inattention 24.8 (8.9) 25.5 (10.4) 

 Hyperactivity 24.3 (7.9) 25.2 (7.7) 

CYBOCS, M (SD) 9.5 (10.6) N/A 

Medication 
 

 

No medication, N (%) 37 (74%) 11 (73%) 

Stimulant, N (%) 1 (4%) 0 

Psychotropic, N (%)   

 α -2 agonist 7 (14%) 0 

 Antidepressant  6 (12%) 2 (13%) 

 Anticonvulsant 1 (2%) 0 

 Antipsychotic 2 (4%) 1 (7%) 

 Antihypertensive 2 (4%) 3 (20%) 
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Note: M = mean, SD = standard deviation, IQ = intelligence quotient, ADHD = attention-

deficit/hyperactivity disorder, OCD = obsessive-compulsive disorder, YGTSS = Yale Global Tic 

Severity Scale, PUTS = Premonitory Urge for Tics Scale, CBCL = Child Behavior Checklist, 

SWAN = Strengths and Weaknesses of ADHD-symptoms and Normal-behavior scale, CYBOCS 

= Child Yale-Brown Obsessive-Compulsive Scale 

4.4.2 Tics During EEG Recording Session 

 Tics included in the analysis consisted of visible motor-related movements located above 

the waist. While nearly all patients possessed vocal tics in addition to motor tics, verbal tics were 

not analyzed as no audio was available for the post-session video review. Parent and clinician-

reported ticcing behavior indicated ocular tics to be the most frequent (90% of subjects), followed 

by shoulder/head (74%), facial (58%), and truncal (32%) tics. The number of tics exhibited by 

patients during the 7.5 minute recording session ranged from 1 to 9.5 (mean of 4.2 ± 2.1) tics per 

minute. When tics occurred in a quick sequence (less than 1s apart), they were considered as a 

single tic with the beginning of the sequence noted as the onset time.  

4.4.3 Localized Spectral Power 

Comparisons of spectral power during Tic periods vs. NoTic periods revealed distinct 

changes in local neural activity prior to tic onset among voxels located bilaterally in the ACC 

(centroid Montreal Neurological Institute (MNI) coordinates x = 2, y = 32, z = 19). Significant 

increases in spectral power (relative to the -3500 to -2500ms baseline period) occurred in the ACC 

during the -1700 to -500ms period prior to tic onset, primarily in the theta and alpha frequency 

ranges (Fig. 4-1). There were no significant relationships between ACC spectral power and 

behavioral measures of tic severity or urge (all p’s > 0.05). 
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Figure 4-1. Voxels with significant spectral activity between Tic and NoTic conditions. A 

localized increases in spectral activity (primarily in theta and alpha bands) was observed in the 

anterior cingulate cortex prior to tic events. Time-frequency plots are masked at pixelwise p = 

0.05. Ant = Anterior, dB = decibel, L = left, R = right. 

4.4.4 Regional Connectivity 

In the effective connectivity analysis, changes in information flow prior to tic occurrence 

were observed in several cortical regions across the brain, involving a number of bilateral frontal 

sensorimotor regions as well as left posterior areas of the parietal and occipital cortex (Fig. 4-2, 4-

3). Amongst frontal areas, decreases in information flow were observed notably from the 

midcingulate cortex (MCC) to several other frontal nodes, including the left midfrontal gyrus, right 

precentral gyrus (primary motor cortex), and bilateral postcentral gyrus (somatosensory cortex). 

A decrease in connectivity was also noted from the right superior frontal gyrus (SFG) to left SMA, 

as well as long-distance connectivity from the left angular gyrus to right SFG. These changes 

occurred throughout the -2500 to -500ms period preceding tic onset, and together indicate acute 

decreases in communication among cognitive, motor, and sensory-based regions prior to tics.  

Increased connectivity was observed from the left midtemporal to left precuneus and left 

cuneus to left superior parietal cortex during the -1500 to -500ms preceding the tic. Following the 

detection of local changes in ACC power, the ROI analysis on this region indicated increased 



83 
 
 

information flow from the ACC to MCC during the -1000 to -500ms immediately preceding the 

tic event. 

 

Figure 4-2. Regional connections with significant changes in information flow prior to tic 

onset. Time-frequency plots are shown with t-statistics, where the statistic at a given pixel is based 

on a t-tests between connectivity at that pixel and the average baseline (-3500 to -2500ms) 

connectivity value. Plots are masked at pixelwise p = 0.05. L = left, R = right. 
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Figure 4-3. Brain plot of significant changes in information flow prior to tic occurrence. Blue 

connections indicate decreases in information flow (relative to -3500 to -2500ms baseline) prior 

to tic onset, while red connections indicate increases in information flow. ACC = anterior cingulate 

cortex, ANG = angular gyrus, CUN = cuneus, MCC = midcingulate cortex, MFG = midfrontal 

gyrus, MTG = midtemporal gyrus, PCUN = precuneus, PoCG = postcentral gyrus, PreCG = 

precentral gyrus, SFG = superior frontal gyrus, SPG = superior parietal gyrus, SMA = 

supplementary motor area. 

4.4.5 Behavioral Correlations 

Correlation analysis between pre-tic changes in connectivity and PTD-related behavioral 

measures indicated several significant relationships (Table 4-2). Lower severity scores for YGTSS 

total and YGTSS impairment scores were associated with greater decreases in information flow 
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values among several MCC connections as well as the left angular gyrus to right SFG, as well as 

with greater increases in left cuneus to left superior parietal information flow. Measures of tic 

frequency (i.e., PUTS tic frequency and tics per minute) were also correlated with connectivity 

changes in the same direction as the severity scores, with lower tic frequency being associated 

with greater atypical changes in information flow for all but two connections (left MCC to left 

postcentral gyrus and left ACC to right MCC) for either PUTS tic frequency or tics per minute. 

Only one connection was found to be correlated with PUTS urge presence, which indicated greater 

decreases in right MCC to left midfrontal information flow to be correlated with lower urge 

presence. PUTS urge strength was not found to be associated with any changes in information 

flow.  

Table 4-2. Pearson correlations between EEG measures and behavioral scores 

  YGTSS  

Total 

YGTSS  

Impairment 

PUTS Urge 

Presence 

PUTS Urge 

Strength 

PUTS Tic 

Frequency 

Tics per 

minute 

R Sup Frontal to 

L Supp Motor Area 

0.26 0.19 0.21 0.10 0.24 0.38* 

L Ant Cingulate to 

R Midcingulate 

-0.18 -0.19 -0.02 0.20 -0.05 -0.26 

L Midcingulate to  

L Postcentral 

0.01 0.32* 0.03 0.02 0.17 -0.04 

R Midcingulate to  

R Precentral 

0.33* 0.34* 0.19 -0.09 0.42** 0.25 

R Midcingulate to  

L Midfrontal 

0.34* 0.26 0.40* 0.19 0.47** 0.32* 

R Midcingulate to  

R Postcentral 

0.32* 0.27 0.25 -0.04 0.47** 0.38* 

L Cuneus to  -0.40** -0.30 -0.11 0.01 -0.31 -0.38* 
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L Sup Parietal 

L Cuneus to  

L Precuneus 

0.11 0.08 0.03 -0.21 0.38* 0.08 

L Angular to  

R Sup Frontal 

0.40** 0.35* 0.23 -0.04 0.35* 0.35* 

L Midtemporal to  

L Precuneus 

-0.08 -0.21 -0.21 -0.16 -0.43** -0.12 

Anterior Cingulate 

Cortex 

0.20 0.13 0.11 0.24 0.31 -0.26 

Note: YGTSS = Yale Global Tic Severity Scale, PUTS = Premonitory Urge for Tics Scale, R = 

right, Sup = superior, L = left, Supp = supplementary, Ant = anterior. *P < 0.05, **P < 0.01 

4.4.6 Classification of Trial-Averaged Activity 

 The significant findings (one spectral power, 10 connectivity) obtained in the 

aforementioned analyses were utilized as features in a classification analysis to test the degree of 

discrimination between Tic and NoTic activity. For each subject, values within the significant 

time-frequency mask were averaged together to obtain a single value for each feature for each 

subject. Subjects who did not have data available for a particular feature (as described in Methods) 

were considered as “missing” for that feature. Given the two conditions (Tic and NoTic), this 

resulted in an input feature matrix for the classifier consisting of 100 observations (50 subjects, 

two conditions) and 11 features. Using a kernel naïve Bayes classifier along with 10-fold cross-

validation approach, an overall 86% classification rate of condition labels was observed with 90% 

sensitivity (Tic intervals accurately predicted), and 82% specificity (NoTic intervals accurately 

predicted). An ROC curve analysis showed an AUC of 0.90, suggesting high discrimination 

between Tic and No-tic activity. 
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4.4.7 Independent Test Sample Validation 

 The obtained model was then evaluated on the independent test sample of 15 subjects by 

extracting spectral power and connectivity values from the respective region and connections. This 

resulted in a feature matrix of 30 observations (15 subjects, Tic and NoTic conditions) and 11 

features. Classification of these observations resulted in an overall 90% accuracy on this novel 

dataset, with 100% sensitivity and 80% specificity, indicating these changes in information flow 

and spectral power to be robust discriminators and indicators of Tic periods relative to NoTic 

periods. 

