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ABSTRACT
The difference equations for axisymmetric fields are formulated in
- an irregular triangular mesh, and solved with a direct, non-iterative
method. This allows evaluation of resonance frequencies, fields, and
secondary quantities in extreme géometries, and for the fundamental

as well as higher modes. Finding and evaluating one mode for a

2000 point problem takes of the order of 10 sec on the CDC 7600.
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I. INTRODUCTION
| Over the last 10 to 15 years, a number: of computef programs have
been‘developed that find the electromagnétic resonance frequency and
evaluate the axisymmetric fields in RF cavities with axisymmetric
symmetry. The codes that allow this analysis to be made‘in an éssentially
arbitrafy axisymmetric geometry (see for instance Refs. 1-3) have fhe
following in common: _Fdr some geometries, like.céﬁities that have a
large diametér compéred_to their length,.and/or for modes higher.fhan
the fundamental mode, the convergence rate can be exﬁremely small, or
' convérgence may not be achieved at all. Stated very briefly, the reason
for these problems is:theifact that in all theSe.codes, an over-
relaxation method is used to éolve a set 5f homogeneous linear field-
'equations. The properties of these equations are such that some |
well-developed methods forvoverrelaxaﬁion—factor optimization are not
applicable, and it might well be true that the eigeﬁvalues bf the
_métriées for some problemsvare located in such a way that even an
optimized overrelaxation scheme would still resuit in unacceptably
low covergence rates.

- To eliminate these problems, we developed the'codé SUPERFISH
lthaf uses a direct, nOniterative method to solve a set of inhdmogeneous
figld equations. This code is a Combination of some parts of the
codelRFISH;u some new ideas,.and the direct solutioh method used by v
C. Iselin in his magnet code FATIMA,5 In drder to give a géod overall»__
undefstanding of SUPERFISH in a limited space, we do not present all -
‘detailed fof-muias, but do include the description of _ail parts that
vare'cohcépfually significént; even at the expense'éf fefofmhléting and/or

condensing parts of the cited literature.



In Sections 2 and 3 We discuss separately thevstructuré of the
difference equations, and the direct, noniterative method'uaed,to solve
a set of inhomogeneous linear equations. in Séctidn 4 the basic
: structure of SUPERFISH is described, and the remaining sectibns glive -

some details of the theory and of the program as it exists today, and
an outline of contemplated future developments.4 |
. 2. STRUCTURE OF THE DIFFERENCE EQUATIONS IN AN TRREGULAR
TRIANGULAR MESH
Inspection of Maxwell's equations shows that for 3E/3¢ =
3ﬁ/3¢ = 0, i.e., axisymmetric fields, two indepehdentAsets of solutions
r

can exist: bne having as only nonzero field componénts E¢, Hz’ H_ ;

the other, H¢, EZ’ E_. These two solutibns are,-for equivaleht boundary

r
conditions, identical; and we therefore. talk only about the latter
set. Assuming, without loss of generaiity, that the magnetic field is

proportional to coswt, and the electric field is proportional to sinwt,

and using suitable units, Maxwell's equations can be written as

curl H = K&, | (1a)
eurl B =, , o - (1b)

witﬁ k = w/c, and B and E.representing'the electric and magnetic'fields
divided by their respective time dependence; .
We seek to fihd numerical solutions for some of the eigenvalues k
and associated fields of Eqs.(la)and (1b) in cylindrical cavities of
essentially arbitrary shapes, with 7= 0 on the axis and possibly some
other parts of the'boundary (Dirichlet boundaries), and the electric
field perpendicular to the remaining boundaries (Neumann boundaries),

~ implying infinitely conducting walls there.



é.l. The Mesh

To solve the differential Egs. (1a) and (1b), we introduce an
irregulaf triangular mesh6 in the z-r plane. Figure 1 shows the logical
mesh, with mesh points identified by labels K and L, assuming the

integer values 1 through Kmax =K,, and 1 thréugh_Lz. To establish a mesh

25
that can be used to solve the field.equatidns for a particular geemetry,
defined by its bouhdarieé, the user‘first assighs boundary coordinates
z,r to an appropfiately chosen selection of logical points K,L. The
mesh generator, described in'Ref..6,’theh generates a mesh of triangles
thateiS'tOpographically identical to the 1ogieal mesh, but has all.
boundafies defined by mesh lines. Figure'2 shows such a mesh for one
‘half of an Alvarez eavity. Exterior mesh points, i.e., pOints”inside.
the drift tube, are not shown since they do not affect the field

" calculations.

