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INTRODUCTION 

LBL-662 

The levels of a nucleus can be divided into two energy regions, namely 

the "low energy" and "high eriergy" excitations. This division arises naturally 

from tlie different approach employed for their analysis: the spectroscopical 

S:~proach for the low energy leve'ls and the statistical approach for the high 

. . . 

energy l~veis. - The low-lying nuclear excited levels are small in number' well 

~epar~ted, and their structure· 'is rather simple. For these levels the 

spectro1copica'J. ~pproach is the.most suitable and leads to information concerning 

~orifi~'ations,, residual interactions and mixing. 

With increasing excitation energy, the spacing between the 1·evels is 

progressively reduced and the nature of the excitations becomes very complicated. 

. . . ' -

'rlw existence of such complex levels is beautifully illustrated by the neutron 

capture resonances. 
6 . 

Their average spacing is about 10 times smaller than the 

*Research supported in part by the U.S. Atomic Energy Co~mission. 
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average single particle level spacing and their widths are also 106 times s~aller 

than expected for .a single particle excitation (1). This and other evidence 

indicate that a large number of degrees of freedom is involved, with considerable v . 
. .. 

· configuration mixing. These experimental observations support the concept of 

the compound nucleus introduced by N. Bohr (2,3). In this description the 

reacting system (nucleus + neutron) relaxes via two-body .interactions to a 

highly complex configuration called the compound nucleus, which has no. lllemory 
. I . . 

. 
of the original reaction, except for the constants of motion. 

Because of these considerations and experimental observations, it is 

natural that, for nuclei with increasing excitation energy, the spectroscopic 

approach should be abandoned in favor of a statistical approach which allows 

a more comprehensive description of the average behavior of the compound nucleus 

and of its decay. In particular the decay process of the compound nucleus 

becomes controlled by the phase space of the "products" and the matrix elements 

between the different states become averaged by the sheer number of levels and ~ 

by their very high density (4,5). 

The most relevant quantity describing the statistical nuclear properties 

;--.· 

is then the level density of the system, expres.sed: as a function of the various 
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constants at motion like excitation energy, number of particles, angular 

momentum, parity, isospin, etc. A special kind of level density, important 

in the description of the nuclear'relaxation towards equilibrium is the level 

.. 
density for a fixed number of particles and holes. 

In the present article a distinction is made between level density and 

'state density. The former refers to nuclear levels irrespective of their 

angular momentum degeneracy and is indicated by p(E); the latter accounts for 

the 2I + 1 degeneracy of the levels and is indicated by w(E). 

The present paper will be divided into two main sections. The first part 

·will outline the main methods and models which have been used for the calculation 

cf the theo'reticB.l level densities. The second will deal with the sources of 

expei'imental information for the level density. 

. r ·· 1 . • . • • 

THEORETICAL OUTLINE OF THE METHODS AND MODELS EMPLOYED IN THE EVALUATION OF 
LEVEL DENSITIES 

I. 

To some extent, the models used in the level density calculations have 
.. 

followed the evolution of the knowledge of the nuclear properties. A certain 

lag, which is still noticeable at present, can in part be attributed to the 
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complexity of the statistical calculations and to one's reluctance to abandon 

analytical expressions in favor of more powerful numerical methods. 

Initially, the nucleus was represented as a g~s of non-interacting 
~I 

fermions confined to the nuclear volume (Fermi gas) (7-13). More specifically, 

the zeroth order expansion of this model was used, which corresponds to the 

equidistant model (equally spaced energy levels). The equidistant model has 

been largely employed in data analysis and is very popular even at present 

although it contains little physical information. 

Margenau (14) and Bloch (15) have presented 

a general procedure to include the shell model into level density calculations. 

However, a large amount of effort has been devoted to the development of 

semiempirical approaches to the problem, either by modifying the parameters of 

the equidistant model formula (16,17), or by introducing a shell correction in 

terms of an energy shift in the ground state (18,19). A more fundamental attempt 

to understand the effect of the shell model degeneracies has been made with 

the Rosenzweig degenerate model (20,21). In the same spirit more sophisticated 

models based on schematic single particle level sequences have been studied (22-29) 

also. 
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T,he, application of the pairing Hamiltonian to excited nuclei has 

provided a further improvement in the understanding of the low energy behavior 

of the. level density (10,30~34). The most recent studies in the field have profited 

from the use of numerical methods for the evaluation of_level densities directly 

from theshell.model single particle level schemes (14,35-42). Furthermore 

numerical calculations have been performed to evaluate level densities on the 

basis of the shell model single particle scheme and the pairing Hamiltonian as 

.well ( 43-:-47). !£. initio calculations including in a consistent way the nuclear 
',,·.·., 

deformation as well as the shell model and the pairing Hamiltonian are also 

. possible ( 48,49). 

To a large extent, the nuclear models employed in the level density -, 

calculation hav_e been determined by one's ability to find sui table methods of 

calculation. Therefor:e the most conm~:on methods of calculation will be illustrated 

before describing in some detai]. the models themselves. 

Methods of Calculation 

The Combinatorial Method.--

The combinatorial approach is suggested by the definition of the level 

density_. For a system of non interacting fermions, this method amounts to 
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finding the n\.unber of ways in which the nucleons can be distributed among the 

available single particle levels for a fixed energy of the system. A few 

authors have used this method in limited calculations (35-38). A very extended ..,, 

calculation has been performed by Hilllnan and Grover ( 44). In their calculation 

all the possible configurations are obtained by means of a simple method of 

enumeration and classification. The configurations are generated by cycling 

the occupation number of each of the single particle levelS over all its 

allowable values. The levels are.then sorted out in terms of particle number, 

energy and angular momentum (and possibly other quantum numbers). This method 

has been generalized to evaluate the level density with the inclusion of the 

pairing interaction. 

The advantages of such a procedure are related to the fact that an 

"exact" cqunting is performed. The disadvantages arise from the extremely 

high value that·the level densities can reach. Typically, in a heavy nucleus 

6 far from a closed shell, the level density may be of the order of 10 levels/MeV 
v 

at the neutron binding energy. Therefore such calculations can be performed 

only with large computers and are limited to small excitation energies especially 

for heavy nuclei. 
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This very powerfUl method (50) has become a classical tool in statistical 

mechanics due to its generality and flexibility. Let the nucleus be defined 

by its neutron and proton numbers N and Z and by its energy E. The statistical 

properties of the system are contained in the grand partition fUnction: 

n 
e: = exp(~ N'. + az. Z' - SE') 1. 

N' ,Z' ,E' 

where ~' az, and S are Lagrange multipliers associated with the particle numbers 

and energy. Of particular significance is the quantity t = ~ which is commonly 

known as the statistical temperature. 

The summation is over all nuclei with N' neutrons and z' protons, and 

over all the energy eigenvalues E' of each nucleus. The sum over the energy 

eigenstates can be substituted by an integral: 

/" ·= _[ J dE' . w (.E' , N' , z ') · exp ( ~ N' + az z ' - SE' ) 

N' ,z' 
2. 

·-.· The quantity w(E' ,N' ,Z') represents the density of energy eigenvalues for the 

nucleus (N', Z') at the energy E', or, in other words,the state density. The 

above equation also shows that the grand partition function can be considered a 

Laplace transform of the state density. A very elegant method for the inversion 
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of Equation (2) in the case of a system of non interacting Fermions has been 

described by Williams ( 39). This method uses recursion relations for the 

calculation of the coefficients of a finite order partition function and yields 

the exact state density. The method can be generalized to account for quantum 

numbers which can be expressed in terms of sums over single particle levels. 

A more general method yielding the state density makes use· of the inverse 

Laplace transform of Equation (2): 

1 w(E,N ,Z) = -;;;;.._~3 (21Ti) ' 3. 

where S = n - '1f N - ~ Z + 13E. The above contour integrals are also known as 

the Darwin-Fowler integrals. So far the only approximation introduced into the ,, 

calculation is the continuous approximation whereby the state density is considered 

a continuous fUnction. However, the generality of the method arises from a 

remarkable approximation which allows one to evaluate the integrals in 

Equation ( 3). 

