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ABSTRACT 

i 

. SUPERFISH .... -A Computer Program for Evaluation of RF 
Cavities with Cylindrical Syrmnetry 

K. Halbach 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

and 

R. F. Holsinger 

Los Alamos Scientific Laboratory 
University of California 

Los Alamos,. New Mexico 87545 

The difference equations for axisyrmnetric fields are formulated in 

an irregular triangular mesh, and solved with a direct, non-iterative 

method. This allows evaluation of resonance frequencies, fields, and 

secondary quantities in extreme geometries, and for the fundamental 

as well as higher modes. Finding and evaluating one mode for a 

2000 point problem takes of the order of 10 sec on the CDC 7600. 
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I. INTRODUCTION 

Over the last 10 to 15 years, a number of computer programs have 

been developed that find the electromagnetic resonance frequency and 

evaluate the axisymmetric fields in RF cavities with axisymmetric 

symmetry. The codes that allow this analysis to be made in an essentially 

arbitrary axisymmetric geometry (see for instance Refs. 1~3) have the 

following in common: For some geometries, like cavities that have a 

large diameter compared to their length, and/or for modes higher than 

the fundamental mode, the convergence rate can be extremely small, or 

convergence may not be achieved at all. Stated very briefly, the reason 

for these problems is the fact that in all these codes, an over-

relaxation method is used to solve a set of homogeneous linear field· 

equations. The properties of these equations are such that some 

well-developed methods for overrelaxation-factor optimization are not 

applicable, and it might well be true that the eigenvalues of the 

matrices for some problems are located in such a. way that even an 

optimized overrelaxation scheme would still result in unacceptably 

low covergence rates. 

To eliminate these problems, we developed the codeSUPERFISH 

that uses a direct, noniterative method to solve a set of inhomogeneous 

field equations. This code is a combination of some parts of the 

code RFISH,4 some new ideas, and the direct solution method used by 

C. Iselin in his magnet code FATIMA. 5 In order to give a good overall 

understanding of SUPERFISH in a limited space, we do not present all 

detailed formulas, but do include the description of all parts that 

are conceptually significant, even at the expense of reformulating and/or 

condensing parts of the cited literature. 
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In Sections 2 and 3 we discuss separately the structure of the 

difference equations, and the direct, noniterative method used.to solve 

a set of inhomogeneous linear equations. In Section 4 the basic 

structure of SUPERFISH is described, and the remaining sections give 

some details of the theory and of the program as it exists today, and 

an outline of contemplated future developments. 

2. STRUCTURE OF THE DIFFERENCE EQUATIONS IN AN 'IRREGULAR 
TRIANGULAR MESH 

. + 
Inspection of Maxwell's equations shows that for aEI aep = 0, 

+ 
aB/aep = 0, i.e., axisymmetric fields, two independent sets of solutions 

can exist: one having as only nonzero field components Eep' Hz, Hr; 

the other, Hep' Ez", Er • These two solutions are,for equivalent boundary 

conditions, identical; and we therefore. talk only about the latter 

set. Assuming, without loss of generality, that the magnetic field is 

proportional to coswt, and the electric field is proportional to sinwt, 

and using suitable units, Maxwell's equations can be written as 

curl H = 1& , (la) 

curl E = kH , (Ib) 

wi th k = wi c, and H and E representing the electric and magnetic fields 

divided by their respective time dependence. 

We seek to find numerical solutions for some of the eigenvalues k 

and associated fields of Eqs. (la) and (lb) in cylindrical cavities of 

essentially arbitrary shapes, with H = 0 on the axis and possibly some 

other parts of the boundary (Dirichlet boundaries), and the electric 

field perpendicular to the remaining boundaries (Neumann boundaries), 

implying infinitely conducting walls there. 
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2. 1. The Mesh 

To solve the differential Eqs .. (la) and (lb), we introduce an 

irregular triangular mesh6 in the z-r plane. Figure I shows the logical 

mesh, with mesh points identified by labels K and Lj assuming,the 

integer values 1 through Kmax = K2, and 1 through L2. To establish a mesh 

that can be used to solve the field.equations for a particular geometry, 

defined by its boundaries, the user first assigns boundary coordinates 

z,r to an appropriately chosen selection of logical points K,L. The 

mesh generator, described in Ref. 6, then generates a mesh of triangles 

that is topographically identical to the logical mesh, but has all 

boundaries defined by mesh lines. Figure 2 shows such a mesh for one 

half of an Alvarez cavity. Exterior mesh points, i.e., points inside 

the drift tube, are not shown since they do not affect the field 

calculations. 