2.2. 'The Difference Equations for Tnterior Points

We use the quantity H = H, to describe the RF fields. This

¢
somewhat unconventional.choice (usually r.-.H¢ is used) has the advantage
of not requiring any special'treatmeht of the region close to the )
axis, since H will be proportiohal tor there, whereas rH¢ 2" r2 for
small r.- From Eqs. (la) and (1b) we obtain as the differential

equation for H:

curl(curl H) = k2

oo @
To derive difference equations fOr'H;'we use the procedure described'by
A. Winslow:6 we first introduce a secondary meeh by drawing connecting
lines between the "center of mass" of every triangle and the center of

each of the three sides of the triangle. As a consequence, every mesh
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point is now surrounded by a unique twelve-sided polygoﬁ. This
secondary mesh of dodecagons covers completely the Whole problem area,
and Fig. 3 shows the dodecagon surrounding just one mesh point. The
difference equations for H are now obtained by integrating Eq. (2) over

the area (in the z-r plane) of one dodecagon at a time. This yields

J curl(curl ﬁ)-dg = ¢ curl Heds = k2 S Heda . (3)

Assuming that H behaves like a linear function of z and r within every

. triangle, H inside every triangle is uniquely determined by the values

of H at the three corner-mesh points of the triangle. The integrals in

Eq. (3) can therefore be expressed in terms of the value of H at the
"center-mesh point" of the dodecagon and its six nearest logical néighbors,

giving a relationship of the following kind

fé Hn(vn * kan) - O- ” - ()
0 :

with Vﬁ and Whvdepending iny on the coordinates z,r of the seven mésh
points involved.

.Identifying each difference equation with its "center—point", we
therefore get one difference equation for H at every interior mesh point.

2.3. The Treatment of Boundary Points

Turning now to mesh points on the boundaries of the problem, it
is clear that no difference equations are needed for H at boundary
points when ﬁhe boundary conditions require Hjs 0 theré. Nevertheless,
we héve ﬁo explofe whether or not the difference equations for such
points are satisfied. To this end, we consider first Dirichlet-boundary

points that are not on the problem axis. This kind of boundary condition
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can obviously only be imposed as a symmetry éonditiOn along a blané _
defined by z = const. :This implies that in the.real world a‘point on
one side of this line has an H-value of the same magnitude, but opposité‘
-sign, as the symmetrically located point, and the difference equation,.
Eq. (4), is clearly satisfied for every such boundary point.

This argument cannot be applied without elaboration for pbints on
axis (r = 0), and the difference equations resulting from Eq. (3) are
in fact not satisfied for those points. To see how this can be
interpreted, we can introduce on the right—hahd side of Eq. (1b) a
(magnetic)‘current density term j_that has only an aziﬁuthél component .
This giVeS on the right—hand side of ‘Eq. (3) the additional term KT,
where T represents the total éurrent associated with the’pbint under
consideration, and assumed to be.concentrated there. In our case of
axis poinﬁs, an'azimuthai current on the axis 1is, of coﬁrse,-withOut'
consequences, and this whole argument could also be used’to lend -
legitimacy to the application of the symmetry consideration to axist
points. |

When E is required to be perpendicular to}boundary—mesh lines, we
consider that part of the dodecagon surrounding a boundary point that
goes through inside problem triangleé, i.e., fhe pblygon 0-1'-2'-3'-4'-0
in Fig. 4. Sincevﬁ = curliﬁ/k is.required tQ be perbendicular to lines
4-0 and 0-1, |

f curl Hea$ = 0
4r-0-1"
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This means that the difference equation for H at such a boundary point
is identical to'that for interior points excépt that only contributions
from interior triangles are taken into account.