It can be shown that the integrand has a saddle point whose location is 

defined by the equations: 
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as 
0 

as 
0 

as 
0 -= aaz = ; ·-= 

a~ as 

\;.. 

or 
\¥ 

an N an z an 
-E 4. r= aaz = 

. ag= ' ~ 

The paths of i~tegration can be chosen to pass through this point. By 

expanding the exponent S in a Taylor series about the saddle point and retaining 

only the quadratic terms, the integrals in Equation ( 3) yield the following 

result: 

w(E,N,Z) 
' 

where D is a 3. x 3 determinant of the second derivatives of n vith respect 

to the Lagrange mtll.tipliers ~' az and S. All of the quantities contained in 

Equation (5) must be evaluated at the saddle point. 

Such an approximation corresponds to the Stirling approximation for 

the evaluation of factorials and its accuracy depends upon the magnitude of the 
·. 

state density itself. The agreement of results based upon the saddle point 

approximation with the exact results is good even at low exci-

tation energies (42). The elegance of the method is also quite apparent in the way 
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in which the boundary conditions of the problem are introduced. They appear 

in a very simple way in Equations (4) where the saddle point location is 

defined. 

This procedure can be generalized for an arbitrary number of constants 

of motion K1•. If n constants are introduced, the state density retains the form 

n-1 
of Equation (5) where S = 0 + aE- L a1 K1 and the exponent of' 2~ is n/2. The 

i=l 

quantity D is now an nxn determinant of the second derivatives of' n with 

respect to ai and a. All the qUa.ntities a. and a are evaluated at the saddle 
~ 

.. 
point. 

Nuclear Models 

System of Non-Interacting Fermions.~-

For such a system, the grand partition function can be easily evaluated. 

Let the energy levels be represented by aK for neutrons and bK for protons; 

let also the magnetic quantum numbers for neutrons and protons be ~K and m2K, 

respectively. The constants of motion are the neutron and proton numbers N and 

Z, the energy E and the projection of the angular momentum on a space-fixed axis, 

M. The,logar~thm of the grand partition function is: 
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The saddle point is defined by the following equations: 

The entropy is given by: 

8. 

The second derivatives which appear in the 4 x 4 determinant i~ the denominator 

of the state density formula are: 
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Because of the importance and simplicity of the present case, the formalism 

has been reported in its entirety. The above formalism allows one to calculate 
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I 

the state density for a nucleus specified by N neutrons, Z protons, total 
' " 

energy E .and angul'ar momentum projection M. An approximate expression for 

w(E,N,Z,M) is the following: 

w(E,N,Z,M) 
. 2 2 = ( ) exp(- M /2a ) w E,N,Z 

l2:rra2 ' 9. 

where w(E,N,Z) is obtained from the previous formalism py eliminating the 

Lagrange multiplier ~. 
2 

The quantity a , called the spin cut-off parameter, 

determines the width of the M distribution and is given by the expression: 

. · . 

As suggJsted by Bethe.(T),the dependence of the level density upon the total 

angular momenttiJ:il I is given by: 

p{E-,N,Z,I) = w(E,N,Z,M =I) -w(E,N,Z,M =I+ 1) • 11 • 

or 

10 • 

p(E,N,Z,I) 
d .. 

[dM w(E,N,Z,M)]M = I 1 ~ 
+-

2 

'2I+l .. [ (I+l/2)2 ] 
112 3 

w(E,N,Z) exp - 2 • 
2(27T) a . 2a 

12. 

•The evaluation of the level density within the present formalism is dependent 

upon 'the solution ·of the· saddle p.oint equations which yield the quantities ~, 
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a.Z' l!, B. Since, in general, the saddle point equations are non-linear, they 

must be solved numerically. However there are some highly simplified cases 

where the level density can be expressed analytically. 

The Equidistant MOdel.--

In this model- -(7.;.13) the single particle levels are equidistant and non-

degenerate. The total state density for a system composed of' two kinds of' 

particles is given approximately in analytical form by: 

1T2 
where a = 6 g and g is the single particle level density. The explicit 

dependence of' the state density upon excitation energy arises from the simple 

relation between excitation energy and statistical temperature: 

·2 
E =at 

Such an expression, or equivalent ones, has been widely used because of' its 

simplicity although the model it is based upon is quite unrealistic. It is 

also sometimes described as the Fermi gas level density expression. This is 

in<!orrect: in a Fermi gas, the single particle level density increases 

'i. 
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approximately as the square root of. the p~ticle kinetic. energy while in the 

present model it is a constant~ Such an expression is only the zeroth order 

~ . approximati9n to. the .::)..evel density of a Fermi gas. 

Because ·of the simplicity of the equidistant model, we report here same 

of,th~ _.formulae based on it which are widely used .in data analysis. (51,52). The level 

density for a single angular .momentum and both pari ties as a runction ot the 

excitation energy E is given by: 

1 1 1 / 4 1 (2! + 1) 1/2 · p{E,I) =- (-) - exp {2(aE) . 
. 2412' a C13 E5/4 

14 • 

,'•:': .···.: 

The total level density is related to p{E,I = 0) by: 

p(E) = 2<1
2 p(E,I = 0) 15. 

In these expressions the spin cut off parameter is given by the relation: 

(12. . ( 2 ) t - c:tt . 
= g m - h2 . ' 16. 

'~ where ( m2 ) is the average of the square of the single particle spin projections. 

The nuclear moment of inertia d is assumed to be that of a rigid sphere: 

;:1 = ~ mA R
2

, where m is the nucleon mass, A is the mass number and the radius 

is given by the relation: R = 1. 2 A 113 
F •. 
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In light nuclei, where the Coulomb effects are small, each_ single 

particle level has a further twofold degeneracy, since it can be occupied by a 

neutron or by a proton. This arises because of the nucleon isospin p;rojections 

( ± ~). 

In complete an_$l.ogy with the treatment of the angule.r mamentum, the 

level dens-ity for a total isospin projection T,. is: 

p(E,T}.) = p(E) 17. 

2 1. where aT} = 4 gt. If the Coul.amb effects can be disregarded, the level density 

for a given isospin value T is: 

p(E,T) = p(E) 2T + 1. 
2(21r)l./2 a 3 

TJ. 
18. 

In problems related to the pre-equilibrium behavior of a·nucleus it is 

necessary to calculate state densities for nuclei with fixed number of excited 

particles p and holes h (53,56). If a constant single particle level. spacing 

of 1/g is assumed the energy can be expressed in dimensionless form: 

U = gE_ 
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Ericson has given the following expression for the state density (54): 

w(E,p,h) 

. ' 

. g( E)p+h-1 .. · 
- p! h! ~p + h- 1)! 19 • 

Williams has improved the Ericson formula. by properly accounting for the Pauli 

h ' 

principle in his derivation (55).· His approximate result in terms of a closed 

form expression is: 

w(E,p,h) 
= g{gE - A)p+h-1 

.pi h! (p + h - 1)! ' 20. 

····where A =·t-.(i/ + h2 ) + f (p:... ~)-~hand. has the same dimensions as gE. For ·this 

speci8.1 kind of'sta.te density, shell effects are also expected to play a. major role. 

Level Densities for·More CompleX Sets of Single Particle Levels.-

The simplest system of non-equidistant levels is the Fermi gas system, 

where the single particle level density increases with the square root of the 

kinetic energy of the particles. The more general set of single particle levels 
: .. 

given by the shell model, however, has a. much more complex variation in its level 

spacings. 

In order to simulate to some extent the bunching and the degeneracies 

typical of the shell model, various single particle level schemes have been 
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considered. A completely bunched periodical system has been explored. by 

Rosenzweig (20). His single particle spectrum is obta.ined by dividing the 

equivalent equidistant spectrum into equal groups of levels; separated by a. .. 

gap. Each group of levels is constructed to merge into one single level of 

fixed degeneracy, and all the resulting degenerate levels are equall.y spaced. 