2.2. The Difference Equations for Interior Points 

We use the quantity H = H~ to describe the RF fields. This 

somewhat unconventional choice (usually r'H~ is used) has the advantage 

of not requiring any special treatment of the region close to the 

2 
axis, since Hwill be proportional to r there, whereas rH~ ~ r for 

small r.-From Eqs. (la) and (Ib) we obtain as the differential 

equation for H: 

. + ,,2+ 
curl(curl H) = k H (2) 

To derive difference equations for H, we use the procedure described by 

A. Winslow;6 we first introduce a secondary mesh by drawing connecting 

lines between the "center of mass" of every triangle and the center of 

each of the three sides of the triangle. As a consequence, every mesh 
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point is now surrounded by a unique twelve-sided polygon. This 

secondary mesh of dodecagons covers completely the whole problem area, 

and Fig. 3 shows the dodecagon surrounding just one mesh point. The 

difference equations for H are now obtained by integrating Eq. ( 2) over 

the area (in the z-r plane) of one dodecagon at a time. This yields 

-+ -+ -+-+ 2-+-+ 
f curl(curl H)-da = t 'curl H-ds = k f H-da 

Assuming that H behaves like a linear function of z and r within every 

triangle, H inside every triangle is uniquely determined by the values 

of H at the three corner-mesh points of the triangle. The integrals in 

Eq. (3) can therefore be expressed in terms of the value of H at the 

"center-mesh point" of the dodecagon and its six nearest logical neighbors, 

giving a relationship of the following kind 

6 
~ H (v + k2W ) = 0 n n n , (4) 
o 

with V and W depending only on the coordinates z,r of the seven mesh 
n n 

points involved. 

Identifying each difference equation with its "center-point", we 

therefore get one difference equation for H at every interior mesh point. 

2. 3. The Treatment of Boundary Points 

Turning now to mesh points on the boundaries of the problem, it 

is clear that no difference equations are needed for H at boundary 

points when the boundary conditions require H = 0 there. Nevertheless, 

we have to explore whether or not the difference equations for such 

points are satisfied. To this end, we consider first Dirichlet-boundary 

points that are not on the problem axis. This kind of boundary condition 
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can obviously only be irnposed.as a symmetry condition along· a plane 

defined by z = const. This implies that in the real world a point on 

one side of this line has anH-value of the same magnitude, but opposi~e 

sign, as the symmetrically located point, and the difference equation, 

Eq. (4), is cleariy satisfied for every such boundary point. 

This argument cannot be applied without elaboration for points on 

axis (r = 0), and the diffepence equations resulting from Eq. (3) are 

in fact not satisfied for those points. To see how this can be 

interpreted, we can introduce on the right-h~d side of Eq. (lb) a 

(magnetic) current density term j that has only an azimuthal component. 

This gives on the right-hand side ofEq. (3) the additional term kI, 

where I represents the total current associated with the point under 

consideration, and assumed to be concentrated there. In our case of 

axis points, an aziImlthal current on the axis is, of course, without 

consequences, and this whole argument could also be used to lend 

legitimacy to the application of the symmetry consideration to axis 

points. 

When E is required to be perpendicular to boundary-mesh lines, we 

consider that part of the dodecagon surrounding a boundary point that 

goes through inside problem triangles, i.e., the polygon 0-1'-2'-3'-4'-0 

in Fig. 4. Since E = curlH;k is required to be perPendicular to lines 

4-0 and 0-1 . , 

f 
~ ~ 

curl Hods = 0 
4'-0-1' 
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This means that the difference equation for H at such a boundary point 

is identical to that for interior points except that only contributions 

from interior triangles are taken into account. 

A very important property of the differenc'e equation, Eq. (4), is 

the fact that if we use the logical coordinates (indices) K,L to identify 

mesh points, and if KO,Lo are the coordinates of any specific mesh point 

for which we write down Eq. (4), then the coordinates of the other mesh 

points contributing to Eq. (4) differ from KO and LO by not more then ±l. 