4.5 Discussion 

 The present study is the first EEG-based analysis to investigate whole-brain dynamics, 

using localized spectral power and cross-regional effective connectivity, during the period leading 

up to tic expression in children with persistent tic disorder. In the 2.5 seconds preceding tic onset, 

increases in spectral activity were detected amongst voxels of the ACC compared to resting state 

periods without tics. Changes in information flow were also detected, principally among several 

frontal and sensorimotor cortex nodes, as well as left temporal, parietal, and occipital cortices, 

suggesting aberrant communication among multiple cognitive, sensory, and motor-based regions. 

Using a naïve Bayes classifier to evaluate the discriminability of Tic intervals compared to NoTic 

intervals, results suggest high specificity and sensitivity in classification rates in both the training 

and independent test sets, indicating the identified spectral power and connectivity measures are 

reliable discriminators of tic generation processes.  

 With respect to evoked local spectral power, tic movements were preceded by increased 

spectral power in voxels of the ACC. Similar findings of increased ACC activity prior to and 



88 
 
 

during spontaneous tic exhibition have been frequently reported in prior imaging studies of PTD 

(Bohlhalter et al., 2006; Neuner et al., 2014; Stern et al., 2000). The ACC has also been implicated 

in experimental paradigms in PTD, with atypical activity noted during attention-based cognitive 

control paradigms (Jung et al., 2013; Jurgiel et al., 2021), as well as tic-related cognitive efforts 

such as voluntary tic suppression (Peterson et al., 1998). The involvement of the ACC in pre-tic 

processes prior is highly plausible, given the hub-like role in integrating affective, sensory, and 

cognitive information from thalamic and other cortical regions, as well as involvement in 

attentional processes and decision-based premotor processing (Devinsky et al., 1995; Paus, 2001; 

Stevens et al., 2011). Furthermore, the influence of attentional (Herrmann et al., 2019; Misirlisoy 

et al., 2015) and affective (Ruhrman et al., 2021) processes on tic frequency and severity provide 

support for the involvement of an integrative region like the ACC. There are several neurological 

processes for which the increased activity observed here may be representing. One explanation is 

the attentional detection of a mismatch or conflict between the intended movement (tic) and 

sensory information from the external environment. Alternatively, the ACC could also be 

processing internal decision-making on whether to allow or counteract (suppress) this oncoming 

mismatched tic movement, as well as attempting to initiate inhibition of the upcoming movement. 

However, it is difficult to discern the degree to which this decision-making is 

unconscious/autonomic versus conscious. While participants were informed that they could tic as 

needed, some individuals may have engaged in symptom-reducing behavior, either consciously or 

unconsciously. Given that there were no observed relationships between ACC spectral power or 

connectivity and clinical measures of urge or tics, this activity may be more indicative of broader 

cognitive control processes. 
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 The effective connectivity findings suggest the involvement of several bilateral frontal and 

left lateralized posterior regions in tic-related processes. The largest number of connectivity 

differences were found to be associated with the MCC, which is thought to be an information hub 

for communicating goal-directed behavior towards motor regions (Caruana et al., 2018; Shackman 

et al., 2011). Decreased information flow towards the precentral and postcentral cortices, two 

regions have been implicated in prior fMRI studies of tic generation (Hampson et al., 2009; Neuner 

et al., 2014; Wang et al., 2011), may represent dysregulated communication of motor and sensory-

based information, resulting in aberrant motor activation patterns. Additionally, the MCC has been 

hypothesized to be involved in the “urge-to-action” of both general (e.g., urge to cough) and 

symptomatic (e.g., urge to tic) behaviors (Jackson, Parkinson, Kim, et al., 2011). Despite being 

posed as a plausible region for tic-related urge processes, most significant correlations observed 

with the MCC were associated with measures of tic severity and frequency rather than urge. 

However, this may be due to using a broader clinical score of urge as opposed to an empirical 

measure from the recording session. Dysconnectivity was also noted towards the MCC anteriorly 

from the ACC. This finding is in agreement with two prior EEG connectivity studies of tic 

suppression and motor inhibition (Hong et al., 2013; Serrien et al., 2005), as well as a prior study 

on this dataset during inhibitory control (Jurgiel et al., 2021), which observed similar trends of 

higher frontomesial connectivity in PTD. Given the prior cognitive involvement of this connection, 

increased connectivity may suggest the engagement of conflict processing or suppression 

mechanisms prior to tic exhibition, despite no explicit requirement of tic suppression.  

Additional reductions in information flow were observed from the right SFG to left SMA, 

as well as towards the right SFG from the left angular gyrus. Studies have indicated the right SFG 

to have a broad role in executive functions both as a mediator in motor-based decision making as 
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well as motor urgency/impulsivity (Hu et al., 2016; Schilling et al., 2012). The SMA similarly 

takes on a number of roles with respect to decisional movements, including sequencing and 

performing both simple and complex movements based on intention as well as inhibiting 

potentially unwanted movements (Nachev et al., 2008). Dysregulated information flow from the 

left angular gyrus, which has been thought to take more of a sensory and attentional reorientation 

role (Seghier, 2013), may result in impaired internal decision making and impulsivity downstream 

among the SFG and SMA regions. 

More posteriorly, both increased and decreased communication amongst left occipital and 

parietal nodes were observed. Connectivity changes involving the left superior parietal, cuneus, 

and precuneus nodes may be reflective of blink related processes, given prior reports on 

connectivity and activation changes in these regions during control of eye movements, blink 

suppression, and cued eye blinks (Asscheman et al., 2015; Berman et al., 2012; Lerner et al., 2009; 

Loo et al., 2019). The presence of blink-related processes may also be supported by the fact that 

the ocular tics were the most frequently reported tics observed in this study, as is typical among 

PTD samples (Ganos et al., 2015).  

 An interesting relationship emerged between behavioral measures and tic-related 

connectivity changes, whereby the magnitudes of these atypical changes (i.e., deviations away 

from NoTic connectivity patterns) were also associated with both lower tic severity and frequency. 

One possible explanation for this is the involvement of regulatory neural mechanisms, whereby 

children with greater tic severity are less able to modulate network communication patterns. This 

would suggest that the communication patterns observed may be related to processes attempting 

to handle, or counteract, aberrant sensory or motor signals. Another explanation is related to the 
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fact that tics of various types, with respect to both body part involved and complexity, were 

included in the analysis. The direction of correlations observed could suggest unique degrees of 

evoked information flow patterns dependent on the type of tic performed. While classes of parent 

and child-reported tic behaviors (e.g., ocular, facial, etc.) were obtained during screening, we did 

not classify the specific tics which occurred during the recording session during the marking 

procedure.  However, prior studies have suggested varying effectiveness of tic inhibition 

depending on the body part involved, where the most effective inhibition was for body parts 

exhibiting the fewest tics (Ganos et al., 2015). This dependency may translate to unique neural 

signatures for different types of tics, which may be detectable with respect to differential 

magnitudes of activity prior to tic events.  