The remarkabl.e results of this investigation show that, for high 

excitation energies, the l.evel density is given by an expression equivalent 

to that for the equidistant modei., except ·that an effective excitation energy 

*' E is substituted for E. The effective excitation energy is given by: 

' 
' 21.. 

where n and p are the neutron and proton l.evel. degeneracies, Kn and Kp are the 

neutron and proton numbers in the l.ast occupied l.evel.s, d and d are the 
n p 

average spacings between neutron and proton l.evel.s,respectivel.y. In this model. 

the level density is lowest when the single particle levels in the ground state 

are completely filled or empty while it is highest when the last occupied level 

is half-filled. These two cases do simulate a magic nucleus and a mid-shell nucleus, 

respectivelyo 
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. The equidistant spectrum can be partially bunched so that the groups 

of levels do not quite merge into a single degenerate level. It has been shown 

by Kahn and Rosenzweig (24,25) and by Gilbert (26) that for this model and for 

all the models characterized by a periodic single particle scheme, the level 

density at .high energy" .can be given by a relation analogous to that of the 

uniform model~ The effect of the shell structure can be accounted for by. the 

substitution of an effective excitation energy for the true excitation energy: 

* E = E - ~E ' 

where fiE is an energy shift which depends upon the structure of the ground state. 

If the single particle spectrum is not periodic,it is important to note that 

it is not possible to reduce· the effects of the shell structure into a 

constant energy shift. 

Level Densities from the Shell Model.--

All the models which have been described so far, yield analytical 

expressions for the level density. However, because of their unrealistic 

Hamiltonians, they do not predict the structure observed in the level densities 

near closed shells. More detailed and accurate theoretical information about 
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the level density is possible when one uses single particle levels obtained 

from a shell model calculation. These more realistic single particle levels 

·have been used by some authors to calculate the state density by either the 

combinatorial approach (35-38,44) or by mearis of the Darwin-Fowler method 

(14,39-43,45-49). The)..ast method, when coupled to the saddle_ point approximation 

as described earlier, yields perhaps the simplest and most general. way 

of evaluating level densities in terms of the shell model. 

In Figure 1 level density calculations from the Nilsson model are 

presented for nuclei close to 208Pb ( 40). The shell effects appear in a remarkably 

clear way, indicating that the most magic nucleus 208Pb has the lowest level 

density. The level densities increase for nuclei which are farther and farther 

away from the double closed shell. Also noticeable in this figure are the 

different excitation energy dependences of the level densities of different 

nuclei • In Figure 2 the spin cut-off parameters are 

presented for the same nuclei. The shell effects manifested in the values of· 

2 a have two different origins. One origin of the shell effect is related to 

fluctuations in the spacings of single particle levels 
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and the second origin of the shell effects is related.to fluctuations in the 

spin projection of the single particle ) .. evels. Both types of fluctuations 

are responsible for the strorig differences in the absolute values and energy 

• 
dependence of the spin_ cut-off parameters. · 

From the examples pres~nted above, one sees that the shell structure 

\ 

influences the ~low energy behavior of the level density in. a rather complicated 

way. At high exci tatiQn energy the effect of the shell!:! on the level density 

.. ··;. 

becomes somewhat simplero It was pointed out previously that, 

for a periodic single particle spectrum which on the average has constant 

density, the high energy limit for the entropy is: S ~ 2 la(E- 6E). In this 

limit the shell effect takes the form of a constant energy shift. This is not 

true for the general case of an arbitrary set of single particle levels and it is 

instructive to observe the behavior of the effective shift 6E for different 

excitation energies. The results of a calcul.ation (57) based on a set of Nilsson· 

single particle levels is shown for the nucleus 124Pd in Figure 3. This nucleus 
.•. 

is four protons removed from the fifty proton shell and four neutrons removed from 

the 82 neutron shell. The quantities 6E and the proton chemical potential are 

plotted versus the excitation energy. The chemical potential has the property of 
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moving towards the region of low single particle level density. This rule is very 

useful in understa.nding the behavior of the systemas the excitation energy increases. 

The initial averaging over the shell structure results in a drifting of the chemical 
• 

• 
potential into the fif'ty p~oton shell gap. When the she~ structure is washed out 

the chemical potential continues to decrease because it senses the smoothly . 

. . 
decreasing behavior of the single particle level density •. This slow decrease 

of the chemica.l potential with increasing· excitation energy is responsible 

for the slow decrease of flE wit~ energy even after the shell structure is 

washed out. 

System of Interacting Fer.mions.--

A realistic treatment of the statistical nuclear properties requires 

the introduction of the residual interactions. This can be done in a rather 

simple way by means of the pairing interaction: in this case the problem 

reduces to the choice of the BCS quasi particles (58) as the basic non-interacting . 

fermions (30-32,43-49). Very recently a more fundamental attempt has been 

made to include realistic residual interactions in level densities in the 

very same spirit as they are introduced in spectroscopical studies (59-61). The 



. ! 
li..) I 

-23-

apparently inextricable problem associated with many interacting particles in 

a large spectroscopical space can be overcome by the statistical simplifications 

.. 
associated with the central limit theorem. Since a detailed presentation 

• 
of this method goes beyond the scope of this work only a brief description will 

be made of the simplest residual interaction, namely the pairing correlation. 

The Hamiltonian including the pairing interactipn can be expressed in 

its second quantization form: 

' 
22. 

±K KK 1 

t where EK are the single particle energy levels, aK and aK are the creation and 

annihilation operators and G is the pairing strength. Such a Hamiltonian can 

be approximately diagonalized py means of the quasi particle transformation 

described first by Bogoliubov (62). In such a description,the excitations are 

considered to be independent fermions whose energy is given by: 

23. 

where A is the chemical potential and the quantity 6 or gap parameter is a 

r:1easure of the pairing correlation. The logarithm of the grand partition function 

l
. ~. 

;;, . 
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provided that !!:., A, (:3 are connected by the following relation: 

2 [ - = G . 
1 1 -tanh- (:3 E 

E 2 K 
K ' 

' 
24. 

25. 

which is called the gap equation because it defines the gap parameter !!:.. The 

first integrals of motion and the entropy of the systE!Il can be obtained from 0: 

' E -A l 
N = L [1 - -T- tanh 2 (:3 EK] 26. 

K 

The gap equation describes the dependence of 6 on the temperature T. The gap 

parameter 6 decreases with increasing temperature and vanishes at a critical 

temperature t which, for the uniform model, is: c 

• 



.. 
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AbOvE;!·this temperature·the pairing correlation disappears and the system reverts 

to the uncorrelated condition. This is caused by the blocking effect of the 

• quasi particles; the levels occupied by them become unavailable to the pairing 

interaction which decreases and eventually disappears. The only recollection of 

the pairing interaction is associated to a shift of the effective ground state: 

A complete presentation of this .formalism is available in References 47 and 49. 

The behavior of a paired system restricted to a fixed angular momentum can also 

be described (46,47) •. Angular momentum, as excitation energy, tends to destroy 

pairing. At zero temperature, the dependence of the gap parameter l:l upon angular 

momentum is given by the relation: 

l:l M 1/2 
r = (1 - -) 

o Me 
' 30. 

where Me = g l:l m. The quantity M is called the critical angular momentum because 
c 

for higher angular momenta the pairing correlation disappears. 

The combined effect of angular momentum and temperature on the gap parameter 

can be observed in Figure 4 where the lines of equal l:l are projected in the T, M 
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plane. A very interestirig effect called thermally assisted pairing. correlation 

can be observed for angular momenta larger than zero but less than the critical 

angular momentum. An initial increase in temperature actually increases the .. 

pairing correlat.ion instead of decreasing it. Furthermore for angular momenta 

somewhat higher than t~e critical value, an increase of temperature produces 

the onset of the pairing correlation. The. cause of such peculiar phenomenon 

is the following. At low temperature the quasi particles, necessary for the 

generation of angular momentum are tightly packed around the chemical potential,· 

blocking the lev.els most relevant to the pairing interaction. An increase in 

temperature spreads the quasi particles away from the chemical potential thus 

decreasing the overall blocking. A fUrther increase in temperature generates 

more and more quasi particles until the ·pairing correlation breaks down. 