3. DIRECT, NONINTERATIVE SOLUTION OF A SET OF INHOMOGENEOUS 
LINEAR EQUATIONS 

If one wrote down difference Eq. (4) for all (Le., including all 

boUndary and exterior mesh points) HKL of the logical mesh by rows 

from left to right; and if one also had some inhomogeneous terms, one 

could write the resulting system of equations in the following form: 

f 
fall a12 ;](1 
I 
I a21 a22 a23 I 

;](2 G2 

! 
I 

a32 a
33 

a34 ;](3 G
3 

= (5) 

~2-1,L2-2 ~2-1,L2-1 ;](L -1 
2 

GL -1 
2 

a a ;](L Gl L2,L2-1 L2,L2 2 2 

In this matrix equation, ;](1 represents a column vector with the components 

HK,l' K = 1 - K2; ;](2' a vector with components HK,2; K = 1 - K2, etc, 

and the G represent the corresponding inhomogeneous terms. The matrix 
n 

on the left side of Eq. (5) has all zeroes except for the block matrices 

ai,lof size K2XK2. These blocks are sparse also, the diagonal blocks 
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containing only three nonzero elements in every row, and the off-

diagonal blocks not having more than three in any row. 

Deferring to Section 4 the discussion of how we can cast oUr field 

evaluation problem in the form of Eq.(5), involving all points of the 

logical mesh as well as inhomogeneous terms on the right side of Eq. (5), 

we discuss now the method used to solve Eq. (5). 

We first "transform all diagonal blocks into unity matrices, and 

remove all blocks to the left of the diagonal blocks, with the 

Gaussian block elimination process: we multiply the equations represented 
" -1 " 

by the first row of blocks from the left by' all ' and then subtract 

from the second row the new first row after multiplication from the 

left by a2l ." The new set of ~quations is then the same as the original 

one, ,except that a2l = 0; all = I; and a12 , Gl , a22 , and G2 are now 

modified. This process is repeated, involving rows 2 and 3, then 3 and 4, 

etc. The very last step in this process is the multiplication of the 

last row (modified by the previous step) from the left with the modified 

block matrix a.. . L 
. L 2 , 2' 

Having Eq. (5) rewritten in this form, the last row now represents 

directly the solution for ~L . 
2 

in row L2-l yields directly the 

Using this now numericaily known vector 

solution for ~L -1' and continuing this 
2 

back-substitution process yields the numerical values of all cornponent$ 

of all block vectors ~ • 
n 

It is important to recognize the fact that this particular fast 

direct method to solve inhomogeneous linear equationS can be used only 

if "they can be cast in the form of Eq. (5), and if the matrix on the 

left side of Eq. (5) is nonsingular. 
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4. CALCULATION OF FIELDS AND RESONANCE FREQUENCIES IN SUPERFISH 

In order to allow application of the direct linear equation solution 

described in Section 3, we have to include in an artificial way in the 

system of equations also those points that are part of the logical 

mesh, but are external to the actual field solution problem. How this 

is done, and the treatment of points on Dirichlet boundaries, is discussed 

in Section 4.1; the creation of the inhomogeneous terms is discussed in 

Section 4.2, and the resonance frequency determination is discussed in 

Section 4.3. 

4.1. Treatment of Exterior Points and Points on 
Dirichlet Boundaries 

The simplest and most practical way to include exterior points 

without affecting the actual field equations, and without causing the 

matrix on the left side of Eq. (5) to become singular, is to let the 

equation for every exterior point read H t . = 0, and to make ex erlor 

all couplings to other equations zero by setting the corresponding 

coefficients equal to zero also. In other words, if nO is the index 

identifying an exterior point (not a block!), in the overall H-vector 

on the left side of Eq. (5), one simply sets all elements of row nO 

and column nO of the matrix in Eq. (5) equal to zero, with the exception 

of the nO,nO diagonal element, which is set to equal one.' The 

nO-element of the inhomogeneous contribution vector on the right side 

of Eq. (5) is set equal to zero also. The logic of the equation-solving 

routine is arranged in such a way that the thus-introduced zeroes are 

actually never used in multiplications, just as the other zeroes in 

the sparse matrices are never used as multipliers either. Points on 
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Dirichlet-boundaries are treated in exactly the same way. However, 

in contrast to exterior points, their z-r coordinates do enter into 

the expressions for Vn,Wn in Eq. (4) involving the otl1er point(s) of 

the triangles that have one or two,Dirichlet-boundary points at their 

corners. 