When used as features in a naïve Bayes classification model, the observed changes in 

spectral power and information flow were found to be robust in their discrimination capabilities, 

showing high classification rates in both the primary dataset as well as in a novel set of individuals 

previously unseen by the classifier. Although several studies have evaluated significant differences 

in neural activations prior to tics, there have been minimal attempts to use observed pre-tic 

activations in a classification model to evaluate the separability of these tic states from background 

resting-state activity. One area where this degree of discriminability can be particularly important 

is for closed-loop neurostimulation treatment protocols, where anomalous tic activation patterns 

need to be detected amongst typical resting resting-state activity. While we did not perform single-

trial training/testing as is needed in such an approach, as preprocessing methods were not 

optimized towards maximizing single-trial signal detection, the regions causally driving pre-tic 

activity observed in the present study may pose as suitable targets for further analysis in such an 

approach.  
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While the availability of two unique and independent subject samples strengthens the 

present findings, several limitations should be considered regarding the present analysis and 

interpretations. Firstly, as the study’s primary investigation focus was on motor tics and their 

neural correlates, vocal tics were not included in the analysis. Given the less frequent occurrence 

of vocal tics amongst tic disorder populations relative to motor tics, it is possible that other unique 

regions may be involved with vocal tics, such as those associated with speech. A second limitation 

expands on this point, such that different neurological mechanisms may be associated with 

different types of tics, as well as suppression of these tics. Since the EEG recording period was 

relatively short (~7 minutes), there were not enough tic events to feasibly categorize each (i.e., 

ocular, facial, etc.) without greatly sacrificing statistical power. A longer resting state analysis 

where tics are categorizable may be beneficial towards understanding whether different regions 

and mechanisms are involved in different types of tics. A final limitation is that tic-related activity 

observed in the present pediatric study may not be fully representative of what occurs in adults 

with persistent tic disorders, given that studies have indicated unique neural activation patterns 

across the age spectrum (Nielsen et al., 2020). Considering that children in the present sample are 

closer to the typical age of onset, they may be less aware of premonitory urges associated with 

oncoming tics. Reports suggest urges may not apparent until a few years after the onset of tics 

(Leckman et al., 2006), though this may be simply due to increased somatic awareness as cognitive 

development occurs through childhood (Banaschewski et al., 2003). Various developmental and 

adaptive changes in neural functionality occurring up to adulthood may also result in the 

engagement of additional mechanisms, either consciously or unconsciously, prior to tic onset. 

Further studies examining both pediatric and adult populations, or the longitudinal progression of 
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the disorder, may be beneficial towards understanding how tic disorder phenomena change across 

development. 

In summary, the present study used cortical source-level EEG to demonstrate that prior to 

tic occurrence, acute changes in spectral activity and effective connectivity occur amongst several 

sensorimotor and left posterior regions, and that this activity is highly discriminable from tic-

absent resting state activity. Further analysis of changes in effective connectivity as a function of 

tic type among the regions described here, both from a trial-averaged and single trial approach, 

may provide a better understanding of the unique range of neural signatures associated with tics, 

as well as provide insight towards more effective and targeted treatments. 
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Chapter 5. Conclusions and Future Directions 

 The preceding studies discussed in this thesis have attempted to evaluate the degree to 

which neural activity and cortical-cortical causal communication are impaired or atypical in 

children with tic disorders during inhibitory control and tic generation. We first presented and 

validated an alternative approach for performing cortical source-level EEG analyses at the group 

level for localized spectral power activity. Through a simulation analysis and data from a visual 

attention task, we demonstrated that the voxel-based approach has better performance for 

accurately detecting both the location and magnitude of spatially resolved spectral effects. This 

increase in detectability better ensures both replicability and interpretability of source-level 

findings. Event-related spectral perturbation was used as a measure of local activity and this 

method can easily be applied to any type of localized EEG measurement as a future application. 

As a secondary future direction, evaluations between this ICA dipole-based voxel method and 

distributed source models such as the Minimum Norm Solution (Hämäläinen & Ilmoniemi, 1994) 

can be performed in order to compare and contrast these two source estimation approaches with 

respect to detection, location, and magnitude of particular effects of interest.  

 Whole-brain spectral power and effective connectivity were then explored in children with 

PTD (relative to typically developing controls) during an inhibitory control paradigm. Despite 

minimal differences in accuracy between groups, children with PTD displayed faster reaction 

times as well as atypical fronto-parietal connectivity and ACC spectral activity during conflict 

trials. As discussed prior, there have been conflicting reports of inhibitory control deficits among 

patients with PTD, and while meta analyses point to a moderate effect of general inhibitory control 

deficits (Morand-Beaulieu et al., 2017), the cognitive paradigm used may play a factor in these 
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conflicting findings. Further research comparing both behavioral performance and neural 

dynamics across different types of inhibition tasks may provide more details regarding the specific 

inhibitory control mechanisms that may be atypical in PTD, and in turn provide a potential 

resolution to these conflicting findings. 

 Although treatment methods involving various pharmacotherapies and cognitive 

behavioral training (such as habit reversal therapy) are frequently employed in an effort to reduce 

tic symptomology (see Essoe et al. (2019) for review), mixed effectiveness as well as medication 

side-effects often present issues for patient populations. Several studies have explored alternative 

non-invasive neurostimulation treatment approaches for children with PTD, such as transcranial 

magnetic stimulation (TMS), and have thus far observed moderate success in reducing symptom 

severity (Kwon et al., 2011; Le et al., 2013). Further success in this domain, however, may be 

attainable with personalized and/or closed-loop treatment protocols, where stimulation timing, 

parameters, and location are selected based on each individual’s unique symptomatology and 

disorder severity as it occurs across time (Pedroarena-Leal & Ruge, 2017). Support for these types 

of closed-loop systems has been provided in treatment studies of other movement disorders such 

as Parkinson’s disease, where greater efficacy has been observed relative to open-loop systems 

(Little et al., 2013, 2016). Age has also been indicated to be a factor in treatment efficacy, where 

young patients appear to be more receptive to brain stimulation treatment with regards to symptom 

reduction (Grados et al., 2018). To develop a closed-loop system in tic disorders, a critical first 

step is identifying biomarkers of tic generation among children and adolescents, which are usable 

as effective features for determining stimulation timing or other parameters.  
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The final study on EEG antecedents of tic generation provided preliminary findings 

towards to this goal, with changes in both cortical spectral power and regional information flow 

observed prior to tic events in children. While some other studies using fMRI have similarly 

investigated pre-tic antecedents, fMRI measurements potentially lack the temporal resolution to 

effectively detect pre-tic activity during the short period before the tic is performed. This can pose 

an issue if the therapeutic stimulation is intended as a counteractive mechanism for tic generative 

processes, as these processes may only be active for a short period of time before the tic occurs. 

While the presented analysis did not evaluate tic epoch classification from a single trial approach, 

successful classification of trial-averaged epochs indicates the observed features and regions to be 

suitable areas for future exploration using a single trial approach, either as treatment targets or 

potential indicators for stimulation timing.  

 The studies presented here provide further insight into the atypical cortical dynamics 

present in children with PTD during different experimental paradigms. Continued exploration of 

unique source-level activity present in this patient groups, both from a single-trial standpoint and 

according to specific classes of tics, may assist in the continued advancement of treatment 

protocols as applied to the early stages of PTD diagnosis.  

  



97 
 
 

References 

Asscheman, S. J., Thakkar, K. N., & Neggers, S. F. W. (2015). Changes in Effective Connectivity of the 

Superior Parietal Lobe during Inhibition and Redirection of Eye Movements: Supplementary 

Issue: Behavioral Neuroscience. Journal of Experimental Neuroscience, 9s1, JEN.S32736. 

https://doi.org/10.4137/JEN.S32736 

Atkinson-Clement, C., Porte, C.-A., de Liege, A., Klein, Y., Delorme, C., Beranger, B., Valabregue, R., 

Gallea, C., Robbins, T. W., Hartmann, A., & Worbe, Y. (2020). Impulsive prepotent actions and 

tics in Tourette disorder underpinned by a common neural network. Molecular Psychiatry, 1–10. 

https://doi.org/10.1038/s41380-020-00890-5 

Banaschewski, T., Woerner, W., & Rothenberger, A. (2003). Premonitory sensory phenomena and 

suppressibility of tics in Tourette syndrome: Developmental aspects in children and adolescents. 

Developmental Medicine & Child Neurology, 45(10), 700–703. https://doi.org/10.1111/j.1469-

8749.2003.tb00873.x 

Baym, C. L., Corbett, B. A., Wright, S. B., & Bunge, S. A. (2008). Neural correlates of tic severity and 

cognitive control in children with Tourette syndrome. Brain, 131(1), 165–179. 

https://doi.org/10.1093/brain/awm278 

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind 

deconvolution. Neural Computation, 1159. 