Inclusion of Collective Degrees of Freedom.--

In the formalisms described so far, no specific account has been taken 

for the effect of the collective degrees ot freedom. It has been shown that 

shell effects tend to disappear with increasing excitation energy. The nuclear 

deformation is itself a shell effect: therefore it is important to know how 
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the deformation changes with excitation energy. Assuming that the collective 

degrees of freedom are statistically coupled to the internal degrees of freedom, 

._ an excited nucleus is expected to be characterized by a distribution of deforma-

tiona. The probability of deformation can be calculated within the assumptions 

listed above and can be expressed as follows (48,49): 

P(E,e:) = t-1/2 (' >' A w ~,e: ' 31. 

where e: is the deformation parameter, h is the Planck's constant, me: is the 

inertial parameter associated to the collective motion, w(~,e:) is the state 

density of the nucleus calculated at the deformation e: and at an excitation energy 

~ = E - V(e:), V(e:) being the potential energy at the deformation e:. The 

quantity A1 is defined as: 

A, = dlnw(x) I 
~ x=Err 

An example of "ab initio" calculations of the deformation probabilities 

based on the Nilsson diagram and the BCS Hamiltonian is shown in Figure 5b. 

These deformation probabilities must be compared with the potential energy 

curve vs. deformation shown in Figure 5a. It can be observed that at low 
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excitation energies, the deformation probability closely reflects the details 

of the potential energy. ·However as the excitation .energy increases, the 

structure in the deformation probability is gradually smoothed out until, at 

sufficiently large energy, the deformation probability peaks at sphericity, 

with a large dispersion. At these energies the deformation probabilities reflect 

more the trend of the liquid drop potential energy than the actual potential 

energy which is modulated by the shell effects. This example shows dramatically 

how the washing out of the shell effect takes place with increasing excitation 

energy. 



'·· 
cJ 

-29-

EXPERIMENTAL SOURCES OF.INFORMATION ON LEVEL DENSITIES 

·;Experimental data on nuclear level d-ensities has gen-

erall~-b~en arialyzed with a theoretical expression based on the 

. ·eqUidistant model (see EqUation (14)). Although an expression 

· of this ·type ·is usual·ly referred -to as a Fermi gas level densi-

ty 1 this is not str.ictly.true since the equidistant model as 

discussed earlier-represents· only a zeroth order approximation 

to the single particle density'of a Fermi gas. The level 

density ·parameters ~_'-'(defined after Equation (13)) and 6. 

(defined·· below)·· ·vary with A but for a particular nucleus are 

assumed to be .. constarits independent of excitation energy. The 

quantity·~ is an energy shift which defines a fictive ground 

state 'with respect to the actual ground state. Hence, the 

quantity E i!i. Eq\lation (14) is replaced with an effective 

energy E*=E-6. In most analyses of data ll ·is assumed to be a 

.... 

pairing energy (63 1 64 1 19) ·(see section on Neutron Resonances). 

However I ··in more· recent· anaiyses of- data I ~ is treated as an 

adjustable parameter includ'ing the effects of nuclear shells 

as well as pairing (42 1 65-68). 
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If one adopts the point of view that a and t::. are adjustable 

parameters, it is sometim~s possible· in' limited regions of 

excitation energy to approximate with good accuracy level 

densities associated with non-uniform single particle structures 

with eq. 14 where!_ arid! are independent of.excitation energy. 

Such a procedure usually fails, however, near major closed 

shells where a simple ·constant temp"erature ·formula 

p(E) = const. exp(E/T) 32. 

is often better (42,69,70). It must be emphasized that these . ·- - -

simple forms of the level density are approximations which may 

not reproduce very well the level density of a nucleus which 

has marked structure in its single particle levels. Even so, 

the present state of experimental data is such that essentially 

all analyses have been performed with level density formulas 

which contain, energy independent parameters. 

The third level density parameter determined from experi-

2 mental data is the spin cutoff parameter cr which characterizes 

the angular momentum distribution of the level density. 

Information on this parameter will be discussed in a later 

section. 
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Neutron Resonances 

Neutron resonance data contribute the most extensive. 

·source of information on nuclear level densities. In this type 

of experiment, the nuclear·energy levels are observed at an 

energy just exceeding the neutr.on binding energy and the 

number of:levels are obtained by counting the resonances in 

a.particular neutron energy interval. It·is necessary in 

such experiments that the width r of each level be less than 

the level spacing D and that .the experimental resolution is 

good enough to resolve individual levels. The levels excited 

by neutron-resonance spectroscopy have narrowly selected values 

of angular·momentum I and parity 'IT quantum numbers. 

Level spacing information has been obtained from slow-

·neutron resonance . (s-wave) data· for about 200 nuclei. Average 

resonance.spacings <DI(E)> and references to the experimental 

data are given in severa:l compilations (16,18,19,71-74). 

One of the important aspects of this method is its applica-

bility to the entire range of A values across the whole 

periodic table. Hence, it is possible to investigate trends 
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and systematiGs of the nuclear level density as a function of 

A. Although the technique of neutron resonance spectroscopy 

is an extremely important one in terms of level density infor-

mation, it suffers from a number of sources of experimental 

error. First of.all, the strengths of resonances of a par-

ticular spin and parity vary greatly from one resonance to 

another. Hence, from cross section measurements over a given 

energy region, one cannot be certain that all the s-wave reso-

nances have been detected. Secondly, if positive means of 

identification have not been used, one cannot be certain that 

some of the resonances detected are not of p-wave character. 

The probability of observing p-wave resonances with low energy 

neutrons is greater for light nuclei and regions of A where 

a maximum exists in the p-wave strength function. Fortunately, 

the above two errors are to a certain extent compensatory. 

Finite instrumental resolution-may lead to an underestimate 

of the number of resonances in cases where close-lying resonances 

are unresolved. 

For a target with zero spin, s-wave neutron capture 
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gives the density of levels of a singie angular momentum and 

parity 1/2+. If the angular momentum dependence of the level 

.density is given by Equation (14), the total level density 

+ p (E). is related to the average spacing between 1/2 levels 

p(E) = 33. 

Authors · (16-19, 29,73, 7 5, 76) have traditionally analyzed neutron 

resonance data with level _density formulas of the type given 

by Equation (14). A recent compilation (29) of the level 

density par·ameter a as a function of atomic mass A is shown in 

Figure (6). Each level density parameter in Figure {6) depends 

upon~- a knowledge of two other parameters, a and 6. The spin 

cutoff parameter in'this analysis was calculated from Equation (16) 

where g<m2 > is assumed equal to the rigid-body moment of inertia 

.£;112 • ' The energy shift 6 was assumed equal to the pairing 

energy values of Gilbert and Cameron (19). 

One observes from Figure (6) that there is an overall 

increase of a with increasing values of A. However, marked 

deviations occur from the straight line where a=A/8, especially 
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for A values near closed shells. For example, in the vicinity 

of the Z=82 and N=l26 shells, ~values are more than a factor 

of two smaller than those of nearby nuclei. such irregularities 

are associated with shell structure of the single particle 

spectrum near the Fermi energy and have been discussed by a 

number of authors (16,17,19,29,72,73,75,76). Gilbert and 

Cameron (19) have also applied a composite nuclear-level 

density formula with shell corrections to the neutron 

resonance data. 

There are also other difficulties in the determination 

of level densities by the neutron resonance technique. When 

the average spacing is large and few resonances are observed, 

there is a source of uncertainty of a statistical nature 

that is due to the irregularity in spacing between individual 

levels (72). The calculation of the total level density 

from the density of levels of a single spin and parity 

requires a knowledge of both the angular momentum and parity 

dependence of the level density. At the neutron binding 

energy, calculations of the ratio of positiveto negative 
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parity levels for some nuclei show that this quantity varies 

considerably from unity (44). Fluctuations in the density 

of levels of a particular J and TI are expected to occur 

due to nuclear shell structure. Hence, for such nuclei the 

density of 1/2+ levels at the neutron binding energy may not 

give a true representation of the total level density. 