A very important pfoperty of the difference equation, Eq. (4), is
the fact that if we use the logical-éoordinates (indices) K;L to identify
mesh points, and if KO,LO are the coordinates of any specific mesh point
for which we write down Eq. (4), then the coofdinates of the other mesh

points contributing'to Eq. (4) differ from K " by not more then *1.

o and L

0

3. DIRECT, NONINTERATIVE SOLUTION OF A SET OF INHOMOGENEOUS
LINEAR EQUATIONS ‘

If one wrote down difference Eq. (4) for all (i.e., including all
boundary and exterior mesh points) HKL

- from left to right; and if one also had some inhomogeneous terms, one

of the logical mesh by rows

could write the resulting system of equations in the following form:

iall 410 | ) G
{ f21 %22 23 | % G5
| 2323323 3 O3 |
S S R )
aL2fl,L2—2vaL2—l,L2—l aL2—1,L2 “L2—1 GL2—1
| aLZ?L2—1 %L,,L %, G

2272 2 2
‘In this'matrix equation, ﬂi represents a column vector with the components

H Hé, a vector with components H

“K,1° 23 K,2’
and the Gn represent the corresponding inhomogeneous terms. The matrix

K=1-K K=1- K2, ete,

on the left side of Eg. (5) has all zeroes except for the block matrices

a.

i, 1

of size K2XK2. These blocks are sparse also, the diagonal blocks
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containing only three hénzero‘eiements in every.row,'and_the off--
‘~diagona1 blocks not having more than three in any TOW.
Deferring to Section 4 the discussion of how we can cast our fiéld
- evaluation problem in'the form of Eq. (5), involving all pdints éf ﬁhe
logical mesh as well as inhomogeneous terms on the right side of Eq. (5),
we discués now the method used to solve Eq. (5). | |

We first transform all diagonal blocks into unity matrices, and
 remove all blocks'to tﬁe left of the diagonal blocks, with the |
Gaussian block elimination. process: we multiply the équations rebresented
by the first row of blocks from the left b&fai% , and then subtract
from the second row the new first row after mﬁltiplication_from the

left by a The new set of equations.is then the same as the original

21"

one, .except that a,, = .0; = 7I; and a Gys @55, and G, are now .

_ 21 11 12°
‘modified. This process 1s repeated, involving rows 2 and 3, then 3 and 4,
“ete. The Very last step in this.process is the multiplicaﬁion of the
last row (modified by the previous step) from the left with the modified
block matrix aL‘,L .
_ : 2°72
Having Eq. (5) rewritten-in this form; the last row now represents
directly the solution for KL'L ' Using this now numerically known vector
. 2 . "

in row L2—1 yields directly the solution for HL _1° and‘cbntinuihg this

back-substitution process yields the numerical values of all'components :
of all block vectors Mh. » |

It is important to recognize the facﬁ that this particular fast
direct method to solve inhomogeneous linéar equations'caﬁ be used only
if they can be cast in the form of Bq. (5), and if the matrix on the

left side of Eq. (5) is nonsingular.
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4. CALCULATION OF FIELDS AND RESONANCE FREQUENCIES IN SUPERFISH

In order to allow application of the direct linear équation solution
described in Section 3, we have to include in an artificial way in the
system of equations'also those points that are part of the logical
mesh, but are external to the actual field solution problem. How this
is done, and the treatment of points on Dirichlet boundaries, 1s discussed
in Section 4.1; the creation of the inhomogeneous terms is discussed in
Section 3.2, and the resonance frequency determination is discussed in
Section 4.3. |

4.1, Treatment of Exterior Points and Points on
.Dirichlet Boundaries

The simplest and most.practical way to include exterior points
without affecting the actual field equatiohs, and without causing the
matrix on the left side of Eg. (5) to become singular, is to let the

equation for every exterior point read H

. = 0, and to make
exterior , .

all couplings to other equations zero by setting the corresponding

coefficients equal to zero also. In other words, if g is the index

identifying an exterior point.(not a block!) in the overall H—Vector_

on the left side of Fq. (5), one simply sets all elements of row n,

and column ny of the matrix in Eq. (5) equal to zero, with the exception

of the g sl diagonal element, which is.set to equal one. The

0
no—element of the inhomogeneous contribution vector on the right side
of Eq. (5) is set equal to zero also. The logic of the equation-solving
"~ routine is arranged in such a way that the thus~introduced zeroes are

actually never used in multiplications, just as the other zeroes in

the sparse matrices are never used as multipliers either. - Points on
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Dirichlet—boundaries aré treated in exactly,the same way. vHQwever,-
in-contrasﬁ to exterior points, ﬁheir z-r codrdinateé do‘ehter'into
the expressions for Vn,wn in Eq. (4) involving therotber.point(s) of
the.triangles that have bne or twb.Dirichlet—boundary points at their
corners. | |