Berman, B. D., Horovitz, S. G., Morel, B., & Hallett, M. (2012). Neural correlates of blink suppression and 

the buildup of a natural bodily urge. NeuroImage, 59(2), 1441–1450. 

https://doi.org/10.1016/j.neuroimage.2011.08.050 



98 
 
 

Bigdely-Shamlo, N., Mullen, T., Kreutz-Delgado, K., & Makeig, S. (2013). Measure Projection Analysis: A 

Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference. NeuroImage, 72, 

287–303. https://doi.org/10.1016/j.neuroimage.2013.01.040 

Bloch, M. H., & Leckman, J. F. (2009). Clinical course of Tourette syndrome. Journal of Psychosomatic 

Research, 67(6), 497–501. https://doi.org/10.1016/j.jpsychores.2009.09.002 

Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict 

symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253–1258. 

https://doi.org/10.1212/01.wnl.0000180957.98702.69 

Blum, S., Jacobsen, N. S. J., Bleichner, M. G., & Debener, S. (2019). A Riemannian Modification of Artifact 

Subspace Reconstruction for EEG Artifact Handling. Frontiers in Human Neuroscience, 13, 141. 

https://doi.org/10.3389/fnhum.2019.00141 

Bohlhalter, S., Goldfine, A., Matteson, S., Garraux, G., Hanakawa, T., Kansaku, K., Wurzman, R., & Hallett, 

M. (2006). Neural correlates of tic generation in Tourette syndrome: An event-related functional 

MRI study. Brain, 129(8), 2029–2037. https://doi.org/10.1093/brain/awl050 

Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: 

An update. Trends in Cognitive Sciences, 8(12), 539–546. 

https://doi.org/10.1016/j.tics.2004.10.003 

Bour, L. J., Ackermans, L., Foncke, E. M. J., Cath, D., van der Linden, C., Visser Vandewalle, V., & Tijssen, 

M. A. (2015). Tic related local field potentials in the thalamus and the effect of deep brain 

stimulation in Tourette syndrome: Report of three cases. Clinical Neurophysiology, 126(8), 

1578–1588. https://doi.org/10.1016/j.clinph.2014.10.217 

Bunge, S. A., Dudukovic, N. M., Thomason, M. E., Vaidya, C. J., & Gabrieli, J. D. E. (2002). Immature 

Frontal Lobe Contributions to Cognitive Control in Children: Evidence from fMRI. Neuron, 33(2), 

301–311. https://doi.org/10.1016/S0896-6273(01)00583-9 



99 
 
 

Caruana, F., Gerbella, M., Avanzini, P., Gozzo, F., Pelliccia, V., Mai, R., Abdollahi, R. O., Cardinale, F., 

Sartori, I., Lo Russo, G., & Rizzolatti, G. (2018). Motor and emotional behaviours elicited by 

electrical stimulation of the human cingulate cortex. Brain, 141(10), 3035–3051. 

https://doi.org/10.1093/brain/awy219 

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and 

behavioural correlates. Brain, 129(3), 564–583. https://doi.org/10.1093/brain/awl004 

Chang, C.-Y., Hsu, S.-H., Pion-Tonachini, L., & Jung, T.-P. (2018). Evaluation of Artifact Subspace 

Reconstruction for Automatic EEG Artifact Removal. Conference Proceedings: ... Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE 

Engineering in Medicine and Biology Society. Annual Conference, 2018, 1242–1245. 

https://doi.org/10.1109/EMBC.2018.8512547 

Church, J. A., Fair, D. A., Dosenbach, N. U. F., Cohen, A. L., Miezin, F. M., Petersen, S. E., & Schlaggar, B. L. 

(2009). Control networks in paediatric Tourette syndrome show immature and anomalous 

patterns of functional connectivity. Brain, 132(1), 225–238. 

https://doi.org/10.1093/brain/awn223 

Church, J. A., Wenger, K. K., Dosenbach, N. U. F., Miezin, F. M., Petersen, S. E., Schlaggar, B. L., & Marsh, 

R. (2009). Task control signals in pediatric Tourette syndrome show evidence of immature and 

anomalous functional activity. Frontiers in Human Neuroscience, 3. 

https://doi.org/10.3389/neuro.09.038.2009 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Academic Press. 

Conceição, V. A., Dias, Â., Farinha, A. C., & Maia, T. V. (2017). Premonitory urges and tics in Tourette 

syndrome: Computational mechanisms and neural correlates. Current Opinion in Neurobiology, 

46, 187–199. https://doi.org/10.1016/j.conb.2017.08.009 



100 
 
 

Crawford, S., Channon, S., & Robertson, M. M. (2005). Tourette’s syndrome: Performance on tests of 

behavioural inhibition, working memory and gambling. Journal of Child Psychology and 

Psychiatry, 46(12), 1327–1336. https://doi.org/10.1111/j.1469-7610.2005.01419.x 

Cui, Y., Jin, Z., Chen, X., He, Y., Liang, X., & Zheng, Y. (2014). Abnormal baseline brain activity in drug-

naïve patients with Tourette syndrome: A resting-state fMRI study. Frontiers in Human 

Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00913 

Debes, N. M. M. M., Lange, T., Jessen, T. L., Hjalgrim, H., & Skov, L. (2011). Performance on Wechsler 

intelligence scales in children with Tourette syndrome. European Journal of Paediatric 

Neurology: EJPN: Official Journal of the European Paediatric Neurology Society, 15(2), 146–154. 

https://doi.org/10.1016/j.ejpn.2010.07.007 

Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG 

dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 

9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009 

Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., & Makeig, S. (2011). 

EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing. Computational 

Intelligence and Neuroscience, 2011, 1–12. https://doi.org/10.1155/2011/130714 

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012a). Independent EEG Sources Are 

Dipolar. PLoS ONE, 7(2), 14. 

Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & Makeig, S. (2012b). Independent EEG Sources Are 

Dipolar. PLOS ONE, 7(2), e30135. https://doi.org/10.1371/journal.pone.0030135 

Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. 

Brain, 118(1), 279–306. https://doi.org/10.1093/brain/118.1.279 



101 
 
 

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in 

a nonsearch task. Perception & Psychophysics, 16(1), 143–149. 

https://doi.org/10.3758/BF03203267 

Essoe, J. K.-Y., Grados, M. A., Singer, H. S., Myers, N. S., & McGuire, J. F. (2019). Evidence-based 

treatment of Tourette’s disorder and chronic tic disorders. Expert Review of Neurotherapeutics, 

19(11), 1103–1115. https://doi.org/10.1080/14737175.2019.1643236 

Fan, J., Byrne, J., Worden, M. S., Guise, K. G., McCandliss, B. D., Fossella, J., & Posner, M. I. (2007). The 

relation of brain oscillations to attentional networks. The Journal of Neuroscience: The Official 

Journal of the Society for Neuroscience, 27(23), 6197–6206. 

https://doi.org/10.1523/JNEUROSCI.1833-07.2007 

Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and Brain 

Consequences of Conflict. NeuroImage, 18(1), 42–57. https://doi.org/10.1006/nimg.2002.1319 

Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the Efficiency and 

Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14(3), 340–347. 

https://doi.org/10.1162/089892902317361886 

Fan, J., Mccandliss, B., Fossella, J., Flombaum, J., & Posner, M. (2005). The activation of attentional 

networks. NeuroImage, 26(2), 471–479. https://doi.org/10.1016/j.neuroimage.2005.02.004 

Franzkowiak, S., Pollok, B., Biermann-Ruben, K., Südmeyer, M., Paszek, J., Thomalla, G., Jonas, M., Orth, 

M., Münchau, A., & Schnitzler, A. (2012). Motor-Cortical Interaction in Gilles de la Tourette 

Syndrome. PLOS ONE, 7(1), e27850. https://doi.org/10.1371/journal.pone.0027850 

Freed, R. D., Coffey, B. J., Mao, X., Weiduschat, N., Kang, G., Shungu, D. C., & Gabbay, V. (2016). 

Decreased Anterior Cingulate Cortex γ-Aminobutyric Acid in Youth With Tourette’s Disorder. 