Capture of s-wave neutrons in targets of non-zero spin 

leads to the excitation of levels of two classes with angular 

momenta differing by one unit. This makes the interpretation 

of such data more difficult. ' 

The neutron resonance data gives a measure of the density 

of levels for a single parity and one or two values of angular 

momentum in a single energy region just above the neutron 

binding energy. The level density parameters extracted from 

these data by Equations (33) and (14) do not necessarily 

have general applicability, especially in regions of higher 

and lower excitation energy. This subject will be discussed 

in later sections. 



-36-

Charged-particle Resonances 

Information on the density of levels of restricted angular 

momentum is obtained from charged particle capture resonances 

in the same way as described for neutron capture r~sonances. 

In addition to the requirement that r<D, the charged-particle 

resonance data are restricted to light and medium nuclei 

due to the Coulomb barrier. One of the heavier targets 

studied by this technique is 64Ni. In this case, for ex-

ample, the capture of 3:11 to 3.28 MeV protons on a target 

of 64Ni has led to the identification of a number of s-wave 

and p-wave resonances (77) in the compound nucleus 65cu. 

From the density of observed resonances pres' the total 

density of levels p (E). is calculated from the relation 

Pres = p (E) 2:' [ (2I+l)/4a 2 ]exp[- (I+l/2) 2;2a 2 ] 
I,1r 

34. 

by summing over the spins and parities of the resonances. 

In some cases considerable error may arise due to the assump-

tion which is made about the t waves contributing to the 

total number of resonances. The other uncertainties in the 

determination of the level density from charged.-particle 
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capture resonances are similar to thos~ 'discussed previously 

for neutron capture resonances. 

The study of charged•particle resonances gives level 

density information for a number of nuclei which cannot be 

studied by neutron resonance spectroscopy. A compilation 

of such data for a number of light nuclei has been published 

by Endt and van der Leun (~ta) • ·Some nuclei have been studied 

by more than one reaction. For example, levels in the compound 

nucleu~ 28si have been observed as resonances in the 

27Al(p,y), 24Mg(a,y) and 27Al(p,a) reactions. This data has 

been analyzed to give the total number of levels in 28si in 

the vicinity of 12.5 MeV (67). 

Recently, a high resolution technique has been developed 

and used in the measurement of proton excitation functions 

for even-even targets in the m~ss region 40~A~64 (77,79-86). 

With protons of energy between 2 and 3 MeV, a resolution of 

approximately 400 eV has been obtained for thin solid targets. 

Spins, parities, total and partial widths of the compound 

states are determined. For even-even targets, s-wave proton 
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+ capture excites 1/2 compound levels. Level densities in the 

compound nucleus (E=B +E ) based on the 1/2+ resonances are p p 

consistent with other level density data (87). One of the 

unique features exploited with this technique iS the study of 

fine structure of analogue states. Since the analogue state, 

T>, mixes to some degree with the T< levels of the excited 

compound nucleus, the number of resonances one observes is 

a function of the density of T< levels which have the same 

spin and parity as the analogue state. Since the proton 

bombarding energy is low, few p-wave resonances are observed 

for nuclei in the mass range 40 to 64 except at energies in 

the vicinity of an analogue state. In the energy region of 

an analogue state, the strength of the T> state is shared with 

the T< background states. The widths of the T< levels are 

sufficiently enhanced to make a number of them experimentally 

. 
observable. Even so, an examination of the p-wave resonances 

(1/2 and 3/2 levels) in the vicinity of an analogue state 

indicate that there are too few such resonances relative to 

+ . 
the number of s-wave resonances (1/2 levels). If all the 
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1/2+ and 1/2 levels were excitea as s- and p~~ave resonances, 

it would be possible to measure directly the positive to 

negative parity ratio of these levels. 

· Inelastic Scattering and Nuclear Reactions 

to Resolved Levels 

·Level density information from neutron and charged-particle 

resonances as described in the above sections is limited 

to energies exceeding the appropriate binding energy. These 

levels are in the compound nucleus and they are separable 

due to high·resolution experimental techniques. A large 

number of levels have been studied also in residual nuclei 

at lower: energies by excitation through inelastic scattering 

and a variety of other nuclear reactions. The resolution 

obtained in these experiments is orders of magnitude poorer 

th~n that achieved with s-wave neutron spectroscopy. A 
·' 

typical ~esolution obtained with a Van de Graaff acclerator 

and ~ magnetic spectrograph is of the order of 10 keV for 

energetic charged particles. With such equipment, it is 

possible to. study isolated levels up to an excitation energy 

of approximately 5 to 6 MeV for a nucleus with atomic mass 
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around 60. The resolution obtainable by .. these techniques may be 

improved·to approximately 1 keVin the near future (88) and this 

will make this technique more attractive. 

Typical nuclear reactions which have been employed to study 

levels at low energies are the (p,p'), (n,n'), (a,a') and (p,a) 

reactions. Although a number of levels have been studied with 

(d,p) and (d,t) reactions, these and other similar direct re-

actions are more likely not to excite all the nuclear levels • 

. 
If this technique is to be used for accurate level density in-

formation, one must be assured that levels of all angular mo-

menta are excited. For compound nucleus reactions, the retative 

cross sections for populating levels of different I can be cal-

culated. Results of such statistical calculations are discussed 

in the literature (89} for the 56Fe(p,p') and 59co(p,a) reactions 

for 11 MeV proton bombarding energy. The relative intensities 

for exciting low and high angular momentum levels by the two re....; 

actions are very different. The relative cross section for ex-

citing high spin states such as I~8 states is still large for the 

59co(p,a) reaction. On the basis of the spin dependent 
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level·density given by Equation (14)·, a~d a spin cutoff factor 

of 3.7 for 56 Fe (90), one dalculates that only a very small 

percentage of the levels have I>S.· Hence, by choosing the 

appropriate reactions it is possible to excite· :essentially 

all the nuclear levels. 
56 . . 

The levels in the Fe(p,p') re-

action (89) above 3 MeV of excitation energy are shown in 

Figure (1·) • Levels 8 and 11 are very weakly excited, however, 

these ieveis are more strongly excited in the 59co(p,a) 

reaction and must have I~6. 

With this method, a second question must be raised about 

the fraction of levels which lie so near another level that 

the pair is unresolved due to the finite experimental reso-

·lution. It is true that at sufficiently high excitation 

energies the leve£s are unresolved, but how can one estimate 

the number of unresolved pairs of levels at lower excitation 

energies? The spacing between adjacent levels having the 

same spin and parity is distributed relative to the mean 

spacing according to the Wigner distribution given by (91) 

i 
- . '- 2 -2 

P(S/S) = (TIS/2S)exp(-rrS /4S ) 35. 
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where S is the spacing and S the average spacing between 

levels .. · This distribution has a deficiency of small spacings. 

If on the other hand, levels occur in a completely random 

way, one obtains an exponential distribution given by, 

P(S/S) = exp(-S/S) 36. 

which has a maximum value for (S/S)=O. In the present case 

where we are dealing "tlith levels of mixed spin and parity, 

Wigner proposed that these levels of different spin and/or 

parity are not in any way correlated in position. The re-

suiting distribution of spacings from a sequence of levels 

which is a superposition of sets of different spin and/or 

J 

parity has a shape intermediate between the Wigner distribution 

. and the exponential distribution. The theoretical distribution 

of spacing resulting from the random superposition of a 

number of unrelated sequences, each of which has a Wigner 

distribution, has been derived by Rosenzweig· and Porter (92). 