4.2. Generation of Inhomogeneous Terms for Eq. (5) 

In order to turn the set of homogeneous difference equations 

(Eq. (4)) into a well-posed set of inhomogeneous field equations, one 

could be tempted to introduce at one mesh point a driving (magnetic) 

current, as discussed in Section 2.3. That would bean unwise procedure 

when one is close to a resonance, since the matrix in Eq. (5) is 

singular for every resonance frequency, leading; as it must, to 

infinite fields. Instead, we prescribe that an appropriately chosen 

off-axis mesh point has the field value one and in effect remove the 

difference equation for that point from the system" of difference equations. 

To do this without destroying the structure of the fi~ld equations, we 

can proceed in one of the following two ways: 

(1) If the chosen point is identified by its index nl in the overall 

H vector, we set all matrix elements ;in row nl of the matrix in Eq. (5) 

equal to zero, 'except for the diagonal element nl,nl , which is set 

equal to 1. In the vector G on the right-hand side of Eq. ( 5 ), all 

elements are set equal to zero, except the nl-elementis set equal to one. 

Column nl of the matrix is left unchanged. 

(2) Every matrix element in row nl and in column nl is set equal 

to zero, except the nl,nl diagonal element is set equal to one. The 

vector on the right-hand side of Eq. (5) is set to equal minus the 
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original column nl of the matrix,except for element nl , which is set 

to zero. 

The net result of both procedures is the same, except that procedure 

(1) gives H = 1, and procedure (2) yields H = 0, even though the 
~ nl nl 

value H = 1 enters the difference equations of the neighbor points. 
nl 

Since procedure (2) simplifies two block matrices significantly, we 

use that method in the code. 

In contrast to the explicit introduction of a driving current, 

with procedures (1) and (2) the matrix on the left side of Eq. (5) is 

well conditioned even for resonance frequencies. 

If we take the original difference equation for the point with the 

prescribed field value and solve for the field value at that point, 

using the solution values of the field at the neighbor points, we will 

get a value different from the prescribed value, except at resonance. 

This difference can be interpreted as being proportional to the current 

11 necessary at that point to drive the cavity to the prescribed 

amplitude at the point with the prescribed field value. For this reason 

we will refer to this point as the driving point. 

4.3. Resonance Frequency Determination 

2 The driving current 11 introduced above depends on k through the 

coupling coefficients in the difference Eq. (4), and the resonance 

condition is characterized by 

, (6) 

since then there is no difference between the value of H as calculated 
n

l 
from the difference equation for that point, and the prescribed value 

.. 

. . 
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used there to solve for the fields; i.e., the differenceequatibns are 

satisfied for all points 'of consequence. " 2 To find the value (s) of k . 

for which Eq.(6) is satisfied,we can combine 'the above described 

"function generator" fo~ 11 O~2y with a numerical root·:....finding algorithm, 

such as the secant method, or' a parabola fit method. The latter method 

is used in the present stage of code development. But we expect that 

it will be useful to use a root-finding algorithm that takes into 

account some of the properties of I l (k2) that are described in Section 5. 

Figure 5 depicts a flow diagram of the maj or parts of'SUPERFISH. 

1",_. 