Pediatric Neurology, 65, 64–70. https://doi.org/10.1016/j.pediatrneurol.2016.08.017 



102 
 
 

Ganos, C., Bongert, J., Asmuss, L., Martino, D., Haggard, P., & Münchau, A. (2015). The somatotopy of tic 

inhibition: Where and how much? Movement Disorders, 30(9), 1184–1189. 

https://doi.org/10.1002/mds.26188 

Ganos, C., Kahl, U., Brandt, V., Schunke, O., Bäumer, T., Thomalla, G., Roessner, V., Haggard, P., 

Münchau, A., & Kühn, S. (2014). The neural correlates of tic inhibition in Gilles de la Tourette 

syndrome. Neuropsychologia, 65, 297–301. 

https://doi.org/10.1016/j.neuropsychologia.2014.08.007 

Ganos, C., Kühn, S., Kahl, U., Schunke, O., Feldheim, J., Gerloff, C., Roessner, V., Bäumer, T., Thomalla, G., 

Haggard, P., & Münchau, A. (2014). Action inhibition in Tourette syndrome. Movement 

Disorders, 29(12), 1532–1538. https://doi.org/10.1002/mds.25944 

Ganos, C., Roessner, V., & Münchau, A. (2013). The functional anatomy of Gilles de la Tourette 

syndrome. Neuroscience & Biobehavioral Reviews, 37(6), 1050–1062. 

https://doi.org/10.1016/j.neubiorev.2012.11.004 

Ganos, C., Rothwell, J., & Haggard, P. (2018). Voluntary inhibitory motor control over involuntary tic 

movements. Movement Disorders, 33(6), 937–946. https://doi.org/10.1002/mds.27346 

Grados, M., Huselid, R., & Duque-Serrano, L. (2018). Transcranial Magnetic Stimulation in Tourette 

Syndrome: A Historical Perspective, Its Current Use and the Influence of Comorbidities in 

Treatment Response. Brain Sciences, 8(7). https://doi.org/10.3390/brainsci8070129 

Grandchamp, R., Braboszcz, C., Makeig, S., & Delorme, A. (2012). Stability of ICA decomposition across 

within-subject EEG datasets. 2012 Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society, 6735–6739. https://doi.org/10.1109/EMBC.2012.6347540 

Greene, D. J., Williams Iii, A. C., Koller, J. M., Schlaggar, B. L., & Black, K. J. (2017). Brain structure in 

pediatric Tourette syndrome. Molecular Psychiatry, 22(7), 972–980. 

https://doi.org/10.1038/mp.2016.194 



103 
 
 

Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain 

potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725. 

https://doi.org/10.1111/j.1469-8986.2011.01273.x 

Hämäläinen, M. S., & Ilmoniemi, R. J. (1994). Interpreting magnetic fields of the brain: Minimum norm 

estimates. Medical & Biological Engineering & Computing, 32(1), 35–42. 

https://doi.org/10.1007/BF02512476 

Hampson, M., Tokoglu, F., King, R. A., Constable, R. T., & Leckman, J. F. (2009). Brain Areas Coactivating 

with Motor Cortex During Chronic Motor Tics and Intentional Movements. Biological Psychiatry, 

65(7), 594–599. https://doi.org/10.1016/j.biopsych.2008.11.012 

Hashemiyoon, R., Kuhn, J., & Visser-Vandewalle, V. (2017). Putting the Pieces Together in Gilles de la 

Tourette Syndrome: Exploring the Link Between Clinical Observations and the Biological Basis of 

Dysfunction. Brain Topography, 30(1), 3–29. https://doi.org/10.1007/s10548-016-0525-z 

Herrmann, K., Sprenger, A., Baumung, L., Alvarez-Fischer, D., Münchau, A., & Brandt, V. (2019). Help or 

hurt? How attention modulates tics under different conditions. Cortex, 120, 471–482. 

https://doi.org/10.1016/j.cortex.2019.06.016 

Himle, M. B., & Woods, D. W. (2005). An experimental evaluation of tic suppression and the tic rebound 

effect. Behaviour Research and Therapy, 43(11), 1443–1451. 

https://doi.org/10.1016/j.brat.2004.11.002 

Hirschtritt, M. E., Lee, P. C., Pauls, D. L., Dion, Y., Grados, M. A., Illmann, C., King, R. A., Sandor, P., 

McMahon, W. M., Lyon, G. J., Cath, D. C., Kurlan, R., Robertson, M. M., Osiecki, L., Scharf, J. M., 

Mathews, C. A., & for the Tourette Syndrome Association International Consortium for Genetics. 

(2015). Lifetime Prevalence, Age of Risk, and Genetic Relationships of Comorbid Psychiatric 

Disorders in Tourette Syndrome. JAMA Psychiatry, 72(4), 325–333. 

https://doi.org/10.1001/jamapsychiatry.2014.2650 



104 
 
 

Hong, H. J., Sohn, H., Cha, M., Kim, S., Oh, J., Chu, M. K., Namkoong, K., & Jeong, J. (2013). Increased 

Frontomotor Oscillations During Tic Suppression in Children With Tourette Syndrome. Journal of 

Child Neurology, 28(5), 615–624. https://doi.org/10.1177/0883073812450317 

Hsu, S.-H., Pion-Tonachini, L., Palmer, J., Miyakoshi, M., Makeig, S., & Jung, T.-P. (2018). Modeling brain 

dynamic state changes with adaptive mixture independent component analysis. NeuroImage, 

183, 47–61. https://doi.org/10.1016/j.neuroimage.2018.08.001 

Hu, S., Ide, J. S., Zhang, S., & Li, C. R. (2016). The Right Superior Frontal Gyrus and Individual Variation in 

Proactive Control of Impulsive Response. Journal of Neuroscience, 36(50), 12688–12696. 

https://doi.org/10.1523/JNEUROSCI.1175-16.2016 

Jackson, S. R., Loayza, J., Crighton, M., Sigurdsson, H. P., Dyke, K., & Jackson, G. M. (2020). The role of 

the insula in the generation of motor tics and the experience of the premonitory urge-to-tic in 

Tourette syndrome. Cortex, 126, 119–133. https://doi.org/10.1016/j.cortex.2019.12.021 

Jackson, S. R., Parkinson, A., Jung, J., Ryan, S. E., Morgan, P. S., Hollis, C., & Jackson, G. M. (2011). 

Compensatory Neural Reorganization in Tourette Syndrome. Current Biology, 21(7), 580–585. 

https://doi.org/10.1016/j.cub.2011.02.047 

Jackson, S. R., Parkinson, A., Kim, S. Y., Schüermann, M., & Eickhoff, S. B. (2011). On the functional 

anatomy of the urge-for-action. Cognitive Neuroscience, 2(3–4), 227–243. 

https://doi.org/10.1080/17588928.2011.604717 

Jung, J., Jackson, S. R., Parkinson, A., & Jackson, G. M. (2013). Cognitive control over motor output in 

Tourette syndrome. Neuroscience & Biobehavioral Reviews, 37(6), 1016–1025. 

https://doi.org/10.1016/j.neubiorev.2012.08.009 

Jurgiel, J., Miyakoshi, M., Dillon, A., Piacentini, J., Makeig, S., & Loo, S. K. (2021). Inhibitory control in 

children with tic disorder: Aberrant fronto-parietal network activity and connectivity. Brain 

Communications, 3(2), fcab067. https://doi.org/10.1093/braincomms/fcab067 



105 
 
 

Karp, B. I., Porter, S., Toro, C., & Hallett, M. (1996). Simple motor tics may be preceded by a premotor 

potential. Journal of Neurology, Neurosurgery & Psychiatry, 61(1), 103–106. 

https://doi.org/10.1136/jnnp.61.1.103 

Korn, E. L., Troendle, J. F., McShane, L. M., & Simon, R. (2004a). Controlling the number of false 

discoveries: Application to high-dimensional genomic data. Journal of Statistical Planning and 

Inference, 124(2), 379–398. https://doi.org/10.1016/S0378-3758(03)00211-8 

Korn, E. L., Troendle, J. F., McShane, L. M., & Simon, R. (2004b). Controlling the number of false 

discoveries: Application to high-dimensional genomic data. Journal of Statistical Planning and 

Inference, 124(2), 379–398. https://doi.org/10.1016/S0378-3758(03)00211-8 

Korzeniewska, A., Crainiceanu, C. M., Kuś, R., Franaszczuk, P. J., & Crone, N. E. (2008). Dynamics of 

event-related causality in brain electrical activity. Human Brain Mapping, 29(10), 1170–1192. 

https://doi.org/10.1002/hbm.20458 

Koshiyama, D., Miyakoshi, M., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., Sprock, J., Braff, D. L., 

Swerdlow, N. R., & Light, G. A. (2020). Abnormal Effective Connectivity Underlying Auditory 

Mismatch Negativity Impairments in Schizophrenia. Biological Psychiatry: Cognitive 

Neuroscience and Neuroimaging, 5(11), 1028–1039. https://doi.org/10.1016/j.bpsc.2020.05.011 

Kothe, C. A., & Makeig, S. (2013). BCILAB: A platform for brain–computer interface development. Journal 

of Neural Engineering, 10(5), 056014. https://doi.org/10.1088/1741-2560/10/5/056014 

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems 

neuroscience – the dangers of double dipping. Nature Neuroscience, 12(5), 535–540. 

https://doi.org/10.1038/nn.2303 

Kumar, A., Trescher, W., & Byler, D. (2016). Tourette Syndrome and Comorbid Neuropsychiatric 

Conditions. Current Developmental Disorders Reports, 3(4), 217–221. 

https://doi.org/10.1007/s40474-016-0099-1 



106 
 
 

Kwon, H. J., Lim, W. S., Lim, M. H., Lee, S. J., Hyun, J. K., Chae, J.-H., & Paik, K. C. (2011). 1-Hz low 

frequency repetitive transcranial magnetic stimulation in children with Tourette’s syndrome. 