For a spin dependent level density given by Equation (14) and 

levels of both parities, the distribution of spacing approaches 

the exponential distribution even for rather small values of 
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cr (93). An analysis of the experimental spacing distribution 

for 622 levels with 5~30 keV has been made (93) for levels in 

nuclei 36Ar (94), 38
Ar (94), 40ca (95), 45 sc (96), 47v (97) ,49v (97), 

50cr (98), 51v (99), 52cr (89 ,98) I 
53cr (98) I 

54cr (98),. 54Fe 

(100), 55
Mn (89) I 

56Fe (1011102) I 
57Fe (103), 58Fe (103), 

59co (101), and 66 zn (89). The experimental data fit an 

exponential spacing distribution as shown in Figure ,(8). 

If the experimental resolution is known, it is possible to 

use the exponential spacing ~istribution law to correct the 
~ ' . 

experimental level density for missed levels due to unresolved 

levels with spacings less than the experimental resolution 

(89 1 104). At 5 to 6 MeV, the correction for a nucleus with 

.A=60 may approach 50%. 

Compilations of the energies of nuclear levels and in 

some cases information on their spins and parities are pub-

lished for a number of nuclei (78,105,106). The use of level 

density counting information at low energy in conjunction with 

particle capture resonance data gives a more critical test of 

level density formulas. In the calculation of the values of 
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a plotted in Figure 6), the ground state of the odd-odd nuclei 

served as the fictive ground state of the Fermi gas. The 

excitation energies of the odd A and even-even A nuclei were 

reduced (29) by the appropriate pairing energy of Gilbert 

and Cameron (19). Such a formulation of the level density 

is inadequate to fit both the low excitation energy (level 

counting) and particle capture resonance data. A better fit 

to all the data is obtained if the level density parameter ~ 

and the energy shift A, which defines a fictive ground state 

with respect to the actual ground state, are treated as ad-

justable parameters. Except in the neighborhood of closed 

shells, the experimental level densities are best fitted with 

an energy Shift corresponding to a fictive ground state of 

the Fermi gas being located between the actual ground states 

of the even-even and odd A nuclei (65-68,107). This model 

has been referred to as a back-shifted Fermi gas model (65,67). 

Values of effective level density parameters ~ff and ~ff 

have been determined from state density calculations (42) 

which use· Nilsson single particle states by fitting the 
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. theoretical level densities with· a formula such as Equation 

(14). Such calculations give effective values of a and 6 in 

reasonable agreement with the experimentally determined 

values (42). 

Spectrum of Evaporated Particles 

The energy and angular distribution of particles emitted 

from a: compound nucleus in a nuclear reaction is given by 

(iOS-112), 

2 
d 0 ab(e:b) 00 

= ~ BL ( e:b) PL(cose) 
, de:bdnb 

even 

The function BL(e:b) is given by 

_ (2Ia+l)-1 (2ia+l)-l k;2 

4 

and G(J) is given 

G{I) 

37. 

38. 

39. 

The quantities Ia,ia,Ijib' and ib are the spins of the target, 
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projectile, compound nucleus, residual nucleus, and the emitted 

particle, respectively; Sa and Sb arethe channel spins in 

the incident and outgoing channels, respectively; R.a and R.b are 

the orbital angular momenta of the incident and outgoing par-

ticles, respectively; ka is the wave nUmber of the incident 

particles; PL(cose) is the Legendre polynomial of the order L; 

.2-a 1b 
T (e: ) and Tb (e:b) are the transmission coefficients for the a a · 

projectile and emitted particle, respectively, with the channel 

energies e:a and e:b (the channel. energy e: is defined as the 

sum of the center of mass kinetic energies of the emitted 

are the so-called z coefficients and are defined as the product 

of the Racah coefficient W, and the Clebsch-Gordan coefficient 

(R.R.OO;LO) as 

Z(R.IR.I;SL) = (2R.+l) (2!+1) (.2.R.OOILO)W(R.I.2.I;SL) 40. 

One of the properties of the Z coefficients is that they 

vanish unless 2.2-+L is even. This means that L must be even. 

This property has the consequence that only the even order 

Legendre Polynomials PL(cose) are present, i.e. the angular 
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distribution is symmetric around goo in,.the center of mass 

system~ ·The quantity pb(Eb,Ib) is the energy and spin dependent 

level density of the residual nucleus formed by the emission 

of particles b with channel energy Eb; and the primed quantity, 

b', refers to the different types of emitted particles. .The 

sums in the numerator can be performed independently with 

respect to the quantum numbers ta,tb 1I and Ib since the Z 

c·oefficients vanish for combinations of the quantum numbers 

which violate the conservation of angular momentum. 

The.~nergy dependent differential cross section is ob-

tained by integrating Equation (37). over all angles. Only the 

term with L=O contributes to the energy dependent differential 

cross section since the higher order Legendre polynomials 

vanish when integrated over the solid angle. 

The product of the z coefficients 

reduces to a very simple form since for L=O the Clebsch-Gordan 

and the Racah coefficients have the form 

41 •. 

W(R.IR.I;SO) = (-)S-R.-I/ /(21+1) (2I+l) 
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Noting the fact that 1a,1b and L must obey the triangular 

relationship and that integration of Equation (37) over dn intro-

duces a factor of 4~, the energy distribution of the evaporated 

particles is given by (87,108,113) 

I +i co 

-2 a a 
dcr ab ( e:b) .~k 

s~-i I 
~ia a = (2Ia +l) (2ia +l) 
1 

a (e:a). de:b ' 
a a a a 

i +S CZI I+ib Sb+ib a a k (2I+l) [>b 
s).II-tbl 

~- pb(Eb,Ib) 42. G(I) Tb (e:b·) 

-s I tb=O. Ib= b 1 bl a a 

If one assumes that the spin dependent level density has 

Equation (42) reduces to 

43. 

Substitution of the spin dependent level density given 

by Equation (14) for zero spin levels into Equation (43) gives 

44. 

where K' is a new constant for a particular bombarding energy. 
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From Equation (44}, the·value of the Fermi gas constant a 

can be determined from the slope of the straight line obtained 

from: a·plot of 

where the parameter n=2. If, on the other hand, the constant 

temperature level density is substituted into Equation (43), 

the constant temperature Tb may be obtained from the slope of 

the straight line given by a plot of 

46. 

where the parameter m=l/2. The latter plot can equally well 

be made as a function of Eb. 

A large number of particle· spectra including those from 

the ( n, n • ) , ( p, n) , (a , n) , ( n , p) , ( p, p ' ) , ( p, a) , ( n, a ) , ( p, a) 

and (a,a') reactions have been analyzed to determine infor-

mation on level densities (69,70,87,107,114-171). Most of 

the spectra have been analyzed with Equations (45) and (46). 

The values of n used in Equation (45) have included 5/4, 3/2 

and 2 corresponding to the use of the state density, the level 

density and the level density of a particular angular momentum, 
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respectively. In addition, some authors have·set n=O which 

assumes that the preexponential term in the level density 

formula is insignificant in ·terms of the overall exponential 

dependence of the level density on E. 

In order to illustrate the dependence of the parameter 

a on the value of n when spectra are analyzed with the 

Weisskopf type formula given by Equation (45), we show such 

analyses of theoretical spectra (87). The 63cu(p,p•) 63cu 

d 60N· ( ') 60N· t 1 l.t d •th th t an ~ a,a ~ spec ra were ca cu a e w~ . e exac 

statistical theory including angular momentum given by Equa-

-1 tion (37), employing level density parameters a=6.8 MeV , 

6=-0.5 MeV and 5.8 Mev-1 , 6=0.5 MeV, respectively (and rigid-

body moments of inertia)~ As shown in Figure (9), the 

approximate slope technique of Equation (45) gives a different 

value of a for each value of n. The value of n needed to 

reproduce the input value of a depends on the reaction type, 

with smaller values of n required for (a,a') reactions than 

for (p,p') reactions. The value of~ needed to reproduce the 

actual value of a depends on reaction angle also, especiaily 
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for reactions where large I values are excited. 