4.2. Generation of Inhomogeneous Terms for Eq. (5)

In order to turn the set of homogeneous differencé équationé
(Eq. (4)) into avwelléposed sef of inhomogeneousifield equations, -one
could bevtempted.td introduce at one mesh point a driying'(magnetic);'
current, as discussed in SecﬁiOn 2.3. That would be an unwisg-procedure
when one. is close to a resonance, since'the matrix in Eq. (5) is
singular for every resonance ffequency, leading, as it muSt, to
infinite fields. Instéad, we prescribe that=an.appropriately chQsen‘
off-axis mesh point has the field value one and in effect remove the
difference equation fdr'that boint from the system;of différénée’equationé.
To do this without destroying the structure of the field equations, we
cén proceed in one Qf the.following two ways:

(1) If the chosen point is identified by its index ny in the overall
of the matrix in Eq. (5)

H Vector, we set all matrix elements in row ny

equal to zero,:except for the diagonal element n which is set

1> >
equal to 1. 1In the vector G on the right-hand side of Eq. (5), all

elements are set equal to zero, except the n, —element is set_equal'to one.

1

Colum n, of the matrix is left unchanged.
(2) Every matrix element in row nl.and in column ny is set equal
to zero, except . the nl,ni diagonal element is set equal to one. The

vector on the right-hand side of Eq. (5) is set to equal minus the
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original colum n, of the matrix, except for element n., which is set

1
to zero.

The net result of both procedures is the same, except that procedure
(1) gives\Hnl =1, and proeedure (2) yields Hnl =0, even.though the
“value Hnl =1 enters.the difference equations of the neighbor points.
Since procedure (2) simplifies two block matrices significantly, we
use that method in the code.

In centrast to the explicit introduction of a driving current,
with procedures (1) and (2) the matrix on the left side of Eq. (5) is
well conditioned even for resonance frequencies. |

If we take the original difference equation forvthe point with the
presceribed field value and solve for the field value at that point,
using the solution values of the field at the neighbor points, we will
get a value different from the prescribed value, except at:resonance.
This difference can be interpreted as being proportionel to the current
I1 necessary at that point to drive the cavity to the prescribed .
amplitude at the point with the prescribed field value. For this reason

we will refer to this point as the driving point.

- 4.3. Resonance Frequency Determination

The dfiving current I1 introduced above depends on k2 through the
eoupling coefficients in the difference Eq. (4), and the resonance

condition is characterized by
Il(k2)>= o, N | O (6)

since then there is no difference between the value of Hrl as calculated
_ 1.
from the difference equation for that point, and the prescribed Value
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used there to solvevfor-the fields; i.e., the difference equations are
satisfied for all points of conéequenCe. To find the value(s) of kg”
for which Eq. (6) is satisfied, we can combine the above described
"function generatof" for Il(RZf with a numerical root-finding algorithm,
such as thesecantnbthod, or'a\pafabola‘fit method. The latter method
is used in the present stage'of code development. But we expect that

it will be useful to wuse a root-finding algorithm that takes into

account some of the properties of Il(kz) that are described in Sectioh 5.

Figure 5 depicts a flow diagram of the major parts of SUPERFTSH.

5. PROPERTIES OFVII(k2) AND INTRODUCTION AND PROPERTIES‘OF D(k?)

To obtain an understandiﬁg of some of the pfopefties of the function
Il(kg), and later D(kg), we wiil_go ba¢k to the differential equations,
Eags. (lé) and (1b), with Eq. (lb) amendéd on the right sidevby the
‘magnetic current density 3, assumed to be constant over a small aféa
surrounding the driving point. In.the:proceés of deriviﬁg some formulas,
we have to evaluate integrals like fﬁ-gl‘dv, and set_this equal

2y, +h. I, where I. is the total driving current; rys the distance of

1717 1
the driving point from the problem axis; and hl, the magnetic‘field
averaged over the region where j, # O. The association between h