Neuroscience Letters, 492(1), 1–4. https://doi.org/10.1016/j.neulet.2011.01.007 

Lacadie, C. M., Fulbright, R. K., Constable, R. T., & Papademetris, X. (2008). More Accurate Talairach 

Coordinates for NeuroImaging using Nonlinear Registration. NeuroImage, 42(2), 717–725. 

https://doi.org/10.1016/j.neuroimage.2008.04.240 

Le, K., Liu, L., Sun, M., Hu, L., & Xiao, N. (2013). Transcranial magnetic stimulation at 1Hertz improves 

clinical symptoms in children with Tourette syndrome for at least 6 months. Journal of Clinical 

Neuroscience, 20(2), 257–262. https://doi.org/10.1016/j.jocn.2012.01.049 

Leckman, J. F., Bloch, M. H., Scahill, L., & King, R. A. (2006). Tourette Syndrome: The Self Under Siege. 

Journal of Child Neurology, 21(8), 642–649. https://doi.org/10.1177/08830738060210081001 

Leckman, J. F., Riddle, M. A., Hardin, M. T., Ort, S. I., Swartz, K. L., Stevenson, J., & Cohen, D. J. (1989). 

The Yale Global Tic Severity Scale: Initial Testing of a Clinician-Rated Scale of Tic Severity. Journal 

of the American Academy of Child & Adolescent Psychiatry, 28(4), 566–573. 

https://doi.org/10.1097/00004583-198907000-00015 

Lerner, A., Bagic, A., Boudreau, E. A., Hanakawa, T., Pagan, F., Mari, Z., Bara-Jimenez, W., Aksu, M., 

Garraux, G., Simmons, J. M., Sato, S., Murphy, D. L., & Hallett, M. (2007). Neuroimaging of 

neuronal circuits involved in tic generation in patients with Tourette syndrome. Neurology, 

68(23), 1979–1987. https://doi.org/10.1212/01.wnl.0000264417.18604.12 

Lerner, A., Bagic, A., Hanakawa, T., Boudreau, E. A., Pagan, F., Mari, Z., Bara-Jimenez, W., Aksu, M., Sato, 

S., Murphy, D. L., & Hallett, M. (2009). Involvement of Insula and Cingulate Cortices in Control 

and Suppression of Natural Urges. Cerebral Cortex, 19(1), 218–223. 

https://doi.org/10.1093/cercor/bhn074 



107 
 
 

Little, S., Beudel, M., Zrinzo, L., Foltynie, T., Limousin, P., Hariz, M., Neal, S., Cheeran, B., Cagnan, H., 

Gratwicke, J., Aziz, T. Z., Pogosyan, A., & Brown, P. (2016). Bilateral adaptive deep brain 

stimulation is effective in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 

87(7), 717–721. https://doi.org/10.1136/jnnp-2015-310972 

Little, S., Pogosyan, A., Neal, S., Zavala, B., Zrinzo, L., Hariz, M., Foltynie, T., Limousin, P., Ashkan, K., 

FitzGerald, J., Green, A. L., Aziz, T. Z., & Brown, P. (2013). Adaptive deep brain stimulation in 

advanced Parkinson disease. Annals of Neurology, 74(3), 449–457. 

https://doi.org/10.1002/ana.23951 

Loo, S. K., Miyakoshi, M., Tung, K., Lloyd, E., Salgari, G., Dillon, A., Chang, S., Piacentini, J., & Makeig, S. 

(2019). Neural activation and connectivity during cued eye blinks in Chronic Tic Disorders. 

NeuroImage: Clinical, 24, 101956. https://doi.org/10.1016/j.nicl.2019.101956 

Maiquez, B. M., Jackson, G. M., & Jackson, S. R. (2020). Examining the neural antecedents of tics in 

Tourette syndrome using electroencephalography [Preprint]. Neuroscience. 

https://doi.org/10.1101/2020.05.01.071837 

Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., Villringer, A., Castellanos, 

F. X., Milham, M. P., & Petrides, M. (2009). Precuneus shares intrinsic functional architecture in 

humans and monkeys. Proceedings of the National Academy of Sciences of the United States of 

America, 106(47), 20069–20074. https://doi.org/10.1073/pnas.0905314106 

Marsh, R., Zhu, H., Wang, Z., Skudlarski, P., & Peterson, B. S. (2007). A Developmental fMRI Study of Self-

Regulatory Control in Tourette’s Syndrome. American Journal of Psychiatry, 164(6), 955–966. 

https://doi.org/10.1176/ajp.2007.164.6.955 

McDermott, T. J., Wiesman, A. I., Proskovec, A. L., Heinrichs-Graham, E., & Wilson, T. W. (2017). 

Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task. 

NeuroImage, 156, 277–285. https://doi.org/10.1016/j.neuroimage.2017.05.014 



108 
 
 

McGuire, J. F., Sturm, A., Ricketts, E. J., Montalbano, G. E., Chang, S., Loo, S. K., Woods, D. W., 

McCracken, J., & Piacentini, J. (2022). Cognitive control processes in behavior therapy for youth 

with Tourette’s disorder. Journal of Child Psychology and Psychiatry, 63(3), 296–304. 

https://doi.org/10.1111/jcpp.13470 

Misirlisoy, E., Brandt, V., Ganos, C., Tübing, J., Münchau, A., & Haggard, P. (2015). The Relation Between 

Attention and Tic Generation in Tourette Syndrome. Neuropsychology, 29(4), 658–665. 

https://doi.org/10.1037/neu0000161 

Morand-Beaulieu, S., Grot, S., Lavoie, J., Leclerc, J. B., Luck, D., & Lavoie, M. E. (2017). The puzzling 

question of inhibitory control in Tourette syndrome: A meta-analysis. Neuroscience & 

Biobehavioral Reviews, 80, 240–262. https://doi.org/10.1016/j.neubiorev.2017.05.006 

Mueller, S. C., Jackson, G. M., Dhalla, R., Datsopoulos, S., & Hollis, C. P. (2006). Enhanced Cognitive 

Control in Young People with Tourette’s Syndrome. Current Biology, 16(6), 570–573. 

https://doi.org/10.1016/j.cub.2006.01.064 

Mullen, T. R., Kothe, C. A. E., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., Jung, T.-P., & Cauwenberghs, G. 

(2015). Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE 

Transactions on Biomedical Engineering, 62(11), 2553–2567. 

https://doi.org/10.1109/TBME.2015.2481482 

Müller-Vahl, K. R., Kaufmann, J., Grosskreutz, J., Dengler, R., Emrich, H. M., & Peschel, T. (2009). 

Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: Evidence from 

voxel-based morphometry and magnetization transfer imaging. BMC Neuroscience, 10(1), 47. 

https://doi.org/10.1186/1471-2202-10-47 

Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-

supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856–869. 

https://doi.org/10.1038/nrn2478 



109 
 
 

Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Sawamoto, N., Toma, K., Nakamura, K., 

Hanakawa, T., Konishi, J., Fukuyama, H., & Shibasaki, H. (1999). Transient Neural Activity in the 

Medial Superior Frontal Gyrus and Precuneus Time Locked with Attention Shift between Object 

Features. NeuroImage, 10(2), 193–199. https://doi.org/10.1006/nimg.1999.0451 

Neuner, I., Werner, C. J., Arrubla, J., Stöcker, T., Ehlen, C., Wegener, H. P., Schneider, F., & Shah, N. J. 