Level density parameters in the literature which are de-

duced from the conventional analysis of spectra (Equation 

(45)) with traiues of n ranging from o·to 2 are subject to 

sizeable errors. The errors in ~are up to 50% depending on 

the value of n. The slope technique requires also a knowledge 

of·r:. and this leads to further ambiguity in the derived 

value .of a. The exper'imen:tal spectral data are usually not 

sufficiently accurate to distinguish between a constant 

temperature (Equation (32)) and Fermi gas (Equation (15)) 

type of level density. In some cases, the values of a 

derived from (n,n') spectra are a factor of two different 

from those derived by other methods. These discrepancies 

appear to be related to experimental difficulties and the 

methods of data analysis. 

There is evidence for some nuclei, however, that the 

level density is increasing with energy in a way predicted by 

the Fermi gas model. For example, the neutron spectra 

from the 103Rh(p,n) 103Pd reaction (133) show an increase in 
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temperature with increasing bombarding en~rgy. If the energy 

range of the emitted neutrons is kept fixed with increasing 

bombarding energy, the spectra sample regions of increasing 

energy in the residual nucleus. The results of theoretical 

spectra calculated with Equation (37) and analyzed with the 

approximate Equation (46) are shown in Figure (10). The 

variation of temperature with bombarding energy is in excel-

lent agreement with experi~ental results analyzed (52) with 

the same approximate Equation (46) and supports an energy 

dependence similar to that of the Fermi gas level density 

(Equation (15)). 

Evidence exists also in support of a constant temperature 

type level de:nsity at low excitation energy, especially for 

nuclei in the vicinity of closed shells (42,52.,69, 70). 

Several analyses have been made on portions of evapor-

ation spectra corresponding always to the sarne.range of 

energy in the residual nucleus for different incident energies. 

In this case, a variation in the level density parameter with 

bombarding energy is not expected and implies some er:r:or in 

the analysis procedure. Bodansky (151) has reviewed some 
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of the explanations for the observed increase in temperature 

with incident energy. As the incident energy is increased, 

there is an ·increased probability of particle emission before 

thermal· equilibrium is established or preequilibrium emission 

(172-175). This leads to a higher p~rcentage of high energy 

particles in such spectra.· Secondly, observed cross sections 

depend not only on the ievel density but also on the inverse 

cross.sections which may ~e in error. Thirdly, the 

conventional analysis with the Weisskopf formula produces 

the effect, of a higher temperature because the angular mo-

mentum is ignored. In some cases at least, the observed 

variation of level density parameters with bombarding energy 

cannot be entirely due to the neglect of angular momentum, 

and must be due to one or both of the other two factors. 

As already indicated, erroneous values of the level 

density parameter a may be obtained when nuclear evaporation 

spectra are analyzed with the conventional. formalism that 

does not explicitly take account of the spin dependent 

level density. The apparent value of a from a reaction spectrum 
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depends both on the mode of formation of the compound nucleus 

and the type of particle emitted. This makes it difficult 

to extract a meaningful value of ~ trorn a single evaporation 

spectrum with the conventional theory. Recently, the level 

densities. of several nuclei with mass around A=60 have been 

studied by measuring spectra from several. suitably chosen 

reactions which populate the same residual nucleus (87,160, 

161). Such studies give a more stringent test of the validity 

of the various approximate formulas and show the necessity 

in a number of cases of employing the exact statistical 

theory with angular momentum in evaluating the level density 

parameter. Comparison of (p,a), (a,a'),. a·nd (a,p) . 

spectra give the same level density parameter whereas the 
---

(p,p') spectrum leads to a smaller value of a (87,160). 

This may be understood in terms of a contribution of pre-

equilibrium protons in the (p,p') evaporation spectrum 

leading to a harder spectrum and a smaller value of a. 

In most analyses of reaction spectra by the conventional 

slope technique one obtains only ·the level density parameter 
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a. Occasionally, the absolute level density is obtained by 
' . 

normalizing.the level density in a particular low energy 

range to the' known number of· levels in this energy region 

determined : .. by high-resolution magnetic spectroscopy (165). 

Excitation Functions of Isolated Levels 

Absolute cross sections for formation of isolated re-· 

sidu~ll levels''in comp<iund nucleus reactions can be used to 

determine nuclear level densities (65). This was first 

pointed out by Ericson (6) • Since the cross section for 

···f8rtna:tion of any particular level (or levels) is governed 

by the bompetltion 6f decay probability through this selected 

ie~dtion channel (oi cha~nels) to that for all other channels, 

the number of competing channels can be determined from the 

" cross section of a single channel. Measurements of the abso-

lute cross ~ect.i.'ans for isolated final 'levels as a function 

··of bombarding energy have been used to determine the energy 

dependence 'and absolute values of the level densities of the 

residual nuclei (65). I~ the limiting case where one type of 

exit particle dominates (usually the neutron channels), the 
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level density of a single nucleus is obtained. 

According to the statistical theory of nuclear reactions, 

the differential cross section for a reaction leading to a 

final state with angular.momentum IB' parity wB and excitation 

energy EB in the residual nucleus·B,_can be expressed by 

Equations (37) to (39) where the level density in the numer-

ator of Equation (38) is replaced by a single level. The 

excitation function of the single level (or levels) is 

fitted with different choices of the level density parameters 

for the other exit channels in order to give the best agreement 

between experiment and·theory. In order to fit both the 

absolute value of the cross section and its energy dependence 

with a Fermi gas type level density, both a and ~ need be 

adjusted (65). Hence, this technique has some intrinsic 

advantages and gives an absolute measure of the level density. 

On the other hand, the technique suffers from the exponentially 

decreasing cross section with energy of a single level and the 

possible admixture of direct reaction particles. Improvement 

in statistical accuracy can be attained by examining 
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the energy 'dependence of the cross S·ection of many final 

levels (143,144). However, other uncertainties in the analysis 

offset the advantage gained by better statistics. 

Ericson Fluctuation Widths 

' . 

A number of nuclear reaction cross sections have been 

measured with good energy resolution at a compound nucleus 

excitation energy of approximately 20 MeV. These cross sec-

tions fluctuate markedly as a function of projectile energy 

and have been extensively analyzed in terms of statistical 

theory. ~or the en~rgy region where the average level width 

r is larger than the average spacing D between compound nuclear 

levels, r is obtainable from correlation functions of the 

fluctuating cross sections. This average width r of the com-

pound states is related by statistical theory to a sum of the 

partial widths of ail the exit channels, 

rr(E} = (DI,1T (E}/21T} G(I} 47. 

where G(I} is defined by Equation (39}. If the width r of the 

compound nuclear states is known from cross section fluctuation 

measurements and information on the exit channels is known from 
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other measurements, the level density of· the compound nucleus 

at a high excitation energy of approximately 20 MeV is obtained 

(65,66,107,176,177). 

Substitution of Equation (47) into Equations (37) and 

(38) and making some simplifying assumptions gives, 

m S2-s1 
on (-1) Tall(£l)Tbl2(£2)zlz2PL(cose) 

(2I+l)exp[-I(I+l)/2ac 2l 
48. 

where o0 ,1T(Ec) is the spacing of zero spin levels of one parity 

and ac· is the spin cutoff factor of the compound nucleus at 

excitation EC. The width r(E) is now defined as a weighted 

average over the width ri(Ec) of the various compound spin 

states. The above weighting factors are dependent on exci-

tation energy, angle e, and the spin and parity of the final 

state. However, the influence of these factors on r(E) is 

rather weak and Equation (48) is quite a good approximation. 

The right-hand side of this equation depends on the quantum 

numbers IB and 1rB of the populated level in the residual 
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nucleus, transmission coefficients of the entrance and exit 

channels and the spin cutoff factor crc of the compound nucleus. 

As information· exists on all these quantities, it is possible 

to evaluate. the right-hand side. of. Equation (48)~ The quantity 

r(Ec)/D0 (Ec) can then be computed as a function of excitation 

Valu~s of r/D0 for the compound nuclei 56Fe and 60Ni are plotted 

in the literature (65) as a function of energy for both rigid-

and half-:.rigid-body .moments of inertia. The quantities D0 (Ec) 

and .p (E) c can ,be calculated from the values of r (Ec) /D0 (Ec) if 

independent knowledge of the level width r(Ec) as a function of 

energy is available. 