5. PROPERTIES OF 11 (k2) AND INTRODUCTION AND PROPERTIES OF D(k2) 

To obtain an understanding of some of the properties of the function 

I l (k2), and later D(k2), we will go back to the differential equations, 

Eqs. (la) and (lb), with Eq. (lb) amended on the right side by the 

magnetic current density j, assumed to be constant over a small area 

surrounding the driving point. In the. process of deriving some formulas, 

we have to evaluate integrals like fHojlodv, and set this equal 

2nrlohloIl' where 11 is the total driving current; r l , the distance of 

the driving point from the problem axis; and hl , the magnetic field 

aver~ged over the region where jl I O. The association between hl 

resulting from this continuum theory and the value of H at a mesh 

point in the representation by the difference equations is complicated 

by the fact that hl has a logarithmic singularity when the area where 

. j lOis reduced to zero (for 'fixed 11). While it seems reasonablE:? to· 

set hl equal to H at the driving point, or the value resulting from 

averaging H over the dodecagon associated with the driving point, it is 
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clear that the quantitative relationships developed below will describe 

only approximately the relationships between the quantities derived 

from the difference equations. However, it is also clear that the 

general behavior of the functions of interest is correctly described 

by the results derived from the continuum theory below. 

Adding the term 11 to the right side of Eq. (lb) gives 

:;t + + curl .l::!; = kH +J l 

+ 
Forming the scalar product of both sides of this equation with H, and 

.+ 
subtracting from that Eq. (la), after being multiplied by E, yields: 

H curl E - E curl Ii == div(ExH) = klf + 1 H - kE2 
1 

Integrating this over the whole problem volume gives 

Since ExH is either zero on the problem boundary~ or perpendicular to 

the boundary normal, f (ExH) da = 0, and we get 

D(k2) 
2nrl hl kI

l = R(k2) _ k2 
-

fH2dv 

fk2E2dV 
+2 

R(k2) f(curl H) dv 
= = 

fH2dV fH2dV 

The new function D(k2) has the property that its value does not 

depend on the scaling of hI' or II if that is the quantity that one 

wants to consider as the primary variable. 

(8) 

(9) 

(10) 
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To obtain more information about the behavior of Il(k2)~ we now 

2 calculate dIl/d(k ) = 
, 

11 . To this end, we take the derivatives with 

2 respect to k of Eqs. (la) and (7). Indicating derivatives with 

respect to k2 by primes, we get 
. ; 

curl H' = kE' + E/2k 

-+ -+ -+ ~t 
curl E' = kH' + H/2k + J l 

-+ 

(11) 

(12) 

It should be noted that for our procedure of field evaluation, H' = ° 
• • -+ ° . 2 ~, on Dlrichlet boundarles, because H = there for all k., Similarly t; 

-+ 
is perpendicular to Neumann boundaries since the component of E parallel 

to a Neumann boundary is zero for all k2 We now consider 

-+-+ -+ -+ -+ ~ ~ -+ -+ ~ ~ -+ div(ExH' - E'.xH) :: H' ° curl t; - t;ocurl H'- H·curl t;' + b' curl H 

Using for the curl expressions the appropriate right sides of E'J::Is. (1a), 

(7), (11) and (12) yields 

~ -+ -+ -+ +-+ -+~, 2 2 
div(t;XH' - E'xH) = H'oj - HOJ - (E + H )/2k 

1 1 

Integrating this over the problem volume gives, as in Eq. (8), zero 

on the left side, yielding 

We intentionally made no a priori assumptions whether we con$ider hl 

or 11 fixed when k2 is changed. However, for the case considered so 
, 

far, hl = 0, and we can immediately deduce the following conclusions 

from Eq.(13): 

(Foster's theorem) 

(13) 

(14) 
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This means that for fixed hI' between every two resonances (Il (k2) = 0) 

I
1

(k2 ) must have a singularity such that the sign of I l (k2), and therefore 

2 also of D (k )? change:;;. 

222 At a resonance, fE dv = fH dv (see Eqs. (.9) and (l0)), giving fH-dv 

on the right side of Eq. (13). We therefore g~t from Eqs. (13), (9), 

and (10) at a resonance (II = 0): 

2nrl hl kI1' 2 2 
----;<""-- = D' (k ) = R' (k ) - 1 = -1 

fH
2dV 

Since Il(k2) has a singularity between resonances, it is more 

convenient to study D(k2)in the vicinity of these singularities. To 

this end, we first consider R(k2
). According to Eq. (9), R(k2 ) = k2 

(15) 

at every resonance, and R' = 0 at resonance follows from Eq. (15). 

Since R cannot be negative, R(k2) must look qualitatively as indicated 

in Fig. 6 and R - k2 = D(k2) as shown in Fig. 7. An important consequence 

2 is that between resonances, D(k ) goes through zero, and this sign 

change must take place where I l (k2) has a singularity. 