(2014). Imaging the where and when of tic generation and resting state networks in adult 

Tourette patients. Frontiers in Human Neuroscience, 8. 

https://doi.org/10.3389/fnhum.2014.00362 

Nielsen, A. N., Gratton, C., Church, J. A., Dosenbach, N. U. F., Black, K. J., Petersen, S. E., Schlaggar, B. L., 

& Greene, D. J. (2020). Atypical Functional Connectivity in Tourette Syndrome Differs Between 

Children and Adults. Biological Psychiatry, 87(2), 164–173. 

https://doi.org/10.1016/j.biopsych.2019.06.021 

Nunez, P. L., Srinivasan, R., Westdorp, A. F., Wijesinghe, R. S., Tucker, D. M., Silberstein, R. B., & Cadusch, 

P. J. (1997). EEG coherency: I: statistics, reference electrode, volume conduction, Laplacians, 

cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical 

Neurophysiology, 103(5), 499–515. https://doi.org/10.1016/S0013-4694(97)00066-7 

Obeso, J. A., Rothwell, J. C., & Marsden, C. D. (1981). Simple tics in Gilles de la Tourette’s syndrome are 

not prefaced by a normal premovement EEG potential. Journal of Neurology, Neurosurgery & 

Psychiatry, 44(8), 735–738. https://doi.org/10.1136/jnnp.44.8.735 

O’Neill, J., Piacentini, J. C., & Peterson, B. S. (2019). Cingulate role in Tourette syndrome. In Handbook of 

Clinical Neurology (Vol. 166, pp. 165–221). Elsevier. https://doi.org/10.1016/B978-0-444-64196-

0.00011-X 



110 
 
 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010a). FieldTrip: Open Source Software for 

Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational 

Intelligence and Neuroscience, 2011, e156869. https://doi.org/10.1155/2011/156869 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2010b, December 23). FieldTrip: Open Source 

Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data [Research 

Article]. Computational Intelligence and Neuroscience; Hindawi. 

https://doi.org/10.1155/2011/156869 

Openneer, T. J. C., Marsman, J.-B. C., van der Meer, D., Forde, N. J., Akkermans, S. E. A., Naaijen, J., 

Buitelaar, J. K., Dietrich, A., & Hoekstra, P. J. (2020). A graph theory study of resting-state 

functional connectivity in children with Tourette syndrome. Cortex, 126, 63–72. 

https://doi.org/10.1016/j.cortex.2020.01.006 

Ozonoff, S., Strayer, D. L., McMahon, W. M., & Filloux, F. (1998). Inhibitory Deficits in Tourette 

Syndrome: A Function of Comorbidity and Symptom Severity. Journal of Child Psychology and 

Psychiatry, 39(8), 1109–1118. https://doi.org/10.1111/1469-7610.00415 

Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). AMICA: An Adaptive Mixture of Independent 

Component Analyzers with Shared Components. 15. 

Paus, T. (2001). Primate anterior cingulate cortex: Where motor control, drive and cognition interface. 

Nature Reviews Neuroscience, 2(6), 417–424. https://doi.org/10.1038/35077500 

Pedroarena-Leal, N., & Ruge, D. (2017). Toward a Symptom-Guided Neurostimulation for Gilles de la 

Tourette Syndrome. Frontiers in Psychiatry, 8. https://doi.org/10.3389/fpsyt.2017.00029 

Pernet, C. R., Latinus, M., Nichols, T. E., & Rousselet, G. A. (2015). Cluster-based computational methods 

for mass univariate analyses of event-related brain potentials/fields: A simulation study. Journal 

of Neuroscience Methods, 250, 85–93. https://doi.org/10.1016/j.jneumeth.2014.08.003 



111 
 
 

Peterson, B., Skudlarski, P., Anderson, A., Zhang, H., Gatenby, C., Lacadie, C., Leckman, J., & Gore, J. 

(1998). A Functional Magnetic Resonance Imaging Study of Tic Suppression in Tourette 

Syndrome. Archives of General Psychiatry, 55, 326–333. 

https://doi.org/10.1001/archpsyc.55.4.326 

Peterson, B., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., Bronen, R., King, R. A., Leckman, J. F., & Staib, 

L. (2003). Basal Ganglia Volumes in Patients With Gilles de la Tourette Syndrome. Archives of 

General Psychiatry, 60(4), 415–424. https://doi.org/10.1001/archpsyc.60.4.415 

Pion-Tonachini, L., Makeig, S., & Kreutz-Delgado, K. (2017). Crowd labeling latent Dirichlet allocation. 

Knowledge and Information Systems, 53(3), 749–765. https://doi.org/10.1007/s10115-017-

1053-1 

Polyanska, L., Critchley, H. D., & Rae, C. L. (2017). Centrality of prefrontal and motor preparation cortices 

to Tourette Syndrome revealed by meta-analysis of task-based neuroimaging studies. 

NeuroImage: Clinical, 16, 257–267. https://doi.org/10.1016/j.nicl.2017.08.004 

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing, Vienna, Austria. http://www.R-project.org 

Rae, C. L., Polyanska, L., Gould van Praag, C. D., Parkinson, J., Bouyagoub, S., Nagai, Y., Seth, A. K., 

Harrison, N. A., Garfinkel, S. N., & Critchley, H. D. (2018). Face perception enhances insula and 

motor network reactivity in Tourette syndrome. Brain, 141(11), 3249–3261. 

https://doi.org/10.1093/brain/awy254 

Ramkiran, S., Heidemeyer, L., Gaebler, A., Shah, N. J., & Neuner, I. (2019). Alterations in basal ganglia-

cerebello-thalamo-cortical connectivity and whole brain functional network topology in 

Tourette’s syndrome. NeuroImage. Clinical, 24, 101998. 

https://doi.org/10.1016/j.nicl.2019.101998 



112 
 
 

Robertson, M. M. (2008). The prevalence and epidemiology of Gilles de la Tourette syndrome: Part 1: 

The epidemiological and prevalence studies. Journal of Psychosomatic Research, 65(5), 461–472. 

https://doi.org/10.1016/j.jpsychores.2008.03.006 

Roessner, V., Albrecht, B., Dechent, P., Baudewig, J., & Rothenberger, A. (2008). Normal response 

inhibition in boys with Tourette syndrome. Behavioral and Brain Functions, 4(1), 29. 

https://doi.org/10.1186/1744-9081-4-29 

Roessner, V., Overlack, S., Schmidt‐Samoa, C., Baudewig, J., Dechent, P., Rothenberger, A., & Helms, G. 

(2011). Increased putamen and callosal motor subregion in treatment-naïve boys with Tourette 

syndrome indicates changes in the bihemispheric motor network. Journal of Child Psychology 

and Psychiatry, 52(3), 306–314. https://doi.org/10.1111/j.1469-7610.2010.02324.x 

Ruhrman, D., Mikulincer, M., Apter, A., Benaroya-Milshtein, N., & Steinberg, T. (2021). Emotion 

regulation and tic disorders in children. European Child & Adolescent Psychiatry. 

https://doi.org/10.1007/s00787-021-01912-5 

Santhana Gopalan, P. R., Loberg, O., Hämäläinen, J. A., & Leppänen, P. H. T. (2019). Attentional 

processes in typically developing children as revealed using brain event-related potentials and 

their source localization in Attention Network Test. Scientific Reports, 9(1), 2940. 

https://doi.org/10.1038/s41598-018-36947-3 

Scahill, L., Riddle, M. A., McSwiggin-Hardin, M., Ort, S. I., King, R. A., Goodman, W. K., Cicchetti, D., & 

Leckman, J. F. (1997). Children’s Yale-Brown Obsessive Compulsive Scale: Reliability and Validity. 

Journal of the American Academy of Child & Adolescent Psychiatry, 36(6), 844–852. 

https://doi.org/10.1097/00004583-199706000-00023 

Schelter, B., Timmer, J., & Eichler, M. (2009). Assessing the strength of directed influences among neural 

signals using renormalized partial directed coherence. Journal of Neuroscience Methods, 179(1), 

121–130. https://doi.org/10.1016/j.jneumeth.2009.01.006 



113 
 
 

Schilling, C., Kühn, S., Romanowski, A., Schubert, F., Kathmann, N., & Gallinat, J. (2012). Cortical 

thickness correlates with impulsiveness in healthy adults. NeuroImage, 59(1), 824–830. 

https://doi.org/10.1016/j.neuroimage.2011.07.058 

Seghier, M. L. (2013). The Angular Gyrus: Multiple Functions and Multiple Subdivisions. The 

Neuroscientist, 19(1), 43–61. https://doi.org/10.1177/1073858412440596 

Serrien, D. J., Orth, M., Evans, A. H., Lees, A. J., & Brown, P. (2005). Motor inhibition in patients with 

Gilles de la Tourette syndrome: Functional activation patterns as revealed by EEG coherence. 

Brain, 128(1), 116–125. https://doi.org/10.1093/brain/awh318 

Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The 

integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews 

Neuroscience, 12(3), 154–167. https://doi.org/10.1038/nrn2994 

Silverman, W. K. (1996). Anxiety Disorders Interview Schedule for DSM-IV.: Parent interview schedule. 

Oxford University Press. 

Sowell, E. R., Kan, E., Yoshii, J., Thompson, P. M., Bansal, R., Xu, D., Toga, A. W., & Peterson, B. S. (2008). 