Level density results from this technique for excitation 

energies near 20 MeV are published (65, 66, 176, 177) for several 

nuclei. An example of such results for 60Ni is ·shown in 

Figure (l:l) . Presently, this is the only method which gives 

in,fo~a~ion on the level density at such high excitation energies. 

References to the original literature on fluctuation widths 

are available in review articles (178-180). 
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Compound Nucleus Lifetime and Level D-ensity from the 

Blocking Effect 

Several measurements have been reported of the mean 

compound nucleus lifetimes based on the blocking effect of 

inelastic charged particles in single crystals (181-183) • 

. This technique offers a method of determining lifetimes in 
I . 

the neighborhood of lo-17 seconds. If a small number of final 

states are excited with known yields, it is possible to calcu-

late the density of compound levels from such lifetime 

measurements with the Hauser-Feshbach (110) statistical theory. 

Furthermore, it has been·observed that the final state spins 

affect the effective lifetimes in a manner which can be 

understood on the basis of selective contributions by the 

various compound nuclear angular momenta (184). 

Spin Distribution of the Nuclear Level Density 

A property of the nuclear level density which is of great 

general interest is its spin dependence. The angular momentum 

dependence is explicitly contained in Equations (12) and (14) 

through the quantity 2 
(J I which is called the spin cutoff 
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parameter. The simple form of the spin dependent level density 

given'in these equations is expected to fail for large values 

of the angular momentum. Hence, the experimental data dis-

cussed in this section is limited to systems with relatively 

small values of angular momentum. Information on the density 

of level's with ver:~r-,large values of angular momentum may be 

obtained ·from Equations· f6-8). 

Information about cr 2 comes mostly from a) isomer ratio 

measurements '(185, 186) , b) ·angular distributions of particles 

emitted in compound nucleus reactions (112,165,90,170,143), 

c)-· analysis of levels· of known spin, and d) particle capture 

to levels of two or more knoWn spin values (187). 

The uncertainties involved in the derivation of the spin 

cutoff factor from experimental data has oftentimes led to 

results which are· subject to large errors. These experimental 

2 values of cr. have been interpreted in terms of Equation (16), 

where the moment'· of inertia is allowed to take on values less 

than ·the rigid-body value. Authors in reporting the fractional 

decrease of the rigid..:body moment have used different values 
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of the radius parameters. For example, ·a rigid-body moment 

of inertia computed on the basis of a radius parameter of 1.2 F 

corresponds to only a 64% rigid~body moment on the basis of 

a radius parameter of 1.5 F. For A~10 2 , the experimental a 
.. 

values are well represented within the large experimental 

uncertainties by Equation (16) with a rigid-body moment of 

inertia (R=l.2 A1/ 3F). The limited amount of information on 

heavy nuclei indicates that a remains almost constant for· 

A>lOO (188). Near A=200, the moment of inertia may be reduced 

in some cases to the extent of half the rigid-body value. 

Comparison of the experimental values of a with theoret-

ical values based on Equation (16) is not too meaningful for 

particular nuclei in that no account is taken of specific 
I . 

structure in the single particle spectrum. Comparisons of 

experimental a values with those predicted for realistic sets 

of single particle levels are now being made (90). Examples 

56 59 of such comparisons for Fe and Co are shown iu Figure (12). 

The solid lines are based on Nilsson single particle levels. 

The dashed line for 56 Fe is calculated for a set of single 
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particle levels based on a potential very similar to that of 

a Woods-Saxon potential (189). The dot-dashed curves are 

based on the rigid-body moments of inertia. The experimental 

data'for these nuclei is in good agreement with both theories. 

However, in. evaluation of a 2 from Equation (10), one observes 

strong effects due to the particular orbits near the Fermi 

56 . . 
energy. At low energies for Fe the proton contribution 

(unfilled f
712 

orbital in the ground state) to a
2 is 

essentially twice the neutron contribution (unfilled p 312 

orbital in the ground state). It is obvious that shell 

structure will influence the spin dependent level density in 

some regions of A so ,that the values will deviate markedly 

from the predictions of Equation (16) based on the rigid-

body moment of inertia. For example, experimental measure-

ments on nuclei below lead indicate that a is approximately 

4±1 in the vicinity of the neutron binding energy (a value 

much smaller than predicted by Equation (16)). Calculations 

based on various single ~article level schemes give similar 

values for nuclei at and just below the double closed Z=82, 
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N=l26 shell as shown in Figure ·(2) •. The.se calculations do 

not include pairing which in some cases reduces considerably 

2 the value of cr • In conclusion, it appears that our present 

experimental information on the spin dependent level density 

can be qualitatively understood in terms of nuclear shell 

structure. 
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FIGURE CAPTIONS 

Fig. 1. Theoretical level densities as a function of excitation 

energy for nuclei in the neighborhood of the 208 Pb doubly 

closed shell (Ref. 40). The Nilsson shell model has 

been used to obtain the spherical set of single particle 

levels. 

Fig. 2. 
2 

Theoretical spin cut-off parameters a as a function 

of excitation energy for nuclei in the 208Pb region (Ref. 

40). The calculations have been performed on the basis 

of the Nilsson diagram. 

Fig. 3. Energy intercepts AE of the tangents to the function 

vs 124 E (left scale) for the nucleus . Pd; proton chemical 

potential (right scale) as a function of excitation 

energy (Ref~ 57). 

Fig. 4. Contour map of the gap parameter 6 as a function both of 

temperature T and angular momentum,M. The spacing in 6 / 

between two successive lines is 0.05 MeV from 6 = 1.0 MeV 

at the origin to 6 = 0.1 MeV. The outer line corresponds 

to 6 = 0. The calculation has been performed on the basis 
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of the-equidistant model. The density of the doubly 

degenerate single particle states is 7 MeV-l and the 

spin projection of the single particle levels is 2-fi (Ref. 47). 

Fig. 5. a) Potential energy as a function of deformation for 

.. th~ nucleus 172Yb. The solid line represents the pre-

diction of the-liquid drop model, while the dotted line is 

calculated from the Nilsson model and the Strutinski 

procedure. b) Natural logarithms of the deformation 

probabilities for 172Yb at excitation energies ranging 

:from 6 MeV to 60 MeV · (Ref. 49) • 

Fig. 6. Level density parameter a as a funct'ion of atomic 

mass A (Ref. 52). 

Fig. 7. Spectrum of protons inelastically scattered from 56Fe. 

The numbered lines represent excited levels in 56Fe 

(Ref. 101). 

Fig. 8. Experimental spacing distribution for 622-levels with 

·s~30 keV. The data for (S/5)~0.25 are normalized to and 

compared with an exponential spacing distribution (Ref. 93). 

Fig. 9. Dependence of the level density parameter a deduced 
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from the cqnventional . approxirn~te:. the.ory on the parameter 

n [see Equation (45)]. The theoretical spectra analyzed 

in this figure are calculated with Equations (37-39) and 

a level density of the form given by Equation (14). The 

input values of a used in the computation of the theoretical 

spectra are 6.8 and 5.8 MeV-l for the .residual nuclei 

6 3c d 6 ON . t . 1 ( R f 8 7) \:1 an . 1., respec 1.ve y e • • 

Fig. 10. Analyses of theoretical neutron spectra from the 

103Rh(p,n) 103Pd reaction with the approximate constant 

temperature theory. The theoretical spectra are calcu-

lated with Equations (37-39) and analyzed with Eq?ation 

(46). The theoretical and experimental temperatures are 

shown as a function of bombarding energy. (Ref. 52) • 

Fig. 11. Plot of.the experimental level density of 60Ni as a 

function of excitation energy (Ref. 87). 

Fig. 12. Comparison of theoretical and experimental values of cr. 

The solid lines are based on Nilsson single particle levels • 

. The dashed line for 56Fe is calculated for a set of single 

particle levels based on a potential very similar to that of 
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a Woods-Saxon potential (189). The dot-dashed lines are 

based on the rigid-body moments of inertia (Ref. 90). 
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