“1 1

~ resulting from this continuum theory and thé value of H at a mesh
_ point in the representation by the différence equétions is complicated

by the fact thatvhl has a logarithmic singularity when the area where

3 # 0 is reduced to zero (for fixed Il). While it seems reasonable to

set hl equal to H at the driving point, or the valué:reSulting from

averaging H over the dodecagon associated with the driving point, it is
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clear that the:quantitative relationships developed_belOW»will_deséribe
only approximately the relationships between the quantities‘defiQed_
from the difference equations. However, it is also clear that the
general behavior of the functions of interest is'correctiy described
by the results derived from the continuum theory below.
Adding the term J; to the right side of Eq. (1b) gives
curl & = kﬁ.+131 .o 3 . ' _(7)v

Forming the scalar product of both sides of this equation-with ﬁ, and

subtracting from that Eq. (la), after being multiplied by'ﬁ, yields:

>

B ocurl B - B curl B = aiv(BE) = ki + JiH - IE®

Integrating this over the whole problem volume gives

[ @iv(ExH) dv = f(Bxf)eda = 2mroh, I, - KE -8 av . (8)

Since BxH is either zero on the problem boundary, or perpendicular to

the boundary normal, S(ExH) da = 0, and we get

2mr ho kI

D) = —EA L= reP) -, 9)
' SHav .
22 32
R(x2) = Lk g av _ f(curlQH) dv (10)
- JHav - JHav

The new function D(kg) has the property that its value does not

depend on the scaling of hl’ or I1

wanté to consider as thevprimary varilable.

if that is the quantity that one

.,



-13~

To obtain- more 1nformatlon about the behav1or of I (k ) we now

-calculate aI /d(k ) = I To this end, we take the derlvatlves with

1°
respect to k2 of Egs. (la) and (7). .Indiéating derivatives with

respect to k2 by primes, we get:

curl H' = KE' + B/2k - L (11)
curl B! = KA' + W2k + Ei : T 12)
Tt should be noted that for our procéduré of field evaluation, A' =0

on Dirichlet boundaries, because ﬁ =0 there'for all kzﬂ Similarly B

is perpendicular to Neumann.boundaries since'the’component_of B parallel

to a Neumann boundary is zero for all k2. "We now consider.
div(Ekﬁ'-EﬂXﬁ) EAﬁ'-curl E - Becurl ﬁ'.f Hecurl B' + B' curl H

'Using for the curl expressions the appropriate right sides of Fgs. (la),

(7), (11) and (12) yields
aiv(BE - EodD) = £1of) - B3] - (E° + H)/2k

Integrating this over the problem volume gives, as in Eq.'(8), Zero

on the left side, yielding
omr k(h!T, - h.I') = f(E° + H) dv/2 o (13)
e R R R ] o

We intentionally made no a priori assumptions whether we ¢consider hl

or Il fiXed~Whén k2 is changed. However, for the case considered-so

hi = 0, and we can immediately deduce the following conclusions

from Eq.  (13):

‘far,

hlIl < 0 (Foster*s theorem) . (14)
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This means that for fixed h,, between every two resonances (Il(kg) = 0)

1
Ii(kz) must have a singularity sﬁch that the sign of Il(kz), and therefore
also of D(k2), changes. |

At a resonance,'fE2dv = ngdv (see Egs. (9) and (10)),giving ngdV
on the right side of Eq. (13). We therefore get from Egs. (13), (9),

and (10) at a resonance (I1 =0):

-t
——-————&lelkll =D () =R - 1=-1 . (15)

JH dv .
Since Il(k2) has a'singularity between‘reéonanéés, it is more
convenient to study D(kg)iin the vicinity of these singularities. To
this end, we first consider R(k2). Accofding to Eq. (9), R(k2)4= k2
at every resonance; and R' = 0 at resonance‘follows.froﬁ Eq. (15).
Since R cannot be negative, R(k2) must look gqualitatively as indicated
in_Fig.'6 and R - k2 = D(kz) as shown in Fig. 7. An important consequence
is that betweén resonances, D(kg) goes through zero, and this sign
change must take place where Il(k2) has a singularity.