Thinning of sensorimotor cortices in children with Tourette syndrome. Nature Neuroscience, 

11(6), 637–639. https://doi.org/10.1038/nn.2121 

Stern, E., Silbersweig, D. A., Chee, K.-Y., Holmes, A., Robertson, M. M., Trimble, M., Frith, C. D., 

Frackowiak, R. S. J., & Dolan, R. J. (2000). A Functional Neuroanatomy of Tics in Tourette 

Syndrome. Archives of General Psychiatry, 57(8), 741–748. 

https://doi.org/10.1001/archpsyc.57.8.741 

Stevens, F. L., Hurley, R. A., Taber, K. H., Hurley, R. A., Hayman, L. A., & Taber, K. H. (2011). Anterior 

Cingulate Cortex: Unique Role in Cognition and Emotion. The Journal of Neuropsychiatry and 

Clinical Neurosciences, 23(2), 121–125. https://doi.org/10.1176/jnp.23.2.jnp121 



114 
 
 

Swanson, J. M., Schuck, S., Porter, M. M., Carlson, C., Hartman, C. A., Sergeant, J. A., Clevenger, W., 

Wasdell, M., McCleary, R., Lakes, K., & Wigal, T. (2012). Categorical and Dimensional Definitions 

and Evaluations of Symptoms of ADHD: History of the SNAP and the SWAN Rating Scales. The 

International Journal of Educational and Psychological Assessment, 10(1), 51–70. 

Tinaz, S., Belluscio, B. A., Malone, P., Veen, J. W. van der, Hallett, M., & Horovitz, S. G. (2014). Role of the 

sensorimotor cortex in tourette syndrome using multimodal imaging. Human Brain Mapping, 

35(12), 5834–5846. https://doi.org/10.1002/hbm.22588 

Tinaz, S., Malone, P., Hallett, M., & Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the 

urge to tic in tourette syndrome. Movement Disorders, 30(9), 1190–1197. 

https://doi.org/10.1002/mds.26230 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & 

Joliot, M. (2002). Automated Anatomical Labeling of Activations in SPM Using a Macroscopic 

Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage, 15(1), 273–289. 

https://doi.org/10.1006/nimg.2001.0978 

Van Veen, V., & Carter, C. (2002). The anterior cingulate as a conflict monitor: FMRI and ERP studies. 

Physiology & Behavior, 77(4–5), 477–482. https://doi.org/10.1016/S0031-9384(02)00930-7 

Wang, Z., Maia, T. V., Marsh, R., Colibazzi, T., Gerber, A., & Peterson, B. S. (2011). The Neural Circuits 

That Generate Tics in Tourette’s Syndrome. American Journal of Psychiatry, 168(12), 1326–1337. 

https://doi.org/10.1176/appi.ajp.2011.09111692 

Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence WASI: Manual. Pearson/PsychCorpl. 

Wen, H., Liu, Y., Rekik, I., Wang, S., Zhang, J., Zhang, Y., Peng, Y., & He, H. (2017). Disrupted topological 

organization of structural networks revealed by probabilistic diffusion tractography in Tourette 

syndrome children. Human Brain Mapping, 38(8), 3988–4008. 

https://doi.org/10.1002/hbm.23643 



115 
 
 

Wen, H., Liu, Y., Wang, J., Rekik, I., Zhang, J., Zhang, Y., Tian, H., Peng, Y., & He, H. (2016). Combining 

tract- and atlas-based analysis reveals microstructural abnormalities in early Tourette syndrome 

children. Human Brain Mapping, 37(5), 1903–1919. https://doi.org/10.1002/hbm.23146 

Woods, D. W., Piacentini, J., Himle, M. B., & Chang, S. (2005). Premonitory Urge for Tics Scale (PUTS): 

Initial Psychometric Results and Examination of the Premonitory Urge Phenomenon in Youths 

with Tic Disorders. Journal of Developmental & Behavioral Pediatrics, 26(6), 397–403. 

Worbe, Y., Malherbe, C., Hartmann, A., Pélégrini-Issac, M., Messé, A., Vidailhet, M., Lehéricy, S., & 

Benali, H. (2012). Functional immaturity of cortico-basal ganglia networks in Gilles de la Tourette 

syndrome. Brain, 135(6), 1937–1946. https://doi.org/10.1093/brain/aws056 

Worbe, Y., Marrakchi-Kacem, L., Lecomte, S., Valabregue, R., Poupon, F., Guevara, P., Tucholka, A., 

Mangin, J.-F., Vidailhet, M., Lehericy, S., Hartmann, A., & Poupon, C. (2015). Altered structural 

connectivity of cortico-striato-pallido-thalamic networks in Gilles de la Tourette syndrome. 

Brain, 138(2), 472–482. https://doi.org/10.1093/brain/awu311 

Wylie, S. A., Claassen, D. O., Kanoff, K. E., Ridderinkhof, K. R., & van den Wildenberg, W. P. M. (2013). 

Impaired inhibition of prepotent motor actions in patients with Tourette syndrome. Journal of 

Psychiatry & Neuroscience : JPN, 38(5), 349–356. https://doi.org/10.1503/jpn.120138 

Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain 

Connectomics. PLoS ONE, 8(7), e68910. https://doi.org/10.1371/journal.pone.0068910 

Xuan, B., Mackie, M.-A., Spagna, A., Wu, T., Tian, Y., Hof, P. R., & Fan, J. (2016). The activation of 

interactive attentional networks. NeuroImage, 129, 308–319. 

https://doi.org/10.1016/j.neuroimage.2016.01.017 

Zapparoli, L., Macerollo, A., Joyce, E. M., Martino, D., & Kilner, J. M. (2019). Voluntary tic suppression 

and the normalization of motor cortical beta power in Gilles de la Tourette syndrome: An EEG 

study. European Journal of Neuroscience, 50(12), 3944–3957. https://doi.org/10.1111/ejn.14548 



116 
 
 

Zapparoli, L., Porta, M., & Paulesu, E. (2015). The anarchic brain in action: The contribution of task-based 

fMRI studies to the understanding of Gilles de la Tourette syndrome. Current Opinion in 

Neurology, 28(6), 604–611. https://doi.org/10.1097/WCO.0000000000000261 

Zapparoli, L., Tettamanti, M., Porta, M., Zerbi, A., Servello, D., Banfi, G., & Paulesu, E. (2017). A tug of 

war: Antagonistic effective connectivity patterns over the motor cortex and the severity of 

motor symptoms in Gilles de la Tourette syndrome. European Journal of Neuroscience, 46(6), 

2203–2213. https://doi.org/10.1111/ejn.13658 

 

 

 

 

 


	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgements
	VITA
	Chapter 1: Introduction
	Chapter 2: Development of a More Spatially Defined Method for Examining Group-Level, Cortical Source EEG Findings
	2.1 Abstract
	2.2 Introduction
	2.3 Methods
	2.3.1 Data Preprocessing
	2.3.2 Establishing Ground Truth Spectral Activity
	2.3.3 Clustering Approaches for Detecting Ground Truth Signal
	2.3.4 Statistical Analysis
	2.3.5 Real Dataset Analysis (Visual Attention Task)

	2.4 Results
	2.4.1 Comparison of Analysis Methods on Simulation Dataset
	2.4.2 Comparison of Analysis Methods During Visual Attention Task

	2.5 Discussion

	Chapter 3: Neural Mechanisms of Inhibitory Control in Persistent Tic Disorder
	3.1 Abstract
	3.2 Introduction
	3.3 Materials and Methods
	3.3.1 Sample
	3.3.2 Procedure
	3.3.3 Experimental Task
	3.3.4 EEG Recording and Processing
	3.3.5 Event-Related Spectral Power
	3.3.6 Connectivity Analysis
	3.3.7 Correction for Multiple Comparisons
	3.3.8 Statistical Analysis

	3.4 Results
	3.4.1 Flanker Performance
	3.4.2 Oscillatory Dynamics - Clustering Solution
	3.4.3 Spectral Power During Inhibitory Control
	3.4.4 Connectivity Dynamics
	3.4.5 Correlations with Behavior and Performance

	3.5 Discussion

	Chapter 4: Neural Dynamics Preceding Tic Expression in Persistent Tic Disorder
	4.1 Abstract
	4.2 Introduction
	4.3 Methods
	4.3.1 Sample
	4.3.2 Experimental Task
	4.3.3 EEG Recording and Processing
	4.3.4 Measures
	4.3.5 Statistical Analysis
	4.3.6 Classification of Tic and NoTic Conditions

	4.4 Results
	4.4.1 Demographics
	4.4.2 Tics During EEG Recording Session
	4.4.3 Localized Spectral Power
	4.4.4 Regional Connectivity
	4.4.5 Behavioral Correlations
	4.4.6 Classification of Trial-Averaged Activity
	4.4.7 Independent Test Sample Validation

	4.5 Discussion

	Chapter 5. Conclusions and Future Directions
	References