To study D(k2) in the vicinity of this root of 6(k2) that does 
, , 2 

not represent a resonance, we take advantage of the fact that D(k )is 

independent of the scaling of the field and current quantities. We 

can therefore consider II as given and kept constant, and consider hI 

as the k2-dependent quantity that causes D(k2) = O. At this "between-

2 2 resonance roots," it follows from Eqs. (9) and (10) that IE dv = fH dv, 

giving again f~dV as the right side of Eq. (13). We therefore get 

from that equation 

\ 

.. 
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(16) 

A possible use of Eqs. (15) and (16) will be briefly d~scribe~ at the 

end of Section 6.3. 

6. PROGRAM STATUS AND FUTURE DEVELOPMENT 

The computer program was originally written for the 'CDC ··7600 

operating under the Livermore time-share system, and we describe here 

that particular version. 

6.1. Computer Time and Storage Requirements 

The CPU time required for a field evaluation is dominated by the 

time required to irivert the block matrices. For the system of equations 

described at the beginning of Section 3, the time used for inversion of . 

ttieblock matrices is proportional to K~.L2. 
. . 

When K2 > L2~ the difference 

equations are arranged along columns of the logical mesh, leading to 

this expression for the CPU time 

, 

with N representing the tot~l number of logical mesh points, and E the smaller 

of the two numbers K2/L2' L2/K2. For the CDC 7600 under LTSS, Tl ~. 0.,75 llsec. 

With the present system to find the roots of I l (k2), it takes 3 to 

6 field iterations to determine a resonance frequency accurately. 

The storage requirements for the program are approximately 11·N 

exclusive of the memory required for the modified off"':'diagonal block 

l'\1i3.trices, needed for the back"':'substitution. These matrices represent 

N3/2 oEl/2 words, too much to be accommodated in small core for N > 1500. 
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For larger problems, the disk has to be used. However, S. B. Magyary 

(18L) has pointed out that one needs to store only two such matrices 

when one needs to calculate only I l (k2) (and not the complete field map), 

provided the driving point is associated with the last row of block 

matrices on the left side of Eq. (5). In that case, the large amount 

of storage is not needed until one has a converged resonance frequency. 

6.2. Accuracy 

Since, we know from our experience with the RFISH code and the 

magnet code POISSON that the program is unlikely to have problems related 

to curved boundaries; we have made analytically testable runs so far 

only for empty pill box cavities. 

To see whether this code has any problems with extreme geometries, 

we ran an empty box of 5 cm length and 150 cm radius with 1267 points. 

Without any difficulty, the code returned the fundamental frequency 

correct to all five printed digits. ' 

Much more extensive runs were made for an empty box 60 cm long and 

a radius of 88 cm. The mesh point separation was 2 cm in both the 

axial and radial direction, giving a total of 1395 points. The 

fundamental frequency of this cavity is 130·389 MHz and is reproduced by 

the code with an error of 1 part in 10,000, while the stored energy 

is reproduced to an accuracy of 1 part in 3000. A much more severe 

test is the evaluation of higher modes. Resonance frequency number 

eight is 582.44 MHz, and is returned by the code as 583.50 MHz; the 

stored energy calculated by the code is 3% smaller than the correct 

value. Figure 8 shows the pattern of electrical field lines (rH - const) 

for this mode. It should be noted that the distance between an extreme 
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value of rH and the next axial node is only 7'.5 mesh spacings. Modes 

29 and 30 represent an even more extreme_ test: - The.analytical 

frequencies are 1179.9 ,MHz and 1186.3 MHz, and the code-produced­

frequencies are 1183.0 MHzansl 1196.6 MHz; while the, energy of these 

modes is off by approxirhately 10% •. Considering the fact that mode 29 

has six radial and one axial nodes, and mode 30 has three radial and 

four axial nodes, these numbers, are surprisingly good., The closeness 

of the two resonances did not cause any problems. "Turning on" the 

partial and complete pivoting of the matrix inversion routines, or 

iterating on the field residuals of the solution of, the difference 

equations, did not change any 'Of these numbers .:However ,increasing 

the number of mesh points caused a marked improvetnent of the accuracy 

of the frequency and the stored energy, indicating that the numerical, 

errors are due to mesh size,ahd n9.t round-off errors. 