To study D(kz) in the vieinity of this root of D(kz) that dées
ggg_represént a resonance, we takeladvantagé of the fact that D(k2)'is
-independent of the scaling of the field and current qﬁantities.' We
can therefore consider Il as given and kept constant, and consider h'

1
as the kz—dependent quantity that causes D(kg) = 0. At this "between-

resonance roots," it follows from Egs. (9) and (10) thaﬁ_fE2dv fHZdv,
giving again fH2dV as the right side of Eq. (13). We therefore get:

from that equation

/
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2ﬂrlkIlhl

-D'(k2) =-R'(k2) -1-= 1'; - (16)
fH av - .

- A possible use of Egs. (15) and (16) will be briefly described at the

end of Section 6.3.

6. * PROGRAM STATUS AND FUTURE DEVELOPMENT

EhejComouter progrém wés originally written for they6DC=7600'
operating under‘the ﬁivermore time—éhare syétem, and we describe here
that particular version. |

6.1. Computer Time and Storage Requiremehts

The CPU time required for a field_evaluétiOn‘ié dominatedrbyxthe
time reqﬁired to invert the olbck‘matricés, 'For.the'system of equations
described at the beginning of Section 3, the.time uséd'for iﬁveréion of
 the block matrlces is proportlonal to Kg L2 When K > L?, the differehce E
equations are arranged along columns of the logical mesh, leading to
this expression for the CPU time

T = T1N2€ s 7 | (17)

with N representing the total number of logical mesh points, and e the smaller

of the two numbers K,/L,, L,/K,. For the CDC 7600 under LTSS, T

With the present system to find the roots of Il(kz), it takes 3 to

-~ 0.75 usec.

6 field iterations to determine a resonance frequency acourately.

The storage requirements for the program are apprbkimately 11N
exclusive of the memory required for the modified off4diagonal'blook'
matrlces, needed for the back—substltutlon These matriées‘represent

N3/2 1/2 words, too much to be accommodated in small core for N > 1500.
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For larger prbblems, the disk has to be used. However, S. B. Magyary
(LBL) has pointed out that one needs to store only two such matrices
when one needs to calculate only Il(k2) (and not pbe complete field map),
provided the driving point is associated with the last row of block
matrices on the left side of Eq. (5). In that case, the iarge amount
of storage is not néeded until one hés a converged fesénance frequency.
6.2. Accuracy |

Since;we’know from our exberience with the RFISH code and the
magnet code POISSON that the program is Unlikely to have problems related
to curved_boundaries; we haﬁe made analytically téétable runs so’ far
orily for empty pill box cavities. |

- To see whether this éode has any problems with extreme geometries,
we ran an empty box of 5 cm length and 150‘cm radius with 1267 points.
Without any difficulty, the code returned the fundamental frequency
correét-to all five printéd digits. .

Much more extensive runs were made for an empty box 60 cm long and
a radius of 88 em. The mesh point separation was 2 cm in both the
axial and radial direction, giving a total of 1395 points. The
fundamental freqﬁency of this cavity is 130-389 MHz and‘is reproduced by
- the code Qith an error of 1 part in 10,000, while the stored energy
is reproduced to an accuracy of'].part.in 3000. A nuch more severe
fest is the evaluation of higher modes. Resonance frequency number
eight is-582.uﬁ MHz, and is returned by the code as 583.50 MHz; the
stored energy calculated by the code.is 3% smaller than the correct
value. Figure 8 shows the patterﬁ of electrical field lines (rH - cohst)

for this mode. It should be noted that the distance between an extreme
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value of rH and the next axial node is only 7.5 mesh spa01ngs “Modes
29 and 30 represent an even more extreme test:- Theaanalytical | .
frequencies are 1179.9 MHz and 1186{3 MHZ, and the\code—produoed‘
frequencies are 1183.0 MHz and 1196.6 MHz ; while tne.energy of'these;o
modes is off by approximately 10%. Considering the fact'that mode 29

has six radial and one axial nodes, and mode 30 has three radial and

‘four axial nodes these numbers are surprisingly good. - The'closeness

of the two. resonances did not cause any problems. "Turning:on" the
partial and compiete'pivoting of the matrix inversion routines,'or
iterating on the field residuals_ofvthe solution of- the difference .Q'
equations, didfnot change any of these'numbers.;vHowever,;increasing
the number'of mesh points caused a.marked‘improtement of .the accuracy :
of the frequency and the'stored7energy, indicating that.theinumericai,

errors are -due to mesh size, -and not round-off errors.