6. 3. Secondary Quantities, and Near Future Developments 

The program calculates now, or will calculate in the very near 

future, the following secondary quantities: stored energy; transit 

time factors; energy dissipated on designated surfaces; ,I H I:inax; IE I max 

on designated surfaces; shunt impedance; Q; and frequenc,Yperturbation 

by drift tube stems. 

We also plan to calculate and print out coefficients that indicate 

how the movement of designated surfaces perturbs the resonance frequency. 

These quantities were calculated byRFlSH and.proved extremely valuable. 

To simplify the work on high-Order modes, we. intend to generate 

printout plots of node lines (Le., H = O-lines) and/or plots of 

2 2 points with local extrema of rH, and ll(k ) and D(k ) plots. 
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To simplify the design of cavities that have to have a predetermined 

resonance frequency, we intend to run the, code with that fixed frequency 

(possibly modified by drift tube stems) and to accomplish 11 = 0 

by moving or deforming a designated boundary. The techniques necessary 

to do this are already used in the magnet design code MIRT7 and can 

easily be incorporated in SUPERFISH. 

To reduce the number of iterations necessary to find a resonance 

frequency, we plan to employ a root-finding routine that uses the 

properties of D(k2) expressed by Eqs. (15) and (16). If this code 13 

used extensively to find high-order modes, it might also be profitable to 

attempt to develop a mode pattern analysis and prediction routine. 

6. 4. Advantages of SUPERFISH 

The main advantage of the code is the capability to solve problems 

that other codes cannot solve at al), or only with great expenditure 

of computer time. In addition, the code is quite fast, requiring only 

about 1 sec per iteration on the frequency for the test problem 

diSCUSSed above. With five iterations and the time used to calculate 

miscellaneous other quantities, one has a complete solution in6 sec. 

l~e irregular triangular mesh, while not allowing ,as many mesh points 

as a square mesh, has the advantage of allowing the definition of 

boundaries by mesh lines, and to produce a mesh with a large density 

of mesh points in regions .where the problem requires high resolution. 
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6.5. Disadvantages .of SUPERFISH 

The drawback associated with the.irregular triangular mesh is 

the fact th.at one has to generate such.a mesh. This extra.stepcan slow 

down the total process of recei v~g the desired answers. This problem 

has been partly reduced by the creation of the code AUTOMESH, developed 

by one of us (R.F.H.) while at CERN. This code optimizes automatically 

the coordination between space-boundary coordinates and logical 

coordinates, provided that one is satisfied with a uniform mesh point 

density in a limited number of distinct regions. At the time of 

writing this paper, an effort is being undertaken at LASL by 

D. Swenson, W. Jule, and one of us (R.F.H.) to improve the whole process 

of data input and mesh generation. 

There is one basic drawback associated with the necessity of having a 

driving point in the problem: if one happened to choose its loc~tion 

such that it is on a node line for the problem under consideration, 

computational problems will result. For that reason, it is advisable 

to put the driving point on a Dirichlet boundary. When the code 

detects the computational difficulty, it can switch the driving point 

to a more favorable neighboring point on the boundary, thus eliminating 

the problem. 
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FIGURE CAPTIONS 

Fig. l. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

. Fig. 6. 

Fig. 7. 

Fig. 8. 

Logical triangular mesh. 

1/2-Alvare~ cavity with irregular trianglar mesh. 

Irregular triangular mesh with secondary dodecagon. 

Boundary mesh point with neighboring interior mesh points, 

and secondary polygon. 

Flow diagram of SUPERFISH. 

2 Graphical representation of prop~rt~es of R(k ) . 

Graphical representation of properties of'D(k2}. 
, I ';~ 

Electric field lines (rH = const) for_ mode #8 i~te~t cavity. 
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their employees, nor any of their contractors, subcontractors, or 
their employees, makes any warranty, express or implied, or assumes 
any legal liability or responsibility for the accuracy, completeness 
or usefulness of any information, apparatus, product or process 
disclosed, or represents that its use would not infringe privately 
owned righ ts. 
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