_6,3. Secondary Quantities, and Near Future'Developments

The program calculates now, or will calculate in the very near

future, the following secondary quantities: ‘stOred energy.; transit

max

on designated surfaces; shunt impedance; Q; and frequeney'perturbation

by drift tube stems.

We also plan to calculate and print out coefficients that indicate
. , : 7 v :

how the movement of designated surfaces pefturbsuthefreSonance'freQuency.

-These Quantities were calculated by'RFISH'and.proved extremeiy valuable.

To simplify the work on high-order modes, we intend to generate
printout plots of node lines (i.e., H = 0-lines) and/or plots of

points with local extrema of rH, and Il(kg)»and‘D(k2) plots.
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. To simplify the design of cavities that have to have a predetermined
resonance fréquency, we Intend to run the code with that fixed frequency
(possibly modified by drift tﬁbe stems) and to accomplish Il =0
by moving or deforming a designated boundary. Thé techniques hecessary
to do this are already used in the magnet deSigh code MIRT7 and can
easily be incorporated in SUPERFISH. -

To reduce the number of iterations necessary to find a resonance
frequency,bwe plan tc employ a root-finding routine that uses the
properties cf D(kz) expressed by Egs. (15) and (16). If this code is
used extensively to find high-order modes, it might also be profitable to
attempt to develop a mode pattern analyéis and prediction routine.

6.4, Advantages of SUPERFISH

.The main advantage of the code is the capability to solve problems
that other codes cannot solve at all, or only with great expenditgre
of computer time. In addition, the code is quite fast, requiring only
about 1 sec pér iteration on the frequency for the test problem
discussedAaboVe. With five iterations and the time used to Calculate
miscellaneous other quantities, one has a complete éolution in 6 sec.
The irregular triangular mesh, while not allowing,as many mesh‘points
as a square mesh, has the advantage of alloWing the definition of
boundaries by mesh lines, and to produce a mesh_with a large density

of mesh points in regions where the problem requires high resolution.
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6.5. Disadvantages of SUPERFISH

| The drawback aséociatedvwith'the,irregular triangular meéh is
the fact that one has to generaté sﬁch,a mesh. This extra step can slow
down the total process of receiv;ng tﬁe,desired answers. This problem
has been partly reduced by the creation of the‘code AUTOMESH,kdeveloped
by one of us (R.F.H.) while at CERN. This code optimizesvautomatically
the coordination between space-boundary codrdinates ahd 1ogicai
coordinates, prdvided‘that one is satiSfiéd with a uniform meéh point
density in a limited number‘of distinct regions. Aﬁ the.time of |
writing this_paper, an effort isvbeiﬁg undertéken at LASL by
D. Swenson, W. Jule, and one of us (R.F.H.) to improve the whole bfocess-
of data input and mesh generation. “ “

There is one basic drawback associated with thé necessity of having a
driving point in the.problem: if one happened to éhodse itslloéétion
such that it is on a node line for ﬁhe problem under considerétibn,
computational probléms will result. For that reaéon, it is advisable
to put the driving point on a Dirichlet boundary. When the code
 detects the computational difficulty, it can switch the driving point

. to a more favorable neighboring point on the boundary, thus eliminating

the problem.
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FIGURE CAPTIONS

Fig.
Fig.
Fig.

Fig.

Fig.
.Fig.
Fig.

Fig.

1. Logiecal tfiangular mesh.

2. 1/2—Alvaréz cavity with irregular trianglar mesh.

3. Irrezular triangular mesh with secoﬁdary dodecagon.

b, BQundary mesh point'witb neighboring interior mesh points,

and secondary polygon.

5. Flow diagram of SUPERFISH.

6. Graphical representation of properties of R(g2):

7. Graphical represéhtétion of'probertiéé of”ﬁ(k?Od

8.'uEiecéric fieiaglines (rﬁ =1b'::c:orls,t§ féﬁ;hodé #Stiéﬁtéét“cé;ity.:’
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Fig. 4
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This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
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their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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